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Abstract: For most computationally intractable problems there exists no heuristic that is equally ef-
fective on all instances. Rather, any given heuristic may do well on some instances but will do worse 
on others. Indeed, even the 'best' heuristics will be dominated by others on at least some subclasses of 
instances. It thus seems worthwhile to identify - for each instance anew - a heuristic that is appropri-
ate for the instance at hand, instead of applying always the same algorithm, regardless of its suitabil-
ity. Adaptive control schemes attempt to do this with iterative algorithms by dynamically exploiting 
the experience gained in earlier iterations to guide the underlying algorithm in later iterations. In a re-
cent study, several adaptive control schemes have been evaluated on one of the most fundamental 
scheduling problems, the resource-constrained project scheduling problem (RCPSP). With this contri-
bution, we intend to complement that research by results on a substantially more general problem, viz. 
the RCPSP under partially renewable resources. This new resource concept allows to formulate a vari-
ety of temporal and logical relations between scheduling objects, and is thus of interest in many prac
tica! settings pertaining to time-tabling and manpower scheduling. 

Keywords: PROJECT SCHEDULING; PARTIALLY RENEWABLE RESOURCES; 
HEURISTICS; LOCAL SEARCH; CONTROL SCHEMES 

1. Introduction 

There is no doubt that trying to find 'the best heuristic' for a computationally intractable prob

lem is intellectually appealing. However, for most such problems researchers have come to 

believe that there simply exists no heuristic which is best on all instances. If a heuristic is 

characterized as best, this usually means that it performs good on the majority of instances but 

leaves a minority on which other heuristics do better. For the field of priority rule-based 

scheduling, for example, recent experimental results suggest that some rules perform best on 

certain classes of instances while other rules do so on other instance classes, consequentially 

no Single rule will perform best on all possible instances of a problem. This view is supported 

by Wolpert, Macready (1995) whose no-free-lunch-theorem states the same for neighborhood 

search algorithms in general. 

For the most widely used form of fast scheduling methods, viz. priority rule-based construc-

tion ones, this implies that restricting oneself to merely one rule means to waive the capability 

to address the specifics of particular instances. Attempts to avoid this limitation have been 

made with the design of composite (or combinatorial) rules (cf. Barman 1997 and the litera-

ture cited therein), which combine simple priority rules in a fixed and predetermined way. In 

this contribution, we investigate another way of tackling that issue, viz. the design of adaptive 

control schemes which dynamically combine algorithms as appropriate. In essence, we aim 

for algorithms with a 'learning* capability, i.e. here the ability to extricate good rule combina-

tions from an uninformed compilation of good and bad rules by gathering - for each instance 

attempted anew - instance-specific knowledge of which combinations work well and which 

do not. This concept therefore provides a unifying framework allowing to clarify commonali-

ties and differences between certain algorithmic approaches. 
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Although the very name 'adaptive control scheme' has, to the best of our knowledge, not been 

used before, algorithmic approaches constituting such control schemes have been around for 

some time, being used in various settings such as lotsizing (Kimms 1996; Haase 1996) and 

course scheduling (Haase et al. 1997, 1998). Two such schemes have been investigated ex-

perimentally in Schirmer (1998), analyzing their Performance on the resource-constrained 

project scheduling problem (RCPSP). Of these, a local search-based control scheme (LSCS) 

showed the best Performance. In this contribution, we apply the LSCS to a more general 

problem, viz. the RCPSP under partially renewable resources (RCPSP/H). Based upon this, we 

propose a new algorithmic approach to priority-rule based scheduling which proceeds in two 

stages. The first, deterministic stage uses the deterministic LSCS to identify, separately for 

each attempted instance, a well-performing combination of priority rules. The second, ran-

domized stage uses the best known combination of scheduling and random sampling scheme 

for the problem to run the composite rule found in the first stage. This approach allows to ex-

ploit the well-known benefits of sampling while enabling the algorithm to combine priority 

rules which are especially suited for the instance at hand. 

Our computational results on both problems show that this yields an algorithm competitive 

with all but the best state-of-the-art construction heuristics. In addition, adaptive control 

schemes enjoy two important advantages over these algorithms, which facilitate the re-

searcher's task of designing good priority rule-based heuristics: First, by design they are ro

bust to changes in the instances attempted, thus obviating the need of expertise on the charac-

teristics of instances. Second, they are - at least moderately - robust to changes in the rules 

employed, thus lessening the importance of expertise on the characteristics of such rules for 

the problem at hand. Expertise on both areas would otherwise be necessary to identify good 

algorithms, and usually extensive experimentation is required to acquire it (Schirmer 1998; 

Schirmer 2000). Third, they are simple and easy to implement. Therefore, adaptive control 

schemes provide a commendable approach in situations where little knowledge is available on 

what constitutes a good rule or what makes an instance easy or difficult to solve. 

The remainder of this work is structured as follows. In Section 2 we introduce the concept of 

partially renewable resources and the RCPSP/TI as far as they are needed here. The requisite 

algorithmic components, viz. scheduling scheme, simple and composited priority rules, ran

dom sampling scheme, and bounding rules are covered in Section 3. Section 4 recaps a taxon-

omy of control schemes, based upon which we describe the adaptive approaches to be ex-

plored. Section 5 details the experimentation carried out and analyzes the respective results. A 

short summary, along with some conclusions, in Section 6 wraps up this work. 
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2. Project Scheduling under Partially Renewable Resources 

In this section, we will briefly State the resource-constrained project scheduling problem 

under partially renewable resources (RCPSP/TI), giving a formal presentation of the problem 

and discussing several important specifics of this new resource concept. 

2.1. Problem Setting 

Partially renewable resources may be characterized by the following assumptions: 

All activities have to be processed within a number of T periods. 

Processing the activities requires the presence of one or several partially renewable re
sources p; the demand for resource p entailed by activity j is given by kjp. 

Associated with each resource p is a so-called period subset Hp which is a subset of the 
set of all periods. 

For each resource p, the amount which is available over all periods of that subset is lim
ited by Kp. 

Apart from these assumptions which specifically pertain to partially renewable resources, we 

employ the usual parameters of the classical resource-constrained project scheduling problem 

(RCPSP). All problem parameters are summarized (in alphabetical order) in Table 1. W.l.o.g. 

the parameters P and all dj are assumed to be nonnegative integers, J and T to be positive inte-

gers, kjp and Kp to be integers. These restrictions entail no loss of generality since they are 

equivalent to allowing rational numbers, i.e. fractions, and multiplying them with the smallest 

common multiple of their denominators. Let denote J = {1,...,J} the set of all activities and T 

= {1,...,T} the set of all periods. Finally, all Hp are assumed to be subsets of the set T. 

Model Definition 
Parameter 

dj Non-preemptable duration of activity j 
J Number of activities, indexed by j 

kjp Per-period consumption of partially renewable resource p required to perform activity j 
Kp Total availability of partially renewable resource p over all periods of FIp 
P Number of partially renewable resources, indexed by p 
np Period subset associated with resource p 
T Number of periods, indexed by t 
Z Partial order on the activities, representing precedence relations 

Table 1: Problem Parameters of the RCPSP/Tl 

The goal is to find an assignment of periods to all activities (a schedule) that ensures for each 

partially renewable resource p and each period subset IIp that the total consumption of p by 
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all activities performed in that period subset does not exceed the total capacity of p within np, 

respects the partial order Z, and minimizes the total project length. 

To simplify matters, it is assumed w.l.o.g. that activity 1 is the unique first and activity J the 

unique last activity w.r.t. /, i.e. 1 Z j and j Z J (2 < j < J-l). The fictitious activities 1 and J 

are called dummy activities, meaning that di = dj = 0 and kip = kjp = 0 (1 < p < P). We also 

follow common practice by deriving some additional parameters from the above problem Pa

rameters; though not necessary prerequisites, they usually allow to reduce the number of vari

ables within some of the constraints. First, let denote Pj (1 < j < J) the set of all immediate 

predecessors of activity j w.r.t. Z. Second, for each activity j (1 < j < J) earliest finish times 

EFTj and latest finish times LFTj may be calculated by traditional forward and backward re-

cursion, the latter starting at time T. 

