
Akkan, Can; Drexl, Andreas; Kimms, Alf

Working Paper — Digitized Version

Network decomposition-based lower and upper bounds
for the discrete time-cost tradeoff problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 527

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Akkan, Can; Drexl, Andreas; Kimms, Alf (2000) : Network decomposition-
based lower and upper bounds for the discrete time-cost tradeoff problem, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 527, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147607

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147607
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Abstract

In project management, the project duration can often be compressed by acceler-
ating some of its activities at an additional expense. This is the so-called time-cost
tradeoff problem which has been extensively studied in the past. However, the dis-
crete version of the problem which is of great practical relevance, did not receive
much attention so far. Given a set of modes (time-cost pairs) for each activity,
the objective of the discrete time-cost tradeoff problem is to select a mode for each
activity so that the total cost is minimized while meeting a given project deadline.

The discrete time-cost tradeoff problem is a strongly NV-hard optimization
problem for general activity networks. In terms of what current state-of-art-
algorithms can do, instances with (depending on the structure of the network and
the number of processing alternatives per activity) no more than twenty to fifty
activities can be solved to optimality in reasonable amount of time. Hence, heuris-
tics must be employed to solve larger instances. To evaluate such heuristics, lower
bounds are needed. The aim of this paper is to provide such lower bounds using
column generation techniques based on "network decomposition". We will show
that a heuristic Solution can be derived from that result as well. Furthermore, a
computational study is provided to demonstrate that the presented bounds are tight
and that large and hard instances can be solved in short run-time.

Keywords: Project Scheduling, Activity Network, Time-Cost Tradeoff, Network De
composition, Column Generation

1 Introduction

In managing a project, there is often the option of applying additional funds to reduce the
processing time of some activities. Models developed for tackling this tradeoff are known
as time-cost tradeoff models. There are two possible objectives for these models. One
could either try to find the minimum cost activity processing times while meeting a given
deadline (the deadline problem) or minimize the duration of the entire project meeting a
given budget constraint (the budget problem). Also it might be of interest to compute the
entire project cost curve. In this paper we present network decomposition methods for
the deadline problem.

The discrete time-cost tradeoff problem (DTCTP) can be stated as follows: Given a
set of modes (time-cost pairs) for each activity, the objective is to select a mode for each
activity so that the total cost is minimized while meeting a given project deadline. The
DTCTP is a strongly W7>-hard optimization problem for general activity networks (De,
Dünne, Ghosh, and Wells [7j). Hence, tight lower bounds are of primary importance. The
purpose of this paper is to introduce a new class of lower bounds which are computed
through network decomposition techniques. The purpose of network decomposition is to
obtain a set of subnetworks that can be solved quickly (by a general purpose MIP solver).

The modeler has to choose one of two types of networks: activity-on-arc (AoA) or
activity-on-node (AoN). So far the relevant literature most often is based on the AoA
representation although it is well-known that the AoA representation is inferior to the

1

AoN representation. In fact, Syslo [22] has shown that it is an A/T-complete optimization
problem to compute the minimum number of dummy arcs necessary to represent the given
precedence constraints between the activities when using the AoA format while no dummy
arcs are needed at all for AoN networks. Hence, we use the AoN representation throughout
the paper.

The paper is organized as follows: In Section 2, the notation is introduced and the
problem setting is discussed. Related work is reviewed in Section 3. Section 4 contains
a mathematical programming model formulation for the DTCTP. In Section 5, prob
lem insight is used to obtain cuts which tighten the LP-relaxation based lower bound.
Preprocessing techniques are discussed in Section 6. In Section 7, the idea of network
decomposition is explained. Section 8 presents a column generation procedure that em-
ploys the network decomposition idea to compute lower bounds. Feasible solutions are
derived in Section 9. A report on in-depth computational studies is provided in Section
10. Finally, concluding remarks in Section 11 finish the paper.

2 Problem Setting

The DTCTP was introduced by Harvey and Patterson [12] and Hindelang and Muth
[13]. It can formally be described as follows: It consists of a set V = {0,1,..., n, n + 1}
of activities, a set E C V x V of precedence constraints among the activities, and, for
each activity j, an index set Mj = {m^ •.. ,rnj} of possible modes. A mode m £ Mj
is characterized by a processing time Pjm € IN0 and a cost Cjm 6 IR>o- Without loss of
generality, we assume that, for each j € V, m < m1 implies p3-m > p3-m' and Cjm < Cjm>-
Furthermore, it is not restrictive to assume that activity 0 is the unique source node in
the network G — (V, E) and that activity n + 1 is the unique sink node.

A realization of the project is an assignment of modes to all activities j G V. Let
mj 6 Mj be the mode assigned to activity j. Then, the total cost of the realization is
given by cjmj• The makespan of the realization is the makespan of the earliest start
schedule of the project when activity j has processing time Pjmr

Limiting either cost or time, we obtain two related optimization problems:

(i) For a given deadline T on the makespan, find a realization with a makespan less than
or equal to T that minimizes the total cost of the realization (deadline problem).

(ii) For a given budget B > 0, find a realization with a total cost that is less than or
equal to B that minimizes the makespan of the realization (budget problem).

The emphasis of this paper is on the deadline problem.
Solving the deadline problem for all possible deadlines T leads to the function Bopt(T)

giving the minimum cost as a function of the deadline T (the so-called project cost curve).
Analogously, solving the budget problem for all possible budgets B leads to the function
Topt{B) giving the minimum makespan as a function of the budget B.

2

3 Related Work

The Importance of the time-cost tradeoff problem was brought to the attention of the
research Community almost forty years ago (Fulkerson [11], Kelley [14], Kelley and Walker
[15]), but still, due to its inherent computational complexity, research in the DTCTP is
rather sparse.

EXACT ALGORITHMS. Due to the practical importance of the DTCTP, many expo-
nential time exact algorithms have been proposed. Early examples are dynamic program-
ming approaches by Hindelang and Muth [13] and Robinson [18], and an enumeration
algorithm by Harvey and Patterson [12].

The currently best known algorithms still rely on dynamic programming, but exploit
in addition the decomposition structure of the underlying network. The decomposition
that facilitates the computation is known as modular decomposition or substitution de
composition and has many applications in network and other combinatorial optimization
problems (see the comprehensive article by Möhring and Radermacher [16]).

