
Hartmann, Sönke

Working Paper  —  Digitized Version

Packing problems and project scheduling models: An
integrated perspective

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 509

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Hartmann, Sönke (1999) : Packing problems and project scheduling models: An
integrated perspective, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität
Kiel, No. 509, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147597

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147597
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Manuskripte 

aus den 

Instituten für Betriebswirtschaftslehre 

der Universität Kiel 



Abstract 

This paper considers two problem classes that are important to researchers a5 
well as practitioners, namely packing and project scheduling problems. First, the two 
problem categories are described. This includes a Classification of packing problems 
as well as of project scheduling concepts. While both problem classes are different 
with respect to their fields of application, similarities of their mathematical structures 
are examined. It is shown that all packing problems considered here are special cases 
of models for project scheduling. The aim is to indicate which project scheduling 
models can be used to capture the different types of packing problems. Finally, some 
implications for research on optimization algorithms for these two problem classes are 
discussed. 

Keywords: Packing, Logistics, Project Management, Scheduling, Modeling. 

1 Introduction 

Packing problems consider the task of packing small items (e.g., boxes) into large objects 
(e.g., Containers). Depending on their field of application, several types are distinguished. 
Important classes include the problem of packing as many items as possible into a fixed 
number of Containers and that of packing all given items into the smallest possible number 
of Containers. Packing problems occur with one, two, or three (relevant) spatial dimen-
sions. Often further restrictions such as weight limitations of the Containers have to be 
observed. With many applications in logistics, packing problems are important to practi­
tioners as well as to researchers. For overviews of packing problems, we refer to Dyckhoff 
[8], Dyckhoff and Finke [9], and Wottawa [31]. 

Project scheduling is an important part of project management. A project consists 
of activities which must be carried out to achieve a predefined goal. When scheduling a 
project, certain requirements must be observed, especially limited availabilities of resources 
that are needed to perform the activities. Many models have been suggested that cover 
different requirements occuring in practice, e.g., different objectives and the possibility 
to capture alternative ways to accomplish an activity. Projects can be found in various 
areas such as construction, production planning, and research and development. A large 
number of Software systems for project management have been developed (cf. Kolisch 
[18] and Kolisch and Hempel [19]). Moreover, project scheduling problems have attracted 
many researchers. For surveys, we refer to Brucker et al. [3], Kolisch and Padman [20], 
and Özdamar and Ulusoy [23]. 

Obviously, packing and project scheduling problems are completely different with re­
spect to their applications. Nevertheless, one may be interested in the underlying struc­
tures. This paper compares the mathematical properties of packing and project scheduling 
problems. Our goal is to show that many packing problems are, from a mathematical point 
of view, special cases of project scheduling models. We discuss which structures of project 
scheduling models subsume which types of packing problems. 

Indentifying an optimization problem as a special case of another problem is an im­
portant issue in research on combinatorial optimization. The benefit of dealing with this 
is twofold: First and more important, this allows to transfer Solution approaches from one 
problem to the other: If a promising algorithm for the special case exists, the underlying 
concepts can probably be extended to the more general problem. On the other hand, a 

1 



procedura for the general problem can be applied to the special case as well, eventually 
by additionally exploiting the special problem structure of the latter. Second, knowledge 
about relations between different problems is useful when establishing complexity proofs 
for specific problems because the core of a complexity proof is the polynomial-time trans-
formation ofone problem into another. Loosely speaking, if we know that some problem is 
NP-hard (and a few more technical assumptions are fulfilled), then a more general problem 
is NP-hard as well (cf. Garey and Johnson [15]). 