Using the above parameters, a schedule can be represented by integer variables yj (1 < j < J) 

denoting the period in which activity j is completed. In addition, we denote by At (1 < t < T) 

the set of all activities which are processed in period t (Talbot, Patterson 1978) and thus may 

consume resources. Then the RCPSP/IT can be described in the following way: 

Minimize 

Z(y) = yj (l) 

subject to 

yi<yj-dj (2 <j < J; i Zj) (2) 

Z (1SP<P) (3) 
tenp j eAt 

yj G {EFTj,...,LFTj} (l<j<J) (4) 

Minimization of the objective function (1) enforces the earliest possible completion of the last 

activity J and thus the minimal schedule length. The precedence constraints (2) guarantee that 

the precedence order is respected while the capacity constraints (3) limit the total resource 

consumption of each partially renewable resource in each period subset to the available 

amount. The optimization problem is shown to be strongly NP-equivalent and the correspond-

ing feasibility problem to be strongly NP-complete in Schirmer, Drexl (1997) where also a 

number of alternative model formulations as well as their respective advantages and disad-

vantages are discussed. 
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2.2. Special Properties 

Nonrenewable resources n are capacitated over the complete planning horizon, therefore the 

exact time when an activity j starts has no bearing on the total activity demand kjn incurred. 

The capacity of renewable resources r, in contrast, is limited for each period separately, while 

the total activity demand of j for r is kjr • dj. Hence the feasibility of a schedule depends on 

the periods to which the activities are assigned: If two activities overlap in a period, they may 

overload a resource in that period, requiring to delay one activity until the other terminates, 

freeing capacities again. Large capacities allow for more parallel execution of activities while 

small capacities entail more sequential execution. In this sense, the total demand for and so 

the remaining capacities of nonrenewable resources are independent from the corresponding 

schedule. Yet, for renewable resources only the individual activity demand kjr and the total 

activity demand kjr • dj are schedule-independent whereas the total demand for a specific re

source r in a period t and thus the corresponding remaining capacities are schedule-dependent. 

Partially renewable resources, in contrast, are capacitated over their respective period subsets 

only; in all other periods of the planning horizon there are no limitations. Also in the presence 

of partially renewable resources the feasibility of a schedule is determined by the position of 

the activities on the time axis: Two activities overlapping within a period subset may require 

more than the capacity of the corresponding resource; thus scarce resources may delay certain 

activities into uncapacitated periods, outside the period subsets. Consequentially, although in 

principle the total activity demand is kjp • dj, only that part falling into capacitated periods, 

i.e. within a period subset, is relevant for algorithmic purposes. Hence, attention can be re-

stricted from the total activity demand to the relevant demand. 

To determine the relevant demand RDjpt of activity j for partially renewable resource p when 

started in period t, let Qjt denote those periods of T in which (non-dummy) activity j would be 

active were it started in period t, i.e. 

ßjt={t,...,t+dj-l} (2 < j < J-l; 1 < t < T) (5) 

Then, the relevant demand can be calculated from 

RDjpt = kjp • | ßjt n np | (2 < j < J-l; 1 <p < P; ESTj+1 < t < LSTj+1) (6) 

as soon as earliest and latest Start times ESTj and LSTj are determined in the usual fashion for 

each activity j (Kelley 1963). In this regard, relevant demand RDjpt and thus remaining ca

pacities are schedule-dependent although the individual activity demand kjp is schedule-inde

pendent. An example is shown in Figure 1 where scheduling activity j to different periods re

sults in different relevant demand for a partially renewable resource, depending on whether 

all, some, or none of the active periods fall into the corresponding period subset. A more 

comprehensive discussion of these concepts is given in Schirmer, Drexl (1997). 
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Figure 1: Total Activity Demand for Partially Renewable Resources 

One fundamental consequenee of this property is that delaying some activities may tum out 

beneficial in terms of Solution quality. As an example consider an instance of the RCPSP/11 

where J = 2, d\ = d2 = 3, P = 1, T = 6, Tip = {1, 2}, kjp = 2, k2p = 1, Kp = 5, Z empty and 

confer to the schedules in Figure 2: while schedule 1 starts as soon as possible, it is actually 

better to delay activity 1 by one period since doing so frees enough of resource p that both ac

tivities can be processed in parallel, reducing the makespan of schedule 2 to the optimal four 

periods. 

© Uk 

Figure 2: On the Benefit of Delaying R CPSP/Il-A ctivities 

3. Components of Priority Rule-Based Algorithms 

Priority rule-based methods consist of at least two components, viz. one (or more) scheduling 

schemes and one (or more) priority rules. A scheduling scheme determines how a schedule is 

constructed, building feasible_/«// schedules (which cover all activities) by augmenting partial 

schedules (which cover only a proper subset of the activities) in a stage-wise manner. On each 

stage, the scheme determines the set of all activities which are currently eligible for schedul-
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ing. In this, priority rules serve to resolve conflicts where more than one activity could be 

feasibly scheduled. Also, such methods may be complemented by bounding rules which serve 

to improve their Performance. 

3.1. Scheduling Scheme 

In the following, we describe an adaptation of the well-known serial scheduling scheme 

(SSS) for the RCPSP to the specifics of the RCPSP/II (SSS/TI). The motivation to use a serial 

scheme was twofold. First, recall that the capability to delay some activities from their earliest 

feasible Start time is crucial to finding high-quality schedules. This capability is relatively 

easy to add to the SSS whereas introducing this idea to its well-known parallel counterpart, 

which essentially relies on scheduling activities - once selected - as soon as possible, requires 

some substantial bending. Second, preliminary experiments showed the SSS/n to outperform 

several other scheduling schemes developed for the RCPSP/TI. 

The SSS partitions the set of activities into scheduled, eligible, and ineligible activities. An 

activity that is already in the partial schedule is scheduled. Otherwise, an activity is called eli

gible if all its predecessors are scheduled, and ineligible otherwise. The scheme proceeds in N 

= J stages, indexed by n. For notational purposes, we refer on stage n to the set of scheduled 

activities as 5^ and to the set of eligible activities as decision set Dn. On each stage n, one ac

tivity j from Dn is selected - using a priority rule if more than one activity is eligible - and 

scheduled to begin at its earliest feasible start time. Then j is moved from Dn to Sn which may 

render some ineligible activities eligible if now all their predecessors are scheduled. The 

scheme terminates either on stage J when all activities are scheduled (feasible Solution found) 

or if no further selection is possible (no feasible Solution found). 

In its common form, the decision set of the SSS contains all precedence-feasible, unscheduled 

activities, i.e. those whose predecessors have already been scheduled. A selected activity is 

then scheduled to its earliest resource-feasible start period. Yet, for the RCPSP/IT, the above 

example has demonstrated that delaying certain activities behind these periods may be benefi-

cial. In order to allow activities to be started in later periods, here Dn is defined as to com-

prise all pairs of an activity j and a period t where j is precedence- and resource-feasibly 

schedulable in t; note that for the dummy activities only the first such period is considered. 

To facilitate the subsequent formal description, some additional notation will prove helpful. 

For each scheduled activity j let denote FTj the finish time of j as determined by the schedule. 

Let also denote RKpn (1 < p < P; 1 < n < N) the remaining capacity of resource p on stage n. 

It is initialized by 

RKpi 4- Kp (l<p<P) (7) 
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and updated dynamically according to 

RKpn<-RKp5n.i-RDjjP;FT._dj+i (1 < p < P; 2 < n < N) (8) 

Let denote D'n the set of activities currently eligible for scheduling, i.e. 

D'n <— {1 < j < JI j ^nl (1 <n <N) (9) 

Then, using EPSTj to denote the earliest precedence-feasible Start time of activity j, i.e. 

EPSTj<-max{FTi|iZj} 0 £ Sn) (10) 

Initialization 

FT! <-0 

n <r~ 1 
FEASIBLE <- TRUE 
for each (1 < p <P) 

RKpn Kp 

Execution 

while I Sn I < J and FEASIBLE 
calculate Dn according to (12) 
if Dn = 0 

FEASIBLE FALSE1 

eise ifön= {(j, t)} 
Ü*, t*) <— t) 

eise 
select (j*, t*) according to (13) 

FTj* <-1* + dj* 
Sn^Snutf] 
for each (1 <p<P) 

update RKpn according to (8) 
n <- n+1 

endwhile 

Output/Result 

If FEASIBLE = TRUE, a feasible Solution has been found and for each activity j e Sn, FT; denotes the 
period in which j is flnished; otherwise no feasible schedule has been found. • 

Table 2: Serial Scheduling Scheme SSS/n 

A more efficient implementation would be to check during the computation of Dn whether there exists an 
activity j e £>'n with Wjn = 0. If so, set FEASIBLE <- FALSE. 
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the set Wjn of all feasible periods for activity j on stage n can be determined from 

JTjn <- {EPSTj + 1 < t < LSTj + 1 | RDjpt < RKpn (l<p<P)} (j 0 ^ 1 < n < N) (11) 

Now, finally, Dn can be defined as 

Dn {()' 01 j e ^n A t e ^jn) (1 < n < N) (12) 

Having laid this groundwork, the adapted serial scheduling scheme SSS/n can be formulated 

as done in Table 2 (the details of selecting a job according to (13) are discussed below). 

