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Abstract 

In project management, the project duration can often be compressed by acceler-
ating some of its activities at an additional expense. This is the so-called time-cost 
tradeoff problem which has been extensively studied in the past. However, the dis-
crete version of the problem which is of great practical relevance, did not receive 
much attention so far. Given a set of modes (time-cost pairs) for each activity, 
the objective of the discrete time-cost tradeoff problem is to select a mode for each 
activity so that the total cost is minimized while meeting a given project deadline. 

The discrete time-cost tradeoff problem is a strongly NV-hard optimization 
problem for general activity networks. In terms of what current state-of-art-
algorithms can do, instances with (depending on the structure of the network and 
the number of processing alternatives per activity) no more than twenty to fifty 
activities can be solved to optimality in reasonable amount of time. Hence, heuris-
tics must be employed to solve larger instances. To evaluate such heuristics, lower 
bounds are needed. The aim of this paper is to provide such lower bounds using 
column generation techniques based on "network decomposition". We will show 
that a heuristic Solution can be derived from that result as well. Furthermore, a 
computational study is provided to demonstrate that the presented bounds are tight 
and that large and hard instances can be solved in short run-time. 

Keywords: Project Scheduling, Activity Network, Time-Cost Tradeoff, Network De
composition, Column Generation 

1 Introduction 

In managing a project, there is often the option of applying additional funds to reduce the 
processing time of some activities. Models developed for tackling this tradeoff are known 
as time-cost tradeoff models. There are two possible objectives for these models. One 
could either try to find the minimum cost activity processing times while meeting a given 
deadline (the deadline problem) or minimize the duration of the entire project meeting a 
given budget constraint (the budget problem). Also it might be of interest to compute the 
entire project cost curve. In this paper we present network decomposition methods for 
the deadline problem. 

The discrete time-cost tradeoff problem (DTCTP) can be stated as follows: Given a 
set of modes (time-cost pairs) for each activity, the objective is to select a mode for each 
activity so that the total cost is minimized while meeting a given project deadline. The 
DTCTP is a strongly W7>-hard optimization problem for general activity networks (De, 
Dünne, Ghosh, and Wells [7j). Hence, tight lower bounds are of primary importance. The 
purpose of this paper is to introduce a new class of lower bounds which are computed 
through network decomposition techniques. The purpose of network decomposition is to 
obtain a set of subnetworks that can be solved quickly (by a general purpose MIP solver). 

The modeler has to choose one of two types of networks: activity-on-arc (AoA) or 
activity-on-node (AoN). So far the relevant literature most often is based on the AoA 
representation although it is well-known that the AoA representation is inferior to the 
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AoN representation. In fact, Syslo [22] has shown that it is an A/T-complete optimization 
problem to compute the minimum number of dummy arcs necessary to represent the given 
precedence constraints between the activities when using the AoA format while no dummy 
arcs are needed at all for AoN networks. Hence, we use the AoN representation throughout 
the paper. 

The paper is organized as follows: In Section 2, the notation is introduced and the 
problem setting is discussed. Related work is reviewed in Section 3. Section 4 contains 
a mathematical programming model formulation for the DTCTP. In Section 5, prob
lem insight is used to obtain cuts which tighten the LP-relaxation based lower bound. 
Preprocessing techniques are discussed in Section 6. In Section 7, the idea of network 
decomposition is explained. Section 8 presents a column generation procedure that em-
ploys the network decomposition idea to compute lower bounds. Feasible solutions are 
derived in Section 9. A report on in-depth computational studies is provided in Section 
10. Finally, concluding remarks in Section 11 finish the paper. 

2 Problem Setting 

The DTCTP was introduced by Harvey and Patterson [12] and Hindelang and Muth 
[13]. It can formally be described as follows: It consists of a set V = {0,1,..., n, n + 1} 
of activities, a set E C V x V of precedence constraints among the activities, and, for 
each activity j, an index set Mj = {m^ •.. ,rnj} of possible modes. A mode m £ Mj 
is characterized by a processing time Pjm € IN0 and a cost Cjm 6 IR>o- Without loss of 
generality, we assume that, for each j € V, m < m1 implies p3-m > p3-m' and Cjm < Cjm>-
Furthermore, it is not restrictive to assume that activity 0 is the unique source node in 
the network G — (V, E) and that activity n + 1 is the unique sink node. 

A realization of the project is an assignment of modes to all activities j G V. Let 
mj 6 Mj be the mode assigned to activity j. Then, the total cost of the realization is 
given by cjmj• The makespan of the realization is the makespan of the earliest start 
schedule of the project when activity j has processing time Pjmr 

Limiting either cost or time, we obtain two related optimization problems: 

(i) For a given deadline T on the makespan, find a realization with a makespan less than 
or equal to T that minimizes the total cost of the realization (deadline problem). 

(ii) For a given budget B > 0, find a realization with a total cost that is less than or 
equal to B that minimizes the makespan of the realization (budget problem). 

The emphasis of this paper is on the deadline problem. 
Solving the deadline problem for all possible deadlines T leads to the function Bopt(T) 

giving the minimum cost as a function of the deadline T (the so-called project cost curve). 
Analogously, solving the budget problem for all possible budgets B leads to the function 
Topt{B) giving the minimum makespan as a function of the budget B. 
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3 Related Work 

The Importance of the time-cost tradeoff problem was brought to the attention of the 
research Community almost forty years ago (Fulkerson [11], Kelley [14], Kelley and Walker 
[15]), but still, due to its inherent computational complexity, research in the DTCTP is 
rather sparse. 

EXACT ALGORITHMS. Due to the practical importance of the DTCTP, many expo-
nential time exact algorithms have been proposed. Early examples are dynamic program-
ming approaches by Hindelang and Muth [13] and Robinson [18], and an enumeration 
algorithm by Harvey and Patterson [12]. 

The currently best known algorithms still rely on dynamic programming, but exploit 
in addition the decomposition structure of the underlying network. The decomposition 
that facilitates the computation is known as modular decomposition or substitution de
composition and has many applications in network and other combinatorial optimization 
problems (see the comprehensive article by Möhring and Radermacher [16]). 