With these points in mind, it is no surprise that the analysis of similarities between 
different problem structures plays an Important role in the literature. The following list 
of references shows that the relationships of a broad variety of combinatorial optimiza-
tion problems on the one hand and packing or project scheduling problems on the other 
hand have been examined. Demeulemeester and Herroelen [6] show how concepts from 
production planning problems such as setup times and batches can be modeled using the 
the Standard resource-constrained project scheduling problem (RCPSP) generalized by 
minimal time lags, release dates, deadlines, and resource availability varying with time. 
Dyckhoff [8] notes that many different optimization problems such as assembly line balanc-
ing, multiprocessor scheduling, capital budgeting, coin changing, and memory allocation 
for data storage can be viewed as special cases of cutting and packing problems. Garey et 
al. [14] mention that their "resource-constrained scheduling problem" (which is an RCPSP 
where the durations of the activities are equal to one) subsumes the bin packing prob­
lem. Drexl and Salewski [7] express a school timetabling problem using project scheduling 
concepts including multiple modes, mode identity, partially renewable resources, minimal 
time lags, and a cost based objective. Scholl et al. [24] mention that the one-dimensional 
bin packing problem with the objective of minimizing the bin capacity is equivalent to 
minimizing the makespan of independent jobs on identical parallel processors. Based on 
the ideas given in Schräge [25], Sprecher [29] formally describes how the job shop schedul­
ing problem is included in the RCPSP as a special case. Moreover, Sprecher [29] shows 
that the flow shop problem and the open shop problem are special cases of the RCPSP. 
Schräge [25] additionally states that the RCPSP includes a variant of the two-dimensional 
cutting stock problem. Sprecher [28] as well as de Reyck and Herroelen [5] consider the 
assembly line balancing problem. Sprecher [28] transforms it into an RCPSP with time-
varying resource capacity while de Reyck and Herroelen [5] model it as an RCPSP with 
start-start precedence constraints (but with constant resource capacity). 

2 Packing Problem Types 

Generally speaking, a packing problem consists of packing small objects (e.g., boxes) into 
one or more large objects (e.g., Containers) with respect to a given objective. We make 
a few general assumptions on the packing problems considered here. First, we restrict 
ourselves to objects of rectangular shape. Second, we consider only orthogonal packing 
patterns, that is, the edges of the small objects to be packed must be either parallel 
or orthogonal to the edges of the large objects. These restrictions are common in the 
literature as well as in most practical applications. To keep the description simple, we will 
refer to the small objects as boxes and to the large objects as Containers. 

This section briefiy defines four basic types of packing problems. The Classification is 
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based on that of Wottawa [31]. Moreover, several extensions with high practical relevance 
are summarized. Finally, we mention what distinguishes packing problems from a related 
problem class, the cutting stock problems. 

2.1 Bin Packing 

In the bin packing problem, a number of boxes is given. For each box, its size is given. 
The boxes are to be packed into Containers for which the size is given as well. It is assumed 
that the Containers are identical, that is, they are of the same size. The objective is to 
use the minimum number of Containers to pack all boxes, such that for each Container the 
size is observed. A packing pattern consists of an assignment of boxes to Containers, along 
with coordinates in all relevant dimensions for each box within the assigned Container. 

In the one-dimensional version of the bin packing problem, we have B boxes with 
length lf» b = 1,... , B, which have to be packed into a minimum number of Containers 
all of which are L units long. We remark here that also many other interpretations (and 
thus applications) are possible. An example is to view L as the limited weight capacity of 
the Containers and as the weight of box 6, given that Space is not scarce. 

The two-dimensional bin packing problem considers B boxes with length l& and width 
Wb, 6 = 1,... ,B. They have to be packed into identical Containers with length L and 
width W. Note that in the two-dimensional case, the actual application may allow a 
rotation of the boxes. Formally, rotation of a box b can be thought of as swapping its 
length /{, and its width Wb. 

Finally, in the three-dimensional bin packing problem, we have B boxes with length Z&, 
width Wb, and height hb, b = 1,... , B. They have to be packed into identical Containers 
with length L, width W, and height H. Again, rotation of the boxes may be allowed. 
Here, it must be specified in which dimensions the boxes are allowed to be rotated. 

