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Abstract: The sales force deployment problem is considered which arises in many selling organiza-
tions. As a Solution a novel mixed-integer formulation is introduced which is specifically characterized 
by an infinite number of variables. A column generation approach is proposed to obtain upper and 
lower bounds. The associated subproblem is solved analytically. A computational study shows that the 
approach outperforms recently introduced approaches. 
Keywords: Marketing models, sales force sizing, salesperson location, sales territory alignment, sales 
resource allocation, nonlinear mixed-integer programming, column generation 

1 Introduction 

In many selling organizations, sales force deployment is an important Instrument by which sales manage-
ment can improve profit. It involves the concurrent resolution of four interrelated subproblems: sizing of 
the sales force, salespersons locations, sales territory alignment, and sales resource allocation. All these 
subproblems have to be solved simultaneously so that the total profit contribution will be maximized (see 
Haase and Drexl, 1999). 

The subproblems can be briefly described as follows: Consider a large geographica! market area 
which is partitioned to a set of so-called sales coverages units (SCUs). Sizing of the sales force advocates 
selecting the appropriate number of salespersons required to penetrate the total market area. A sales 
territory and a location will be assigned to each salesperson. Thus by sales force sizing we also decide 
on the number of sales territories and locations. The salesperson location aspect of the problem involves 
determining the location of each salesperson in one of the SCUs. Sales territory alignment may be viewed 
as the partitioning problem of grouping the SCUs around the locations of the salespersons into 1 arger 
geographic areas called sales territories. Sales resource allocation refers to the problem of allocating 
salesperson time to the assigned SCUs. 

Note, Sales force deployment is an aggregate planning problem with, typically, a planning horizon of 
one year so that decisions as to how often (e.g. every week, once a month), on which days and at which 
time a customer has to be visited are the subject of subsequent planning stages. 

Related Work, Recently, a comprehensive review of related work is given by Drexl and Haase (1999). 
Therefore, for we are satisfied with a description of the most important contributions regarding this 
paper: 

Skiera and Albers (1998) formulated a model which addresses both the sales territory alignment and 
the sales resource allocation problems simultaneously. For the Solution a so-called backward deletion 
procedure is considered. If desired, the algorithm can also construct connected sales territories. 

In Drexl and Haase (1999) all subproblems are covered. For the Solution a kind of tournament selection 
approach is proposed, which solves large instances within reasonable time. 

Haase et al.. (1999) address the location and alignment problem for salespersons selling motor-cars. 
The sales force sizing and the sales resource allocation problem were not relevant for their practical appli-
cation. Considering a linear profit contribution function problems with 1219 SCUs have been optimally 
solved in under 11 minutes applying the Standard Software package CPLEX (see Bixby and Boyd, 1996). 

Contribution. An innovative approach to sales force deployment is introduced which outperforms all 
previously proposed approaches. The approach is based on a new mathematical model of the sales force 
deployment problem. The model is characterized by an infinite number of variables the linear relaxation 
of which can be optimally solved using column generation. The optimal linear relaxation Solution supplies 
an upper bound. An efficient linear programming-based heuristic is presented to derive lower bounds 
also. Based on a computational study it can be stated that the gap between the lower and upper bound 
is very small and thus a high Solution quality is provided by the approaches. Moreover, it is shown that 
instances arising in practice can be solved efficiently within reasonable time. 

Overview. The Organization of this paper is as follows: Section 2 describes the problem setting. In 
particular, we define important terms and explain assumptions which are implicitly involved in these 
definitions. Section 3 introduces a new mathematical model for sales force deployment. Section 4 provides 
an approach to this formulation in which column generation is applied to derive lower and upper bounds. 
Section 5 Covers the results of a computational study. To stress the practical relevance we consider two 
applications in Section 6. A summary and conclusions are provided in Section 7. 
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2 Problem Description 

In the following we at first explain and discuss some terms which are important for understanding the 
addressed problem and then we provide a problern statement. 

Sales Coverage Unit (SCU). A sales coverage unit is considered here to be a relatively small geo­
graphica! area where the choice and thus the size of the SCUs depends upon the specific application and 
on whether the required data can be obtained (at a reasonable cost). Counties, zip codes, and Company 
trading areas are some examples of SCUs (see for instance Zoltners and Sinha, 1983, and Churchill et al, 
1993). 