Its usefulness for the time-cost tradeoff problem was first observed by Frank, Frisch,
van Slyke, and Chou [10] and Rothfarb, Frank, Rosenbaum, Steiglitz, and Kleitman [19]
for the special case of series-parallel decompositions. The general decomposition theorem
that involves arbitrary modules is due to Billstein and Radermacher [5].

Because of the modular decomposition, the project cost curve needs only to be eval-
uated for certain indecomposable subnetworks (the factors in a composition series) of
the original network. This is done by "transforming" such an indecomposable network
to a series-parallel network and then performing the "easy" calculations for the series
parallel case. The transformation into a series-parallel network successively identißes
certain nodes for "duplication". Any such duplication transforms the network "closer" to
a series-parallel one, but increases the computation time by a multiplicative factor.

This idea seems to be due to Robinson [18] and has been further developed by Bein,
Kamburowski, and Stallmann [4], De, Dünne, Ghosh, and Wells [6] and Elmaghraby [9].

Demeulemeester, Herroelen, and Elmaghraby [8] provide the first Implementation of
this approach. They implement two strategies for finding the nodes for duplication.
The first follows the theory of Bein, Kamburowski, and Stallmann [4], which results
in the minimum number of duplications required, while the second tries to minimize the
number of realizations that have to be considered during the algorithm. Demeulemeester,
Herroelen, and Elmaghraby [8] report on computational experience for networks with up
to 45 activities without identifying a clear winner between the two strategies.

The crucial parameter in the theoretical run-time analysis of this algorithmic approach
is the minimum number of node duplications needed to transform an AoA network into a
series-parallel network. Bein, Kamburowski, and Stallmann [4] refer to it as the reduction
complexity of the AoA network (also known as the complexity index, CI, of an AoA
network). It provides a measure for the "distance" of the given network from being
series-parallel.

LOWER BOUNDS. TO the best of our knowledge, only one non-trivial lower bounding
procedure based on Lagrangean relaxation is available for the DTCTP (Akkan [1]). The
Lagrangean relaxation is applied on an induced AoA network that is created by adding

3

new nodes so that the resulting network is made up of a set of series networks. These series
networks are linked by constraints (which are later relaxed by Lagrangean Multipliers)
that require the equivalent nodes among them to have the same occurrence times. The
Lagrangean subproblem is solved by dynamic programming. Unfortunately, for instances
with large time-windows for occurrence times of nodes, the CPU-time required for the
Solution of the dynamic programming problems becomes prohibitively large.

APPROXIMATION ALGORITHMS. Recently, the approximation behavior of the DTCTP
has been analyzed by Skutella [20]. He first presents a polynomial reduction to the case
where every activity has at most two processing times, and one of them is zero. For
such a DTCTP, Skutella defines a "natural" linear relaxation. One then first solves the
linear relaxation. This Solution is then "rounded" to a Solution of the original problem
by rounding the processing times of some activities. Linear relaxation and rounding are
key means in order to come up with different polynomial approximation schemes with
guaranteed Performance for both the deadline and the budget problem.

HEURISTIC ALGORITHMS. Akkan [1] developed a Lagrangean relaxation-based heuris-
tic for AoA networks which borrows from the ideas developed for the computation of lower
bounds. Two local search algorithms for AoA networks have been developed by Akkan [2].
Both utilize a steepest descent algorithm for finding a local Optimum given a starting Solu
tion, which is constructed using a path heuristic. The first local search algorithm is based
on random restarts while the second uses random kicks. The steepest descent algorithm
is based on two local moves from a given Solution. The first one identifies for a given
node the minimum decrease in the starting time required to have an outgoing activity use
a longer (cheaper) mode, while keeping the starting times of all other nodes unchanged.
Similarly, the second move identifies the minimum required increase in the starting time
of a given node to have an incoming activity use a longer mode. These heuristics yield
solutions within 1% of the Optimum for (small) test problems from the literature within
fractions of seconds.

GENERALIZATION. An important generalization of the DTCTP is the so-called multi-
mode resource-constrained project scheduling problem. There, Mj is used in a similar way
to model resource-resource and time-resource tradeoffs. Resources are either renewable
or nonrenewable; for details see for instance Sprecher and Drexl [21].

4 Model Formulation

A mathematical programming model of the deadline variant of the DTCTP can be stated
using the following additional notation. Let ECj denote the earliest completion time
and LCj denote the latest completion time of activity j. Note, ECj and LCj can be
calculated easily using the shortest processing times of the activities. We use Cj to
denote the completion time of activity j (a decision variable). Furthermore, we use a
binary decision variable Xjm that takes the value one, if mode m is chosen for activity j.
Otherwise, its value is zero. The MIP model formulation reads as follows:

min ^2 cjm%jm (1)
j€V m£Mj

4

s.t.

Y, Xim = 1 j € V (2)
m£M.

Cj -Ci~ PjmXjm > 0 (ij) € E (3)
m£Mj

Cn+1 < T (4)

Co POm^Om ^ 0 (5)
mGMo

c, >0 jzV (6)

Xjm E {0,1} j eV;m€ Mj (7)

While minimizing the total cost (1), a unique mode must be assigned to each activity (2),
precedence constraints must not be violated (3), the deadline must be met (4), and the
project may not start before time zero (5).

5 Cuts

Solving the LP-relaxation of the model formulation gives a lower bound. To tighten the
lower bound, we add additional constraints (cuts). Formally, we consider the transitive
closure E* of the precedence relation E, i.e. a pair of activities (iyj) is a member of the
set E*, if and only if j is a successor (not necessarily an immediate one) of activity i.

For every pair (z, j) £ E* and all combinations of rrii € Mi and rrij 6 Mj, we test if

LCj ESi <C Pinn ~f~ Pjmj

is true. If this test succeeds,
%imi %jm.j 5: 1 (8)

is a possible cut. Note that if ximi + Xjm. < 1 is a cut, every combination of modes

defines a cut as well, because a lower mode index means a longer processing time. This
may result in a huge number of cuts, but fortunately we can do a bit better, because, if
Ximi + Xjmj < 1 IS a CUt,

rrii m.j
y*! ^jm — 1 (^)

m=mi m—T7ij

is an even stronger cut which is used instead.
It is easy to see that (9) is a stronger cut than the system of (rm — m, +1) • (rrij — rrij +1)

cuts implied by (8), because every Solution that fulfills (9) also fulfills every cut implied
by (8), because the variables Xjm are defined to be non-negative. The reverse is not true.
Of course, only non-dominated cuts need to be used.