Its usefulness for the time-cost tradeoff problem was first observed by Frank, Frisch, 
van Slyke, and Chou [10] and Rothfarb, Frank, Rosenbaum, Steiglitz, and Kleitman [19] 
for the special case of series-parallel decompositions. The general decomposition theorem 
that involves arbitrary modules is due to Billstein and Radermacher [5]. 

Because of the modular decomposition, the project cost curve needs only to be eval-
uated for certain indecomposable subnetworks (the factors in a composition series) of 
the original network. This is done by "transforming" such an indecomposable network 
to a series-parallel network and then performing the "easy" calculations for the series
parallel case. The transformation into a series-parallel network successively identißes 
certain nodes for "duplication". Any such duplication transforms the network "closer" to 
a series-parallel one, but increases the computation time by a multiplicative factor. 

This idea seems to be due to Robinson [18] and has been further developed by Bein, 
Kamburowski, and Stallmann [4], De, Dünne, Ghosh, and Wells [6] and Elmaghraby [9]. 

Demeulemeester, Herroelen, and Elmaghraby [8] provide the first Implementation of 
this approach. They implement two strategies for finding the nodes for duplication. 
The first follows the theory of Bein, Kamburowski, and Stallmann [4], which results 
in the minimum number of duplications required, while the second tries to minimize the 
number of realizations that have to be considered during the algorithm. Demeulemeester, 
Herroelen, and Elmaghraby [8] report on computational experience for networks with up 
to 45 activities without identifying a clear winner between the two strategies. 

The crucial parameter in the theoretical run-time analysis of this algorithmic approach 
is the minimum number of node duplications needed to transform an AoA network into a 
series-parallel network. Bein, Kamburowski, and Stallmann [4] refer to it as the reduction 
complexity of the AoA network (also known as the complexity index, CI, of an AoA 
network). It provides a measure for the "distance" of the given network from being 
series-parallel. 

LOWER BOUNDS. TO the best of our knowledge, only one non-trivial lower bounding 
procedure based on Lagrangean relaxation is available for the DTCTP (Akkan [1]). The 
Lagrangean relaxation is applied on an induced AoA network that is created by adding 
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new nodes so that the resulting network is made up of a set of series networks. These series 
networks are linked by constraints (which are later relaxed by Lagrangean Multipliers) 
that require the equivalent nodes among them to have the same occurrence times. The 
Lagrangean subproblem is solved by dynamic programming. Unfortunately, for instances 
with large time-windows for occurrence times of nodes, the CPU-time required for the 
Solution of the dynamic programming problems becomes prohibitively large. 

APPROXIMATION ALGORITHMS. Recently, the approximation behavior of the DTCTP 
has been analyzed by Skutella [20]. He first presents a polynomial reduction to the case 
where every activity has at most two processing times, and one of them is zero. For 
such a DTCTP, Skutella defines a "natural" linear relaxation. One then first solves the 
linear relaxation. This Solution is then "rounded" to a Solution of the original problem 
by rounding the processing times of some activities. Linear relaxation and rounding are 
key means in order to come up with different polynomial approximation schemes with 
guaranteed Performance for both the deadline and the budget problem. 

HEURISTIC ALGORITHMS. Akkan [1] developed a Lagrangean relaxation-based heuris-
tic for AoA networks which borrows from the ideas developed for the computation of lower 
bounds. Two local search algorithms for AoA networks have been developed by Akkan [2]. 
Both utilize a steepest descent algorithm for finding a local Optimum given a starting Solu
tion, which is constructed using a path heuristic. The first local search algorithm is based 
on random restarts while the second uses random kicks. The steepest descent algorithm 
is based on two local moves from a given Solution. The first one identifies for a given 
node the minimum decrease in the starting time required to have an outgoing activity use 
a longer (cheaper) mode, while keeping the starting times of all other nodes unchanged. 
Similarly, the second move identifies the minimum required increase in the starting time 
of a given node to have an incoming activity use a longer mode. These heuristics yield 
solutions within 1% of the Optimum for (small) test problems from the literature within 
fractions of seconds. 

GENERALIZATION. An important generalization of the DTCTP is the so-called multi-
mode resource-constrained project scheduling problem. There, Mj is used in a similar way 
to model resource-resource and time-resource tradeoffs. Resources are either renewable 
or nonrenewable; for details see for instance Sprecher and Drexl [21]. 

4 Model Formulation 

A mathematical programming model of the deadline variant of the DTCTP can be stated 
using the following additional notation. Let ECj denote the earliest completion time 
and LCj denote the latest completion time of activity j. Note, ECj and LCj can be 
calculated easily using the shortest processing times of the activities. We use Cj to 
denote the completion time of activity j (a decision variable). Furthermore, we use a 
binary decision variable Xjm that takes the value one, if mode m is chosen for activity j. 
Otherwise, its value is zero. The MIP model formulation reads as follows: 

min ^2 cjm%jm (1) 
j€V m£Mj 
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s.t. 

Y, Xim = 1 j € V (2) 
m£M. 

Cj -Ci~ PjmXjm > 0 (ij) € E (3) 
m£Mj 

Cn+1 < T (4) 

Co POm^Om ^ 0 (5) 
mGMo 

c, >0 jzV (6) 

Xjm E {0,1} j eV;m€ Mj (7) 

While minimizing the total cost (1), a unique mode must be assigned to each activity (2), 
precedence constraints must not be violated (3), the deadline must be met (4), and the 
project may not start before time zero (5). 

5 Cuts 

Solving the LP-relaxation of the model formulation gives a lower bound. To tighten the 
lower bound, we add additional constraints (cuts). Formally, we consider the transitive 
closure E* of the precedence relation E, i.e. a pair of activities (iyj) is a member of the 
set E*, if and only if j is a successor (not necessarily an immediate one) of activity i. 

