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Abstract: The staff scheduling problem in the retail business is considered for which a new rnathematical 
model and new Solution methods are introduced. The problem is formalized as a set covering type 
problem. Columns represent feasible weekly working time patterns of one sales clerk. Rows correspond 
to periods derived from the weekly opening time. For each period the number of required sales clerks is 
given. Based on the complex labor rules in Germany a graph is constructed in such a way that a path 
through the graph represents a weekly working time pattern. A feasible weekly working time pattern 
is generated by solving a restricted minimum cost path problem in the graph. Different approaches are 
introduced to compute lower and Upper bounds. In particular, a new upper bounding method is presented 
in which dual variables are defined heuristically. The different approaches are compared by a numerical 
investigation. 
Keywords: Retail business management, shift/days off/tour scheduling, column generation, restricted 
shortest path problem, heuristic pricing 

1 Introduction 

In the retail business staff causes a large part of the total shop cost. Hence it is very important for the 
decision makers that supporting scheduling tools are available to construct efficient staff schedules. 

When determining a staff schedule complex work rules resulting from collective agreements between 
the labor union and the employer's association and by agreements between the works council and the 
board of directors have to be taken into account. To check whether a given staff schedule is feasible 
regarding the work rules only some calculations are required which can be undertaken by a procedure 
which is easy to implement on a Computer. Such a procedure may be helpful to derive a staff schedule 
interactively. 

But there exists usually such a vast number of alternative schedules and, hence, only a small frac-
tion can be evaluated interactively within reasonable time. Thus an algorithm which computes a great 
number of alternative schedules and proposes one or more schedules based on some evaluation criteria is 
more appropriate than a simple tool checking feasibility only. Such an approach has several significant 
advantages in comparison to an interactive Solution approach. We can expect a higher Solution quality 
and decision makers save working time required for deriving a staff schedule. 

In order to evaluate the Solution quality of a staff schedule we have to define some criteria. Important 
criteria are the total cost and the associated service quality. The data required to calculate the cost of a 
staff schedule have to be supported from cost accounting. To provide a specific service quality we have 
to estimate the expected customer traffic flow during the opening times of the considered shop. This 
can be done by analyzing the customer traffic flow of past periods. Based on such Information and the 
knowledge on how many customers can be served by one sales clerk we can estimate'how many sales 
clerks are required in a certain period. Thus Variation in customer traffic will be adapted by increasing 
or decreasing staff capacity in order to achieve a desired service quality. 

Typically, in practice a support by Computer is limited to data administration and data processing. 
But rnathematical programming tools to determine a staff schedule are rarely used. One reason for this 
Observation might be that the methodological knowledge to develop and implement such an approach is 
not available. In the following we will close this gap. 

Related Work. Within the last 10 years a variety of papers have been published on problems located 
within the area of staff scheduling. It can be distinguished between papers which are concerned on more 
general approaches and papers with a specific application as this work. 

By shifl scheduling, days off scheduling, tour scheduling, and crew rostering problem general approaches 
are denoted whereas by airline crew scheduling, bus driver scheduling, and nurse scheduling a specific 
application is addressed. 

Shifl scheduling is concerned with assigning shifts to workers such that the staff demand is satisfied. 
For each shift a starting time, a finish time, and one or more breaks are defined (see Bechtold and Jacobs, 
1990 and Thompson, 1990). An algorithm for optimal shift scheduling with multiple break windows is 
presented in Aykin (1996). An extension including multiple breaks and also an excellent comprehensive 
overview on shift scheduling is given in Aykin (1997). In this work we schedule multiple breaks also but 
instead of break windows a maximum and minimum working time between two breaks are considered. 

Days off scheduling is concerned with assigning working days and off days to workers. The planning 
horizon consists in general of several weeks (see Emmons and Bums, 1991, Hung, 1994 and Bums et al., 
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1998). Days off scheduling is also integrated in the approach which we are going to present here. 
The crew rostering problem aims at determining an optimal sequencing of a given set of duties into 

rosters satisfying operational constraints deriving from union contract and Company regulations. In a 
transit system, for example, the duties covering all the trips of one day are derived by solving a crew 
scheduling problem and then a set of working rosters is constructed that determine the sequence of duties 
that each single crew has to perform over one or more weeks, to cover every day all the duties (see, 
Caprara et ai} 1998 and Gamache et ai, 1999). For the problem consider here we derive, "crew rosters" 
for one week, which can be repeated every week. 

Tour scheduling combines aspects of shift scheduling and days off scheduling where a tour consists of 
a daily shift schedule start time and the days off for an entire week (see Bechtold et al., 1991, Baston 
and Rossin, 1991, Bechtold and Brusco, 1994, Jarrah et ai, 1994, Brusco et al, 1995, Brusco, 1997, and 
Brusco and Jacobs, 1998). The problem considered here is also a tour scheduling problem as it involves 
shift scheduling and days off scheduling. 

Airline crew scheduling is typically concerned with assigning airplane crews to flights. But this term 
is also used synonymously for bus driver scheduling which addresses the problem of assigning trips to bus 
drivers. Contributions to (airline) crew scheduling are the papers by Graves et al. (1993) and Hoffman 
and Padberg (1993). Regarding bus driver scheduling we refer to Desrochers and Soumis (1989) and to 
Cavique et a/.(1999). A recent contribution on nurse scheduling is given by Dowsland (1998). 

Contribution. A mathematical formulation for the retail business staff scheduling problem is intro-
duced. In this formulation a column denotes a schedule of one sales clerk for one week which is feasible 
regarding working time rules, break rules, days off rules, and so on. Such a feasible schedule can be 
represented as a restricted path through a network. Lower bounds are obtained by solving the linear 
relaxation of the mathematical formulation with column generation. The associated subproblem is a re
stricted shortest path problem which will be solved by a labeling algorithm (see Desrochers, 1986). Two 
approaches are proposed to derive upper bounds: The first one is a simple rounding procedure which 
starts from the (fractional) lower bound Solution. The other one is an add-and-drop approach which is 
also based on column generation. It involves the following main idea: Instead of determining the optimal 
dual variables from the master problem Solution the dual variables are evaluated by a simple priority 
rule. This saves the computation time of the simplex algorithm to solve the master problem. 