Sales Territory. A sales territory is a connected geographic area which consists of a set of SCUs for 
which a salesperson is responsible. Connected means that a salesperson can travel from her location 
to each SCU in her sales territory without entering the sales territory of another salesperson. Clearly, 
this implies that the location of the salesperson is within his sales territory. An SCU which belongs to 
an island is adjacent to an SCU from the mainland if a bridge or a ship connection between both SCUs 
exists. Thus Islands can also be assigned to a sales territory with a location on the mainland. Usually, the 
Connectivity requirement is demanded by the management of a Company for some organizational reasons. 
Note, a Solution in which one or more territories are not connected may provide a better objective function 
value than the optimal Solution in which all territories are connected. Moreover, allowing an SCU be 
further partitioned between two or more salespersons may also improve the Solution quality. But this is 
not the subject here. To be responsible for a sales territory means that the salesperson has to provide 
Service for all (potential) customers located in his sales territory. For example, a salesperson who is 
working for a Company which provides materials concerning dental surgery will be responsible for all 
dentists practicing in her sales territory. She is only allowed to seil goods in SCUs which belong to her 
sales territory. 

Travel Time, Galling Time, Selling Time. In order to seil a product a salesperson has to do some 
time consuming activities. The time required to travel from a location to a customer, from a customer 
to another customer, and back to the location is called travel time. Presenting a product and performing 
contract negotiations are examples of calling activities. The associated required time is denoted as calling 
time. Now, selling time is defined as the sum of calling time and travel time. For each salesperson the 
total selling time is restricted. We assume that the calling time is a constant fraction of the selling time. 
Clearly, this may be a more or less a rough average consideration. However, in Skiera and Albers (1998) 
an example is provided in which the travel time was assumed to be underestimated by 20%: The result 
was that only 0.1% of the selling time was used for calling when it was actually used for traveling. 

Sales. The sales in a specific SCU depends on the calling time a salesperson is allocating to the SCU. 
Now, as the calling time is a constant fraction of the selling time and a restriction is defined on the selling 
time, we are going to consider the relationship between sales and selling time instead of sales and calling 
time. The relation between selling time and sales can be described by a sales response function (see 
Skiera and Albers, 1998). In applications such a function has to be specified by an econometric analysis. 
An example is provided in Haase et al (1999). 

Fixed Location Costs, Travel Costs. For each potential location fixed costs are incurred. These 
costs arise due to the fixed salary of a salesperson, the rent of an office, car insurance of a car, and so 
on. Some of these fixed costs may depend on the SCU in which a location will be set up. This may be 
reasoned by the fact that rents or site costs can be different across SCUs. Travel costs are proportional 
to travel time. 

Profit Contribution, Objective. Each unit of sales provides a certain amount of profit contribution. 
The profit contribution obtained by one salesperson is the sum of the profit contributions resulting from 
the realized sales across the SCUs of his sales territory minus the incurred costs. We consider travel costs 
and fixed location costs. The sum of profit contributions obtained by the sales force has to be maximized. 
It may be noteworthy to mention that, as in applications the realized sales is stochastic so the expected 
profit contribution will be maximized. Typically, in order to describe the relation between selling time 
and sales a concave sales response function is considered. Assuming a concave sales response function 
more selling time is necessary for the last sold product unit than for the first one. Now, more selling 
time indicates more travel time and thus more travel cost. So the travel cost incurred for the last sold 
product is larger than for the first one. Thus, in general the average profit contribution per sales unit in 
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which travel cost is taken into account decreases as the number of sold products increases. Therefore, to 
maximize Ehe profit contribution obtained by a salesperson accurately a (travel) cost function has to be 
taken explicitly into account. 

Note, in applications travel cost is not significant. 

Problem Statement. Determine the appropriate sales force size, construct a sales territory for each 
salesperson, and allocate the total available selling time of each salesperson over her sales territory such 
that the sum of profit contributions obtained by the salespersons will be maximized. 

3 Mathematical Formulation 

First, we formalize the profit contribution function needed to calculate objective function coefficients. 
Then we present an innovative mathematical model for the sales force deployment problem under concem. 

3.1 Profit Contribution Function 

Let 

a per unit profit contribution of sales, 

and consider the salesperson Iocated in SCU i allocating selling time of t to SCU j then the profit 
contribution which will be obtained by the salesperson is derived from the profit contribution function 

Pij(t) = a-sij(t)-kij(t) (1) 

where 

Sij(t) is the sales response function, 
kij(t) is the selling cost function 

of the salesperson, respectively. 
In the literature several types of sales response functions are considered (see e.g. Skiera and Albers, 

1998). Very often a concave function is proposed. 