For every pair (z, j) £ E* and all combinations of rrii € Mi and rrij 6 Mj, we test if 

LCj ESi <C Pinn ~f~ Pjmj 

is true. If this test succeeds, 
%imi %jm.j 5: 1 (8) 

is a possible cut. Note that if ximi + Xjm. < 1 is a cut, every combination of modes 

defines a cut as well, because a lower mode index means a longer processing time. This 
may result in a huge number of cuts, but fortunately we can do a bit better, because, if 
Ximi + Xjmj < 1 IS a CUt, 

rrii m.j 
y*! ^jm — 1 (^) 

m=mi m—T7ij 

is an even stronger cut which is used instead. 
It is easy to see that (9) is a stronger cut than the system of (rm — m, +1) • (rrij — rrij +1) 

cuts implied by (8), because every Solution that fulfills (9) also fulfills every cut implied 
by (8), because the variables Xjm are defined to be non-negative. The reverse is not true. 
Of course, only non-dominated cuts need to be used. 

It should be remarked that what has been defined for pairs of activities (i,j) e E* 
can be extended for arbitrary tuples of activities. But, there is a tradeoff between tight 
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lower bounds and the computational efFort for Computing the cuts. For this reason, all our 
computational tests are based on using cuts derived from considering pairs of activities 

only. 
Note that each of the cuts (9) can be identified by a four-tuple of the form (i, m*, j, rrij) 

for short which will ease the notation later on. Furthermore, we will use C to denote the 
set of all such four-tuples representing non-dominated cuts. 

6 Mode Elimination 

Before turning to solve a particular instance, it is often worth to have a Iook at that 
instance to see, if it can be simplified. In this section we will discuss techniques which 
help to eliminate some modes. As before, let 

M,- — {mj,... ,räj} 

be the index set of modes for activity j which have not been eliminated yet. This set 
will be further reduced during preprocessing, and for the sake of notational convenience 
Mj will be used to denote the updated set. The index rrij will be used to identify the 
mode with the longest processing time (the "longest" mode) in the current set M,-, and 
the index räj will be used to identify the mode with the shortest processing time (the 
"shortest" mode) in the current set Mj. 

6.1 Eliminating "short" modes 

Consider all source-to-sink paths 

— {0 = jlOijlli • • • ijlqi — ^ + 1} C V 

where L is the number of all such paths and (jt(k-i),jtk) E E for all & = 1,..., <&, i.e. a 
path l is represented by the set of activities on this path. 

For each path /, it is easy to compute the longest possible path length 

m,) = (10) 
i=0 

which is simply the sum of longest processing times of the activities on that path. 
Now, determine all paths which have a longest possible path length that exceeds the 

deadline T. Note that there is at least one such path, because otherwise the instance 
would be trivial and all activities could be scheduled in their "longest" mode. Let 

Q= U Qi 

denote the set of activities which lie on at least one such T-exceeding path. 
Actually, we are not interested in the set of activities in Q, but in the set of activities 

which are not in Q7 because these activities can be scheduled using their "longest" mode 
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no matter what mode assignment is chosen for other activities. Formally, we have that 
for all 

3 € V\Q 

where 
|M,I > 1, 

the index set of modes can be reduced to a Single element, i.e. 

Mj = {mj}. 

It is interesting to note that calculating the earliest start times ESj and the latest 
completion times LCj for the activities using the "shortest" modes in the current sets 
Mj, the elimination of "short" modes may reduce the time interval [ESj; LCj] for some 
activities. This effect is of interest, because the elimination of "long" modes uses these 
time intervals. 

6.2 Eliminating "long" modes 

Now we consider the time interval [ESj] LCj] for each of the activities where the earliest 
start times ESj and the latest completion times LCj are computed using the "shortest" 
modes in the current sets Mj. 

Given such a time interval, it is clear that for every j € V for which a mode m £ Mj 
exists such that 

Pjrn ^ LCj — ESj 

holds, the mode m can be eliminated, i.e. 

Mj = 

Note that eliminating "long" modes of an activity j reduces the longest possible length 
(see (10)) of all paths l with j € Qt and thus may reduce the set Q that is defined to 
eliminate "short" modes. Hence, eliminating "long" modes affects the elimination of 
"short" modes. 

The elimination of "short" and "long" modes iterates until the set of modes cannot 
be reduced further. 

7 Network Decomposition 

The procedure we propose for Computing lower bounds is based on a decomposition of 
the network which is a partition of the set of activities. For a given partition, we use H 
to denote the index set of the subsets of the activities, and Vh C V to denote the subset 
h e H of the activities. Decomposing a network can now be specified more formally. It 
means to construct \H\ sets of activities such that UheH^h = V an^ Vh H Vh> = 0, if 
h ^ h!. Given a partition of the set of activities, we will use Eh C Vh x Vh C E to 
denote the set of all precedence constraints within subnetwork h. On the other hand, 
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E = E\ \JheH Eh is used to denote the set of precedence constraints among activities 
which do not belong to the same subnetwork. 

Decomposing a network is guided by several insights into the problem. First of all, it 
is reasonable to have connected subnetworks, because otherwise a subnetwork could be 
further decomposed while giving the same arc set E. 

Second, while having a model formulation like (1) thru (7) in mind, it is reasonable 
to assume that the computational effort for solving an instance of such a model highly 
depends on the number of binary decision variables in the model. Hence, a plausible 
measure for the size of a subnetwork is related to the number of binary decision variables 
in the aforementioned model formulation. 

Third, activities which have just one Single mode do not contribute to the computa
tional effort, because the mode assignment for such activities is trivial. Hence, it makes 
sense to use, for each activity, the number of modes minus one to compute the size of a 
subnetwork. Formally, a subnetwork consisting of the activities in the set Vh is defined 
to have a size equal to T,jevh{\Mj\ - 1). 

In summary, our aim is to decompose a network in such a way that we get connected 
subnetworks with 

£ (|M,-|-1)<6 
j€Vh 

for each subnetwork h where b is a parameter that controls the size of the subnetworks. 
The number \H\ of subnetworks will be the result of the network decomposition rather 
than an input parameter for decomposing a network. 

In some preliminary computational tests not reported here in detail, we have observed 
that increasing b improves the lower bounds slightly, but requires exponentially increasing 
run-time. Given a value 6, there is a universe of procedures that can be applied for creating 
subnetworks, but we have found that the way a network is decomposed, once b is fixed, 
seems to have a minor impact on the Performance only. Thus, we confine our discussion to 
a single method for creating subnetworks which is the procedure that we have eventually 
used in our tests. 