Overview. In Section 2 the problem is described in more detail. Section 3 provides the mathematical 
formulation and the network to describe a feasible schedule for a sales clerk. The methods to derive 
lower and upper bounds are presented in Section 4. For analyzing the computational Performance a 
computational study is performed in Section 5 in which the staff demand is generated at random and the 
work rules are typically for the German retail business. Finally, Section 6 presents our conclusions. 

2 Problem Description 

In real-life the staff scheduling problem in the retail business depends on the specific agreements between 
employees and employers. So there may exist some important aspects (e.g. work rules) which are not 
explicitly considered in the following problem description. However, our approach which will be presented 
in the succeeding sections provides quite a lot of possibilities for extensions and modifications without 
the necessity to change the Solution strategy. 

Flanning Horizon, Periods. The planning horizon and the periods have to be defined such that all 
important work rules can be reflected. Typically, the maximum working time is restricted per day and 
per week. Therefore the planning horizon is one week which starts at Monday morning and ends at 
the latest on Sunday evening. Furthermore, we assume daily opening of less than 24 hours, i.e. the 
opening time will be less than 24 hours per day; it can differ from day to day. The appropriate length 
of the periods depends on the work rules. For example, if breaks of a length of half an hour have to be 
scheduled than the length of a period will be at most half an hour. It should be noted here, that we 
will consider a period length and a break length of a half hour throughout this paper for ease of description. 

Sales Clerk Qualification. For the sake of simplicity of the problem description we assume that each 
sales clerk has the same qualification. Note, different qualifications may be taken into account if each 
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group of sales clerks with a specific qualification can be scheduled separately as the associated problems 
are independent. In general, we propose to schedule the staff demand for which the highest qualification 
is required at first, then the staff demand for which the second highest qualification is required, and so 
on where over-covering the staff demand at a certain qualification level reduces the staff demand on the 
next qualification level. 

Staff Demand, Service Quality. The staff demand depends mainly on the customer traffic flow, i.e. 
the more customers expected in a period the more sales clerks are required. Now, via the service quality 
defined by management it is decided on how many customers a sales clerk has to attend in a specific 
period on the average. Thus given the number of expected customers in a period and the service quality 
we can derive the staff demand of the period. For example, if we expect 100 customers in a period and a 
sales clerk can serve 20 customers on the average per period then 5 sales clerks are required in that period. 

Break, Piece of Work, Late Working Time. A break starts at the beginning of a period and ends 
at the end of the same period, i.e. we assume that the break length corresponds to the length of a 
period. Breaks are unpaid. A piece of work denotes the working time in which a sales clerk has to work 
continuously without having a break. A piece of work starts after off time or after a break and ends at 
the beginning of a break or at the beginning of off time. Late working time starts at a specific point of 
time as defined in the tariff contract. For example, in Germany late working time starts on Monday, on 
Tuesday, on Wednsday, on Thursday, and on Friday at 18.30 and on Saturday already at 14.00. 

Work Rules. Typically, the maximum daily and weekly working time, the maximum number of breaks 
per day, the maximum and minimum length of a piece of work, the minimum and maximum number 
of working days per week, and the minimum and maximum number of days with late working time are 
regulated. Note, because the number of breaks is restricted also the number of pieces of work is restricted. 

Working Time Pattern. A working time pattern defines for each period of the planning horizon the 
periods a sales clerk has to work, has off time, or a break with respect to the work rules. A working time 
pattern can be selected more than once. 

Note, a working time pattern basically covers the periods of one week. But for computational reasons 
we will also distinguish between a day working time pattern and a week working time pattern where a 
week working time pattern is a combination of day working time patterns. In such a combination the 
first day working time pattern is associated with Monday, the second with Tuesday, and so on. 

Staff schedule. A staff schedule is a set of working time patterns to be assigned to sales clerks such 
that in each period the staff demand is covered. 

Costs. Fixed cost are incurred by each engaged sales clerk. Such fixed cost arise for training, adminis
trative expenditures, and so on. Furthermore, cost per period are given which may depend on day and 
time. That is, in the evening and at the weekend the salary per hour in general is higher than the normal 
payment. 

Problem Statement. The problem is to construct a minimum cost weekly staff schedule which consists 
of a set of feasible working time patterns such that in each period the staff demand is covered. 

3 Mathematical Formulation 

This section introduces a mathematical formulation for the staff scheduling problem in the retail business 
in which a column represents a feasible working time pattern of one sales clerk. The definition of a 
working time pattern relies on the network structure which is introduced in the following subsection. 

3.1 Working Time Pattern Network Structure 

As we have assumed that all sales clerks are working according to the same payment and work rules 
we can describe by one network all feasible working time patterns of the sales clerks as paths through a 
network. This section describes the network structure. 
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Let G = (TV, A, c) be the network representing implicitly all feasible working time patterns for a sales 
clerk, where N denotes the node set, A the arc set, and c = (cifj | (i,j) G A) the arc cost vector. The 
components of the network G are illustrated in Figure 1 and described in the following paragraphs. 

Q^O 

Legend: 

• source 

sink 

Q begin__of_day 

ijljl end_of_day 

O beginjzfjjeriod 

1 begin_of_workingjime_pattern 

2 end_of_working_time_pattern 

3 begin_of_workday 

4 end_of_workday 

5 piece_of_work_and_break 

6 off_day 

1 next_day 

Figure 1: Working Time Pattern Network 

Nodes. In the network G a node corresponds to a specific day and point of time. There are five node 
types in N: source, sink, begin-of-day, end.of-day, and begin^ofjperiod. There is asingle source node s and 
a single sink node e. They correspond to the start and the end of a working time pattern, respectively. 
For each day of the week a begin-of.day node and an end.of-day node are given. The begin^oj.day node 
and end.of-day node denote the beginning and the end of a day, respectively. There are T begin-of jperiod 
nodes where each begin-of..period node defines the beginning of a period. The time distance between two 
succeeding begin^of-period nodes of the same day equals the constant period length. 