3.2. Simple Priority Rules 

Priority rules allow to resolve conflicts between candidates competing for the allocation of 

scarce resources. In situations where the decision set contains more candidates than can be 

feasibly scheduled, priority values are calculated from numerical measures which are related 

to properties of the activities, the complete project, or the incumbent partial schedule. For-

mally, any priority rule can be specified by two components: One is a mapping v: Dn -» R >Q 

that accords a numerical measure v(d) to each candidate in the decision set. The other is a 

dichotomical parameter extr e {max, min} which specifies which extremum of the priority 

values determines the candidate to be selected (Kolisch 1995, pp. 83-84). Ties can be broken 

arbitrarily, e.g. by smallest activity index (as done in the sequel) or randomly. Then, any such 

(deterministic) selection of a candidate d (as used above in Table 2 where d = (j*, t*)) can be 

expressed as 

d* <- min {d e Dn | v(d) = extr {v(d') | d' e £>n}} (13) 

Elementary insight into the problem at hand points at two fundamental considerations for se

lecting a set of simple priority rules from which the composite rules will be constructed. First, 

bowing to the objective function, we wish to construct short schedules which minimize total 

project duration. So, some priority rules should reflect the desirability of scheduling activities 

early to get them "done and out of the way" (Alvarez-Valdes, Tamarit 1989), rather than 

delaying them and their successors into later periods. Second, scarce resources may delay cer

tain activities into noncapacitated periods. Thus, certain rules should measure the resource-re-

lated importance of activities, e.g. in terms of its resource usage or the scarcity of the re

sources used. In the sequel, we therefore describe several simple precedence- and resource-

based rules. 

Before we can introduce these rules, some formal preparations are in place. For each activity 

j, let denote Pj the set of resources requested by j, i.e. 

Pj<- {1 <p<P| kjp > 0} (1 <j < J) (14) 
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Let denote MDjpt the minimum (relevant) demand for any requested resource p incurred by 

starting j no earlier than in period t, i.e. 

MDjpt <- min {RDjpt' | t < t' < LSTj} (2 < j < J-l; p e Fj; ESTj+1 < t < LSTj+1) (15) 

and MDEjpt the minimum (relevant) demand entailed for resource p by all successors of ac

tivity j when started in period t. Assuming j Z j', let us refer to the longest duration path from 

j to j' w.r.t. the precedence order Z by LPjj*. Also, assuming that j is started in period t, up-

dated earliest Start times ESTj-jt ofits successors j' could be derived from 

ESTj'jt <-max {ESTjs t + LPjj- - 1} (j Zj'; ESTj+1 <t< LSTj+1) (16) 

Now, MDEjptcan be calculated from 

MDEjpt<- Z MDj',P)ESTjijt (2 <j< J-l; l<p<P; ESTj+1 <t<LSTj+l) (17) 

j/j' 

Finally, if we let TDpn denote the total demand for resource p on stage n of the algorithm, 

calculated over all activities still unscheduled, i.e. 

TDpn^-SjgSrikjp'dj (1 < p < P; 1 < n < N) (18) 

then the set SPn of those resources which can be identified on stage n as potentially scarce 

may be defined as 

^n<-{l<p<p| TDpn>RKpn} (l<n<N)(19) 

Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

MAX DRC/ESit •^peiSPn " ^jpt" M^Eijpt) D G 
MAX DRC/Ejt Zp (RKpn " ^Pjpt ~ MOTjpt) D G 
MIN DRS/Ejj- Zp (RDjpj + MDEjpt) l RKpn D G 
MIN DRS/ESjt ^psSPn (^jpt+ ^^jpt) l ^pn D G 
MAX MTSj Iti'lj/j')! S L 
MIN EFTj 

TRS/Ejt 
EFTj 
Zp (RDjpt + MDEjpt)/Kp 

S L 
MIN 

EFTj 
TRS/Ejt 

EFTj 
Zp (RDjpt + MDEjpt)/Kp s G 

MIN TRS/ESjt speSPn (^Pjpt+ MD^jpt) ' Kp s G 
MIN RRD/Ejt Zp (RDjpt / (kjp • dj) s G 

MIN 
+ Zj/j, MDj.;P)ESTj, / (kj.p • dj-)) 

MIN TRSit Zn ^ipt1 Kn s L 

Table 3: Simple Priority Rules - Definition and Classification 
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Using this notation, the rules can be defined as in Table 3 where also a Classification in terms 

of several straightforward criteria is given. The decision to select these rules draws upon the 

study in Schirmer (1999, pp. 181-191) where a total of 32 rules for the RCPSP/II were evalu-

ated. We have selected the best and the worst four rules from this sample, to allow to evaluate 

the Performance of the LSCS in the presence of suited as well as unsuited rules. 

3.3. Parameterized Composite Priority Rules 

As we aim at minimizing the project makespan, it is straightforward that certain (precedence-

based) rules perform better on less capacitated instances while other (resource-based) ones do 

so on instances with scarce resources. It would therefore be unreasonable to expect one par-

ticular rule to outperform all its companions on all problem instances; we will come back to 

this issue below. In addition, some rules may accord similar or even identical priority values 

to several candidate activities, especially so when scheduling large projects; therefore the dis-

criminative potential of simple rules may be rather limited in certain situations2. This insight 

motivates the concept of composite rules, which are made up from several simple priority 

rules. Such rules combine several numerical measures, each reflecting Information about the 

desirability to select a specific candidate, into one priority value. It is also noteworthy that ex-

perimental results seem to suggest that good composite rules need not neccessarily be made 

up from good simple rules: for the RCPSP Ulusoy, Özdamar (1989) report that, although the 

rules MAX MIS (most immediate successors) and MAX TRS perform poorly as individuals, 

the weighted combination WRUP performs rather well. In other words, an appropriately bal-

anced combination of different priority rules may do better than each of its parts. 

Let I denote the number of priority rules to be combined. Let also for each activity j eDn 

denote vj(j) the priority value accorded by rule i, and let finally for each rule i be dj e [-1, 1] 

an (exponential) control parameter or weight assigned to rule i. Now, we can define a com

posite rule in general as 

I 
v(j)<- XviÜ>ai extr - max G e Ai) (20) 

i=l 

Obviously, for I = 1 this definition includes the special case of a simple rule. For each priority 

rule i, the corresponding control parameter cq allows to vary the influence of the rule as well 

as whether candidates with high or with low priority values are to be preferred. On one hand, 

a\ e (0,1] implies extr = max and increasing values tend to pronounce the differences be

tween the candidate activities; on the other hand, oq e [-1,0) implies extr = min and increas-

2 "In order to exercise purported logic relative to a specific criterion, a heuristic scheduling rule must be able 
to discriminate among activities," (Patterson 1976, p. 97). 
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ing values tend to reduce the differences between the activities. For oq = 0, all candidates re-

ceive the same priority value. In our Implementation, ties are broken by activity index j first, 

followed by period index t second. 

It Stands to reason that combining rules with different domains may overemphasize the influ-

ence of some rules. Suppose for instance that one rule draws priorities from {0,...,1} while 

another draws from {1,...,100}; a composite rule using these with identical weights will es-

sentially behave like the latter. This imbalance of scales can either be adjusted explicitly by 

normalizing or scaling the priorities or implicitly by adjusting the weights (Whitehouse, 

Brown 1979). Following the former approach, we counter this effect by scaling the priority 

values to the interval [0,1] by 

v'iö) <-

1 r- ifextrj = min 
max 

vi(j) 
(!SiSl;jEDn) (21) 

max {vi(j')|j'eDn 
ifextq = max 

If the denominator is zero, the priorities remain unchanged. Note that equation (21) trans-

forms the priority values of all rules i with extq = min to values with extq = max, so it suf-

fices to let ctj e [0,1]. We thus compose the individual priority values only after having scaled 

them, i.e. 

I 
vQ*)<- Xv'i(j)ai extr = max (j 6 Dn) (22) 

i=l 

If a value of v'j(j) is zero, then v'j(j)ai is set to zero. We should point out that we have also 

tried the following, multiplicative variant of composing the individual priorities. Yet, as it 

yielded noticeably worse results, we use the exponential one in the sequel. 