We initially assume that every activity makes up an individual subnetwork, i.e. initially 
we assume to have \H\ = n + 2 subnetworks which means that E = E. Let T be the 
graph that represents the subnetworks as nodes and some precedence constraints among 
the subnetworks. Initially, T equals G. 

The basic operation is a merge operation applied to two subnetworks which are con
nected by at least one arc in F. This operation is illustrated in Figure 1. Suppose, two 
nodes (subnetworks) i and j in F should be merged. Then, these nodes may have one or 
more immediate predecessors in F and one or more immediate successors in F. Merging i 
and j means to contract F in such a way that the arc that connects i and j is deleted and 
i and j are now represented by one common node that represents a subnetwork which 
combines subnetworks i and j. If i and j share a common immediate predecessor or a 
common immediate successor, parallel arcs would appear, but we eliminate these and 
want to have unique arcs only. 

We proceed iteratively by merging subnetworks which are connected by at least one 
arc out of the current set E. While doing so, some issues must be taken into account. 
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Figure 1: Merging Two Subnetworks 

First, the resulting subnetwork must not have a size exceeding b. And second, choosing 
two subnetworks for a merge Operation, merging them, and starting the procedure all over 
again bears the risk that a few subnetworks grow larger and larger (up to b) while some 
other fairly small subnetworks remain. Hence, our procedure is a bit more complicated 
in the sense that within each iteration several pairs of subnetworks may be merged. We 
make sure that within each iteration each subnetwork participates in at most one merge 
operation, because this allows us to check easily, if performing the merge Operations does 
not violate the restriction imposed by the parameter b; all that need to be done is to add 
the size of the two subnetworks to which a merge operation should be applied. The pair 
of subnetworks to be merged is determined in the following manner. Find the largest 
subnetwork (if there are ties choose any of it) and find the largest subnetwork that is 
connected to it such that the sum of the sizes of these two does not exceed b. Note, such 
a neighbor subnetwork may not exist which simply means that the largest subnetwork 
cannot be augmented any further. If such a pair of subnetworks can be found, mark them 
for performing a merge operation later on. Then, find the largest subnetwork which may 
be merged with another one and proceed likewise. If no further pairs of subnetworks can 
be identified, merge them, and start another iteration working on the contracted network. 
The procedure stops, if an iteration is reached where no subnetworks can be merged any 
more. 

8 Column Generation 

Recall that, from the preprocessed network, we can compute the earliest start ESj and, 
given T, the latest completion time LCj for each activity j £ V by using the shortest 
processing times for calculation. 

Furthermore, suppose that, for a given instance, we have decomposed the network so 
that each activity j belongs to one subnetwork h(j) € H. Note that the set C of cuts of 
the form (9) can be partitioned such that 

C = CE U (J CEH 
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where j,rrij) G C% if and only if h(i) / h(j): and (hmij.rrij) e CEh if and only if 
h(i) = h(j) = h. 

8-1 Master Problem 

Now, consider any subnetwork h. At least theoretically, we can enumerate all mode 
assignments and all schedules for subnetwork h. Lei Sh be the index set of all feasible 
mode assignments and schedules for subnetwork h where feasibility basically means that 
the precedence constraints Eh are respected and that each activity is scheduled within its 
time window [ESj] LCj]. Each Solution s € Sh can be represented by completion times 
CjS and a binary vector of mode assignments Xjms for each activity j 6 Vh. The cost of 
Solution s for the subnetwork h is defined to be 

Cfia — ^ (H) 
jqVh m^Mj 

The overall DTCTP can now be specified as being the problem of selecting exactly 
one Solution s for each subnetwork h such that the precedence constraints E are taken 
into account. Formally, a binary decision variable can be used to model that selection 
where a value one indicates that Solution s for subnetwork h is selected, and a value zero 
indicates that it is not selected. This leads to the following model formulation for the 
DTCTP. 

min ]T chsZhs (12) 
heH sesh 

s.t. 

^ zhs = 1 h e H (13) 
s€Sh 

£ GjsZh{j)s ~ £ CisZh(i)$ 

~ 53 5^ Pjm%jm$Zh(j)$ ^ 0 ihj) ^ E (14) 
agSMj) m(~Mj 

rrii 
~ 53 53 %imsZh(i)s 

seshw m~nii 
rrij 

~ £ 53 Xjms^h(j)$ ^ —1 £ &E (15) 

{0,1} heH;seSh (16) 

The objective (12) is to minimize the total cost. Due to (13) exactly one Solution 
must be selected for each subnetwork h. The constraints (14) guarantee that solutions 
are selected in such a way that the precedence constraints E are taken into account. The 
cuts (15) are the ones that are defined in (9). Note that (15) is redundant in the presence 
of a binary domain for the decision variables (16). 
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The problem with this model reformulation is that there are too many variables, i.e. an 
exponential number, for allowing us to solve an instance of this model optimally. But, 
this model helps to compute a lower bound, because, as we will see, we can optimally 
solve the LP-relaxation of this model with column generation techniques. Considering 
the LP-relaxation means to replace (16) with 

zhs > 0 he ff; s € Sh. 

Constraints of the form 

%hs he ff; s E S^ 

need not be considered, because of (13). 
To apply column generation, we start with exactly one column for each subnetwork 

initially. These columns represent an earliest start schedule using "shortest" modes. 
Formally, this is to say that, for each activity j, Cj\ = ECj, xjmji = 1, and xjml = 0 for 
all m E Mj\{rrij}. The objective function coefficients for these columns are determined 
by (11). It is important to note that the initial restricted master problem has a feasible 
Solution by construction. 

8.2 Subproblem 

Once we have solved the restricted master problem optimally, we would like to know 
if there are columns we have not considered yet, but which may reduce the Optimum 
objective function value of the restricted master problem when added. In other words, we 
have to look for decision variables ZkS1 which correspond to schedules that have not been 
considered so far, with a negative reduced cost. The reduced cost is defined to be 

rc(ß, 7r, A) 

where are the dual variables associated with (13), 7r^- are the dual variables associated 
with (14), and Aimijmj are the dual variables associated with (15). 