In Figure 1 a period length of half an hour is assumed. Furthermore, a shop is considered which opens 
from 9.00 to 20.00 on the second day (Tuesday). The last two begin.ofjperiod nodes are introduced for 
technical reasons. Let denote r(- the time in minutes, 7; the day number (7,- = 1 for Monday, 7i = 2 for 
Tuesday, and so on) and Q the period associated with node i. For example, let node i corresponding 
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to 9.00 o'clock on Tuesday then 7? = 9 • 60 = 540, 7,- = 2, and - assuming the same opening times on 
Monday as on Tuesday - & = 24. All nodes are labeled monotonically with respect to day and time. 
Note, the last two nodes indicate two artificial periods in which no staff demand occurs. 

Ares. There are seven arc types in A: begin^ofjworkingMmejpattem, end-of_workingJime.pattem, be-
gin.of.workday, end.of.workday, piece-of.work.and.break, off-day, and next.day (see Figure 1). There 
is one begin.of.workingJimejpattern arc (a, j) where j denotes the starLof-day node of the first day of 
the week and one end.of.workingJime.pattern arc (j, e) where j denotes the end.of.day node of the last 
day of the week. These arcs correspond to the beginning and the end of a working time pattern. The 
begin-of-workday arc (i,j) links the begin.of.day node i to a begin.of-period node j where both nodes are 
associated with the same day. Such a begin-ofjworkday arc (i, j) means that the workday starts on day 
7i at time Tj. 

Only arcs are considered which can belong to a feasible working time pattern. That is, a be-
gin-ofjworkday arc (i,j) will only be introduced if the maximum working time on day yj which can 
be assigned to a sales clerk who starts to work at Tj is greater or equal than the daily minimum working 
time which has to be assigned to a sales clerk according to the work rules. An end^ofjwork arc (i, j) links 
a node i of type begin-ofjperiod with the end-of_day node j where both nodes must belong to the same 
day. Such an arc teils us that the workday 7y ends at Tj_i where the index j - 1 is due to the definition 
of a piece-ofjwork-and-break arc. 

Only end-ofjwork arcs are introduced which can belong to a feasible working time, i.e. the minimum 
daily working time can be observed. Note, in Figure 1 a minimum daily working time greater than 
two hours is assumed and, hence, no end^ofjwork arc from the begin.of.period node i corresponding to 
Ti = 11.5 * 60 = 690 is considered. 

A piece.ofjwork-and-break arc links two begin.ofjperiod nodes of the same day. Such an arc represents 
a piece of work followed by a break. Thus the length of a piece-ofjwork-and-break arc consists of the 
length of the associated piece of work and the duration of a break; recall that the break length equals 
the length of one period. Thus a piece.ofjwork.andJ>reak arc (i, j) denotes a working time from r; to 
?j_i and a break from 73_ 1 to Tj, i.e. a working time pattern which includes piece^ofjwork„andJ>reak arc 
(1, j) means that a sales clerk has to work during the periods ..., Q-2 so a working time of 1 — T{ 
minutes is associated. Note, by definition of a piece^of-work-and.break arc we take easily into account the 
minimum and maximum length of a piece of work. 

For each day we introduce one off.day arc which links the begin.of^day node with the end.of.day node 
associated with the same day. By an off-day arc (i, j) we represent that a sales clerk has off on day 7*. 
To link two sueeeeding days we introduce for each day (but the last one) one next.day arc (i, j) where i 
is an end.of.day node, j is a begin.of.day node, and 7* = 7j — 1. 

Arc Costs. Cost of Cij > 0 is defined for each arc (i}j) £ A. Fixed cost of / which is ineurred by 
each engaged sales clerk is assigned to the begin.of,workingJime.pattem arc. Let wt denote the cost 
which has to be paid for a sales clerk who is working from the beginning to the end of period t then a 
piece.ofjwork-and-break arc (i,j) is evaluated by dj = Ylt=Ci wt- The remaining arcs ineur no costs. 

Resources. The concept of resources is used to model at the network level some of the constraints 
defining the feasibility of sales clerks' working time pattern (see Desrochers, 1986, Desrosiers et aL, 1995, 
and Desaulniers et aL, 1998). For instance a resource can be used to restrict the number of pieces of 
work assigned to a sales clerk. Let R be the set of resources considered for a working time pattern 
and associate with each arc (i,j) € A a resource consumption p\j for each resource r € R> Such a 
consumption corresponds to the amount of resource r consumed by the activity represented by arc (%, j). 
We also associate with each node i € N a resource interval [a£, 6J"] for each resource r£Ä. Such an 
interval limits the set of feasible values that can be taken by resource r at node t while constructing a 
working time pattern. Resources are further discussed in Section 5.1. 

A working time pattern corresponds to a path from s to c and must include the begin.ofjworking-
Mme-pattern arc, all next-day arcs, and the end.of.workingJimejpattern arc. A path is feasible, if the 
cumulated resource consumption for each resource r from node s to each node i of the path is within the 
interval [af, 6J"]. The cost of the corresponding working time pattern equals the sum of the associated arc 
costs. 
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3.2 Model 

In this section we propose a mathematical formulation for the staff scheduling problem in the retail busi-

Notation. Let T be the ordered set of periods, indexed by t, for which staff demand exists. Let dt denote 
the minimum number of sales clerks required in period t. Define P, indexed by p, as the set of feasible 
working time pattems. Next associate with each working time pattern p £ P the value cp denoting the 
incurred cost if this working time pattern is selected once and atp a binary parameter which equals 1 if 
this working time pattern Covers one unit of the staff demand of period t and 0 otherwise. Finally, let yp, 
p € P, denote the integer decision variable indicating how many sales clerks have to work in accordance 
with working time pattern p. 