It should be remarked that what has been defined for pairs of activities (i,j) e E*
can be extended for arbitrary tuples of activities. But, there is a tradeoff between tight

5

lower bounds and the computational efFort for Computing the cuts. For this reason, all our
computational tests are based on using cuts derived from considering pairs of activities

only.
Note that each of the cuts (9) can be identified by a four-tuple of the form (i, m*, j, rrij)

for short which will ease the notation later on. Furthermore, we will use C to denote the
set of all such four-tuples representing non-dominated cuts.

6 Mode Elimination

Before turning to solve a particular instance, it is often worth to have a Iook at that
instance to see, if it can be simplified. In this section we will discuss techniques which
help to eliminate some modes. As before, let

M,- — {mj,... ,räj}

be the index set of modes for activity j which have not been eliminated yet. This set
will be further reduced during preprocessing, and for the sake of notational convenience
Mj will be used to denote the updated set. The index rrij will be used to identify the
mode with the longest processing time (the "longest" mode) in the current set M,-, and
the index räj will be used to identify the mode with the shortest processing time (the
"shortest" mode) in the current set Mj.

6.1 Eliminating "short" modes

Consider all source-to-sink paths

— {0 = jlOijlli • • • ijlqi — ^ + 1} C V

where L is the number of all such paths and (jt(k-i),jtk) E E for all & = 1,..., <&, i.e. a
path l is represented by the set of activities on this path.

For each path /, it is easy to compute the longest possible path length

m,) = (10)
i=0

which is simply the sum of longest processing times of the activities on that path.
Now, determine all paths which have a longest possible path length that exceeds the

deadline T. Note that there is at least one such path, because otherwise the instance
would be trivial and all activities could be scheduled in their "longest" mode. Let

Q= U Qi

denote the set of activities which lie on at least one such T-exceeding path.
Actually, we are not interested in the set of activities in Q, but in the set of activities

which are not in Q7 because these activities can be scheduled using their "longest" mode

6

no matter what mode assignment is chosen for other activities. Formally, we have that
for all

3 € V\Q

where
|M,I > 1,

the index set of modes can be reduced to a Single element, i.e.

Mj = {mj}.

It is interesting to note that calculating the earliest start times ESj and the latest
completion times LCj for the activities using the "shortest" modes in the current sets
Mj, the elimination of "short" modes may reduce the time interval [ESj; LCj] for some
activities. This effect is of interest, because the elimination of "long" modes uses these
time intervals.

6.2 Eliminating "long" modes

Now we consider the time interval [ESj] LCj] for each of the activities where the earliest
start times ESj and the latest completion times LCj are computed using the "shortest"
modes in the current sets Mj.

Given such a time interval, it is clear that for every j € V for which a mode m £ Mj
exists such that

Pjrn ^ LCj — ESj

holds, the mode m can be eliminated, i.e.

Mj =

Note that eliminating "long" modes of an activity j reduces the longest possible length
(see (10)) of all paths l with j € Qt and thus may reduce the set Q that is defined to
eliminate "short" modes. Hence, eliminating "long" modes affects the elimination of
"short" modes.

The elimination of "short" and "long" modes iterates until the set of modes cannot
be reduced further.

7 Network Decomposition

The procedure we propose for Computing lower bounds is based on a decomposition of
the network which is a partition of the set of activities. For a given partition, we use H
to denote the index set of the subsets of the activities, and Vh C V to denote the subset
h e H of the activities. Decomposing a network can now be specified more formally. It
means to construct \H\ sets of activities such that UheH^h = V an^ Vh H Vh> = 0, if
h ^ h!. Given a partition of the set of activities, we will use Eh C Vh x Vh C E to
denote the set of all precedence constraints within subnetwork h. On the other hand,

7

E = E\ \JheH Eh is used to denote the set of precedence constraints among activities
which do not belong to the same subnetwork.

Decomposing a network is guided by several insights into the problem. First of all, it
is reasonable to have connected subnetworks, because otherwise a subnetwork could be
further decomposed while giving the same arc set E.

Second, while having a model formulation like (1) thru (7) in mind, it is reasonable
to assume that the computational effort for solving an instance of such a model highly
depends on the number of binary decision variables in the model. Hence, a plausible
measure for the size of a subnetwork is related to the number of binary decision variables
in the aforementioned model formulation.

Third, activities which have just one Single mode do not contribute to the computa
tional effort, because the mode assignment for such activities is trivial. Hence, it makes
sense to use, for each activity, the number of modes minus one to compute the size of a
subnetwork. Formally, a subnetwork consisting of the activities in the set Vh is defined
to have a size equal to T,jevh{\Mj\ - 1).

In summary, our aim is to decompose a network in such a way that we get connected
subnetworks with

£ (|M,-|-1)<6
j€Vh

for each subnetwork h where b is a parameter that controls the size of the subnetworks.
The number \H\ of subnetworks will be the result of the network decomposition rather
than an input parameter for decomposing a network.

In some preliminary computational tests not reported here in detail, we have observed
that increasing b improves the lower bounds slightly, but requires exponentially increasing
run-time. Given a value 6, there is a universe of procedures that can be applied for creating
subnetworks, but we have found that the way a network is decomposed, once b is fixed,
seems to have a minor impact on the Performance only. Thus, we confine our discussion to
a single method for creating subnetworks which is the procedure that we have eventually
used in our tests.

We initially assume that every activity makes up an individual subnetwork, i.e. initially
we assume to have \H\ = n + 2 subnetworks which means that E = E. Let T be the
graph that represents the subnetworks as nodes and some precedence constraints among
the subnetworks. Initially, T equals G.

The basic operation is a merge operation applied to two subnetworks which are con
nected by at least one arc in F. This operation is illustrated in Figure 1. Suppose, two
nodes (subnetworks) i and j in F should be merged. Then, these nodes may have one or
more immediate predecessors in F and one or more immediate successors in F. Merging i
and j means to contract F in such a way that the arc that connects i and j is deleted and
i and j are now represented by one common node that represents a subnetwork which
combines subnetworks i and j. If i and j share a common immediate predecessor or a
common immediate successor, parallel arcs would appear, but we eliminate these and
want to have unique arcs only.

We proceed iteratively by merging subnetworks which are connected by at least one
arc out of the current set E. While doing so, some issues must be taken into account.