We use a multiple pricing strategy in our tests which means that in every iteration we 
add one column for every subnetwork h for which a variable exists that has a negative 
reduced cost. Therefore, up to \ ff \ columns may be added to the restricted master problem 

— ßh. + ^2 I Pjm S 
jeVhm€Mj \ (iJ)eE 

m3 

m=Ukj 
mj 

^imijmjXjms 
(ifnij,rns)€Cß m=2Lj 

+ J2 \ ~ ) Cjs 
jev* \U,i)€E (i,j)€E j 

T^ij I %jms 
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per Iteration. The column s to be added for subnetwork h is computed by solving the 
following optimization problem (we omit the index s for the sake of simplicity). 

min rc(ß, 7r, A) 

s.t. 

(17) 

£ Xjm = 1 J € Vk (18) 
m€Mj 

Cj — C{ — £ Pjm%jm 2 0 {hj) £ (19) 
m^Mj 

C3 - E PjmXjm > ESj j € Vk (20) 
m€.Mj 

rrii mj 
^ ^ %im "I" ^ y Xjm — 1 (?, G Cgf» (21) 

m=mi 

ECj < Q < IC, 

%jm ^ {0j 

jeVh 

j €Vh;m€ Mj 

(22) 

(23) 

The objective (17) equals the reduced cost. Note that, if the Optimum objective func-
tion value of this minimization problem is non-negative, we add no column for subnetwork 
h in the current iteration. Note also that, if no column is added for any of the subnet
works, the column generation procedure terminates. The constraints (18) make sure that 
a unique mode is assigned to each of the activities in the subnetwork h (compare (2)). 
Due to (19), the precedence constraints within a subnetwork are respected (compare (3)). 
Because of (20), none of the activities in the subnetwork can be started before its earliest 
start time. Note that this set of constraints is not necessarily redundant for the source 
and for those activities j € Vh for which one or more immediately preceeding activities 
do belong to another subnetwork than subnetwork h. The set of constraints (21) equals 
the set of cuts for activities which belong to subnetwork h. Because these cuts tighten 
the bounds derived from the LP-relaxation, they may speed up the optimization when 
a branch-and-bound procedure is employed. Finally, (22) and (23) define the domains 
of the decision variables. Recall, once a column is found for adding it to the restricted 
master problem, its objective function coefficient is determined using (11). 

The trick of our approach is that the subproblem (17) thru (23) can be solved using 
Standard Software, if the subproblem is sufficiently small. The size of the subproblem 
measured in terms of the number of binary variables in the above model formulation is 
under our control by means of the parameter b that is used as input for decomposing the 
original network. 

9 Heuristic 

Now we will show how to derive a heuristic from the column generation procedure. The 
basic idea is to construct a feasible Solution for the DTCTP from the optimal Solution of 
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the restricted master problem. Thus, when the column generation procedure terminates, 
we have computed as many feasible solutions as we have solved restricted master problems. 
From this set of feasible solutions, we are interested in the one with the lowest objective 
function value. 

So, let us see what we can do once the restricted master problem is solved, i.e. once we 
have feasible values for the variables Zhs. The Information that we utilize is the weighted 
average completion time of each activity j which is defined to be 

Cj = ^ Cjszh{j)s-
s€Sh 0") 

It should be remarked that the heuristic we will present works for acyclic networks 
only while the lower bounding procedure could be applied to cyclic networks as well. 

9.1 Construction Phase 

In a first step, a feasible Solution is constructed. This is done by considering the activities 
in topological order, i.e. an activity j is considered only if all immediate predecessors have 
already been considered before. Let j be the activity under consideration. 

We start activity j as early as possible, i.e. the start time Sj of activity j is 

Sj = 0, 

if j = 0, and 
Sj = max{Q}, 

J i$.Vj 

otherwise. Activity j is scheduled in the "longest" mode rrij E Mj such that 

Sj Pjrtij 5; Cji 

which yields 
Cj = Sj 4" Pjrrij 

to be the completion time of activity j. Note that such a mode rrij must exist, because 
using the Solution obtained by solving the restricted master problem means that Cj defines 
a feasible schedule using some weighted average processing times for the activities. 

9.2 Improvement Phase 

The feasible Solution just obtained may be improved further by assigning even "longer" 
modes to some of the activities. Let rrij be the current mode assigned to activity j. The 
improvement phase iteratively proceeds as follows. 

Step 1: Compute the earliest start times ESj and the latest completion times LCj for 
each activity using the current modes rrij. 

13 



Step 2: Determine the set J of activities to which a "longer" mode can be assigned while 
keeping all other mode assignments as they are. Formally, this set is 

J = {j eV \ rrij > rrij and LCj - ESj > Pj(mj-1)}. 

Step 3: If the set J is empty then stop. A local optimum is found. Otherwise, choose 
one activity out of J for assigning a "longer" mode to it. If J contains more than a 
single element, we apply a simple priority rule that takes into account the ratio of the 
cost improvement to the increase of duration of an activity. More formally, we compute 

= (cjmj ~ ~ Pjmj) 

for each j £ J and choose 
j* = argmax{Aj | j € J} 

where remaining ties are broken favoring the activity with the lowest number. Then, a 
new mode 

rrij* — rrij* 1 

is assigned to activity j* and we return to Step 1. 

10 Computational Studies 

We carried out extensive computational studies in order to evaluate the Performance of 
the network decomposition-based lower bounds. The algorithms were coded in GNU C 
programming language and run on a Pentium II with 300 MHz processor, 64 MB RAM 
and Linux operating system. In addition to that, the (mixed-integer) linear programming 
solver CPLEX 5.0 was employed. 

10.1 Test-Bed 1: Large Instances 

To test the presented methods, no Standard test-bed is available from the literature that 
could be claimed to be a hard set of instances for testing heuristics and algorithms for 
Computing lower bounds. Hence, we created a test-bed by our own (which is available 
from the authors upon request). 

For generating activity networks, we generated AoA networks as described by Akkan, 
Kimms, and Drexl [3] and converted them into AoN networks in a straightforward manner. 
It is remarkable to note that the network generator presented in [3] allows to use the 
complexity index CI as input which has been an open problem so far. The AoA networks 
that are used have 17 nodes. We have generated networks with a complexity index 
CI € {13,14} and with a coefficient of network complexity CNC € {5,6,7,8} which is 
defined to be the ratio of the number of arcs to the number of nodes (see Pascoe [17]). 