I 
v0) 2ai' v'i Ü) extr = max (j e Dn) (23) 

i=l 

Note that, given a scheduling scheme and a set of I priority rules, each control parameter vec-

tor d = (ai,...,cq) fully specifies one scheduling algorithm. Since each algorithm can be con-

ceived as a mapping from the problem to the Solution Space, it is straightforward to regard any 

a-vector as encoding a specific Solution of the instance tackled. Hence, for any algorithm 

that employs composite rules, the parameter space [0,1]^ can be said to represent that sub-

space of the Solution space that is sampled by the algorithm. 
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3.4. Random Sampling Scheme 

The concept of regrets, well-known from the field of decision theory, was introduced to ran-

domized algorithms in terms of the regret-based biased random sampling scheme (RBRS; cf. 

Drexl 1991; Drexl, Grünewald 1993). In an extensive study, Kolisch (1996) found the scheme 

to dominate all other randomization schemes proposed so far. We use a recent modification of 

this scheme (MRBRS) that outperforms even the RBRS (Schirmer 1999, pp. 52-53; Schirmer 

2000). 

The regret value of a candidate d measures the worst-case consequence that could possibly re-

sult from selecting another candidate. Let denote F(Dn) the set of priority values of all candi

dates in a decision set Dn. Then, the regrets are computed as 

Now, let denote V{D^)+ the set of all positive transformed priorities of the candidates in a 

decision set Dn, i.e. 

P(Dn)+ <- (v'(d) | d e Dn /\ v'(d) > 0} (25) 

The priorities are then modified by 

v"(d) (v'(d) + en)a (d e Dn) (26) 

where ae IR >o while en is determined from 

^ jminr(Dn)+/10 iBF(3deDn)v'(d)> 0 ^7) 

[l otherwise 

sn guarantees v"(d) to be nonzero; otherwise at least one candidate in each decision set could 

never be selected, an undesirable consequence in the presence of scarce resources or tight 

time windows. The first alternative of sn in (27) tends to keep its influence small whenever 

some transformed priorities are zero and some are not. The second alternative applies only if 

all candidates in the decision set have zero priorities such that en would be undefined; since 

then all priorities are identical, adding an arbitrary constant will give all candidates the same 

probability of being selected. a allows to diminish or enforce the differences between the 

modified priorities for a<l or a>l, respectively. Note that for a = 0 the selection process be-

comes pure random sampling, since all candidates will share the same probability of being 

selected. On the other extreme, for a = oo the process behaves deterministic: since with in-

creasing a the difference between the highest and the second-highest modified priority in-

creases, the probability of the highest-prioritized candidate being selected converges to one. 
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Having determined these values, the selection probabilities are derived from 

(deDn) (28) 

d'eDn 

The first Iteration is always run in a deterministic manner to tighten the time windows early 

on, in order to alleviate the adverse effect of the large initial decision set cardinalities on algo

rithmic efficiency. 

3.5, Bounding Rules 

Although bounding rules are mostly used in conjunction with exact methods, serving to speed 

these up when applied to (strongly) NP-hard or NP-equivalent problems, they can also be put 

to good use with heuristics. In their piain vanilla version, iterative construction algorithms, 

such as sampling methods, cannot utilize experience from earlier iterations, so each Iteration 

starts from Scratch. In the worst possible case, the Optimum is found in the first Iteration - and 

in all subsequent iterations as well. To avoid this waste of effort, bounds can be employed to 

restrict the Solution space searched or to stop searching it when no better Solution may be 

found. 

We employed three bounds which we briefly discuss in the sequel. For details we refer the 

reader to Schirmer (1999, pp. 54-56) where the bounds are discussed more fully. 

General precedence-based Iower bound (GPLB) This bound is generally applicable when-

ever a feasible füll schedule has been found. It is based upon relaxing the resource con

straints, so a lower bound on the project makespan is determined as the length of a critical 

path in the project network. Whenever FTj = EFTj holds, the whole run can be terminated. In 

this case, the heuristically derived upper bound FTj on the makespan equals the precedence-

based lower bound EFTj such that the schedule at hand is optimal. • 

Time window bound (TWB) In the form presented here, this bound can be employed only 
under the SSS/TL Let denote FT j the objective function value of the incumbent best Solution. 

Whenever a feasible Solution with a better value of FTj < FT j is found, the LSTj-values of 

all activities are decremented by 

Then terminate the whole run whenever there exists an activity j e D'n which would have to 

be started outside its updated time window, i.e. 

LSTj <r- LSTj - FT j + FTj - 1 (l<j<J) (29) 

ESTj > LSTj (30) 
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Note that by construction of the bound any newly constructed schedule will be better than the 

previous one as its makespan must be smaller than the previous makespan3. Now, if above 

condition holds, no further schedule can be built, so the previous schedule is actually optimal. 

This bound may be seen as transforming, by means of tightening time windows, the issue of 

improving upon a known Solution into one of achieving feasibility of the solutions con

structed. Notice that this bound can be conveniently employed by testing whether ESTj > 

LSTj. • 

The tightening of the time windows gains particular importance in early iterations where the 

initial time windows may be relatively large; also it benefits the computational effort to deter-

mine the MDE-values if GREB (to be discussed below) is used. 

The feasibility bound used (Böttcher et al. 1999) is motivated by the fact that the relevant re

source demand of an activity may vary depending on its start time. The approach consists of 

calculating lower bounds on the demand that all unscheduled activities place on the resources 

and checking these against their remaining capacities: if there exists a resource for which this 

lower bound exceeds the remaining capacity, the current partial schedule cannot be extended 

to a feasible Solution. Before we introduce the corresponding bounding rule, we need some 

formal preparations. Let, for each activity j, denote Pj the set of resources requested by j, i.e. 

Pj^{l<p<p| kjp>0} 0<j<J) (31) 

Let denote MDjpt the minimum (relevant) demand for any requested resource p incurred by 

starting j no earlier than in period t, i.e. 

MDjpt m^n {RDjpt' I t < t' < LSTj} (2 < j < J-l; p e Py9 ESTj+1 < t < LSTj+1) (32) 

and MDEjpt the minimum (relevant) demand entailed for resource p by all successors of ac

tivity j when started in period t. Assuming j Z j\ let us refer to the longest duration path from 

j to j' w.r.t. the precedence order Z by LPjj'. Also, assuming that j is started in period t, up-

dated earliest start times ESTj'jt of its successors j' could be derived from 

ESTj'jt max {ESTj,, t + LPjj, - 1} (j Z j'; ESTj+1 < t < LSTj+1) (33) 

Now, MDEjpt can be calculated from 

MDEjpt £ MDj- p^EST. (2 < j < J-l; 1 < p < P; ESTj+1 < t < LSTj+1) (34) 

Kj' 

3 Such approaches, which iteratively impose tighter bounds and then try to refute them, have recently been 
named a destructive improvement technique (Klein, Scholl 1999). 
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General resource-based feasibility bound (GRFB) Let denote jn the highest-numbered ac

tivity, i.e. the last one w.r.t. to the precedence order, in the partial schedule Sn and tn the Start 

period assigned to jn. Then terminate the current iteration if there exists a resource p where 

the minimum demand entailed by all unscheduled activities exceeds the remaining capacity, 

i.e. 

RKpn<MDEj„,p,t„ (35) 

because any extension of Sn to a füll schedule will be resource-infeasible. • 

This bound can easily be integrated into the SSS/Tl by appropriately restricting the set Wjn of 

feasible periods defmed in (11) to 

W-]Xi <- {EPSTj + 1 < t < LSTj + 11 RDjpt + MDEjpt < RKpn (l<p<P)} 

(j g Sn; 1 < n < N) (36) 

This Implementation has the additional benefit of restricting the cardinality of the decision set 

which also tends to increase algorithmic efficiency. 

4. Control Schemes 

Parameterized algorithms possess (one or more) control parameters which allow to direct the 

way in which they proceed. While these may be understood to encompass numerical parame

ters only, we adopt a broader view and include also the choice of certain algorithmic compo-

nents, such as priority rules, scheduling and sampling schemes, in the concept. To algorithmic 

schemes which govern the instantiation of the control parameters we refer as control schemes. 

Although this very name has, to the best of our knowledge, not been used before, we maintain 

that some kind of control scheme is always present whenever parameterized methods are 

used. In the sequel, we propose a taxonomy of control schemes, distinguishing between clas-

sical and adaptive forms. 

4.1. Classical Control Schemes 

4.1.1. Fixed Control 

The most simple class of control schemes might be called fixed control schemes (FCS), in that 

the values or the value sequences used to instantiate the control parameters are prescribed in 

advance and for all instances alike. As an example, consider a numerical control parameter a 

e IM of an algorithm to be run for three iterations. Under a FCS, a could e.g. be instantiated 

thrice by the same value or by a different value in each iteration. These precepts will, of 
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course, reflect the results of previous experimentation, having been found to produce the best 

results on average over all test instances used, Exemplary applications of FCS can be found in 

Kolisch, Drexl (1996), Schirmer, Riesenberg (1997), Böttcher et al. (1999). 