2.2 Knapsack Packing 

The knapsack packing problem considers only one Container. We have B boxes, and each 
box 6=1,... , B is associated with a valueThe objective is to select boxes to be packed 
into the Container such that the sum of the values of the packed boxes is maximal. Again, 
of course, the size of the Container must be observed. The knapsack packing problem can 
be given in one, two, or three dimensions. For the size of the boxes and the Container, 
we use the same notation as in the bin packing problem. A packing pattern assigns to 
each box the Information whether it is packed or not, together with the coordinates of the 
boxes to be packed. 

Two special cases should be briefly mentioned: First, the objective to pack as many 
boxes as possible is obtained from defining jb — 1 f°r boxes b = 1,... , B. Second, 
the objective to use as much Space of the Container as possible is achieved by letting the 
value of each box be equal to its volume. For the three-dimensional case, e.g., we would 
set 7b = lb • Wb • hb for all boxes 6 = 1,... , B. 

Note that in the one-dimensional case, the knapsack packing problem coincides with 
the classical knapsack problem (where we would speak of weights instead of lengths). As 
we will show that the knapsack packing problem is a special case of a project scheduling 
problem, this implies that also the classical knapsack problem is a special case of that 
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project scheduling problem. It should be emphasized, however, that the more general 
multi-dimensional knapsack problem (see Chu and Beasley [4]) is not a packing problem 
in our sense because there the multiple knapsack constraints are independent and not 
linked like the spatial dimensions in the packing problems discussed here. 

2.3 Strip Packing 

In the strip packing problem, we have one Container of infinite length. In the two-
dimensional case, the width W of the Container is given; in the three-dimensional case, 
also its height H is given. The objective is to pack a given number of boxes such that the 
used length of the Container is minimal. As in the bin packing problem, all boxes have 
to be packed. A packing pattern is an assignment of coordinates within the Container to 
each box. 

Note that this problem type is considered only for two or three dimensions because 
the one-dimensional case is trivial: There, the used Container length would be equal to 
the sum of the lengths of the boxes. 

2.4 Fallet Loading 

The pallet loading problem originates from mass production systems, where consumer 
goods to be distributed are packed on pallets using an automatic pallet loading machine. 
According the general characterization of Wottawa [31], it is merely a knapsack packing 
problem with identical boxes. Therefore, the transformation of the knapsack packing 
problem into a project scheduling problem holds for the pallet loading problem as well. 
Consequently, the latter will not be treated here in more detail. We only mention that 
several variants of the pallet loading problem with different constraints can be found in 
the literature (cf., e.g., Liu and Hsiao [21] and Morabito and Morales [22]). 

2.5 Extensions of Packing Problems 

In many cases, the basic packing problem types described above are not sufficient to 
meet all requirements occuring in practice. That is, some packing pattern that fulfills all 
constraints of a basic problem type may not be useful in practice because other specific 
demands are not included in the basic problem. In what follows, we briefiy summarize a 
few features that may extend the basic packing problem types. 

If some box is heavy, it may be required that it is not packed on top of some other 
box. This case is relevant especially in the three-dimensional bin packing and knapsack 
packing problems. 

Similarly to the previous Situation, it may not be allowed to pack other boxes on top 
of some box. This may occur, e.g., because of its fragile content. 

Finally, each box may be associated with a certain weight, and a weight limit for the 
container(s) may have to be observed (note that in many practical applications Containers 
or machines for Container handling are associated with weight limits). Weight can be 
viewed as another problem dimension which is non-spatial. 
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2.6 Relationship to Cutting Stock Problems 

Cutting problems make up an important class of combinatorial optimization problems that 
is closely related to packing problems. While packing problems consist of packing small 
objects (e.g., boxes) into one or more large objects (e.g., Containers), cutting problems 
consist of cutting one or more large objects (raw material such as, e.g., tubes or wood) 
into small pieces. This implies that there is some kind of duality between packing and 
cutting problems. From a mathematical point of view, it does not matter whether the 
pattern computed for a given set of small and large objects is interpreted as a cutting or 
a packing pattern. 