Formulation. Using these definitions, the staff scheduling problem in the retail business can be formu-
lated as a set covering problem: 

Minimize cp yp (1) 

subject to 
ptP 

atp yp ^ dt tef (2) 
ptp 

&
 

IV
 

o
 

peP (3) 

yp integer peP (4) 

The objective Function (1) states that we want to minimize the total staff cost. Constraints (2) require 
that in each period t the sales demand dt is covered. Constraints (3) are ordinary nonnegative constraints 
for the decision variables. Finally, constraints (4) force the decision variables to be integer. 

4 Solution Approach 

In this section at first we present a column generation approach to derive lower bounds for the staff 
scheduling problem (l)-(4). Then for the heuristic Solution, i.e. for the computation of upper bounds, 
we propose two approaches which are also based on column generation. 

4.1 Lower Bounds 

The optimal Solution of the linear program (1)—(3) provides a lower bound for the staff scheduling problem 
(l)-(4). For the optimal Solution of (l)-(3) we propose to apply column generation. 

First of all we define the restricted master problem and the subproblem: 
Restricted Master Problem. Let W CP then the linear program 

Minimize ^ cp Vp (5) 
p£W 

subject to 
°tp yp > dt t £ T (6) 

p$w 
yP> o P e w (7) 

defines the restricted master problem. 

Subproblem. _ Consider the linear program (5)-(7). Let 7rt denote the dual variable associated with 
constraint t € T of (6), then 

cp — cp — (8) 
tgf 

defines the reduced cost of working time pattern p £ P. The computation of 

c* = min{cp | p G P}, (9) 
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i.e. the problem of determining the working time pattern with minimumreduced cost is called subproblem. 

Now, for a given basic Solution of the restricted master problem we derive the dual variables which 
are required to solve the subproblem. From the Solution of the subproblem we obtain the information 
whether the current restricted master problem Solution provides a lower bound for our staff scheduling 
problem or not. 

Lower Bound. The objective function value of a Solution of (5)-(7) is a lower bound for (l)-(4) if 

c* > 0. 

For the subproblem Solution we employ a graph theoretic concept for which we have to modify the 
cost evaluation in the network G — (N, A, c). 

Reduced Arc Costs. Let Cij denote the reduced cost of arc (i, j) 6 A. If arc (i,j) is of type 
piece-of-work-and-break then it is 

Cj'-a Cj—2 
Cij = - 7Tt) = Cij - 53 ̂  

«=C» t=C i 

Cij = Cij 
and 

otherwise. 

Reduced Cost Network. Let 
c=(cij I (t,i) G A) 

denote the reduced cost arc vector then 
G={NtAtc) 

denotes the reduced cost network. 

Note, the sum of the reduced costs of the arcs of a path in G which corresponds to a feasible working 
time pattern p € P is Now, to compute c* we have to solve a restricted shortest path problem. For the 
Solution we apply a labeling algorithm like the one introduced by Desrochers (1986). To give some more 
details we have to define two types of labels. The first one is associated with a partial working time pat
tern of a day (day label) and the second one is associated with a partial working time pattern consisting of 
several days (week label). This is necessary as we will solve the shortest path problem in two steps where 
in the first step we obtain working time patterns for each day and then in the second step we combine 
these patterns to week working time patterns. This accelerates the Solution process as the number of re-
sources which have to be commonly taken into account during the generation of a pattern will be reduced. 

Day Label, Feasible Day Label, Dominated Day Label. Consider a path from begin.of.day node 
i to node j where 7< = 7j and i,j E N. As there may exist several paths we use an index k to denote 
the Ar—th path. The associated cumulated reduced costs Cjk and cumulated resource consumptions pjk 

of the k-th path to node j are given by a so-called day label 

hk = (Cik-,%k I r 6 R° C Ä) 

where 
R° CR 

is the set of resources used to model day work rules. A day label Ijk is feasible iff 

<<%<% (10) 

for each r € RD. 



8 

Consider two labels k and k'} k ^ k', with pjk = pjk, for all day resources r G RD then day label ljk 

dominates day label ljk> if 
Cjk < Cjk' 

_ _°r (11) 
Cjk = Cjk' A k < k\ 

Thus we distinguish between two cases where in both cases two day labels with same cumulated resource 
consumptions are considered. In the first case the day label with the larger cumulated reduced cost is 
dominated and in the second case ties are broken by label number. 

Computation of Feasible and Non-Dominated Day Working Time Patterns. Day working time 
patterns are determined by dynamic programming as follows: Each begin.of.day node i is initialized with 
label 

Jn = (0;ff1=0|r€ÄD). 

Then we consider for each day 7 all nodes i with 7,- = 7 according to increasing r,-, i.e. we consider first 
the begin.of.day node and finally the end.of.day node of each day. Now, consider a node i with labels 
hiy-Jiki where k{ denotes the (current) number of labels associated with node i. Then for each arc 
(i, j) and label Uv, u = 1,..we generate at node j a label 

ljkj+i ~ {Civ + Cij; piv 4- Pjj | r G R ) 

iff ljkj+i is feasible and non-dominated; if a new label is generated we update kj, i.e. kj := kj + 1. As a 
result we have obtained for each end.of.day node a set of labels where each label corresponds to a partial 
path in G, i.e. to a feasible and non-dominated day working time pattern. 

Note, when creating a day label at a begin.of.period or end.of.day node we note the predecessor label 
and the connecting arc so we can easily determine the associated path from the considered node to the 
begin.of~day node in a backward step. Now, the labels of the end.of.day nodes correspond to feasible day 
working time patterns which will be combined to feasible week working time patterns as described in the 
following. 

Week Label, Feasible Week Label, Dominated Week Label. A week label consists of a combina-
tion of day labels associated with end.of.day nodes. Let Rw denote the set of resources to model week 
work rules. Let 

Lnk = (Cnk-,7nk I r e Rw) 

denote the k-ih week label consisting of day labels of the end.of.day nodes of the days 1,..., n where 
Cnk is the associated cumulated reduced costs and p^k the associated resource consumption. 