8

©

Figure 1: Merging Two Subnetworks

First, the resulting subnetwork must not have a size exceeding b. And second, choosing
two subnetworks for a merge Operation, merging them, and starting the procedure all over
again bears the risk that a few subnetworks grow larger and larger (up to b) while some
other fairly small subnetworks remain. Hence, our procedure is a bit more complicated
in the sense that within each iteration several pairs of subnetworks may be merged. We
make sure that within each iteration each subnetwork participates in at most one merge
operation, because this allows us to check easily, if performing the merge Operations does
not violate the restriction imposed by the parameter b; all that need to be done is to add
the size of the two subnetworks to which a merge operation should be applied. The pair
of subnetworks to be merged is determined in the following manner. Find the largest
subnetwork (if there are ties choose any of it) and find the largest subnetwork that is
connected to it such that the sum of the sizes of these two does not exceed b. Note, such
a neighbor subnetwork may not exist which simply means that the largest subnetwork
cannot be augmented any further. If such a pair of subnetworks can be found, mark them
for performing a merge operation later on. Then, find the largest subnetwork which may
be merged with another one and proceed likewise. If no further pairs of subnetworks can
be identified, merge them, and start another iteration working on the contracted network.
The procedure stops, if an iteration is reached where no subnetworks can be merged any
more.

8 Column Generation

Recall that, from the preprocessed network, we can compute the earliest start ESj and,
given T, the latest completion time LCj for each activity j £ V by using the shortest
processing times for calculation.

Furthermore, suppose that, for a given instance, we have decomposed the network so
that each activity j belongs to one subnetwork h(j) € H. Note that the set C of cuts of
the form (9) can be partitioned such that

C = CE U (J CEH

9

where j,rrij) G C% if and only if h(i) / h(j): and (hmij.rrij) e CEh if and only if
h(i) = h(j) = h.

8-1 Master Problem

Now, consider any subnetwork h. At least theoretically, we can enumerate all mode
assignments and all schedules for subnetwork h. Lei Sh be the index set of all feasible
mode assignments and schedules for subnetwork h where feasibility basically means that
the precedence constraints Eh are respected and that each activity is scheduled within its
time window [ESj] LCj]. Each Solution s € Sh can be represented by completion times
CjS and a binary vector of mode assignments Xjms for each activity j 6 Vh. The cost of
Solution s for the subnetwork h is defined to be

Cfia — ^ (H)
jqVh m^Mj

The overall DTCTP can now be specified as being the problem of selecting exactly
one Solution s for each subnetwork h such that the precedence constraints E are taken
into account. Formally, a binary decision variable can be used to model that selection
where a value one indicates that Solution s for subnetwork h is selected, and a value zero
indicates that it is not selected. This leads to the following model formulation for the
DTCTP.

min]T chsZhs (12)
heH sesh

s.t.

^ zhs = 1 h e H (13)
s€Sh

£ GjsZh{j)s ~ £ CisZh(i)$

~ 53 5^ Pjm%jm$Zh(j)$ ^ 0 ihj) ^ E (14)
agSMj) m(~Mj

rrii
~ 53 53 %imsZh(i)s

seshw m~nii
rrij

~ £ 53 Xjms^h(j)$ ^ —1 £ &E (15)

{0,1} heH;seSh (16)

The objective (12) is to minimize the total cost. Due to (13) exactly one Solution
must be selected for each subnetwork h. The constraints (14) guarantee that solutions
are selected in such a way that the precedence constraints E are taken into account. The
cuts (15) are the ones that are defined in (9). Note that (15) is redundant in the presence
of a binary domain for the decision variables (16).

10

The problem with this model reformulation is that there are too many variables, i.e. an
exponential number, for allowing us to solve an instance of this model optimally. But,
this model helps to compute a lower bound, because, as we will see, we can optimally
solve the LP-relaxation of this model with column generation techniques. Considering
the LP-relaxation means to replace (16) with

zhs > 0 he ff; s € Sh.

Constraints of the form

%hs he ff; s E S^

need not be considered, because of (13).
To apply column generation, we start with exactly one column for each subnetwork

initially. These columns represent an earliest start schedule using "shortest" modes.
Formally, this is to say that, for each activity j, Cj\ = ECj, xjmji = 1, and xjml = 0 for
all m E Mj\{rrij}. The objective function coefficients for these columns are determined
by (11). It is important to note that the initial restricted master problem has a feasible
Solution by construction.

8.2 Subproblem

Once we have solved the restricted master problem optimally, we would like to know
if there are columns we have not considered yet, but which may reduce the Optimum
objective function value of the restricted master problem when added. In other words, we
have to look for decision variables ZkS1 which correspond to schedules that have not been
considered so far, with a negative reduced cost. The reduced cost is defined to be

rc(ß, 7r, A)

where are the dual variables associated with (13), 7r^- are the dual variables associated
with (14), and Aimijmj are the dual variables associated with (15).

We use a multiple pricing strategy in our tests which means that in every iteration we
add one column for every subnetwork h for which a variable exists that has a negative
reduced cost. Therefore, up to \ ff \ columns may be added to the restricted master problem

— ßh. + ^2 I Pjm S
jeVhm€Mj \ (iJ)eE

m3

m=Ukj
mj

^imijmjXjms
(ifnij,rns)€Cß m=2Lj

+ J2 \ ~) Cjs
jev* \U,i)€E (i,j)€E j

T^ij I %jms

11

per Iteration. The column s to be added for subnetwork h is computed by solving the
following optimization problem (we omit the index s for the sake of simplicity).

min rc(ß, 7r, A)

s.t.

(17)

£ Xjm = 1 J € Vk (18)
m€Mj

Cj — C{ — £ Pjm%jm 2 0 {hj) £ (19)
m^Mj

C3 - E PjmXjm > ESj j € Vk (20)
m€.Mj

rrii mj
^ ^ %im "I" ^ y Xjm — 1 (?, G Cgf» (21)

m=mi

ECj < Q < IC,

%jm ^ {0j

jeVh

j €Vh;m€ Mj

(22)

(23)

The objective (17) equals the reduced cost. Note that, if the Optimum objective func-
tion value of this minimization problem is non-negative, we add no column for subnetwork
h in the current iteration. Note also that, if no column is added for any of the subnet
works, the column generation procedure terminates. The constraints (18) make sure that
a unique mode is assigned to each of the activities in the subnetwork h (compare (2)).
Due to (19), the precedence constraints within a subnetwork are respected (compare (3)).
Because of (20), none of the activities in the subnetwork can be started before its earliest
start time. Note that this set of constraints is not necessarily redundant for the source
and for those activities j € Vh for which one or more immediately preceeding activities
do belong to another subnetwork than subnetwork h. The set of constraints (21) equals
the set of cuts for activities which belong to subnetwork h. Because these cuts tighten
the bounds derived from the LP-relaxation, they may speed up the optimization when
a branch-and-bound procedure is employed. Finally, (22) and (23) define the domains
of the decision variables. Recall, once a column is found for adding it to the restricted
master problem, its objective function coefficient is determined using (11).