Consider the following example which shows that the one-dimensional bin packing 
problem can be interpreted as an analogous cutting problem of the same dimension: 
Wooden planks have to be cut into pieces of given lengths. The objective is to mini-
mize the number of planks required. 

There is, however, an important exception for which the duality between both problem 
classes does not hold. In many cutting problems, only so-called guillotine cuts are allowed. 
A restriction to guillotine cuts occurs if the material can only be cut completely from one 
side to the other due to technical requirements (e.g., of a specific saw). As mentioned by 
Exeler [11], the main difference between packing and cutting problems is the restriction 
to guillotine cuts in many cutting problems; there is no equivalent of guillotine cuts in 
packing problems. Note that the restriction to guillotine cuts can affect only two or 
three-dimensional cutting problems. 

As a consequence, we will refer only to packing problems throughout this paper. Due 
to the duality mentioned above, all up Coming statements and transformation proofs are 
applicable to cutting problems also, as long as they are not restricted to guillotine cuts. 

3 Project Scheduling Models 

Until today, many different project scheduling models have been proposed, covering a 
broad variety of real-world requirements. Starting with a description of the Standard model 
for project scheduling, this section gives an overview of those formal project scheduling 
concepts that will be used in the transformation approaches to cover packing problems. 

3.1 Classical Problem Setting: The RCPSP 

The resource-constrained project scheduling problem (RCPSP) has evolved as some kind 
of Standard model in the literature. Although rather simple, it allows to cover many 
aspects that are relevant in real-world project scheduling. 

We consider a project with J activities j = 1,... , J. We will refer to the set of 
activities as = {1,... ,J}- The processing time (or duration) of an activity j is denoted 
as pj. We assume that the planning horizon is divided into time intervals of equal length 
called periods (e.g., days), and that the processing times pj are given as discrete multiples 
of one period. Once started, an activity may not be interrupted, i.e., preemption is not 
allowed. 

Due to technological requirements, there are precedence relations between some of the 
jobs. These precedence relations are given by sets of immediate predecessors Vj indicating 
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that an activity j may not be started before each of its predecessors i € Vj is completed. 
The precedence relations can be represented by an activity-on-node network which is 
assumed to be acyclic. 

Each activity requires certain amounts of resources to be performed. The resources 
are called renewable because their füll capacity is available in every period. Examples for 
such resources are manpower and machines. The set of renewable resources is referred to 
as KLP. For each resource k G Kp the per-period-availability is assumed to be constant and 
given by Rpk. Activity j requires rjk units of resource k in each period it is in process. 

The parameters are assumed to be nonnegative and integer valued. All information 
are assumed to be deterministic and known in advance. A Solution is given by a schedule 
which assigns a start time Sj to each activity j, such that the precedence and resource 
constraints are not violated. The objective is to find a schedule which allows for the 
earliest possible end of the project, i.e., the minimal makespan. 

3.2 Multiple Execution Modes 

The basic RCPSP assumes that an activity can only be executed in a Single way which is 
determined by a fixed duration and fixed resource requirements. Starting with the work 
of Elmaghraby [10], the activity concept as given in the Standard RCPSP was extended 
by allowing several alternatives called modes in which an activity can be performed. Each 
mode reflects a feasible way to combine a duration and resource requests that allow to 
accomplish the underlying activity. 

For formally modeling the multiple mode extension of the RCPSP, we denote the 
number of modes in which activity j can be performed as Mj. Mj = , Mj} then 
is the set of modes of activity j. The processing time of activity j being executed in 
mode m is referred to as pjm. The request of activity j being executed in mode m for 
renewable resource k e JCP is rjmk- Once started in one of its modes, an activity must be 
completed in that mode; mode changes and preemption are not permitted. A Solution for 
a multi-mode project scheduling problem is given by a schedule which assigns a start time 
and a mode to each activity. 