A week label Lnk is feasible iff 
<<%*<% (12) 

for each r G Rw. 
We consider three cases to check whether a week label is dominated or not. The first and second case 

are equivalent to the dominance rule (11) defined for day labels. In the third case we say that week label 
Lnk dominates week label Lnk> if the four conditions 

(a) Gnk ^ Cnk' 
(&) 
(4 eK,&;.]Vr6a* i ' 
(d) 3r e I %* < %*, 

are satisfied together. Note, due to condition (c) the week labels k and k' must be feasible regarding all 
work rules; recall that ye denotes the last working day. 

Minimum Reduced Cost Week Working Time Pattern. Let /(r, i, k) be a function which trans-
forms the day resource consumptions associated with the label into a week resource consumption 
r G Rw (for details see Table 8 in Section 5.1). For example, let r be the resource for counting the 
number of working days then f(rti,k) equals 0 if corresponds to an off day and 1 otherwise. Now, 
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consider the first end.of.day node, then the second, and so on. From each day label liv of the first 
end-of-day node i we obtain a week label Lnv = (G{v;$v | r € Rw) where £nv = Civ and $v = /(r,z, v) 
for all r E Rw. Now, let us consider the n-th end.of.day node jn and the (n — l)-th end.of.day node 
jn-i- Then we combine all week labels of node jn_i with all day label of node jn to obtain the feasible 
and non-dominated week labels of node jn. Combination means that we add the reduced costs and the 
resource consumptions: Let the week label Lnv arise from the week label £„_iu and the day label ljnW 

then Cnv = Cn-iu + CjnW and = p^_lu + f{r,jn,w) where r G Rw. All week labels at the last 
end-of-day node constructed this way correspond to a feasible and non-dominated week working time 
pattern. Now, let n be the last end-of-day node then a label Lnv with Cnv < Cnv> for all v' corresponds 
to minimum reduced cost week working time pattern, i.e. c* = Cnv-

Note, having in mind for each week label the associated predecessor week label (if it exists) and the 
day label, we can easily determine the path associated with a week label. 

The procedure to derive the minimum reduced cost week working time pattern is illustrated in Figure 
2 where a planning horizon of 6 days is assumed. The week label I»2v results from the combination of the 
week label Li«, and the day label 2%%. Clearly, only feasible and non-dominated week labels and feasible 
day labels will be combined. 

delete if dominated (^deletei 

i 
\ 

. s' step 2: 
„' 

L\w 

' i 
i 
i 
i 

... / 

&2v 
generating 
week labels 

V J K > 

f > ; / > / >1 

^11 hi hi step 1: 

'hu * * ' hu 

generating 
day labels 

hkx hk2 

Figure 2: Labeling Algorithm 

Now, the column generation approach for Computing a lower bound of model (1)—(4) is summarized 
in Table 1. In step 0 we define one infeasible column so that a Solution for the master problem exists. 
As a big value is associated with this column the column will not belong to the final optimal lower 
bound Solution. In step 1 we solve the restricted master problem and, hence, get the the associated dual 
variables. The dual variables are required to update the reduced arc costs in the network G (see step 
2). In step 2 and step 3 we employ the labeling algorithm to check whether working time patterns with 
negative reduced cost exist. If such a working time pattern does not exist the procedure terminates and 
the current master problem Solution provides a lower bound (see step 6). In step 7 we perform multiple 
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pricing, i.e. more than one column may be appended to the restricted master problem. How many 
columns are appended depends on the parameter e £ [0,1]. Clearly, the column generation procedure 
proceeds on as long as at least one column with negative reduced cost is found. 

Table 1: Lower Bounds - Staff Scheduling 

step 0: let ci = big value, and : a\t = 1; 
step 1: solve (5) - (7); _ 
step 2: derive from current Solution and update G; 
step 3: determine feasible day labels; 
step 4: determine feasible non-dominated week labels; 
step 5: compute c* — min{Cr„fc | n = last end-of-day node}; 
step 6: if (c* > 0) stop; 
step 7: V week labels L„j of last end-of-day node n: 

if Cnj < c* • (1 — e) add column to (5)-(7); 
step 8: goto step 1. 

4.2 Upper Bounds 

In the following we describe two methods to derive upper bounds for the staff scheduling problem (l)-(4). 
Both methods are based on the column generation approach proposed in the preceding subsection. The 
first one is a simple rounding procedure. The second one applies column generation in which the "dual 
variables" are calculated heuristically with respect to an integer Solution evaluated. 

Upper Bound 1. An outline of the rounding procedure is given in Table 2. In step 0 we obtain a 
Solution by the column generation approach as described in Table 1. The optimal basic variables of the 
associated (last) restricted master problem are denoted by y* (see step 1). From these variables we obtain 
one fractional variable which has the sinailest difference to its upper integer value (see step 2 and step 
3). In step 5 we define an upper bound for this variable such that the variable will take at least the 
next upper integer value when solving the restricted master problem again. Note, instead of defining a 
lower bound for a variable we can also reduced the right-hand-side accordingly. After introducing a lower 
bound for a variable we apply again column generation with respect to the introduced lower bounds (see 
step 6 and step 0). If no fractional variable exists the procedure terminates and the final Solution provides 
an upper bound (see step 3). Noteworthy to say, that this procedure terminates after a finite number of 
iterations. A very poor upper bound on the number of iterations is <4-

Table 2: Upper Bound 1 - Staff Scheduling 

step 0: determine lower bound by column generation; 
step 1: derive associated variables y*; 
step 2: calculate Sp = [yp — [l/pj | P € W)\ 
step 3: let 8k = max{£p | p £ W}; 
step 4: if (Sk = 0) stop; 
step 5: append yk > to restricted master problem; 
step 6: goto step 0. 