4.1.2. Class-Based Control 

Another approach is motivated by the Observation that for most computationally intractable 

problems there is no algorithm which performs best for all instances. Thus, as the prescrip-

tions of FCS apply to all instances alike, they are unable to take into account the specifics of 

particular instances. This Observation has already been made, among others, by Davis, Patter-

son (1975). Therefore, a more refined class of schemes, to which we refer as class-based con

trol schemes (CCS), proceeds by instantiating the control parameters depending on some 

characteristics of the instances attempted. Such schemes utilize a partition of the problems in

stances into equivalence classes and prescribe the application of specific parameter instantia-

tions for each of the classes. Kolisch, Drexl (1996) propose a control scheme which selects 

the scheduling scheme to be applied according to two quantities: the number of iterations to 

be performed and the resource strength of the instance. Other examples of CCS can be found 

in Kimms (1998) and Schirmer; Riesenberg (1998). Also these schemes are based upon exten

sive experimentation to develop sufficient insight into the influence of the parameters on the 

algorithms' Performance. Yet, the individual Performance of an algorithm on a given instance 

may still not be reflected by its average Performance on the corresponding equivalence class. 

4.2. Adaptive Control Schemes 

4.2.1. Motivation and Concept 

While the instantiation of control parameters reflects the results of previous experimentation, 

these results usually represent best averages, either over all test instances or over some subset 

of these; rarely will the resulting values be the most appropriate ones for each and every pos

sible instance of the problem at hand. For the related RCPSP this has been shown in Schirmer 

(1998) where a number of simple priority rules were run deterministically under the SSS. On 

one hand, even the best rule ranked best on only 68% of the instances. On the other hand, 

even the worst rules ranked best on 7% of the instances, on some of these they were even the 

only ones to do so. It stands to reason that this kind of result extends to other problems as 

well. 

We therefore advocate selecting such values by some more flexible device, capable of 

exploiting the outcome of previous instantiations in order to steer the algorithm towards better 

Performance. Since such a scheme chooses an instantiation of the control parameters based on 

past selections and the respective outcome, we refer to them as adaptive control schemes 

(ACS) because, in the words of Glover, Laguna (1997), the particular instantiation "chosen at 
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any iteration [...] is a function of those previously chosen. That is, the method is adaptive in 

the sense of updating relevant Information from iteration to iteration". In contrast, we might 

say that class-based as well as fixed control schemes are adapted rather than adaptive in 

nature. By saying this we mean that the former are (hopefully) tailored to the specifics of the 

problem in general while the latter incorporate some capability of adapting the values of con

trol parameters to the specifics of a given instance (cf. Table 4). Throughout the literature that 

we are aware of, control schemes which are actually adaptive in this sense are scarce. Bölte, 

Thonemann (1996) apply a genetic algorithm-based control scheme to identify good cooling 

schemes for a simulated annealing method. Kraay, Harker (1996) discuss a number of related 

approaches for repetitive combinatorial optimization problems. An experimental study of sev-

eral adaptive control schemes for the RCPSP is conducted by Schirmer (1998). 

Control Scheme Fixed in Advance Fixed for all Instances 
FCS yes yes 
CCS yes no 
ACS no no 

Table 4: Classification of Control Schemes 

4.2.2. Deterministic Local Search-Based Control 

This approach is a local search control scheme (LSCS), which systematically applies and ap-

praises different control parameter values in order to identify promising ones, hopefully 

guiding the computational effort to promising regions of the parameter and thus the Solution 

space. The scheme is based upon the algorithm proposed in Haase (1996) and has been util-

ized in the fleld of course scheduling by Haase et al. (1997, 1998). An evaluation of the 

scheme on the RCPSP can be found in Schirmer (1998). Following the Classification of local 

search procedures used in Leon, Ramamoorthy (1997), the scheme can be characterized as a 

steepest-descent search method. Recall from above that each parameter vector a encodes one 

particular Solution. In each iteration, the neighborhood comprises a fixed number of such 

vectors. From each of these one Solution is constructed, which is evaluated in terms of its ob-

jective function value. If the best so-found Solution is better than the incumbent best one, the 

search process is intensified in the surrounding region by focussing on the neighborhood of 

the corresponding vector; otherwise, the procedure terminales. 

The method proceeds by spanning an I-dimensional grid over the control parameter space by 

defining a set of equidistant points. In each iteration the grid, which initially embraces the en-

tire parameter Space [0,1]^, is refmed to ever smaller subspaces. The number of gridpoints, 

which remains constant throughout, is determined by an integral control parameter, the grid 

granularity er, in the following way. Let for each iteration denote Loq and Uoq the lower and 
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upper bound of the parameter subspace of rule i. Then for each Iteration the so-called grid 

width Aj of rule i is defmed as 

The initial iteration of the procedure starts off with oq = 0, Lcq = 0, and Ucq = 1 for each rule 

i and determines a Solution. It then increments cq by its grid width A\ and constructs another 

Solution, and so forth, until eventually a\ = Ua%. Then is reset to Lcq whereas 012 is in-

cremented by A2. When also ct2 has reached its upper bound, it is reset to its lower bound 

while ag is incremented by A3 and so forth, until eventually all oq equal their upper bound. 

Thus, the number of gridpoints considered per iteration is (G+1)1. For each gridpoint, which 

corresponds to one parameter vector, one Solution is constructed. If the iteration fails to im-

prove the incumbent best Solution, the algorithm halts (in order to restrict computation times, 

the algorithm could also be stopped after some time limit; however, this approach is not pur-

sued here since computation times have been found to be modest for the test instances at-

tempted). Otherwise, let denote <%*; that weight of rule i which produced the best Solution in 

that iteration; ties are broken by taking the first such weight. Now, new bounds are calculated 

from 

Lcq <- max{0, a*i - A{ -(a-1) / G} (1 < i < I) (38) 

the grid widths A; of all rules are updated according to (37), and the next iteration starts. No

tice that, due to the feasibility variant of the RCPSP/TI being strongly NP-complete, schedules 

constructed during the proceeding of the algorithm may be infeasible, i.e. may have a 

makespan greater than the planning horizon allotted. We chose, however, to tolerate these, 

hoping that they will be improved in due course to feasible schedules; thus, only the final 

schedule for each instance is actually checked for feasibility. 

Aj <- (Ucq - Lcq) / CT (l<i<I) (37) 

Ucq min{l, a*[ + A[ -(a-1) / a} (1 < i < I) (39) 

An algorithmic description of the scheme is given in Table 5. 
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Initialization 

for each (1 < i < I) 
Laj <r- 0 
Uaj <- 1 

endfor 
FT* <-oo 

Execution 

repeat 
no_better_solution_found 4— TRUE 
for each (1 < i < I) 

cti <- Laj 
calculate Aj according to (37) 

endfor 
for z <- 1 to (a + 1)1 

FTj <r- SchedulingAlgorithm(I, ä ) 
if (FTj < FT*) 

FT* 4- FTj 
ä * <- ä 
no_better_solution_found FALSE 

endif 
call UpdateAlpha 

endfor 
for each (1 < i < I) 

calculate La; according to (38) 
calculate Uaj according to (39) 

endfor 
until no_better_solution_found 

Subroutine UpdateAlpha 

i <-1 
while aj = Uaj A i > 1 

aj <- Laj 
if-i- 1 

endwhile 
aj aj + Aj 

Result 

If FT* < co, then for each priority rule i (1 < i < I) a* j denotes that control parameter value which produced 
the best Solution and FT* denotes the corresponding objective function value. Otherwise, no feasible Solu
tion was found. • 

Table 5: Local Search-Based Control Scheme 

We illustrate the procedure for I = 2 priority rules and a grid granularity of G = 3. Figure 3 de-

picts the first three iterations of the scheme. Each evaluated parameter value vector is repre-

sented by an intersection point, so the shaded area shows the parameter subspace spanned by 

the grid searched in one iteration. Again, the symbol marks the best control parameter 

vector of each iteration, in whose vicinity the search for good vectors (and solutions) is inten-

sifled. 
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0 (%i 1 0 ccj 1 0 ctj 1 

Figure 3: Exemplary Application of Local Search-Based Control Scheme 

4.2.3. Randomized Local Search-Based Control 

It is well-known that the effectiveness of construction methods can be increased by adding a 

good randomization scheme to turn them into sampling methods. This strategy has been very 

successful for simple priority rule-based methods for the RCPSP, improving e.g. the effective

ness of the rule LST from deterministic 6.56% to sampling-based 1.89% (Schirmer 1999, pp. 

42-43, 60-64). 