The trick of our approach is that the subproblem (17) thru (23) can be solved using
Standard Software, if the subproblem is sufficiently small. The size of the subproblem
measured in terms of the number of binary variables in the above model formulation is
under our control by means of the parameter b that is used as input for decomposing the
original network.

9 Heuristic

Now we will show how to derive a heuristic from the column generation procedure. The
basic idea is to construct a feasible Solution for the DTCTP from the optimal Solution of

12

the restricted master problem. Thus, when the column generation procedure terminates,
we have computed as many feasible solutions as we have solved restricted master problems.
From this set of feasible solutions, we are interested in the one with the lowest objective
function value.

So, let us see what we can do once the restricted master problem is solved, i.e. once we
have feasible values for the variables Zhs. The Information that we utilize is the weighted
average completion time of each activity j which is defined to be

Cj = ^ Cjszh{j)s-
s€Sh 0")

It should be remarked that the heuristic we will present works for acyclic networks
only while the lower bounding procedure could be applied to cyclic networks as well.

9.1 Construction Phase

In a first step, a feasible Solution is constructed. This is done by considering the activities
in topological order, i.e. an activity j is considered only if all immediate predecessors have
already been considered before. Let j be the activity under consideration.

We start activity j as early as possible, i.e. the start time Sj of activity j is

Sj = 0,

if j = 0, and
Sj = max{Q},

J i$.Vj

otherwise. Activity j is scheduled in the "longest" mode rrij E Mj such that

Sj Pjrtij 5; Cji

which yields
Cj = Sj 4" Pjrrij

to be the completion time of activity j. Note that such a mode rrij must exist, because
using the Solution obtained by solving the restricted master problem means that Cj defines
a feasible schedule using some weighted average processing times for the activities.

9.2 Improvement Phase

The feasible Solution just obtained may be improved further by assigning even "longer"
modes to some of the activities. Let rrij be the current mode assigned to activity j. The
improvement phase iteratively proceeds as follows.

Step 1: Compute the earliest start times ESj and the latest completion times LCj for
each activity using the current modes rrij.

13

Step 2: Determine the set J of activities to which a "longer" mode can be assigned while
keeping all other mode assignments as they are. Formally, this set is

J = {j eV \ rrij > rrij and LCj - ESj > Pj(mj-1)}.

Step 3: If the set J is empty then stop. A local optimum is found. Otherwise, choose
one activity out of J for assigning a "longer" mode to it. If J contains more than a
single element, we apply a simple priority rule that takes into account the ratio of the
cost improvement to the increase of duration of an activity. More formally, we compute

= (cjmj ~ ~ Pjmj)

for each j £ J and choose
j* = argmax{Aj | j € J}

where remaining ties are broken favoring the activity with the lowest number. Then, a
new mode

rrij* — rrij* 1

is assigned to activity j* and we return to Step 1.

10 Computational Studies

We carried out extensive computational studies in order to evaluate the Performance of
the network decomposition-based lower bounds. The algorithms were coded in GNU C
programming language and run on a Pentium II with 300 MHz processor, 64 MB RAM
and Linux operating system. In addition to that, the (mixed-integer) linear programming
solver CPLEX 5.0 was employed.

10.1 Test-Bed 1: Large Instances

To test the presented methods, no Standard test-bed is available from the literature that
could be claimed to be a hard set of instances for testing heuristics and algorithms for
Computing lower bounds. Hence, we created a test-bed by our own (which is available
from the authors upon request).

For generating activity networks, we generated AoA networks as described by Akkan,
Kimms, and Drexl [3] and converted them into AoN networks in a straightforward manner.
It is remarkable to note that the network generator presented in [3] allows to use the
complexity index CI as input which has been an open problem so far. The AoA networks
that are used have 17 nodes. We have generated networks with a complexity index
CI € {13,14} and with a coefficient of network complexity CNC € {5,6,7,8} which is
defined to be the ratio of the number of arcs to the number of nodes (see Pascoe [17]).

Depending on the complexity index CI and the coefficient of network complexity
CNC, the result of the network generation procedure gives instances of a particular size

14

CI= 13 CI = 14
cwc = 5 85/85 85/85
cwc = 6 102/102 102/102
CATC = 7 111/119 115/119
CATC = 8 128/135 128/136

Table 1: Minimum/Maximum Number n of Activities (Test-Bed 1)

measured by the number of activities. Table 1 shows which instance sizes were actually
used in our study.

Three different types of cost functions were used. We studied concave (ccv), convex
(cvx), and hybrid (hyb) ones where hybrid means that the cost function is neither concave
nor convex.

The number of modes per activity may also affect computational Performance. Hence,
we studied two intervals from which the number of modes per activity is randomly chosen
with uniform distribution. The intervals are \Mj\ £ {[2; 10], [11; 20]}.

Finally, the deadline T of the project was assumed to be of interest. The deadline
was calculated as follows. We computed the minimum possible project duration Tmin

of an instance when using the "shortest" modes. Likewise, we computed the minimum
possible project duration Tmax of an instance when using "longest" modes. From this, we
determined T = Tmin + 0(Tmax - Tmin) where 0 € {0.15,0.30,0.45,0.60} was chosen.

For each parameter level combination, we generated 10 random instances which gives
a total of 2 • 4 • 3 • 2 • 4 • 10 = 1920 large instances.

All tests were done by using a value 6 = 60 for decomposing the networks.

10.2 Test-Bed 2: Wide Range of CI Values

For optimum Solution procedures for the DTCTP, the complexity index is considered to
have a strong impact on the Performance. Thus, it is interesting to see, if this holds for
the column generation procedure as well.

Similar to how the first test-bed has been created, we defined a second test-bed by
generating AoA networks with 17 nodes and CNC = 2 using the network generator
developed by Akkan, Kimms, and Drexl [3]. Since we want to study the complexity
index, we used an a wide ränge of CJ values, i.e. we used CI 6 {0,4,5,6,9,10,11,14}.
Note that AoA networks with 17 nodes cannot have a larger complexity index than 14
(see Akkan, Kimms, and Drexl [3]). This gives small networks with a number of activities
as provided in Table 2.