Example. To formulate an exemplary profit contribution function we introduce some more symbols: 

b calling time elasticity (0 < b < 1) 
ßij travel time fraction of the selling time of the salesperson Iocated in SCU i allocating selling 

time to SCU j (0 < ßij < 1) 
7} scaüng parameter (rj > 0) 
h cost per travel time unit (h > 0) 

Now, by 

= *?((1 - Aj )* )ö (2) 

we define a concave sales response function and by 

kij(t) = h- ßij t (3) 

a cost function and then we derive the profit contribution function 

Pij(t) = dj tb - Oij t (4) 

where 

dj = a>7)(l~ ßijf (5) 

and 

Oij = h • ß^ (6) 

It should be noted here, that the following Solution approach is also suited for considering a calling 
time elasticity, say depending both on salesperson i and SCU j. 
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3.2 Model 

We define the parameters 

J set of SCUs, indexed by j, 
I set of SCUs (/ C J) for locating salespersons, indexed by i, 

Mj set of SCUs which are adj acent to SCU j, and 
T total selling time available per period of a salesperson, 
fi fixed cost per incurred per period for locating a salesperson in SCU i (/,• > 0) 

introduce the decision variables 

Xijt =1, if salesperson located in SCU zis allocating a selling time of / in SCU j (xijt = 0, otherwise), 

and then formulate an optimization model for sales force sizing, salesperson location, sales territory 
alignment, and sales resource allocation as follows: 

Maximize ^2 Pij{t) xijt ~ 53 & Xiit 

iei jeJte[o,T] t€[o,T] 

subject to 

= 1 * 
iE/ t6[0,T] 

X! 1 ' ~~ T Xiit - 0 ieI (9) 
j€Jt€[0,T] te[ 0,T] 

]C 12 J2 xikt>i-\v\ iei, (io) 
j€ U M,-Vte[0,T] fc€Vt€[0,T] 

v C J - Mi - i 

xijt e {0,1} ieI, jeJ,te[0,T] (u) 

The objective (7) maximizes the total profit contribution obtained by all salespersons. Equations (8) 
in combination with the binary conditions (11) assign each SCU to exactly one of the salespersons. By 
(9) selling time of a salesperson is allocated over the assigned SCUs. Note that, due to travel cost it 
may be suboptimal to allocate the available selling time completely. However, this is only a theoretical 
consideration. Relations (10) guarantee that SCUs assigned to one sales territory are connected. Note 
that these relations work similarly to constraints destroying short cycles in traveling salesperson model 
formulations (an example can be found in Haase (1997)). Ciearly, it would be sufficient to take care of 
connected subsets V C J — Mi — i, i € /, of SCUs only. Finally, binary requirements on the decision 
variables are given by (11). 

Note, xnt = 1 means that SCU i is assigned to the salesperson located in sales territory i. In other 
words, xat = 1 does not only teil us where to locate a salesperson and how much working time the sales­
person has to allocate to SCU t, it also defines how to align SCU i. Moreover, we assume by definition 
of the binary alignment variables X{jt € {0,1} that accounts are exclusively assigned to individual sales­
person. Note, this is an assumption in marketing science and marketing management, made for several 
appealing reasons. 

Remark 3.1 The objective function (7) is for given t linear, although the function Pij(t) may be a 
nonlinear function. We prefer a linear formulation as, in general, much more powerful algorithms are 
available for linear optimization problems than for nonlinear ones. However, the "price we have to pay" 
for this helpful transformation is that we have to solve a linear formulation with an infinite number of 
variables. 
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4 Solution Approach 

Due to the infinite number of variables it seems to be very hard to derive an optimal Solution for the 
sales force deployment problem (7)-(ll). Now, it is well known that for a given sales territory and some 
specific types of sales response function the optimal resource allocation can be derived very easily by 
solving a simple analytical problem (see e.g. Skiera and Albers, 1998). This refers to the development of 
a branch and bound procedure in which branching and bounding are done on the location and assignment 
decision variables Xij = J]tg[o,T] For example, if we consider the branch x^ = 1 we have to set the 
variables Xkjt = 0 for all k € I \ k ^ i and t € [0,T\. Clearly, we have then to branch on a finite number 
of variables. 

However, to derive a fast approach we require efficient methods of obtaining tight upper and lower 
bounds within reasonable time. This is the subject of the next two sections. In the next section we 
present a column generation procedure to compute upper bounds by solving the linear programming 
relaxation of (7)-(9) and (11). Then, in Section 4.2, we infcroduce an approach to obtain lower bounds 
in which column generation is applied. 

4.1 Upper Bounds 

In this section we present a column generation approach to derive an upper bound for the problem (7)-
(11). The associated master- and subproblem of the column generation procedure will be defined in the 
following. 