Depending on the complexity index CI and the coefficient of network complexity 
CNC, the result of the network generation procedure gives instances of a particular size 
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CI= 13 CI = 14 
cwc = 5 85/85 85/85 
cwc = 6 102/102 102/102 
CATC = 7 111/119 115/119 
CATC = 8 128/135 128/136 

Table 1: Minimum/Maximum Number n of Activities (Test-Bed 1) 

measured by the number of activities. Table 1 shows which instance sizes were actually 
used in our study. 

Three different types of cost functions were used. We studied concave (ccv), convex 
(cvx), and hybrid (hyb) ones where hybrid means that the cost function is neither concave 
nor convex. 

The number of modes per activity may also affect computational Performance. Hence, 
we studied two intervals from which the number of modes per activity is randomly chosen 
with uniform distribution. The intervals are \Mj\ £ {[2; 10], [11; 20]}. 

Finally, the deadline T of the project was assumed to be of interest. The deadline 
was calculated as follows. We computed the minimum possible project duration Tmin 

of an instance when using the "shortest" modes. Likewise, we computed the minimum 
possible project duration Tmax of an instance when using "longest" modes. From this, we 
determined T = Tmin + 0(Tmax - Tmin) where 0 € {0.15,0.30,0.45,0.60} was chosen. 

For each parameter level combination, we generated 10 random instances which gives 
a total of 2 • 4 • 3 • 2 • 4 • 10 = 1920 large instances. 

All tests were done by using a value 6 = 60 for decomposing the networks. 

10.2 Test-Bed 2: Wide Range of CI Values 

For optimum Solution procedures for the DTCTP, the complexity index is considered to 
have a strong impact on the Performance. Thus, it is interesting to see, if this holds for 
the column generation procedure as well. 

Similar to how the first test-bed has been created, we defined a second test-bed by 
generating AoA networks with 17 nodes and CNC = 2 using the network generator 
developed by Akkan, Kimms, and Drexl [3]. Since we want to study the complexity 
index, we used an a wide ränge of CJ values, i.e. we used CI 6 {0,4,5,6,9,10,11,14}. 
Note that AoA networks with 17 nodes cannot have a larger complexity index than 14 
(see Akkan, Kimms, and Drexl [3]). This gives small networks with a number of activities 
as provided in Table 2. 

Again, we used three different types of cost functions (ccv, cvx, and hyb), two intervals 
for choosing the number of modes per activity (\Mj\ G {[2; 10], [11; 20]}), and four deadline 
settings 9 £ {0.15,0.30,0.45,0.60}. For each parameter level combination, 10 random 
instances were generated which resulted in a total of 8 • 3 • 2 • 4 • 10 = 1920 small instances. 

As before, 6 = 60 was used to decompose the networks. 
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CI 
0 4 5 6 7 9 10 11 14 

29/30 34/35 34/36 35/37 36/36 37/39 36/42 37/42 38/42 

Table 2: Minimum/Maximum Number n of Activities (Test-Bed 2) 

10.3 Computational Results 

Several aspects are worth to have a look at: 

# 

# 

# 

The number of subnetworks. To get a feeling into how many subnetworks a given 
network is decomposed, we provide this Information. 

The number of iterations. Column generation is an iterative procedure that solves 
the master problem over and over again until the stopping criterion is met. The 
number of times this happens is provided. 

The total number of columns. Upon termination, the master problem consists of a 
certain number of columns. Since the number of possible columns is exponentially 
large, it is of interest how many columns are actually involved. 

The number of removed modes. The preprocessing procedure possibly eliminates 
some modes and it is of interest how effective this elimination procedure really is. 
Hence, we study the percentage of removed modes measured as 

100-
T,jev{\Mj\ - 1) 

where dj is the number of modes of activity j deleted during preprocessing and Mj 
is the set of modes before preprocessing. 

• The number of cuts. Additional cuts help to tighten the lower bound and it may 
be an interesting piece of information how many cuts exist (no matter if they occur 
in the master problem or in the subproblems). 

The run-time Performance. One of the most interesting Performance indicators 
is the run-time Performance measured in CPU-seconds. All figures given include 
preprocessing time. 

The Solution gap. The most important Performance measure is the Solution gap 
that remains between the upper and the lower bound. This deviation is measured 
in terms of percentages as given by 

where UB is the objective function value of the heuristic Solution and LB is the 
lower bound obtained. 
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• The improvement of simple approaches. The presented column generation procedure 
is a sophisticated approach to compute lower bounds. One may ask if it is worth to 
apply such a complicated method, or if tight lower bounds can be computed much 
more easily. One such way is to use the idea of network decomposition much more 
straightforwardly. What we refer to as simple decomposition uses the network de
composition as presented to create subnetworks. Then a discrete time-cost tradeoff 
problem is solved optimally for each of these subnetworks. Formally, this means 
solving an instance of the model (17) thru (23) optimally for each subnetwork h 
where all parameters //&, 7ry, and Abeing zero. The sum of Optimum objec
tive function values over all subnetworks h £ ff defines a lower bound denoted as 
LBQ. Since these subproblems are DTCTPs, Optimum Solution procedures from the 
literature can be applied. Hence, the subnetworks may be larger than those that 
are created with b = 60. We used b = 300 to compute LBQ and compared this lower 
bound with the lower bound LB computed with column generation using b = 60. 
Of course, preprocessing is applied as well. The ratio 

LB 

will be provided and can be interpreted as the improvement of column generation 
over simple decomposition. 

• Comparison with other heuristics. The feasible solutions computed with our ap
proach may be compared with the results of other heuristics. To the best of our 
knowledge, the best heuristics for the DTCTP are the iterated local search heuristics 
developed by Akkan [2]. He presents two algorithms, a so-called "kick" heuristic 
and a so-called "restart" heuristic. We applied both algorithms. For comparing the 
obtained results, we provide average figures of the ratio 

ÜB' 
ÜB 

where UBf is the upper bound computed with one of the iterated local search 
procedures and UB is the column generation based upper bound. Thus, a ratio 
greater than one indicates that the local search result has been improved. In addition 
to that, we will give, for each local search procedure, the percentage of all instances 
for which the column generation based heuristic gives an upper bound less than the 
upper bound of the local search algorithm. 