Again, we used three different types of cost functions (ccv, cvx, and hyb), two intervals
for choosing the number of modes per activity (\Mj\ G {[2; 10], [11; 20]}), and four deadline
settings 9 £ {0.15,0.30,0.45,0.60}. For each parameter level combination, 10 random
instances were generated which resulted in a total of 8 • 3 • 2 • 4 • 10 = 1920 small instances.

As before, 6 = 60 was used to decompose the networks.

15

CI
0 4 5 6 7 9 10 11 14

29/30 34/35 34/36 35/37 36/36 37/39 36/42 37/42 38/42

Table 2: Minimum/Maximum Number n of Activities (Test-Bed 2)

10.3 Computational Results

Several aspects are worth to have a look at:

The number of subnetworks. To get a feeling into how many subnetworks a given
network is decomposed, we provide this Information.

The number of iterations. Column generation is an iterative procedure that solves
the master problem over and over again until the stopping criterion is met. The
number of times this happens is provided.

The total number of columns. Upon termination, the master problem consists of a
certain number of columns. Since the number of possible columns is exponentially
large, it is of interest how many columns are actually involved.

The number of removed modes. The preprocessing procedure possibly eliminates
some modes and it is of interest how effective this elimination procedure really is.
Hence, we study the percentage of removed modes measured as

100-
T,jev{\Mj\ - 1)

where dj is the number of modes of activity j deleted during preprocessing and Mj
is the set of modes before preprocessing.

• The number of cuts. Additional cuts help to tighten the lower bound and it may
be an interesting piece of information how many cuts exist (no matter if they occur
in the master problem or in the subproblems).

The run-time Performance. One of the most interesting Performance indicators
is the run-time Performance measured in CPU-seconds. All figures given include
preprocessing time.

The Solution gap. The most important Performance measure is the Solution gap
that remains between the upper and the lower bound. This deviation is measured
in terms of percentages as given by

where UB is the objective function value of the heuristic Solution and LB is the
lower bound obtained.

16

• The improvement of simple approaches. The presented column generation procedure
is a sophisticated approach to compute lower bounds. One may ask if it is worth to
apply such a complicated method, or if tight lower bounds can be computed much
more easily. One such way is to use the idea of network decomposition much more
straightforwardly. What we refer to as simple decomposition uses the network de
composition as presented to create subnetworks. Then a discrete time-cost tradeoff
problem is solved optimally for each of these subnetworks. Formally, this means
solving an instance of the model (17) thru (23) optimally for each subnetwork h
where all parameters //&, 7ry, and Abeing zero. The sum of Optimum objec
tive function values over all subnetworks h £ ff defines a lower bound denoted as
LBQ. Since these subproblems are DTCTPs, Optimum Solution procedures from the
literature can be applied. Hence, the subnetworks may be larger than those that
are created with b = 60. We used b = 300 to compute LBQ and compared this lower
bound with the lower bound LB computed with column generation using b = 60.
Of course, preprocessing is applied as well. The ratio

LB

will be provided and can be interpreted as the improvement of column generation
over simple decomposition.

• Comparison with other heuristics. The feasible solutions computed with our ap
proach may be compared with the results of other heuristics. To the best of our
knowledge, the best heuristics for the DTCTP are the iterated local search heuristics
developed by Akkan [2]. He presents two algorithms, a so-called "kick" heuristic
and a so-called "restart" heuristic. We applied both algorithms. For comparing the
obtained results, we provide average figures of the ratio

ÜB'
ÜB

where UBf is the upper bound computed with one of the iterated local search
procedures and UB is the column generation based upper bound. Thus, a ratio
greater than one indicates that the local search result has been improved. In addition
to that, we will give, for each local search procedure, the percentage of all instances
for which the column generation based heuristic gives an upper bound less than the
upper bound of the local search algorithm.

Tables 3 thru 8 show the impact of the problem parameters C7, CNC, 0, |Afj|, and
the type of cost function, respectively, on the computational results. Our main focus is on
the large instances (test-bed 1), because these instances definitely have a size for which
heuristics and lower bounds are needed, because optimum Solution procedures fail to solve
them.

Regarding the complexity index (77, we observe the following major issues (see Tables
3 and 4). The run-time is slightly affected if CI values are varied. The results for the

17

13 14
Avg. #Subnets 22.94 22.65
Avg. #Iterations 28.61 27.52
Avg. #Columns 302.92 293.44
Avg. % Removed Modes 23.18 22.73
Avg. #Cuts 12.61 0.64
Avg. Run-Time 5.57 5.29
Avg. Solution Gap 7.44 6.21
Avg. LBQ Improvement 6.01 7.40
Avg. Kick Improvement 1.08 1.00
% Kick Improvements 48.96 53.85
Avg. Restart Improvement 0.98 0.97
% Restart Improvements 13.65 16.87

Table 3: Computational Results Depending on CI (Test-Bed 1)

0 4 5 6 9 10 11 14
Avg. #Subnets 12.25 15.02 15.33 15.62 16.18 16.22 16.27 16.47
Avg. #Iterations 12.68 15.91 16.11 16.45 16.54 16.77 17.53 15.42
Avg. #Columns 90.31 123.96 130.13 131.85 139.09 142.58 144.29 133.56
Avg. % Removed Modes 3.34 1.60 1.49 1.43 17.36 14.98 14.61 11.90
Avg. #Cuts 0.59 3.75 3.60 1.82 144.40 154.66 121.60 0.61
Avg. Run-Time 0.46 0.72 0.75 0.78 1.06 1.09 1.06 0.76
Avg. Solution Gap 2.41 4.50 4.51 4.50 6.02 6.77 6.72 3.82
Avg. LB0 Improvement 43.74 36.69 34.02 37.16 18.32 19.25 18.67 35.39
Avg. Kick Improvement 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.01
% Kick Improvements 73.33 69.58 63.75 67.08 56.25 48.33 52.50 70.42
Avg. Restart Improvement 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00
% Restart Improvements 49.17 40.42 38.33 39.58 31.25 30.00 27.50 43.75

Table 4: Computational Results Depending on CI (Test-Bed 2)

18

5 6 7 8
Avg. #Subnets
Avg. #Iterations
Avg. #Columns
Avg. % Removed Modes
Avg. #Cuts
Avg. Run-Time
Avg. Solution Gap
Avg. LBQ Improvement
Avg. Kick Improvement
% Kick Improvements
Avg. Restart Improvement
% Restart Improvements