Upper Bound 2. A column generation approach consisting of two phases is considered. Let % = 
yp ~ dt- A period t is under-covered (ut < 0), covered (ut = 0), or over-covered (Ut > 0). Now, in 

PHASE 1 columns are appended to the staff schedule as long as one or more periods are under-covered, 
i.e. as long as t £ T with ut < 0 exists. In PHASE 2 we try to reduce the number of columns and to 
improve the remaining columns. 

As a result we obtain a set of working time patterns W where each working time pattern p £ W is 
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selected once, i.e. yp = 1. Thus the work force equals the number of columns of the staff schedule. 

PHASE 1: Columns are introduced in the staff schedule or removed from the staff schedule depending 
on its reduced cost. The required dual variables 7rt now are define heuristically, i.e. depending on ut: If 
period t is under-covered a large value is assigned to 7rt so we can expect that a working time pattern p 
will be computed in which period t will be covered, i.e. atp = 1. In the other case nt takes the savings 
which can be achieved due to reducing over-covering. More formally, we define 

*, = / f-P-u' : u*<0 (u) 

| — wt ut : otherwise * ' 

where ß must be as large as it is worthwhile by the reduced cost to engage one sales clerk to cover 
only one period which is under-covered, i.e. at least one working time pattern with negative reduced cost 
must exist when only one period is under-covered. This satisfies that a feasible Solution will be computed. 

PHASE 2: We try to reduce the number of working time patterns and to reduce over-covering. To achieve 
this we have to select the column which has to be removed from the current staff schedule. We select a 
column for which 

" = W> 

will be maximized, i.e. we select a column p' for which 

op> > max{op | p e W} (16) 

is satisfied. This means we want to remove working time patterns from the staff schedule which contribute 
to over-covered periods to a large extent. 

More details of this Upper bounding method are given in Table 3: In step 0 we perform some appro-
priate initializations where we start with an empty staff schedule. Applying (14) we initialize in step 1 
the "dual-variables". These variables are then used in step 2 to generate a working time pattern where we 
use the column generation procedure as described in Section 4.1. This working time pattern is appended 
to the staff schedule and will be selected once (see step 3). Appending a working time pattern to the staff 
schedule under-covering will be reduced at least for one period. Thus we have to update ut (see step 4)-
Working time patterns are appended to the staff schedule as long as at least one period is under-covered, 
i.e. the current staff schedule does not provide a feasible schedule (see step 5). 

If a feasible schedule is obtained in the first phase we try to improve this Solution (see step 6 and 
step 10). Improving will be done by trying to replace each column with a new column which reduces 
over-covering. Further improvements may be possible by reducing the number of working time patterns 
as this reduces the total fixed cost. Which working time pattern has to be removed is decided by the 
selection criteria (16) (see step 7). Removing a column from the schedule requires some Updates (see step 
8 and step 9). After removing a working time pattern from the schedule we try again to improve the 
schedule (see step 10). Now, the procedure to reduce the number of columns terminates as far as the 
Solution becomes infeasible or the Solution cannot be improved further (see step 11). 

In step 12 and step 13 we update the objective function value and the associated schedule associated 
with the current best Solution. By step 14 it is satisfied that after an improved Solution was found a new 
iteration of PHASE 2 is performed. 

The Performance of the proposed methods will be evaluated in the next section. 

5 Computational Experimentation 

This section provides the results of a computational study. The algorithms have been coded in C and 
implemented on a 133 MHz Pentium machine with 128 MB memory under the operating System Linux. 
For solving the restricted master problem we used the LP-solver provided by CPLEX. 

First, we describe the work rules and the corresponding resources which have to be considered when 
deriving a feasible working time pattern. Then we describe an instance generator which provides the staff 
demand of a shop for one week and the costs which have to be taken into account. Finally we present 
the computational results. 
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Table 3: Upper Bound 2 - Staff Scheduling 

PHASE 1 
step 0: initialize ut — —dt, W — 0, Zbest = 
step 1: update 17t', 
step 2: generate column p\ 
step 3: set t/p = 1 and W = W Up; 
step 4: update ut; 
step 5: if 3ut < 0 goto step 1\ 
step 6: goto step 10; 

PHASE 2 
step 7: select p according to (16); 
step 8: delete column p (W = W—p) ; 
step 9: update ut and 7rt; 
step 10: Vpe W: 

step 11: 
step 12: 
step 13: 
step U' 

delete column p; 
update ut and 7rt; 
generate new column p\ 
add new column p to schedule; 
update ut and 7rt; 

if (3«f < 0) or (Zbest < Y2PGW CP) ^op; 
gbest _ J2peW Cp] 
Vt €f,p €W : a$9t = atp\ 
goto step 7. 

5.1 Work Rules and Necessary Resources 

Work rules. We focus on German rules. However, between different trading companies different work 
rules may exist and thus the following enumeration is exemplary: 

1. A sales clerk can be scheduled during the opening hours from Monday to Saturday. On Sunday 
shops are closed. 

2. From Monday to Friday shops open at 9.00 and close at 20.00. On Saturday shops open from 9.00 
to 16.00. 

3. The weekly working time of a sales clerk takes at least 10 hours, does not exceed 37.5 hours, and 
is distributed over at most 5 working days. 

4. A sales clerk works at most on 3 days a week after 18.30. 

5. The daily working time amounts to at least 3 hours and takes at most 8.5 hours. 

6. After 2 working hours the earliest and after 4.5 working hours the latest a sales clerk takes a break 
which lasts 30 minutes. A sales clerk has at most 2 breaks per working day. 

7. Each sales clerk causes fixed cost of fc and variable cost of vc per weekly working hour. 

8. From Monday to Friday late opening time beging at 18.30 and at 14.00 on Saturday. One working 
hour during late opening time increases the total day working time by one hour but increases the 
total weekly working time by 1.2 hours. Thus a surcharge of 20% will be "paid" for working during 
late opening time. 

Note that the maximum cost incurred by one sales clerk is fc + 37.5 • vc due to late working time 
compensation. 