Tables 3 thru 8 show the impact of the problem parameters C7, CNC, 0, |Afj|, and 
the type of cost function, respectively, on the computational results. Our main focus is on 
the large instances (test-bed 1), because these instances definitely have a size for which 
heuristics and lower bounds are needed, because optimum Solution procedures fail to solve 
them. 

Regarding the complexity index (77, we observe the following major issues (see Tables 
3 and 4). The run-time is slightly affected if CI values are varied. The results for the 
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13 14 
Avg. #Subnets 22.94 22.65 
Avg. #Iterations 28.61 27.52 
Avg. #Columns 302.92 293.44 
Avg. % Removed Modes 23.18 22.73 
Avg. #Cuts 12.61 0.64 
Avg. Run-Time 5.57 5.29 
Avg. Solution Gap 7.44 6.21 
Avg. LBQ Improvement 6.01 7.40 
Avg. Kick Improvement 1.08 1.00 
% Kick Improvements 48.96 53.85 
Avg. Restart Improvement 0.98 0.97 
% Restart Improvements 13.65 16.87 

Table 3: Computational Results Depending on CI (Test-Bed 1) 

0 4 5 6 9 10 11 14 
Avg. #Subnets 12.25 15.02 15.33 15.62 16.18 16.22 16.27 16.47 
Avg. #Iterations 12.68 15.91 16.11 16.45 16.54 16.77 17.53 15.42 
Avg. #Columns 90.31 123.96 130.13 131.85 139.09 142.58 144.29 133.56 
Avg. % Removed Modes 3.34 1.60 1.49 1.43 17.36 14.98 14.61 11.90 
Avg. #Cuts 0.59 3.75 3.60 1.82 144.40 154.66 121.60 0.61 
Avg. Run-Time 0.46 0.72 0.75 0.78 1.06 1.09 1.06 0.76 
Avg. Solution Gap 2.41 4.50 4.51 4.50 6.02 6.77 6.72 3.82 
Avg. LB0 Improvement 43.74 36.69 34.02 37.16 18.32 19.25 18.67 35.39 
Avg. Kick Improvement 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.01 
% Kick Improvements 73.33 69.58 63.75 67.08 56.25 48.33 52.50 70.42 
Avg. Restart Improvement 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 
% Restart Improvements 49.17 40.42 38.33 39.58 31.25 30.00 27.50 43.75 

Table 4: Computational Results Depending on CI (Test-Bed 2) 
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5 6 7 8 
Avg. #Subnets 
Avg. #Iterations 
Avg. #Columns 
Avg. % Removed Modes 
Avg. #Cuts 
Avg. Run-Time 
Avg. Solution Gap 
Avg. LBQ Improvement 
Avg. Kick Improvement 
% Kick Improvements 
Avg. Restart Improvement 
% Restart Improvements 

19.18 21.85 23.61 26.53 
26.70 28.21 28.51 28.84 

231.55 283.99 322.41 354.76 
25.31 21.91 22.24 22.36 
7.27 14.16 4.01 1.06 
2.98 4.67 6.24 7.81 
5.59 6.77 7.38 7.54 
6.92 6.64 6.44 6.81 
1.01 1.00 1.17 1.00 

60.00 46.88 50.00 48.75 
0.99 0.98 0.95 0.98 

21.46 13.54 14.58 11.46 

Table 5: Computational Results Depending on CNC (Test-Bed 1) 

small instances with a wide ränge of CI values, however, indicates that a larger CI value 
need not result in larger run-time, because CI — 14 gives faster computation times than 
CI € {6,, 9,10,11}. The Solution gap usually increases, if CI gets larger, but again we 
see that CI = 14 gives better results than all other CI value out of CI = 0. These 
results are remarkable, because up to now an increasing complexity index was assumed 
to make instances harder to solve and requiring more computational effort. Note, simple 
decomposition is clearly outperformed for all CI values, but it gives poor results compared 
to column generation epsecially when CI is low or when it is high. Thus, the proposed 
approach seems to fit well especially for hard instances. Even for large instances, the 
Solution gap is low (an overall average below 7%) while the run-time effort is small 
(below 6 CPU-seconds). On average, the objective function values of our heuristic are 
slightly better than the "kick" heuristic results, and our results are slightly worse than the 
"restart" heuristic solutions. Compared to the "kick" heuristic, the column generation 
based heuristic gives a better result for about 50% of all large instances in the test-bed 
(test-bed 1) and the figures are much better in favor of the column generation procedure 
for small instances (test-bed 2). The findings do not indicate that any of the three 
heuristics that are tested outperforms the others significantly. Nevertheless, two points 
should be stressed. First, our approach not only gives a heuristic Solution, but a lower 
bound as well. And second, we have observed that the "restart" heuristic requires several 
minutes of computation time for large instances (the "kick" heuristic takes several seconds) 
while the column generation procedure terminates after a few seconds. This justißes 
the claim that, compared to other heuristics, the column generation based heuristic is 
competitive. 

The coefficient of network complexity CNC, which in fact is a measure for the num
ber of activities, shows the following main effects (see Table 5). As one would expect, 
the number of subnetworks and the number of columns grows when more activities are 
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0.15 0.30 0.45 0.60 

Avg. #Subnets 
Avg. #Iterations 
Avg. #Columns 
Avg. % Removed Modes 
Avg. #Cuts 
Avg. Run-Time 
Avg. Solution Gap 
Avg. LBQ Improvement 
Avg. Kick Improvement 
% Kick Improvements 
Avg. Restart Improvement 
% Restart Improvements 

22.79 22.79 22.79 22.79 
33.11 28.75 26.03 24.37 

348.80 306.36 279.43 258.11 
7.42 15.43 26.95 42.01 

26.50 0.00 0.00 0.00 
7.45 5.62 4.68 3.96 
8.47 7.54 6.42 4.85 
2.01 7.36 10.35 7.09 
1.04 1.04 1.04 1.04 

36.25 52.50 53.54 63.33 
0.98 0.97 0.97 0.99 

14.17 14.17 13.54 19.17 

Table 6: Computational Results Depending on 0 (Test-Bed 1) 

involved. It is interesting, however, that the number of iterations is more or less robust. 
Also, the preprocessing procedure eliminates about the same percentage of modes no 
matter what size the instance has. Surprisingly, the number of cuts does not grow when 
instances get larger in terms of the number of activities. In fact, only a few cuts exist for 
large instances. The run-time as well as the Solution gap increases (slightly) when larger 
instances are solved. Nevertheless, the results are still very satisfying. CNC has almost 
no effect on the improvement of column generation over simple decomposition. So, we 
can conclude that even if instances have a large number of activities (see Table 1) the 
run-time as well as the Solution gap is acceptable and the proposed approach is indeed 
capable of solving large instances. 