3.3 Nonrenewable Resources 

In project scheduling models with multiple modes, often so-called nonrenewable resources 
are considered in addition to the renewable resources already contained in the basic 
RCPSP. This resource categorization has been developed by Slowinski [26, 27] and Weglarz 
[30]. Whereas renewable resources are limited on a per-period basis, nonrenewable re­
sources are limited for the entire project. An example for the latter resource category is 
money; hence, nonrenewable resources allow to model a budget for the project. 

For the sake of simplicity, we consider only a Single nonrenewable resource. Its avail-
ability is given by Ru. Activity j in mode m requires r^m units of the nonrenewable 
resource. 

Note that nonrenewable resources need only be considered in multi-mode models. 
Within a single-mode environment, the activities' consumption of a nonrenewable resource 
would be known in advance, that is, it could not be influenced by scheduling decisions. 
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3.4 Renewable Resource Capacities Varying with Time 

In the Standard model, the availability of the renewable resources has been assumed to be 
constant over time, i.e., the capacity is the same in each period. This assumption, however, 
may not be useful in some cases. Consider, e.g., a changing availability of workers due 
to holidays. In order to cover time-dependent resource capacities (cf., e.g., Sprecher [29] 
and Klein and Scholl [17]), we denote the availability of renewable resource k at time t as 

W 

3.5 Deadline 

Many different kinds of temporal contraints have been considered in the project scheduling 
literature. For overviews see, e.g., Bartusch et al. [2] and Franck and Neumann [12]. An 
important case is a so-called deadline which requires the project to be completed before 
some given time instant 8. Deadlines are usually used in connection with objectives 
that consider other criteria than the minimization of the makespan. Such an alternative 
objective is given below. 

3.6 Resource-Based Objective 

Motivated by real-world situations, a broad variety of objective functions for project 
scheduling models have been proposed (cf., e.g., Anthonisse et al. [1], Franck and Schwindt 
[13], and Kapuscinska et al. [16]). While the objective to minimize the makespan is among 
the most populär ones, another important one is the minimization of the nonrenewable 
resource consumption in a multi-mode environment. 

For the purpose of this paper, it is sufficient to consider the following case: The project 
must be finished before a given deadline & We assume that one nonrenewable resource is 
given. The objective is to find a schedule including a mode assignment mj for each activity 
j such that the resulting (mode-dependent) consumption J2jej rjmj the nonrenewable 
resource is minimized. Interpreting the nonrenewable resource as money, such an objective 
leads to a minimization of the mode-dependent costs required to complete the project on 
time. 

4 Transformation of the Bin Packing Problem 

We are now ready to outline formal similarities between packing and project scheduling 
problems. A few similarities are rather obvious: There is a certain correspondence between 
boxes to be packed and activities to be scheduled. Furthermore, the constraint that 
activity preemption is not allowed corresponds to the natural requirement that boxes 
must be packed as a whole. On the other hand, considering the precedence relations 
between activities, there is also a project scheduling concept for which there is no similar 
concept in packing problems. 

Let us now start our investigation with a look at the bin packing problem in one, two, 
and three dimensions. We will show for each dimension which project scheduling model 
components are needed to capture the respective bin packing variant. Recall, the bin 
packing problem is to pack a given number of boxes into a minimum number of identical 
Containers. In order to allow a formal transformation into project scheduling models, we 
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assume that the size of the boxes and Containers is given in terms of discrete multiples of 
a basic length unit. 

4.1 One Dimension 

First, we consider the one-dimensional bin packing problem. As outlined by Garey et 
al. [14], this problem can be transformed into the RCPSP as follows: For each box 6, we 
dehne an activity j with processing time pj = 1 and a request for the only renewable 
resource of rjx = lb units. We have J = B and Kp = {1}. The constant capacity of the 
resource is given by = L. There are no precedence relations between the activities. 
Performing an activity in the t-th period corresponds to packing the related box into the 
t~th container. Consequently, the minimal makespan corresponds to the minimal number 
of Containers needed to pack all boxes. 