Now, to construct feasible working time patterns we have to define the network, the necessary re
sources, and the resource intervals. 
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Table 4: References of Resource and Type of Arcs 

ref. resource ref. type of arc 

n day.workJime bwd begin.ofjworkday 
rs late.workJime etud end.ofjworkday 
7*3 break.nb pwd piece.of.work.and.break 
r4 after.1830 off off-day 
rs week.work.time 
n work.days.nb 
r7 after.1830.nb 

Table 5: Resource Intervals for Each Day Node Type 

day resource n rg r3 r4 

begin.of.day [0,0] [0,0] [0, 0] [0,0] 
end.of.day [180, 2250] [0,2250] [0, 3] [0,1] 
begin.of.period [0, 2250] [0,2250] [0, 3] [0,0] 

Day Resources. Four day resources are used to model the above work rules: day.work.time to bound 
the day working time; late.work.time to cälculate the late working time which increases the weekly 
working time; break.nb to restrict the exact number of breaks on a working day; and after.1830 to 
indicate whether a sales clerk has to work after 18.30. 

Week Resources. Three week resources are used to model the above work rules: week.workjime 
to bound the week working time; work.days.nb to restrict the number of working days per week; and 
after.1880.nb to bound the number of working days on which a sales clerk has to work after 18.30. 

Note that no resources are needed to model the break length and the minimum and maximum length 
of a piece of work since these are directly included in the network structure. 

In the following we refer to a resource by r* and the abbreviation for a type of arc as given in Table 
4. 

To construct a day working time pattern we consider the resource intervals as given in Table 5. These 
intervals are chosen for each of the working days. 

The resource consumptions along the arcs needed to construct a day working time pattern are given 
in Table 6 where 

0 = / " "fr ^ 6 /jyX 
7i \ 870 : otherwise * ' 

takes into account that the late working time at Saturday starts already at 14.00. 

Table 6: Day Resource Consumptions of Are (i}j) 

bwd etvd pwb off 

ri 0 0 Tj-1 - Ti 0 
7*2 0 0 max{0,Tj_i - 07i} 0 
rs 0 0 1 0 
**4 0 max{0,min{l,7)_i - 1110}} 0 0 
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Table 7: Resource Intervals for Week Label Lnw 

week resource rs TQ r? 

n < 5 [ 0, 2250] [0,5] [0, 3] 
n = 6 [600,2250] [0,5] [0,3] 

Table 8: Transformation of Day into Week Resource Consumption 

f{r*,i,v) = %+0.2fä 
f(re,i,v) = min{l,/(r5,i,t))} 
f(r7,i,v) = 

By the resource intervals defined for the week resources (see Table 7) we satisfy that only week working 
time patterns with no more than a working time of 37.5 hours (see column rs), no more than 5 working 
days (see column r*), and no more than 3 working days on which a sales clerk has to work later than 18.30 
(see column r?) are constructed. Moreover, for Saturday, i.e. n = 6, only week working time patterns are 
feasibly in which a minimum working time of 10 hours (600 minutes) is considered (see column rg and 
row n = 6), 

To apply the labeling algorithm as proposed in Section 4.1 we have to define for each resource r 6 Rw 

the function f(r, i, v) which transforms the cumulated day resource consumptions associated with the 
day label Uv into appropriate week resource consumption. The definitions are given in Table 8: The 
function /(rs, iyv) computes the week working time which consists of the real day working time and a 
surcharge of 20% of the time which is late working time. Note, this function is zero only if the label /,v 

is associated with an off day. The function /(r6,i, v) for updating the number of working days uses this 
relation. Function /(r?, i, %) is 1 if the day label /,•„ is associated with a day working time pattern by 
which a sales clerk has to work after 18.30 and 0 otherwise. 

5.2 Generation of Instances 

In this subsection we describe an instance generator to analyze the Performance of the Solution approaches. 
Table 9 provides the exemplary staff period demand, denoted by dt} of a shop during one week. The 

shop is opened from Monday to Saturday. On each day the shop opens at nine o'clock. From Monday to 
Friday the shop closes at eight o'clock in the afternoon and on Saturday at four o'clock in the afternoon. 
As period length we have chosen half an hour. Thus the planning horizon is divided into \T\ = 124 
periods. 

From the staff demand (basic instance) given in Table 9 we have derived all randomly generated 
instances where we only have modified the period demand. We have assumed that the size of the period 
demand, the variance of the period demand, and the fixed cost per sales clerk have a major impact on 
the Solution quality. 

Let denote 

U(0, i/>) uniform distribution over the set {0,..., ip] where the choice of ^ influences the expected 
variance of the period staff demand, and 

4 an integer multiplier to increase the expected size of the period staff demand, 

then 
dt = <j> > dt + U(0,1p) (18) 

generates at random the staff demand in period t where dt is defined in Table 9. For our computational 
study we have chosen 

0 e {1,2,4} (19) 
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Table 9: Weekly Staff Demand dt - Basic Instance 

day Mo Tu We Th Fr Sa 
time t dt t dt t dt t dt t dt t dt 
9.00 1 7 23 7 45 7 67 7 89 7 111 9 
9.30 2 7 24 7 46 7 68 7 90 7 112 12 

10.00 3 7 25 7 47 7 69 7 91 7 113 14 
10.30 4 7 26 7 48 7 70 7 92 7 114 15 
11.00 5 9 27 9 49 9 71 9 93 9 115 14 
11.30 6 9 28 9 50 9 72 9 94 9 116 13 
12.00 7 7 29 7 51 7 73 7 95 7 117 9 
12.30 8 7 30 7 52 7 74 7 96 7 118 9 
13.00 9 5 31 5 53 5 75 5 97 5 119 8 
13.30 10 5 32 5 54 5 76 5 98 5 120 7 
14.00 11 7 33 7 55 7 77 7 99 7 121 5 
14.30 12 7 34 7 56 7 78 7 100 7 122 4 
15.00 13 9 35 9 57 9 79 9 101 9 123 4 
15.30 14 9 36 9 58 9 80 9 102 9 124 4 
16.00 15 11 37 11 59 11 81 11 103 12 - -
16.30 16 11 38 11 60 11 82 12 104 12 - -
17.00 17 12 39 12 61 12 83 13 105 13 - -
17.30 18 11 40 11 62 11 84 12 106 12 - -
18.00 19 10 41 10 63 10 85 11 107 11 - -
18.30 20 9 42 9 64 9 86 9 108 10 - -
19.00 21 7 43 7 65 7 87 7 109 8 - -
19.30 22 5 44 5 66 5 88 6 110 6 - -

and 
v-e {2,4,8}. (20) 