In oirder to follow up on the question whether similar improvements can also be reaped for 

the RCPSP/n, we augmented the LSCS by the the MRBRS as a subsequent randomization 

stage. To the resulting two-stage scheme we refer as a randomized local search control 

scheme (RLSCS). 

5. Experimental Analysis 

5.1. Experimental Setting 

5. L1. Test Instances and Reference Solutions 

As a test bed, we used the benchmark instance set J10 generated with ProGen/II (Schirmer 

1999, pp. 155-168). Each instance comprises 10 non-dummy activities, as indicated by the 

naming. Each activity has a nonpreemptable duration of between one and ten periods and may 

require one or several of thirty partially renewable resources present. The number of succes

sors and predecessors w.r.t. the precedence order varies between one and three for each activ

ity. Systematically varied design parameters capturing characteristics of these instances are 

complexity index (CI), resource factor (RF), resource strength (RS), cardinality factor (CF), 

horizon factor (HF), and interval factor (IF). As CI we implemented an estimator of the re-

strictiveness of a network developed and evaluated by Thesen (1977); RF controls the number 
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of resources that are requested by each activity, RS govems the resource scarcity measured 

between minimum and maximum demand. CF controls the cardinality of the period subsets, 

HF the tightness of the planning horizon T. IF, finally, serves to establish the degree of Aug

mentation of the period subsets (cf. Table 6). 

Design Parameter Related To Level= 0 Level = 1 

CI Complexity Index Network network is parallel 
digraph 

network is serial 
digraph 

RF Resource Factor Resources each activity uses no 
resources 

each activity uses all 
resources 

RS Resource Scarcity Resources minimum resource 
capacities 

maximum resource 
capacities 

CF Cardinality Factor Period Subsets each period subset 
comprises one period 

each period subset 
comprises all periods 

HF Horizon Factor Period Subsets planning horizon 
equals EFTj 

planning horizon 
equals Upper bound 

IF Interval Factor Period Subsets each period subset 
consists of one 
interval 

each period subset 
consists of maximum 
number of intervals 

Table 6: Design Parameters ofProGen/Il 

Due to the complexity of the RCPSP/TI, not all of its instances are feasible. Hence, 96 instance 

Clusters - defined by level combinations of the design parameters - were identifled experimen-

tally which consist of mostly feasible instances; a similar approach has been pursued in 

Böttcher et al. (1999). J10 comprises ten instances per Cluster, or 960 instances. All instances 

were attempted with the most effective of the branch-and-bound algorithms described in 

Böttcher et al. (1999). As the problem is strongly NP-equivalent, it is no surprise that the 

computation times required to solve harder instances increase exponentially; we hence em

ployed a truncated version (TBB) of this algorithm. The CPU time limit was set to 5 minutes, 

using an Implementation in GCC, running under AIX on an IBM RS/6000 Computer with 66 

MHz clockpulse and 64 MB RAM. The corresponding results are summarized in Table 7. For 

details we refer the reader to Schirmer (1999, pp. 155-168). Of course, the nine instances 

proven to be infeasible were excluded from our experimentation. 

Instance Non-Opti- Optimally Feasibly Undecided Proven Total 
Set mally Solved Solved Solved Infeasible 

J10 39 901 940 11 9 960 

Table 7: Characteristics of Instance Set J10 
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5.1.2. Priority Rule Sets and Scheduling Algorithm 

Particular care has to be taken in defming the rule sets to be used. In order to assess the con

trol schemes' ability to cope with sets of mostly good or bad rules as well as large and small 

sets, we defined several such rule sets. As indicated earlier, our Classification of rules as good 

or bad stems from the results in Schirmer (1999, pp. 183-187), where the effectiveness of nu-

merous priority rules applied to the Rcpsp/n under the SSS/Tl was measured in terms of the 

number of unsolved instances. In Table 8, we report each such number as a percentage from 

the average number of unsolved instances. Note that negative percentages indicate that a rule 

left less instances unsolved than the average such number over all rules; in other words, the 

effectiveness of a rule is the better, the lower its percentage is. From these rules, we blended 

several rule sets as shown in Table 9. 

Good Rules Bad Rules 
DRC/ES DRC/E DRS/E DRS/ES MTS EFT TRS/E TRS/ES RRD/E TRS 

-64% -59% -43% -37% -30% -21% 28% 29% 31% 35% 

Table 8: Effectiveness and Classification of Priority Rules 

Rule Sets I Characterization Priority Rules 
1 8 4 good, 4 bad rules DRC/ES, DRC/E, DRS/E, DRS/ES, TRS/E, TRS/ES, RRD/E, TRS 
2 6 3 good, 3 bad rules DRC/ES, DRC/E, DRS/E, TRS/ES, RRD/E, TRS 
3 4 2 good, 2 bad rules DRC/ES, DRC/E, RRD/E, TRS 
4 2 1 good, 1 bad rules DRC/ES, TRS 
5 4 3 good, 1 bad rules DRC/ES, DRC/E, DRS/E, TRS 
6 4 1 good, 3 bad rules DRC/ES, TRS/ES, RRD/E, TRS 
7 4 4 good rules DRC/ES, DRC/E, DRS/E, DRS/ES 
8 3 3 good rules DRC/ES, DRC/E, DRS/E 
9 2 2 good rules DRC/ES, DRC/E 
10 4 4 bad rules TRS/E, TRS/ES, RRD/E, TRS 
11 3 3 bad rules TRS/ES, RRD/E, TRS 
12 2 2 bad rules RRD/E, TRS 
13 4 4 good rules DRC/ES, MTS, EFT, DRS/E 
14 3 3 good, 1 bad rules DRC/ES, MTS, EFT, TRS 
15 2 2 good, 2 bad rules DRC/ES, MTS, RRD/E, TRS 

Table 9: Priority Rule Sets 

Among other factors, in the remainder of this work we will analyze the effect of two factors, 

viz. the number of priority rules I and the proportion of good to bad rules, expressed in terms 

of the percentage 0 of good rules. We will refer to these factors as rule set cardinality and 

composition. Note that we can vary the first factor, while holding the second one constant, by 
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regarding rule sets 7, 8, 9 for the case of 0 = 100%, 1, 2, 3, and 4 for 0 = 50%, and 10, 11, 12 

for 0 = 0%. Vice versa, to vary the second factor, while keeping the first one fixed, we 

merely need to consider rule sets 7, 5, 3, 6, 10 for the case of I = 4 and rule sets 9, 4, 12 for 

the case of I = 2. 

As instantiation of SchedulingAlgorithm(7, ä) we use the SSS/TI 

5.1.3. Performance Measures 

Specifying a set of values for each factor within an experiment describes over which levels it 

is varied during an experiment, so one value for each factor determines a run of an experi

ment. We regard, for each algorithm, the outcome of a run in terms of both effectiveness and 

efficiency. The latter captures the CPU-time required for the run, measured in terms of sec-

onds; where appropriate, we also report the number of schedules generated. Measurements 

were taken using an Implementation in C, running on a Pentium 266 personal Computer with 

32 MB RAM under Windows 95. As the feasibility problem is strongly NP-complete, the 

principal effectiveness measure is the number of unsolved instances. Apart from that, we will 

also regard the average percentage deviation, over all solved instances, of the best found 

schedule from the respective reference Solution. 

5.2. Deterministic Local Search-Based Control 

5.2.1. Experimental Design 

The factors examined here are control parameter G, rule set cardinality I, and rule set compo-

sition 0. 

G I Sol/Iter 1 Sol/Iter I Sol/Iter I Sol/Iter I Sol/Iter 
1 2 4 3 8 4 16 6 64 8 256 
2 2 9 3 27 4 81 6 729 8 6,561 
3 2 16 3 64 4 256 6 4,096 8 65,536 
4 2 25 3 125 4 625 6 15,625 8 390,625 
5 2 36 3 216 4 1,296 6 46,656 8 1,679,616 
6 2 49 3 343 4 2,401 6 117,649 8 5,764,801 
7 2 64 3 512 4 4,096 6 262,144 8 16,777,216 
8 2 81 3 729 4 6,561 6 531,441 8 43,046,721 
9 2 100 3 1,000 4 10,000 6 1,000,000 8 100,000,000 
10 2 121 3 1,331 4 14,641 6 1,771,561 8 214,358,881 

Table 10: Exemplary Numbers of Gridpoints 
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In order to demonstrate the influenae of I and G on the number of gridpoints, Table 10 sum-

marizes some exemplary numbers. Due to the prohibitive effort required to cover large grid-

point numbers, the experiments were restricted to combinations of I and a lying in the non-

shaded parts of Table 10. Indeed, if not specified otherwise, G is set - for each rule set cardi-

nality I - to the maximum value lying in the non-shaded area. 