4.2 Two Dimensions 

Now we turn to the two-dimensional case. In a rather simple approach for a similar 
problem, Schräge [25] proposed to reflect the two spatial dimensions with the resource 
dimension and the time dimension of an RCPSP with one renewable resource. Each box 
would correspond to an activity, with a processing time equal to the width and a resource 
request equal to the length of the box. The problem with this idea is that a resulting 
schedule only contains start times (which correspond to the z-coordinates of the boxes), 
whereas the second dimension (the y-coordinates) needed for the packing (or cutting) 
pattern would not be considered. Also note that the resource constraints of the RCPSP do 
not treat activities as geometric rectangles, that is, activities are not necessarily assigned 
to the same resource units over their processing times. 

In order to obtain both x and y-coordinates as a result of our model-based approach, 
we have to adapt the above idea as follows: In addition to the time axis corresponding 
to the 2-coordinates, we reflect the y-coordinates by L renewable resources k = 1,... , L 
(and hence KP = {1,... , L}) with time-varying availability 

Rp(+\ _ f 0, if t — n - {W -f 1) for some integer n > 1 
k \ 1, otherwise. 

Each "block" of consecutive nonzero resource capacity is related to a container. 
Now we introduce an activity j for each box b. Each possible y-coordinate of some 

box b is reflected by a mode of the related activity j for which we obtain Mj = L — lb + 1 
different modes. The duration of any mode m € Mj is given by pjm = The (constant) 
request of mode m for resource k 6 {1,... , L} is 

_ ( 1, if k e {m,... ,m + lb — 1} 
rjmk ^ Q; otherwise. 

Having obtained a schedule containing start times and modes, the a>coordmate of the 
left bottom corner of a box is given by the start time s while the y-coordinate is given by 
the mode number m reduced by 1. From the makespan Z of the schedule, we compute the 
number of used Containers as • Note that (z, y)-coordinates of the packing pattern 
defined above is based on our transformation idea that implicitly puts the Containers one 
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Figure 1: Transforming the two-dimensional bin packing problem 
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Figure 2: Two-dimensional bin packing problem — rotating boxes 

after another along the z-axis. This is to say that the %-coordinate includes both the 
number of the Container and the actual x-coordinate in that Container. Separating these 
two different informations, we obtain the Container number of a box as C = 

Subsequently, the z-coordinate within that Container is given by x' = x — (C— 1) • (W + 1 
Summing up, we have used the RCPSP with multiple modes and time-varying resource 

capacity to comprise the two-dimensional bin packing problem. That is, each project 
schedule (with start times and modes for the activities) leads to a well-defined packing 
pattern (with x and y-coordinates as well as Container numbers for the boxes). 

The transformation idea is sketched out in Figure 1, where we have some box b with 
lb = Wb = 2 and a Container size of L = 4 and W = 8, resulting in three modes for 
the activity related to box b. Observe that the y-axis depicts 4 resources with a time-
dependent capacity of 1 or 0 (and not one resource with capacity 4 or 0). Considering 
the example position of mode m = 2, we see that it starts at time 5 = 3 and requires 
only resources k = 2 and k = 3. This translates to box coordinates x = 3 (= s) and 
y ~ 1 {= m — l)in the Erst Container. 

So far, we assumed a fixed orientation for the boxes when they are packed. This 
assumption is often desired (consider, e.g., corresponding cutting problems with patterned 
raw material). In many cases, however, it is natural to allow the boxes to be rotated. 
We reflect rotation as follows: As already mentioned, a rotated box b is obtained from 
swapping length and width wt- Following the mode construction above, this simply 
leads to additional modes that have to be considered. This idea is displayed in Figure 2. 
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4.3 Three Dimensions 

Finally, we examine the three-dimensional bin packing problem. Extending the approach 
for the two-dimensional case, we reflect the rc-coordinate with the time-axis while both the 
y and ^-coordinates are expressed using renewable resources. The project scheduling model 
under consideration is again the RCPSP with multiple modes and renewable resource 
capacity varying with time. 