Master problem. Let Tij C [0, T], then 

Maximize ^ (12) 
i£l j€J 

subject to 

EZ'ü'3: i je; (is) 
iel tSTij 

yi yi t • ~ -nXiü — ® z ^ ^ (14) 
j.eJ" t€Ttj t€T%3 

Xijt >0 i € I, J € J, t € Tij (15) 

the master problem associated with the sales force deployment problem (7)—(11) is defined, i.e. the 
Connectivity restrictions (10) and the integer requirements (11) are relaxed. Note, the equality of (8) is 
now changed to inequality. This may provide more stability to the simplex algorithm when solving the 
master problem (see Merle et al.} 1998). 

Reduced Cost Function. Let 

7Tj be the dual variable associated with the j-th constraint of (13) (iVj > 0) and 
be the dual variable associated with the i-th restriction of (14) (er > 0) 

then the reduced cost function Pij(t) associated with the salesperson Iocated in SCU i who allocates 
selling time t in SCU j is defined by 

wof.;11": 

The reduced cost function Pij(t) computes the reduced cost of the variable x^t-

Subproblem. A Solution of (12)—(15) provides an upper bound for (7)—(9), if 

0 i e 1,3 e /,< 6 [0,T] (17) 

is satisfied. Checking this condition is denoted as the subproblem. 
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Solution of the Subproblem. Let be the selling time which maximizesp^t). Considering* 6 [0,T], 
we determine the optimal feasible selling time by 

r % %=\T 
0 <t'{j<T 
t'ij > T (18) 
otherwise 

Now, if 

PiM)< 0 «e i,j e J (19) 

then (17) is satisfied. 
Note, we have to consider only a finite number of selling time values to check (17). 

Example. Consider the profit contribution function (4) with the sales response function (2) and the cost 
function (3). Then we have to maximize 

75 (A = i Cij ^ -°ijt-~7r3-(t-T)a'i '• * = J (20) 
j 1 °ij tb - °ij t — irj-t-o-i : otherwise 

for all i € I and j € J. DifFerentiating (20) with respect to t and setting the derivative equal to zero 
leads to: 

b • tb~1 - Oij — o~i = 0 (21) 

Rearranging and applying (18) leads to: 

. J./T- \ (6— 1) 
ij + <Ti > o (22) 

: otherwise 

Thus to check whether a basic Solution of the master problem provides an upper bound we have to 
compute the expression (22) and then p-(Z^) for each combination of i £ / and j 6 J. Now, if for at 
least one combination i 6 I and j 6 J Pijfäj) > 0 then the basic Solution can be improved by appending 
the column corresponding to the variable Xiwhere tm = t*j to the master problem. 

Column Generation Procedure. The column generation approach to Computing an upper bound of 
the addressed problem (T)—(11) is outlined in Table 1. In step 0 we define an initial Solution in which 
every potential location is assigned to a salesperson. Note, the initial master problem contains only the 
variables XHT, i.e. Xijt = 0 for all i,j,t | i ^ j. It follows that the SCUs which are not suited to the 
location of a salesperson are not assigned in step 0. In step 1 we solve the current master problem (with 
the simplex algorithm). From the optimal basic Solution we compute the associated dual variables in step 
2. Solving (18) we derive the optimal selling times in step 3. Then in step 4 we extend the master problem 
only by those variables which have positive reduced cost (multiple pricing). This process is repeated as 
long as at least one variable (column) is appended to the master problem in step 3 (see step 5 and step 
6). 

Table 1: Upper Bounds - Sales Force Deployment 

step 0 { 0 . otherwise 
step 1 solve (12)—(14); 
step 2 derive 7Tj Vj and <7; Vi from current Solution; 
step 3 Vi, j : determine 
step 4 Vi,; : ifPijit-j) > 0 then % := TijUt^; 
step 5 if 3 Pij{tij) > 0 goto step 1; 
step 6 stop; 
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4.2 Lower Bounds 

In this subsection we are now going to describe a heuristic Solution approach to the problem (7)-(ll). 
It is based on the upper bound Solution approach introduced in the preceding subsection. At first, we 
focus on determining the locations which should be set up. Clearly when determining the locations to be 
set up we also derive the sales force size. For each set of locations - which may provide a "good" lower 
bound - we obtain the sales territories and compute the associated selling time allocations. 

In the following we present some procedures and functions which are used by the lower bound method. 

Location Deletion. Given a Solution of (12)—(15) compute for each potential location i E / the sum of 
associated decision variables 

Xi — ^ %iit' 
t£Ta 

Then calculate 
Xk = min{A"i | i E /; Xi > 0} 

and remove k from I, i.e. remove all decision variables associated with the salesperson Iocated in SCU k 
from the master problem (12)—(15). 