The fixed cost incurred for each engaged sales clerk has be chosen as follows: 

fc £{25,50,100} (21) 

Now, let 

r(<) the clock time associated with the beginning of period t, 
7(<) the workday associated with period t 

then 

wt 

r(t) < 18.30 and 7(t) £ Saturday 
T(t) < 14.00 and 7^) = Saturday (22) 
otherwise 

is the staff cost incurred for a sales clerk who is working during period t. Note, it follows that variable 
cost per weekly working hour is vc = 2 • 10. 

5.3 Computational Results 

For each combination of the parameters fc, <f>, and i/> we have generated 10 instances. For each instance 
we have applied the methods to derive a lower bound and the two methods to derive upper bounds. To 
evaluate the quality of the upper bounds we have computed for each instance the percentage deviation 
between lower and upper bound, denoted by % gap. Furthermore we have reported the computation time 
in minutes, denoted by CPU min., to derive a specific bound. 

Table 10 provides the average results of each parameter combination, i.e. each entry represents the 
average over 10 instances. 
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Table 10: Computational Results 

Lower Bound Upper Bound W Upper Bound 2Ö) 

/c CPU min. % gap CPU min. % gap CPU m 
2 25 1.52 3.22 1.53 1.44 0.46 
2 50 1.35 3.56 1.37 1.49 0.39 
2 100 1.57 2.53 1.58 1.12 0.41 
4 25 1.57 2.92 1.59 1.40 0.51 
4 50 1.33 3.28 1.34 1.42 0.67 
4 100 1.57 2.16 1.59 1.09 0.50 
8 25 1.33 2.47 1.35 1.77 0.72 
8 50 1.17 2.89 1.19 1.77 0.80 
8 100 1.24 1.82 1.26 1.65 0.73 

2 25 2.62 1.62 2.65 0.93 1.30 
2 50 2.21 1.96 2.24 0.91 1.29 
2 100 2.03 1.11 2.06 0.60 1.20 
4 25 2.14 1.34 2.18 0.78 1.44 
4 50 2.41 1.94 2.44 1.14 1.46 
4 100 2.25 0.97 2.29 0.60 1.18 
8 25 2.75 1.23 2.79 1.07 1.51 
8 50 3.04 1.65 3.07 1.26 1.58 
8 100 2.21 1.06 2.25 0.82 1.56 

2 25 7.87 0.67 7.95 0.63 3.17 
2 50 7.89 0.90 7.97 0.72 3.74 
2 100 8.91 0.42 8.99 0.41 3.76 
4 25 8.70 0.71 8.78 0.52 3.75 
4 50 9.81 0.96 9.89 0.59 4.16 
4 100 7.78 0.41 7.86 0.44 3.20 
8 25 10.37 0.62 10.46 0.61 3.96 
8 50 9.92 0.89 10.01 0.71 4.45 
8 100 9.41 0.43 9.50 0.50 3.28 

Simple rounding approach 
Column generation with non-optimal dual variables 
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To get a more compact view of the effect of a single parameter Variation the results have been aggre-
gated as shown in Table 11 in which each entry from row 3 to 11 denotes the average over 90 instances. 
Furthermore, the minimum, average, and maximum computation times and Solution gaps are reported 
in rows 12 to 14, respectively. 

Interpretation. Increasing the expected demand and, hence, the expected work force the time of 
Computing a lower bound and an upper bound increases moderately where the second Upper bound 
method is substantially faster than the first upper bound method. However, the Solution gap decreases if 
we increase the expected demand. Clearly, this effect results from the fact, that the fraction of the staff 
cost which can be influenced by scheduling is decreasing with increasing expected demand. Increasing 
the variance of the period demand has no substantial impact on the Solution quality of the upper bounds. 
The gap is increasing if we increase the fixed cost. But it cannot be stated that the quality of the upper 
bounds becoming worse if the fixed cost are very large. We suppose that due to the high number of 
fractional variables of the linear programing relaxation the quality of the lower bound is becoming worse 
when increasing the fixed cost. However, the second upper bound method outperforms the first upper 
bound method in time and Solution quality. Thus the heuristic evaluation of dual variables may provide 
an efficient approach to derive high quality results. 

Table 11: Aggregated Computational Results 

Lower Bound Upper Bound 1°J Upper Bound 2b) 
<j) V / CPU min. % gap CPU min. % gap CPU min. 
1 - - 1.41 2.76 1.42 1.46 0.58 
2 - - 2.41 1.43 2.44 0.90 1.39 
4 - - 8.96 0.67 9.04 0.57 3.72 
- 2 - 4.00 1.78 4.04 0.92 1.75 
- 4 - 4.17 1.63 4.22 0.89 1.87 
- 8 - 4.60 1.45 4.65 1.13 2.07 
- 25 4.11 1.21 4.15 0.80 1.76 
— — 50 4.32 1.64 4.36 1.02 1.87 
- 100 4.35 2.00 4.39 1.11 2.06 
minimum 0.58 0.26 0.60 0.23 0.24 
average 4.26 1.62 4.30 0.98 1.89 
maximum 14.88 5.13 14.97 2.58 8.25 

Simple rounding approach 
Column generation with non-optimal dual variables 

6 Conclusions 

A new model is introduced for staff scheduling in the retail business. For its Solution a column generation 
based heuristic and a method to derive tight lower bounds are introduced. A computational study shows 
that the proposed methods provide solutions of high quality very fast. Based on these results it can be 
stated that the proposed approach is suitable for practical applications. 
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