We define L • H renewable resources. For the sake of comprehensibility, a resource will 
be referred to as a pair (y, z) with y G {0,... , L — 1} and z € {0,... , H — 1}. Each such 
resource (y, z) is assigned a time-dependent capacity 

Next, we define an activity j for each box b. The modes of activity j are denoted 
as (yj,Zj), reflecting the possible coordinates of the related box b in the length- and 
height-dimensions (the width-dimension is again captured by the activity's start time). 
Hence, we have yj G {0,... ,1, - lb} and Zj G {0,... ,H - hb}, and we obtain Mj = 
{L-lb-\-l)-(H -hb + 1) different modes for activity j. The processing time of activity j 
in any mode (yj,Zj) is given by the width wb of the related box b, that is, Pj,{yj,Zj) = ™b-
Finally, we have to establish the resource requests which again correspond to the space 
filled by the box packed at the position related to the mode. Activity j being performed 
in mode (yj,zj) requires renewable resource (y, z) as given by 

Clearly, if we want to allow the box to be rotated in some or all planes, we introduce 
additional modes in analogy to the two-dimensional case. 

Given a schedule containing a start time and a mode for each activity j, the x-
coordinate of the left bottom front corner of the related box is given by the start time Sj 
while the y and z-coordinates are given by the mode (yj,Zj). The number of Containers 
needed is again given as in the two-dimensional case. 

5 Transformation of the Knapsack Packing Problem 

We express the knapsack packing problem in terms of project scheduling concepts analo-
gously to the respective bin packing problem of the same dimension. We only need a few 
modifications: In addition to the modes of an activity defined for the bin packing problem, 
we need one more mode reflecting that the related box is not packed. This mode has a 
processing time of 0 periods and does not require the renewable resources corresponding 
to the container space. 

Next, we introduce a nonrenewable resource. The request of each of the new modes 
(which indicate that the related box is not packed) for this nonrenewable resource is equal 
to the value of that box. For the remaining modes (which imply that the related box is 
selected to be packed), we define a nonrenewable resource request of 0 units. As we have 

0, if t = n • {W + 1) for some integer n > 1 
1, otherwise. 

1, if y€ ,yj -h/6 - 1} 
and z G {Zj,... , Zj + hb - 1} 

0, otherwise. 
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only one Container, we redefine the renewable resource capacities as being constant and 
equal to 1 if we are dealing with two or three dimensions (in the one-dimensional case, we 
keep the constant capacity of L units). The width of the Container is secured by imposing 
a deadline on the project. In the one-dimensional case, we set 5 = 1, otherwise we define 
6 = W. 

Now we use the objective to minimize the consumption of the nonrenewable resource. 
Note that this minimizes the sum of the values of the boxes not being packed, which is 
equivalent to the original value maximization of the knapsack packing problem. 

Summing up the transformations given above, the knapsack packing problem (with 
up to three dimensions) has been shown to be a special case of the RCPSP with multi­
ple modes, a deadline, and a nonrenewable resource based objective (and with constant 
renewable resource availabilities). 

Note that this transformation is not the only possible approach. Alternatively, we can 
capture the width of the Container by allowing time-varying renewable resources. In the 
one-dimensional case, the resource availability would be 0 after time instant 1, otherwise 
it would be 0 after time W. Hence, employing time-varying renewable resources, we could 
omit the deadline. 

Clearly, the knapsack packing problem can be extended by allowing more than one 
Container (but still a limited number of Containers). This can be modeled by using the 
time-varying renewable resource capacities as for the bin packing problem, but with zero 
capacities for periods later than those corresponding to the given Containers. 

6 Transformation of the Strip Packing Problem 

The last packing problem type to be considered is the strip packing problem. Again, 
the boxes correspond to activities that are defined as for the bin packing problem. One 
coordinate is related to the start times while the remaining one or two coordinates are 
reflected by modes (recall that the one-dimensional case of the strip packing problem is 
trivial). In contrast to the bin packing problem, the renewable resources have a constant 
availability of one unit per period. Now the makespan corresponds to the used Container 
length. Consequently, the strip packing problem can be modeled by the Standard RCPSP 
with multiple modes (and with constant resource capacities). 