Initial Alignment. We assume 0^7. Define yj E I U {0} where yj = i means that the SCU j 
is assigned to the salesperson Iocated in SCU i and yj = 0 that SCU j is assigned to none of the 
salespersons. Initialize yj = 0 for all j E J. Then set y,- = i for all i 6 I. Repeat as long as (yj = 0) 
exists: V& E J and Vi E Nk if (yi< > 0) and (yi = 0) then set %/, = y 

Note, using a first-in-first-out list the initial alignment can be done in linear time. 

Resource Allocation. For a given sales territory the resource allocation can be solved by applying the 
column generation procedure proposed in the preceding subsection whereby the total master problem 
can be decomposed in |/| independent small master problems in order to accelerate the Solution process. 
Now, if we consider the special case of (4) with 0{j = 0 then an optimal resource allocation is provided 
by 

tij = ^ s.T ei, je Ji (23) 

where a = 1/(1 — b) and Jt- denotes the set of SCUs assigned to the salesperson Iocated in SCU i (see 
Einbu, 1981, and Skiera and Albers, 1998). 

Insertion Feasibility. An SCU j can only be assigned to the sales territory of the salesperson who is 
Iocated in SCU i, if k E Nj with yk = i exists. With respect to this requirement the sales territory of the 
salesperson Iocated in SCU i remains connected. 

Removement Feasibility. An SCU can only be removed from a sales territory if the sales territory 
remains connected. Let m be the number of SCUs which are assigned to a specific sales territory. The 
sales territory is connected if m is equal to the number of SCUs, say n, which can be reached from a 
location without the necessity of going through another sales territory, n can be computed in linear time 
as follows: Consider the sales territory of the salesperson Iocated in SCU i. Define Zj = 1 indicating that 
SCU j is already considered, and zj = 0 otherwise. Let F be a subset of SCUs which can be reached 
from SCU i. We initialize Zj =z 0 for all j E J | j ^ i, = 1, F = {%}, and n = 1. Now, for all k E F first 
remove k from F and secondly consider all j E 7V&: if (zj — 0) and (yj = i) then let n = n+ 1, F = FUj, 
and Zj = 1. This procedure terminates as long as F is empty. Note, each j E J is at most an element of 
F once. Clearly, if (n < m) then the sales territory of the salesperson Iocated in SCU i is not connected. 

Improving Sales Territory Alignment. A given sales territory alignment may be improved by 
removing an SCU from a sales territory and inserting the SCU into another sales territory. If such 
an exchange is feasible, i.e. checking Insertion and removement feasibilty, we perform a new resource 
allocation (see Skiera and Albers, 1994). Now, if this does not result in an increased lower bound value 
we will revoke the exchange. In general, the resource allocation may require much computation time. 
Therefore, we propose to develop a specific criteria to decide whether an SCU exchange probably results 
in an improvement or not. For example, consider the special case which is assumed for (23) and we want 
to evaluate the exchange of SCU j from the salesperson Iocated in SCU % who is allocating a selling time 
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off in SCU j to the salesperson located in SCU k. We propose to compare Pij(t) and Pkj(t*) where tm is 
derived from (23) with Jk = Jk U j. Now, if 

Pij(t) <Pkj(t°) (24) 

then an exchange improves the current alignment. 

Lower Bound Method. An outline of the proposed heuristic approach is given in Table 2: In step 0 
we initialize the best lower bound value LB* and the set of SCUs I* in which a salesperson should be 
located. In step 1 we apply the upper bound procedure proposed in the preceding subsection which now 
terminates if for all i £ I and j e J the reduced cost p^t) is less than ci > 0. Note, the larger ei the 
earlier the upper bound procedure terminates. Thus by cj we influence the required total computation 
time. In step 2 the UB takes the objective function value, denoted as ofv, of the basic Solution derived in 
step 1. Now, if this value is less than the objective function value of the best known lower bound Solution 
LB* we proceed with step 14• This means that we conclude that the lower bound cannot be improved 
further by reducing the number of locations. As described above, in step 3 we remove one SCU, indexed 
by k, from the set of SCUs corresponding to the set of potential locations. Clearly, all variables associated 
with this location, i.e. Xkjt for all j G J and t E [0,T], will be removed from the master problem. Now, 
if the associated value of Xk is less than e2 < 1, i.e. if Xk is relatively small we suppose that the current 
set I does not provide a competitive feasible Solution (see step 5). From step 5 to step 8 we determine 
a feasible Solution. The corresponding statements are described above. Note, in step 8 the improvement 
procedure terminates depending on €3, i.e. the larger €3 the earlier the termination criterion is satisfied. 
Thus by the choice of 63 we influence the total computation time. The current lower bound value is LB 
(see step 9). Now, if this current lower bound is less than the best known lower bound we conclude that 
no better lower bound can be obtained by reducing the number of locations (see step 10). In step 10 and 
step 11 we update the variables for taking the actual best lower bound value and the corresponding set 
of locations. In step 14 we try to irnprove the current best Solution. This is apporpriate due to step 8. 