5.2.2. Effect ofSigma 

From the design of the LSCS it is clear that increasing G will tend to increase effectiveness 

but also CPU times entailed. The marginal benefit from increasing G, i.e. the ratio of CPU 

times to deviations, of course decreases at an exponential rate. To verify this, we employed 

the rule sets 7-12 with all G-values up to the maximum one used. The effect of a on effec

tiveness is illustrated in Tables 11 and 12, the effect on efficiency in Table 13. The results are 

representative for those obtained from varying G on other rule sets. Note that for the rule sets 

9 and 12 not only the number of unsolved instances but also the respective deviations remain 

constant for G > 6, so very large levels of G need not necessarily be beneficial. 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 73 72 70 
8 75 73 71 71 71 
9 91 90 88 88 88 88 oo

 
oo

 

oo
 

00
 

oo
 

00
 

88 
10 51 40 40 
11 56 45 43 41 41 
12 106 103 101 100 99 98 98 98 98 98 

Table 11: Effect of Sigma - Unsolved Instances (deterministic LSCS) 

Rule Set Sigma 
2 3 4 5 6 7 8 9 10 

7 3.04% 2.93% 2.96% 
8 3.46% 3.11% 3.13% 3.14% 3.13% 
9 4.13% 3.49% 3.52% 3.51% 3.51% 3.51% 3.51% 3.51% 3.51% 3.51% 

10 2.64% 1.95% 1.79% 
11 4.02% 2.20% 2.08% 2.10% 1.99% 
12 5.11% 3.70% 3.60% 3.68% 3.66% 3.71% 3.66% 3.66% 3.66% 3.66% 

Table 12: Effect ofSigma - Deviations (deterministic LSCS) 
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Rule Set Sigma 
2 3 4 5 6 7 8 9 10 

7 
8 

0.08 
0.05 

0.26 
0.10 

0.83 
0.17 0.30 0.58 

9 0.04 0.05 0.06 0.08 0.10 0.12 0.14 0.18 0.21 0.28 

10 0.18 0.54 1.71 
11 0.12 0.23 0.42 0.73 1.41 
12 0.21 0.14 0.16 0.21 0.29 0.36 0.46 0.57 0.68 0.96 

Table 13: Effect ofSigma - CPU Times (deterministic LSCS) 

As can be seen, larger values of G will generally improve effectiveness, albeit at the expense 

of increasing computation times. However, note that for the rule sets 9 and 12 not only the 

number of unsolved instances but also the respective deviations remain constant for G > 6, so 

very large levels of G need not necessarily be beneflcial. 

5.2.3. Effect of Rule Set Cardinality and Composition 

To demonstrate the effect that the number of rules in a set exerts on the effectiveness, we pre-

sent the average deviations of the respective rule sets in Table 14. 

Rule Set 1 0 Unsolv Avg Dev 
7 4 100% 75 2.96% 
8 3 100% 76 3.13% 
9 2 100% 93 3.51% 
1 8 50% 47 1.87% 
2 6 50% 47 2.09% 
3 4 50% 49 1.88% 
4 2 50% 59 2.10% 

10 4 0% 45 1.79% 
11 3 0% 46 1.99% 
12 2 0% 103 3.66% 

Table 14: Effect of Rule Set Cardinality - Effectiveness (deterministic LSCS) 

It turns out that increasing (decreasing) the number of rules while keeping the proportion of 

good to bad rules fixed produces better (worse) results since the pool is larger from which an 

appropriate rule can be selected for each instance. 

In Table 15 we arrange the results pertaining to the influence of the rule set composition, 

given a fixed set cardinality. Let us concentrate for a moment on the first two groups of re

sults, up to rule set 12. Including good rules in a rule set is clearly important, as the presence 

of bad rules only cannot be compensated by the LSCS. However, rule sets of only good rules 

are not guaranteed to be the most effective ones. Actually those rule sets where 0 is in the 
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middle ranges show the highest effectivity. Although one might expect effectiveness to be the 

higher (lower), the higher (lower) the proportion of good rules is, given that then the number 

of good rules is larger (smaller) from which an appropriate rule can be selected for each in

stance, this finding conforms with similar fmdings on the RCPSP (Schirmer 1998). 

Rule Set I 0 Unsolv Avg Dev 
7 4 100% 15 2.96% 
5 4 75% 46 1.97% 
3 4 50% 49 1.88% 
6 4 25% 44 1.78% 

10 4 0% 45 1.79% 
9 2 100% 93 3.51% 
4 2 50% 59 2.10% 

12 2 0% 103 3.66% 
13 4 100% 60 1.98% 
14 4 75% 47 1.60% 
15 4 50% 43 1.58% 
6 4 25% 44 1.78% 

10 4 0% 45 1.79% 

Table 15: Effect ofRule Set Composition - Effectiveness (deterministic LSCS) 

To seek out the cause of this effect, we reanalyzed the results in Schirmer (1999, pp. 169-179) 

on the simple priority rules which make up the rule sets used here. This analysis revealed that 

the four resource-based good rules are rather close to each other in terms of effectiveness: for 

766 out of 951 instances they produce similar solutions, i.e. solutions with the same objective 

function value. It is thus straightforward to suspect that in such cases adding some bad rules 

adds a healthy dose of diversity to the rule set, which then helps to explore other regions of 

the parameter space searched. We therefore conducted an additional experiment in which we 

replaced some of the resource-based good rules by other ones, viz. MTS and EFT. The out

come supports our conjecture as indeed the more diverse rule sets 13-15 markedly outper-

form the corresponding, less diverse sets 7, 5, and 3. 

5.2,4. Efficiency 

The computation times observed for the LSCS approach are reported in Table 16, for each 

rule set the maximum value of a as defined in Table 10 was used. 
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Rule Set 2 3 4 5 6 
Avg CPU 1.88 0,50 1.39 0.21 0.60 1.64 
Rule Set 7 8 9 10 11 12 
Avg CPU 0.83 0.58 0.28 1.71 1.41 0.96 
Rule Set 13 14 15 
Avg CPU 0.52 0.46 1,38 

Table 16: Effect ofRule Sets - CPU Times (deterministic LSCS) 

Note that, as we use a dynamic termination criterion for the LSCS approach instead of just 

setting a fixed sample size, the number of iterations performed by the LSCS algorithm may 

vary substantially for different instances. Also, the number of gridpoints actually visited, and 

thus the number of schedules generated per iteration of the LSCS, may be smaller than (G+1)1 

due to the inclusion of bounding rules in the scheduling algorithm. We therefore give the 

average numbers of generated schedules per rule set in Table 17. 

Rule Set 2 3 4 5 6 
Avg Schedules 156 41 164 82 161 158 
Rule Set 7 8 9 10 11 12 
Avg Schedules 184 159 96 159 139 89 

Table 17: Effect ofRule Sets - Generated Schedules (deterministic LSCS) 

5.3. Randomized Local Search-Based Control 

5.3.1. Experimental Design 

It is well-known that the effectiveness of construction methods can be increased when a good 

randomization scheme is added to tum them into sampling methods. This strategy has been 

very successful for simple priority rule-based methods for the RCPSP, improving e.g. the ef

fectiveness of the rule LST from 6.56% when applied deterministically to 1.89% when ap

plied in a randomized manner (Schirmer 2000). In this section, we follow up on the question 

whether the same improvements can also be reaped for the LSCS. We therefore added a sec

ond, randomized stage to the LSCS; we refer to the two-stage LSCS as RLSCS. The factors 

examined in the following are control parameter G, rule set cardinality I, and rule set compo

sition 0. In line with the settings found best in Schirmer (1998), we let a = 1 and 5=10. 

5.3.2. Effect of Sigma 

In Tables 19 and Table 20 we summarize the results for rule sets 7-12, using all applicable 

a-values. For the randomized, second stage control parameters were set as a = 1 and 5 = 10. 