7 Transformation of Additional Features 

Having discussed the basic packing problem types and dimensions, we now consider ex-
tensions of the basic problems which frequently occur in practice. 

We start with the case of a heavy box that may not be packed on top of some other 
box. This requirement is reflected by considering only those modes of the activity related 
to the heavy box that are associated with a position on the bottom of the Container. 

Next, we deal with the case of a box on which no other box is allowed to be packed. This 
constraint can be modeled by adjusting the resource requests of the activity corresponding 
to that box. This activity would require not only the resources that correspond to the 
space fllled by this box but also the resources reflecting the Space above it. Consequently, 
no resources are left to pack another box on top. 
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Finally, we address the case of weights associated with the boxes. We consider only the 
basic knapsack packing problem with one Container for which we have to observe a weight 
limit. Such a weight limit can easily be incorporated by introducing a nonrenewable 
resource with a capacity corresponding to the weight limit. The request of an activity 
for that resource is defined as follows: The mode corresponding to the related box not 
being packed is associated with a request of zero units. All other modes obtain a request 
corresponding to the weight of the box. 

8 Summary and Conclusions 

We have examined structural similarities between packing problems on the one hand and 
project scheduling problems on the other hand. It was shown that the main packing prob­
lem types, namely the bin packing problem, the knapsack packing problem, and the strip 
packing problem, can be viewed as special cases of different project scheduling models. 
This proposition was shown to hold for several extensions of packing problems as well, 
including rotation of boxes, weight limit of a Container, and restrictions on box stacking. 
Table 1 summarizes the transformations of packing problems into project scheduling prob­
lems. For each of the three considered packing problem types and each related (non-trivial) 
dimension, the table states which of the variants and extensions of the basic RCPSP are 
needed to capture the constraints and objective. 

Problem dim. modes nonrenewable deadline capacities of objective 
resource renewable res. 

bin packing 1 Single no no constant makespan 
2 multi no no time-varying makespan 
3 multi no no time-varying makespan 

knapsack packing 1 multi yes yes constant resource 
2 multi yes yes constant resource 
3 multi yes yes constant resource 

strip packing 2 multi no no constant makespan 
3 multi no no constant makespan 

Table 1: Packing problems as special cases of project scheduling models 

As already mentioned in the introduction, the main motivation for dealing with the 
relationships between between two different problem classes is to provide a basis for the 
transformation of algorithms originally designed for one problem class to the other class. 
Having shown that packing problems are a special case of project scheduling problems, we 
could either extend packing algorithms to project scheduling problems, or we could apply 
project scheduling algorithms to packing problems. Let us consider the latter case. We can 
apply an algorithm developed for a project scheduling model to solve a packing problem 
which is a special case of that model without any modification. The proofs of the previous 
sections can serve as guidelines. One simply has to transform some packing problem into 
a project scheduling problem as prescribed by the proof and apply an algorithm for the 
respective project scheduling problem. 

It should be noted, however, that this straightforward approach does not necessarily 
lead to efficient packing procedures. Using the project scheduling methods as starting 
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points, further exploitation of the special structures of the packing problems is still advis-
able. Consider, e.g., the correspondence of modes and coordinates. Explicitly considering 
each possible coordinate by defining a mode would, in many cases, lead to a huge number 
of modes and probably to disappointing results. A better idea would be to exploit the fact 
that we know that the modes reflect coordinates. Then we could choose a good heuris-
tic for multi-mode project scheduling and replace the mode selection mechanism in that 
heuristic with an efficient coordinate selection mechanism. Such a mechanism could, e.g., 
compute the most promising position of a box within the current partial packing pattern. 
We believe that research in this direction is promising and could lead to new and efficient 
algorithms. 
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