Note, in the following SFDCG, sales force deployment by column generation, denotes the lower bound 
method as described in Table 2. 

Table 2: Lower Bound - Sales Force Deployment - SFDCG 

step 0 initialize LB* = —00 and I* = I; 
step 1 upper bound procedure with pricing out Pij(t) > €\\ 
step 2 UB = ofv of master problem Solution; 
step 3 if UB < LB* then goto step 14; 
step 4 location deletion ^ Xk,k is removed from /; 
step 5 if Xk < £2 then goto step 1\ 
step 6 initial alignment; 
step 7 resource allocation; 
step 8 improve sales territory alignment 

as long as 3pij(t) + e3 < pkj{t') ; 
step 9 LB = ofv of step 8 Solution; 
step 10 if LB < LB* goto step 14; 
step 11 LB* = LB; 
step 12 /* = /; 
step 13 goto step 1; 
step 14 improve sales territory alignment based on I* 

as long as 3pij(t) < pkj(t') ; 
step 15 stop. 

5 Computational Experimentation 

The algorithms have been coded in C and implemented on a 350 MHz Pentium machine under the 
operating System Linux. For solving the master problem we used the LP-solver provided by CPLEX. 
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To evaluate the Performance of the proposed methods we take the instance generator as described in 
Drexl and Haase (1999). We assume that the cardinality of the set I of potential sales territory centers, 
the cardinality of the set J of SCUs, and the expected fixed costs E[fi\ to setup a location in SCU i have 
a major impact on the Performance of the algorithms. 

The fixed cost are generated as follows: 

fi = £7(0.75 • E[fi], 1.25 -E[fi]) (25) 

where U(a,b) denotes the uniform distribution over the interval [a, b]. We assume that can be negleted, 
i.e. = 0. As such, (23) can be applied with ease to the computation of the optimal resource allocation 
and we have the opportunity to compare SFDCG with the approaches proposed in Haase and Drexl (1999) 
and in Skiera and Albers (1998). 

In Table 3 the parameter settings of SFDCG which are used to derive lower bounds are given. 

Table 3: Values of SFDCG Control Parameters 

fl f2 f3 
5.00 0.10 0.01 

Table 4 provides the results required to analyze the Solution quality of SFDCG. Each entry is the 
average result of 10 solved instances. On the average the Solution gap is less than 1%, i.e. the upper and 
lower bounds are close to the optimum objective function value. Increasing the expected fixed cost the 
Solution gap increases slightly. The same result can be observed when the number of potential locations 
is increased. However, the results indicate - at least in case of a concave objective function - that very 
large instances can now be solved very close to optimality. 

Table 4: Bounds - Generated Instances 

U\ UB LB % gap 
500 100 1,000 138,320 137,590 0.53 
500 100 2,500 95,933 95,080 0.89 

1,000 100 1,000 272,642 271,435 0.44 
1,000 100 2,500 195,771 195,001 0.40 
1,000 250 1,000 292,148 290,861 0.44 
1,000 250 2,500 203,389 202,417 0.48 
5,000 250 5,000 738,070 736,185 0.26 
5,000 500 5,000 757,005 754,709 0.30 
5,000 250 10,000 554,457 549,161 0.95 
5,000 500 10,000 564,743 558,096 1.18 

The computation times in seconds required to derive the lower and upper bounds are given in Table 
5. We see that for extremely large instances upper and lower bounds can be obtained within reasonable 
time. Note, in Drexl and Haase (1999) an upper bound procedure is presented by which instances with 
up to 500 SCUs are solved. This upper bound procedure was not suited to solving much larger instances. 
Thus the upper bound method proposed here is much more efficient. Now, let us consider some details of 
Table 5: The larger the instance size or the expected fixed cost the more computation time is required, 
whereby the increase is moderate. Note, the larger the fixed costs the smaller the sales force will be, i.e. 
the more often we have to perform step 4 to step 9 of SFDCG. 