19.18 21.85 23.61 26.53
26.70 28.21 28.51 28.84

231.55 283.99 322.41 354.76
25.31 21.91 22.24 22.36
7.27 14.16 4.01 1.06
2.98 4.67 6.24 7.81
5.59 6.77 7.38 7.54
6.92 6.64 6.44 6.81
1.01 1.00 1.17 1.00

60.00 46.88 50.00 48.75
0.99 0.98 0.95 0.98

21.46 13.54 14.58 11.46

Table 5: Computational Results Depending on CNC (Test-Bed 1)

small instances with a wide ränge of CI values, however, indicates that a larger CI value
need not result in larger run-time, because CI — 14 gives faster computation times than
CI € {6,, 9,10,11}. The Solution gap usually increases, if CI gets larger, but again we
see that CI = 14 gives better results than all other CI value out of CI = 0. These
results are remarkable, because up to now an increasing complexity index was assumed
to make instances harder to solve and requiring more computational effort. Note, simple
decomposition is clearly outperformed for all CI values, but it gives poor results compared
to column generation epsecially when CI is low or when it is high. Thus, the proposed
approach seems to fit well especially for hard instances. Even for large instances, the
Solution gap is low (an overall average below 7%) while the run-time effort is small
(below 6 CPU-seconds). On average, the objective function values of our heuristic are
slightly better than the "kick" heuristic results, and our results are slightly worse than the
"restart" heuristic solutions. Compared to the "kick" heuristic, the column generation
based heuristic gives a better result for about 50% of all large instances in the test-bed
(test-bed 1) and the figures are much better in favor of the column generation procedure
for small instances (test-bed 2). The findings do not indicate that any of the three
heuristics that are tested outperforms the others significantly. Nevertheless, two points
should be stressed. First, our approach not only gives a heuristic Solution, but a lower
bound as well. And second, we have observed that the "restart" heuristic requires several
minutes of computation time for large instances (the "kick" heuristic takes several seconds)
while the column generation procedure terminates after a few seconds. This justißes
the claim that, compared to other heuristics, the column generation based heuristic is
competitive.

The coefficient of network complexity CNC, which in fact is a measure for the num
ber of activities, shows the following main effects (see Table 5). As one would expect,
the number of subnetworks and the number of columns grows when more activities are

19

0.15 0.30 0.45 0.60

Avg. #Subnets
Avg. #Iterations
Avg. #Columns
Avg. % Removed Modes
Avg. #Cuts
Avg. Run-Time
Avg. Solution Gap
Avg. LBQ Improvement
Avg. Kick Improvement
% Kick Improvements
Avg. Restart Improvement
% Restart Improvements

22.79 22.79 22.79 22.79
33.11 28.75 26.03 24.37

348.80 306.36 279.43 258.11
7.42 15.43 26.95 42.01

26.50 0.00 0.00 0.00
7.45 5.62 4.68 3.96
8.47 7.54 6.42 4.85
2.01 7.36 10.35 7.09
1.04 1.04 1.04 1.04

36.25 52.50 53.54 63.33
0.98 0.97 0.97 0.99

14.17 14.17 13.54 19.17

Table 6: Computational Results Depending on 0 (Test-Bed 1)

involved. It is interesting, however, that the number of iterations is more or less robust.
Also, the preprocessing procedure eliminates about the same percentage of modes no
matter what size the instance has. Surprisingly, the number of cuts does not grow when
instances get larger in terms of the number of activities. In fact, only a few cuts exist for
large instances. The run-time as well as the Solution gap increases (slightly) when larger
instances are solved. Nevertheless, the results are still very satisfying. CNC has almost
no effect on the improvement of column generation over simple decomposition. So, we
can conclude that even if instances have a large number of activities (see Table 1) the
run-time as well as the Solution gap is acceptable and the proposed approach is indeed
capable of solving large instances.

With regard to the time horizon 0, we have the following important findings (see
Table 6). Increasing the size of the instance (measured in terms of time periods involved)
significantly reduced the number of iterations, the number of columns and the required
run-time effort. The number of modes that can be eliminated by means of preprocessing
grows significantly when 0 and thus T grows. It should be noted that the proposed cuts
exist only for small time horizons. Most importantly, the Solution gap decreases when
6 increases. Thus, we can conclude that our procedure is capable to solve instances no
matter what time horizon is defined.

The number of modes per activity also affects the results (see Table 7). As one
would expect, the number of subnetworks and the number of columns increases when
\Mj\ increases. But, the number of iterations decreases. Overall, the run-time is not
affected. Instances are considered to be harder to solve the more modes exist. Our
procedure, however, seems to perform especially good when many modes exist, because
we can observe that the Solution gap decreases and that the simple decomposition is
outperformed much more clearly in such cases. So, our procedure appears to be well
suited to hard instances again where hardness is measured in terms of the number of

20

[2; 10] [11; 20]
Avg. #Subnets
Avg. #Iterations
Avg. #Columns
Avg. % Removed Modes
Avg. #Cuts
Avg. Run-Time
Avg. Solution Gap
Avg. LB0 Improvement
Avg. Kick Improvement
% Kick Improvements
Avg. Restart Improvement
% Restart Improvements

12.22 33.37
32.98 23.15

230.13 366.22
27.24 18.67
3.75 9.50
5.45 5.40
8.30 5.35
2.75 10.65
1.07 1.02

54.69 48.12
0.98 0.97

14.90 15.62

Table 7: Computational Results Depending on \Mj\ (Test-Bed 1)

modes this time.
Focusing on the cost function type (see Table 8), we can see that hard instances are

those which have a concave cost function, because the Solution gap is highest for such
instances (but still below 10% on average). In contrast to this, convex cost functions
make instances easy to solve near optimally.

Finally, one should note that we have tried to apply the Lagrangean relaxation ap
proach proposed by Akkan [1] as well, but it turned out that it is not able to solve
instances of the size we have used. So, the presented approach is indeed the only avail
able method so far that yields sophisticated lower and upper bounds for large instances
in short computation time. Given that our approach is fast while giving almost identical
heuristic objective function values as state-of-the-art heuristics (which do not yield lower
bounds), the proposed column generation procedure makes a contribution with regard to
both, lower and upper bounds for the DTCTP.