With regard to the time horizon 0, we have the following important findings (see 
Table 6). Increasing the size of the instance (measured in terms of time periods involved) 
significantly reduced the number of iterations, the number of columns and the required 
run-time effort. The number of modes that can be eliminated by means of preprocessing 
grows significantly when 0 and thus T grows. It should be noted that the proposed cuts 
exist only for small time horizons. Most importantly, the Solution gap decreases when 
6 increases. Thus, we can conclude that our procedure is capable to solve instances no 
matter what time horizon is defined. 

The number of modes per activity also affects the results (see Table 7). As one 
would expect, the number of subnetworks and the number of columns increases when 
\Mj\ increases. But, the number of iterations decreases. Overall, the run-time is not 
affected. Instances are considered to be harder to solve the more modes exist. Our 
procedure, however, seems to perform especially good when many modes exist, because 
we can observe that the Solution gap decreases and that the simple decomposition is 
outperformed much more clearly in such cases. So, our procedure appears to be well 
suited to hard instances again where hardness is measured in terms of the number of 
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[2; 10] [11; 20] 
Avg. #Subnets 
Avg. #Iterations 
Avg. #Columns 
Avg. % Removed Modes 
Avg. #Cuts 
Avg. Run-Time 
Avg. Solution Gap 
Avg. LB0 Improvement 
Avg. Kick Improvement 
% Kick Improvements 
Avg. Restart Improvement 
% Restart Improvements 

12.22 33.37 
32.98 23.15 

230.13 366.22 
27.24 18.67 
3.75 9.50 
5.45 5.40 
8.30 5.35 
2.75 10.65 
1.07 1.02 

54.69 48.12 
0.98 0.97 

14.90 15.62 

Table 7: Computational Results Depending on \Mj\ (Test-Bed 1) 

modes this time. 
Focusing on the cost function type (see Table 8), we can see that hard instances are 

those which have a concave cost function, because the Solution gap is highest for such 
instances (but still below 10% on average). In contrast to this, convex cost functions 
make instances easy to solve near optimally. 

Finally, one should note that we have tried to apply the Lagrangean relaxation ap
proach proposed by Akkan [1] as well, but it turned out that it is not able to solve 
instances of the size we have used. So, the presented approach is indeed the only avail
able method so far that yields sophisticated lower and upper bounds for large instances 
in short computation time. Given that our approach is fast while giving almost identical 
heuristic objective function values as state-of-the-art heuristics (which do not yield lower 
bounds), the proposed column generation procedure makes a contribution with regard to 
both, lower and upper bounds for the DTCTP. 

11 Conclusions 

The discrete time-cost tradeoff problem (DTCTP) is a well-established project schedul-
ing problem. It has attracted several researchers in the past decades. As a consequence, 
important issues such as the complexity status are well researched. For solving the prob
lem optimally, several procedures have been proposed, but none of these is able to solve 
large and hard instances measured in terms of, say, the complexity index or the number 
of activities. So, heuristics are clearly needed for attacking such instances. For evaluating 
heuristics, lower bounds are crucial. Surprisingly, only little work has been published on 
heuristics and, to the best of our knowledge, there has been just one Single contribution 
on sophisticated lower bounds which is based on Lagrangean relaxation. This Lagrangean 
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ccv cvx hyb 

Avg. #Subnets 22.85 22.88 22.64 
Avg. #Iterations 23.34 31.91 28.94 
Avg. #Columns 233.36 369.23 291.93 
Avg. % Removed Modes 22.58 23.21 23.07 
Avg. #Cuts 6.61 6.42 6.85 
Avg. Run-Time 4.40 6.52 5.36 
Avg. Solution Gap 9.62 4.60 6.24 
Avg. LBQ Improvement 8.33 4.08 7.70 
Avg. Kick Improvement 0.97 1.09 1.07 
% Kick Improvements 45.78 50.31 58.12 
Avg. Restart Improvement 0.98 0.98 0.98 
% Restart Improvements 15.78 9.38 20.62 

Table 8: Computational Results Depending on Cost Function Type (Test-Bed 1) 

relaxation approach gives both, a heuristic Solution and a lower bound. 
In this paper, the proposed approach also computes a feasible Solution and, at the same 

time, a lower bound for evaluating the Solution. Thus, the contribution of this paper is 
stronger than just a heuristic or just a lower bounding procedure. Network decomposition 
is investigated to attack large instances in a divide and conquer manner. Then, column 
generation techniques are applied to compute lower bounds while, within each iteration 
of the column generation procedure, a feasible Solution is constructed. 

A computational study examines the Performance of the proposed method in depth. 
Several problem parameters are studied which are assumed to have a strong impact on 
the hardness of a problem instance: the complexity index, the coefficient of network 
complexity, the project deadline, the number of modes per activity, and the cost function 
type. It turned out that instances can now be solved which are far beyond what has 
previously been attacked (networks with up to 138 activities, a complexity index of up to 
14, and up to 20 modes per activity). The overall average Solution gap is less than 7% 
obtained in less than 6 CPU-seconds on a Pentium II PC with 300 MHz. The heuristic 
results are competitive with state-of-the-art heuristics (which do not give a lower bound). 
This and the fact that the Lagrangean relaxation procedure which gives lower and Upper 
bounds is not able even to deal with instances of the tested size proves that the proposed 
procedure makes a significant contribution. 
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