Table 6 provides some Information about the Solution process. The results emphasize the Interpreta­
tion of the computation times in Table 5, i.e. the number of generated columns required to compute an 
upper and a lower bound increases when increasing the instance size or the expected fixed cost. 

Table 7 provides a comparison between the approach of Skiera and Albers (1998), denoted as COSTA, 
and SFDCG. In COSTA the location aspect and sales force sizing is not considered, i.e. for a given set 
of locations the sales territories are designed and the associated sales resource allocations are computed. 
For the 19 instances refered to in Table 7 the average Solution gap of SFDCG was 0.099%. The algorithm 



Table 5: CPU-sec. - Generated Instances 

\J\ |/| Elfi} UB LB TOTAL 
500 100 1,000 16 37 53 
500 100 2,500 22 50 71 

1,000 100 1,000 42 56 98 
1,000 100 2,500 48 127 175 
1,000 250 1,000 90 361 452 
1,000 250 2,500 161 527 688 
5,000 250 5,000 2,408 8,170 10,578 
5,000 500 5,000 4,410 19,246 23,656 
5,000 250 10,000 2,195 7,061 9,256 
5,000 500 10,000 3,527 16,902 20,428 

Table 6: Results - No. of Generated Columns and |/*| - Generated Instances 

\I\ E{fi] UB LB in 
500 100 1,000 7,825 14,630 60 
500 100 2,500 10,507 20,425 20 

1,000 100 1,000 11,812 15,772 90 
1,000 100 2,500 13,964 25,616 37 
1,000 250 1,000 24,441 57,981 127 
1,000 250 2,500 31,295 77,440 43 
5,000 250 5,000 79,374 157,683 72 
5,000 500 5,000 152,361 359,112 80 
5,000 250 10,000 87,870 177,919 31 
5,000 500 10,000 153,200 378,263 33 
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of Skiera and Albers (1998) provides a Solution gap of 0.195% (see Sklera and Albers, 1998). That is, the 
more general approach SFDCG provides a higher Solution quality than COSTA. Furthermore, also when 
dividing the computation times of COSTA by 4 to take into account the different machine powers SFDCG 
is significantly faster than COSTA. Thus, SFDCG outperforms COSTA. 

Table 7: Comparison with Skiera and Albers (1998) - Generated Instances (E[fi] = 0, (10) relaxed) 

\J\ \I\ 
SFDCG COSTA 

\J\ \I\ LB CPU % gap CPU1 

50 10 18,883 0.31 0.00 1 
100 10 35,808 0.85 0.06 4 
200 10 57,732 2.40 0.00 15 
400 10 92,152 6.21 0.00 49 
75 15 33,978 0.70 0.37 3 

150 15 53,585 1.42 0.02 10 
300 15 87,576 4.49 0.06 41 
600 15 139,531 12.99 0.01 141 
125 25 54,976 1.87 0.08 8 
250 25 98,477 4.19 0.04 31 
500 25 138,239 14.23 0.03 132 

1,000 25 231,474 38.84 0.01 502 
250 50 122,331 6.63 0.25 40 
500 50 175,947 21.90 0.12 161 

1,000 50 289,913 60.77 0.02 933 
2,000 50 473,985 210.06 0.02 3,093 

500 100 220,727 34.17 0.45 290 
1,000 100 360,316 83.01 0.25 1,359 
2,000 100 587,120 289.61 0.09 5,951 
1 Computed on a 133 MHz Pentium machine 

Now, we will compare SFDCG with CONIMP which denotes the heuristic approach for sales force 
deployment introduced in Drexl and Haase (1999). We perform the same computational study as in 
Drexl and Haase (1999) to explore the Solution quality of CONIMP. The results are given in Table 8. We 
see that for all instance sizes SFDCG provides on average a significantly smaller Solution gap than CONIMP. 
Moreover, SFDCG computes a Solution much faster that CONIMP. 

Table 8: Comparison with Drexl and Haase (1999) - Generated Instances 

\A M 
SFDCG CONIMP 

\A M LB CPU % gap LB CPU % gap 
50 10 11,712 0 1.70 11,509 0 3.39 
50 25 12,408 1 2.14 12,217 0 3.65 
50 50 12,919 2 1.93 12,736 0 3.30 

100 10 25,680 1 0.41 25,611 0 0.68 
100 25 27,858 2 0.83 27,619 1 1.69 
100 50 29,040 4 1.13 28,465 4 3.04 
250 50 70,139 11 0.57 69,775 27 1.09 
500 50 131,289 25 0.54 130,962 107 0.79 

6 Applications 

In this section we consider two applications published in the literature. The first one is presented by 
Skiera and Albers (1998) and the other one by Drexl and Haase (1999). 
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For the computation of the solutions we have again used a 350 MHz Pentium machine under the 
operating system Linux and the parameter settings as defined in Tabel 3. 