The CPU times reported are the totals of both stages, using a sample size of 100 iterations. 
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Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 31 31 30 
8 32 31 30 30 30 
9 35 35 35 35 35 35 35 35 35 35 

10 29 25 25 
II 31 28 27 25 25 
12 42 42 42 42 42 42 42 42 42 42 

Table 18: Effect of Sigma - Unsolved Instances (randomized LSCS) 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 1.44% 1.56% 1.61% 
8 1.54% 1.56% 1,57% 1.63% 1.66% 
9 1.52% 1.47% 1.48% 1.44% 1.41% 1.40% 1.42% 1.42% 1.42% 1.42% 
10 1.32% 1.18% 1.17% 
11 1.62% 1.27% 1,25% 1.32% 1.25% 
12 1.72% 1.87% 1.95% 1.99% 1.95% 1.94% 1.97% 1.99% 1.99% 2.02% 

Table 19: Effect ofSigma - Deviations (randomized LSCS) 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 0.18 0.35 0.94 
8 0.13 0.17 0.25 0.38 0.67 
9 0.11 0.11 0.12 0.14 0.16 0.18 0.21 0.24 0.27 0.36 
10 0.43 0.77 1.99 
11 0.38 0.45 0.64 0.96 1.67 
12 0.84 0.43 0.41 0.47 0.55 0.63 0.72 0.84 0.95 1.28 

Table 20: Effect ofSigma - CPU Times (randomized LSCS) 

Unsurprisingly, the effect is similar to the one observed for the deterministic LSCS, although 

less pronounced as the beneficial effect of the randomization stage decreases the numbers of 

instances remaining unsolved as well as the average deviations. 

5.3.3. Effect of Rule Set Cardinal ity and Composition 

From the results in Tables 21 and 22 it is obvious that the effectiveness of all rule sets is im-

proved by adding randomization as a second stage. As already good rule sets can be said to 

start into the second stage with an advantage, their improvements are less dramatical than 

those of the bad rule sets. Still, the ranking of the rule sets remains virtually unchanged such 

that again sets comprising some but not only good rules sport the highest effectiveness. 
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Rule Set I 0 Unsolv Avg Dev 
7 4 100% 35 1.61% 
8 3 100% 35 1.66% 
9 2 100% 40 1.42% 
I 8 50% 32 1.03% 
2 6 50% 32 1.15% 
3 4 50% 32 1.30% 
4 2 50% 37 1.28% 

10 4 0% 30 1.17% 
11 3 0% 30 1.25% 
12 2 0% 47 2.02% 

Table 21: Effect of Rule Set Cardinality - Effectiveness (randomized LSCS) 

Rule Set 0 Unsolv Avg Dev 
7 4 100% 35 1.61% 
5 4 75% 30 1.27% 
3 4 50% 32 1.30% 
6 4 25% 30 1.18% 

10 4 0% 30 1.17% 
9 2 100% 40 1.42% 
4 2 50% 37 1.28% 

12 2 0% 47 2.02% 
13 4 100% 31 1.23% 
14 4 75% 33 1.15% 
15 4 50% 33 1.16% 
6 4 25% 30 1.18% 

10 4 0% 30 1.17% 

Table 22: Effect of Rule Set Composition - Effectiveness (randomized LSCS) 

An interesting question, fmally, is how often the additional randomization stage actually im-

proves the effectiveness. Table 23 shows, again for a = 1 and 5 = 10, the number of instances 

for which randomization produced a better Solution than the one deterministically found. The 

results are representative for other settings of a and 5. 

Rule Set 1 2 3 4 5 6 
Instances 108 120 98 117 96 86 
Rule Set 7 8 9 10 11 12 
Instances 167 172 210 86 90 145 
Rule Set 13 14 15 
Instances 124 101 82 

Table 23: Effect of Randomization - Improved Instances 
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5.3.4. Efficiency 

The computation times measured for the randomized LSCS approach are given in Table 24. 

Rule Set 1 2 3 4 5 6 
Avg CPU 2.16 0.75 1.62 0.27 0.69 1.90 
Rule Set 7 8 9 10 11 12 
Avg CPU 0.94 0.67 0.36 1.99 1.67 1.28 
Rule Set 13 14 15 
Avg CPU 0.58 0.51 1.59 

Table 24: Effect of Rule Sets - CPU Times (randomizedLSCS) 

5.4. Comparison with Other Algorithms 

In order to assess the merits of the algorithmic approaches discussed in this paper, we com-

pare them to several sampling-based construction methods proposed for the problem, namely 

the FCS-based one (FCS-B) of Böttcher et al. (1999), the best priority rules (DRC/E, 

DRC/ES) and the CCS-based one (CCSZU) of Schirmer (1999, pp. 181-198). For the sake of 

brevity, we restrict the presentation of results for the adaptive control algorithms to the most 

effective rule set 6. As the first stage of the LSCS-algorithms usually performs between 100 

and 500 iterations (cf. Table 17), we provide the results from both these sizes in Table 25. 

Algorithm Reference Control 
Scheme 

Sample Size 
Unsolv Avg Dev 

100 500 100 500 
ccs/n Schirmer (1999) CCS 26 17 1.44% 0.69% 
DRC/E Schirmer (1999) FCS 27 18 1.40% 0.72% 
RLSCS, rule set 6 ACS 30 1.18% 
DRC/ES Schirmer (1999) FCS 31 17 1.16% 0.70% 
FCS-B Böttcher et al. (1999) FCS 40 21 1.49% 0.81% 
LSCS, rule set 6 - ACS 44 1.78% 

Table 25: Comparison of Several Construction Methods 

The Performance of the deterministic LSCS is clearly inferior to that of other construction al

gorithms, which is no surprise as it proceeds strictly deterministic. Augmenting LSCS by a 

randomization stage to tum it into a sampling algorithm improves its effectiveness drastically, 

an effect which is well-known for other construction methods. The arising RLSCS approach 

is almost as effective as more traditional sampling algorithms; note, however, that these 
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require less iterations. To summarize, state-of-the-art sampling-based methods still outper-

form all ACS-based algorithms considered here. 

6. Summary and Conclusions 

For many computationally intractable problems findings suggest that there is no Single heuris-

tic which performs best on all possible instances. Therefore, adaptive control schemes try to 

dynamically compose good algorithms from an unsorted collection of - usually rather simple -

algorithms, thus tailoring one individual algorithm to each instance. 

In this work, we chose a collection of priority rule-based construction methods to Start with, 

and some simple search-based mechanisms to combine well-suited algorithms from these. In 

doing so, one hopes to close the Performance gap between construction and search methods, 

turning out methods nestled between pure construction and evolved search methods, in terms 

of both effectiveness and efficiency. Building upon a recent study in which several adaptive 

control schemes were analyzed on the RCPSP (Schirmer 1998), we scrutinized the Perform

ance of the best of these schemes on the more general RCPSP/TI. We find that the RLSCS, a 

combination of local search and randomized sampling, achieves an effectiveness comparable 

to that of other good construction methods, but it is hampered by a lower efficiency. 

As even the RLSCS fails to outperform state-of-the-art construction heuristics for both prob

lems, our results seem to indicate that adaptive control schemes cannot compete with the 

more classical sampling heuristics using fixed control schemes. Still, adaptive control 

schemes should not be disregarded prematurely, on the basis of effectiveness alone. Such a 

focus turns the process of improving algorithms into a competitive race which concentrates on 

'beating' other algorithms rather than on insight why some algorithms perform better than 

others (Hooker 1995). Given the long history of more and more effective heuristics for project 

scheduling problems, evaluating algorithms on these clearly puts new algorithms at a disad-

vantage if the outcome is considered in terms of effectiveness alone. One has to bear in mind 

that the analytical and experimental advances achieved there are the result of several decades 

of inventive and persistent research. We conclude that the rather straightforward algorithms 

proposed so far are too simple to unlock the füll potential of adaptive control schemes. 

Indeed, we believe the concept of algorithms utilizing adaptive control schemes to have merit 

for several reasons. First, by design they are robust to changes in the characteristics of in

stances attempted, thus obviating the need for prior knowledge on their effects which is oth-

erwise required to devise good algorithms. Second, they are relatively immune against the ad-

verse effects of bad rule sets, so they can be applied in situations where little knowledge is 

available on what constitutes a good or a bad rule. Third, they are simple and easy to imple-
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ment. We thus hope for this contribution to pave the way for better adaptive control schemes 

which will eventually be competitive with state-of-the-art heuristics. 

Future work to achieve this goal might begin with refining the RLSCS. In each iteration of the 

LSCS, the search is intensified around the best-performing point in the parameter space; if 

several such points exist, the tie is broken by using the one found first. A canonical extension 

of this idea would be to störe several or all tied candidates in a list, to intensify the search 

around these in a breadth-first fashion, and to continue with the best candidate found. Also, 

for certain problems, the assumption that the best rules under a deterministic regime perform 

best also as sampling algorithms may not be justified. In that case, a better idea might be to 

replace the deterministic call of SchedulingAlgorithm(/s ä) by a number of randomized 

iterations, where the best makespan found is returned. Finally, note that all these refmements 

would still keep the algorithm within the realm of local search-based control schemes. Still, 

the basic idea of adaptivity easily allows for more evolved control schemes which employing 

not only sampling-based construction but metaheuristic approaches, as well. Exploring such 

options will certainly prove worthwhile. 
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