11 Conclusions

The discrete time-cost tradeoff problem (DTCTP) is a well-established project schedul-
ing problem. It has attracted several researchers in the past decades. As a consequence,
important issues such as the complexity status are well researched. For solving the prob
lem optimally, several procedures have been proposed, but none of these is able to solve
large and hard instances measured in terms of, say, the complexity index or the number
of activities. So, heuristics are clearly needed for attacking such instances. For evaluating
heuristics, lower bounds are crucial. Surprisingly, only little work has been published on
heuristics and, to the best of our knowledge, there has been just one Single contribution
on sophisticated lower bounds which is based on Lagrangean relaxation. This Lagrangean

21

ccv cvx hyb

Avg. #Subnets 22.85 22.88 22.64
Avg. #Iterations 23.34 31.91 28.94
Avg. #Columns 233.36 369.23 291.93
Avg. % Removed Modes 22.58 23.21 23.07
Avg. #Cuts 6.61 6.42 6.85
Avg. Run-Time 4.40 6.52 5.36
Avg. Solution Gap 9.62 4.60 6.24
Avg. LBQ Improvement 8.33 4.08 7.70
Avg. Kick Improvement 0.97 1.09 1.07
% Kick Improvements 45.78 50.31 58.12
Avg. Restart Improvement 0.98 0.98 0.98
% Restart Improvements 15.78 9.38 20.62

Table 8: Computational Results Depending on Cost Function Type (Test-Bed 1)

relaxation approach gives both, a heuristic Solution and a lower bound.
In this paper, the proposed approach also computes a feasible Solution and, at the same

time, a lower bound for evaluating the Solution. Thus, the contribution of this paper is
stronger than just a heuristic or just a lower bounding procedure. Network decomposition
is investigated to attack large instances in a divide and conquer manner. Then, column
generation techniques are applied to compute lower bounds while, within each iteration
of the column generation procedure, a feasible Solution is constructed.

A computational study examines the Performance of the proposed method in depth.
Several problem parameters are studied which are assumed to have a strong impact on
the hardness of a problem instance: the complexity index, the coefficient of network
complexity, the project deadline, the number of modes per activity, and the cost function
type. It turned out that instances can now be solved which are far beyond what has
previously been attacked (networks with up to 138 activities, a complexity index of up to
14, and up to 20 modes per activity). The overall average Solution gap is less than 7%
obtained in less than 6 CPU-seconds on a Pentium II PC with 300 MHz. The heuristic
results are competitive with state-of-the-art heuristics (which do not give a lower bound).
This and the fact that the Lagrangean relaxation procedure which gives lower and Upper
bounds is not able even to deal with instances of the tested size proves that the proposed
procedure makes a significant contribution.

References

[1] Akkan, C. (1998), A Lagrangian heuristic for the discrete time-cost tradeoff problem for
activity-on-arc project networks, Working Paper, Kog University, Istanbul

22

[2] Akkan, C. (1999), Iterated local search algorithms for the discrete time-cost tradeoff prob
lem, Working Paper, KOQ University, Istanbul

[3] Akkan, C., Kimms, A., Drexl, A. (2000), Generating an acyclic directed graph with a
given complexity index by constraint logic programming, Working Paper, Kog University,
Istanbul

[4] Bein, W.W., Kamburowski, J., Stallmann, M.F.M. (1992), Optimal reduction of two-
terminal directed acyclic graphs, SIAM Journal on Computing, Vol. 21, pp. 1112-1129

[5] Bilstein, N., Radermacher, P.J. (1977), Time-cost optimization, Methods of Operations
Research, Vol. 27, pp. 274-294

[6] De, P., Dünne, E.J., Ghosh, J.B., Wells, C.E. (1995), The discrete time-cost tradeoff prob
lem revisited, European Journal of Operational Research, Vol. 81, pp. 225-238

[7] De, P., Dünne, E.J., Ghosh, J.B., Wells, C.E. (1997), Complexity of the discrete time-cost
tradeoff problem for project networks, Operations Research, Vol. 45, pp. 302-306

[8] Demeulemeester, E., Herroelen, W., Elmaghraby, S.E. (1996), Optimal procedures for the
discrete time/cost trade-off problem in project networks, European Journal of Operational
Research, Vol. 88, pp. 50-68

[9] Elmaghraby, S.E. (1992), Resource allocation via dynamic programming in activity net
works, European Journal of Operational Research, Vol. 88, pp. 50-86

[10] Frank, H., Frisch, LT., van Slyke, R., Chou, W.S. (1970), Optimal design of centralized
Computer networks, Networks, Vol. 1, pp. 43-58

[11] Fulkerson, D.R. (1961), A network flow computation for project cost curves, Management
Science, Vol. 7, pp. 167-178

[12] Harvey, R.T., Patterson, J.H. (1979), An implicit enumeration algorithm for the time/cost
tradeoff problem in project network analysis, Foundations of Control Engineering, Vol. 4,
pp. 107-117

[13] Hindelang, T.J., Muth, J.F. (1979), A dynamic programming algorithm for Decision CPM
networks, Operations Research, Vol. 27, pp. 225-241

[14] Kelley, J.E. (1961), Critical path planning and scheduling: mathematical basis, Operations
Research, Vol. 9, pp. 296-320

[15] Kelley, J.E., Walker, M.R. (1959), Critical Path Planning and Scheduling: An Introduction,
Mauchly Associates, Inc., Ambler, PA

[16] Möhring, R.H., Radermacher, F.J. (1984), Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization, Annais of Discrete Mathematics,
Vol. 19, pp. 257-356

[17] Pascoe, T.L. (1966), Allocation of resources — CPM, Revue Frangaise de Recherche
Operationelle, Vol. 38, pp. 31-38

23

[18] Robinson, D.R. (1975), A dynamic programming Solution to the cost-time tradeoff for
CPM, Management Science, Vol. 22, pp. 158-166

[19] Rothfarb, B., Frank, H., Rosenbaum, D.M., Steiglitz, K., Kleitman, D.J. (1970), Optimal
design of offshore natural-gas pipeline systems, Operations Research, Vol. 18, pp. 992-1020

[20] Skutella, M. (1998), Approximation algorithms for the discrete time-cost tradeoff problem,
Mathematics of Operations Research, Vol. 23, pp. 195-203

[21] Sprecher, A., Drexl, A. (1998), Solving multi-mode resource-constrained project scheduling
Problems by a simple, general and powerful sequencing algorithm, European Journal of
Operational Research, Vol. 107, pp. 431-450

[22] Syslo, M.M. (1984), On the computational complexity of the minimum-dummy-activities
problem in a PERT network, Networks, Vol. 14, pp. 37-45

24