Application 1. In Skiera and Albers (1998) the results of an application of COSTA in a mid-sized 
German Company are presented. The Company had hired 10 salespersons and adopted the 95 two-digit 
postal areas of Germany as SCUs. The follöwing sales response function was considered: 

sy (i) = 1350 POT,0'625 (1 + ?,i)"0-375 1?/75 (26) 

where 

POT,- is the number of potential accounts and 
qij is the ratio of travel time to calling regarding salesperson i in SCU j. 

Now, defining 

dj = 1350 POT?'625 (1 + qij)"0'375 (27) 

we derive 

Thus, (23) can be applied for resource allocation. The total available selling time is T = 1,300 time 
units for each salesperson. Each salesperson has a fixed location, i.e. fixed costs have not to be taken 
into account in the setup of a location. Moreover, as no significant travel costs are considered, we define 
Oij — 0. A comparison of the Solution qualities of COSTA and SFDCG is given in Table 9. Again SFDCG 
outperforms COSTA. 

Table 9: Application 1 - Skiera and Albers (1998) 

SFDCG COSTA 
\J\ |/| UB CPU1 % gap2 % gap % gap 
95 10 21,075,077 0.67 0.05 0.83 1.13 
1 UB computation time (in seconds) 
2 Connectivity relaxed 

Application 2. In Drexl and Haase (1999) an application in the distribution of beverages is presented. 
The purpose of the application was to redesign the sales force deployment of FAXE - part of the Dan-
ish distributor of beverages "Bryggerigroupen Danmark AS" - in Schleswig-Holstein (northern part of 
Germany with 2.7 million inhabitants). 

The following sales response function was considered1: 

Sij(t) = 0.205 Hj • (4.6 + dij)-°'285 i?/85 (29) 

where 

Hj is the number of inhabitants of SCU j and 
dij is the time to drive from SCU i to SCU j. 

Note, again (23) can be applied for resource allocation. 
Here, as demanded by the management we had considered a modification of this instance. In the 

city Kiel the Company runs a central distribution störe. To reduce the total location cost and for some 
other reasons the management decided that one location of a salesperson has to be setup in the central 
distribution störe. This requirement was easily modeled by assigning fixed location costs of zero regarding 
the SCU in which the störe is Iocated. The results of our Solution approach are summarized in Table 10 

^Note, some of the data are biased, because FAXE views our work with them as proprietary. They do not want their 
competitors to know all the details. 



13 

and Table 11, respectively, The Solution was obtained in less than 10 minutes with a gap of 2.59% (see 
Table 10). The gap is small. However, the gap is larger than one may expect when taking into account 
the results of the preceding section. This may be reasoned as follows: The values of c^- are now not as 
uniformly distributed across the SCUs as in the randomly generated instances. Furthermore, the fixed 
costs are larger than the expected fixed costs of the generated instances. 

The proposed locations (see Table 11) and sales territories are illustrated in Figure 1. It is worth 
noting, that the results have been very well accepted by the management. 

Figure 1: Redesigned Sales Territory for Schleswig-Holstein 

Table 10: Performance of Application 2 - Drexl and Haase (1999) 

\J\ |/| UB LB CPU-TOTAL % gap 
1219 125 1,326,183.67 1,292,197.33 574.33 2.56 

7 Conclusions 

In this paper it is shown how four interrelated sales force deployment subproblems can be modeled and 
solved simultaneously. These subproblems are: sizing the sales force, salesperson location, sales territory 
alignment, and sales resource allocation. More specifically an integrated mixed-integer programming 
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Table 11: Solution of Application 2 - Drexl and Haase (1999) 

GEOCODE Name Inhabitants 
1002000250 KI-Mettenhof 
1003000603 HL-Dornbreite 
1056041000 Quickborn 
1058054000 Fockbek 

7,086 
18,008 
5,180 

18,689 

model is formulated. For the Solution of the model we present a newly developed effective and efficient 
column generation approach. 

The methods are evaluated on two sets of instances. The first one stems from a systematic generation 
of a representative set of problem instances covering all problem parameters at hand. The second consists 
of two applications. Benchmarking the results with the help of upper bounds shows that the methods 
allow very fast Solution of large-scale instances close to optimality. 

The methods provide lower bounds and upper bounds for the optimal objective function. On average 
the Solution gap, i.e. the difference between upper and lower bound, is roughly 1%. Moreover, previously 
proposed Solution approaches are outperformed. 
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