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Abstract 
This paper introduces a new general framework for genetic algorithms to solve a 

broad ränge of optimization problems. When designing a genetic algorithm, there may 
be several alternatives for a component such as crossover, mutation or decoding proce-
dure, and it may be difficult to determine the best alternative (e.g., the best crossover 
strategy) a priori. For such cases, we suggest to include alternative components into 
the genetic algorithm. Indicating the component to be actually used in the genotype, 
this allows the genetic algorithm to adapt itself. That is, the genetic algorithm learns 
which of the alternative components is the most successful by means of genetic opti­
mization. In order to demonstrate the potential of the self-adapting genetic algorithm 
concept, we apply it to the classical resource-constrained project scheduling problem 
(RCPSP). Motivated by previous computational studies as well as theoretical insight, 
we employ two different decoding procedures and leave the decision which of them to 
select to the evolution. The approach is further enhanced by a problem-specific local 
search extension. An in-depth computational experimental analysis shows that the 
self-adapting genetic algorithm approach is currently the most promising heuristic for 
the RCPSP. 

Keywords: Genetic Algorithm, Self-Adaptation, Local Search, Project Schedul­
ing, Computational Results. 

1 Introduction 

Genetic algorithms (cf. Holland [11], Goldberg [8]) have become a populär metaheuristic 
strategy to tackle difficult optimization problems. They are known as robust and affective 
methods that allow to obtain near-optimal solutions in adequate computation times. When 
designing a genetic algorithm for a specific problem, one has to define the components of 
the algorithm such as problem representation, decoding procedura, and crossover operator. 
There is often a choice between several alternative components, e.g., alternative decoding 
procedures or alternative crossover operators. The usual approach then is to select one 
alternative for each component on the basis of computational experiments. 

In this paper, we describe a new and more general genetic algorithm approach in which 
the components are not necessarily fixed. In some cases, it is difficult if not impossible to 
determine one alternative for a component as the best. This may occur if, e.g., the different 
alternatives perform differently on different sets of test instances which would make the 
genetic algorithm design dependent on the test set. We propose a genetic algorithm 
framework which allows to use several alternatives for each component. The best suited 
component is selected by genetic mechanisms while the genetic algorithm solves some 
particular problem instance. We call the resulting meta strategy self-adapting genetic 
algorithm because it automatically learns which of the component alternatives perform 
best. 

After a description of the general self-adapting genetic algorithm framework, we demon­
strate its power by applying it to the resource-constrained project scheduling problem 
(RCPSP). In the RCPSP, the activities of a project have to be scheduled such that the 
makespan of the project is minimized. Thereby, technological precedence constraints have 
to be observed as well as limitations of the renewable resources required to accomplish the 
activities. The RCPSP is a classical and challenging optimization problem that has at-
tracted many researchers; for overviews see Brucker et al. [4], Kolisch and Hart mann [16], 
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Kolisch and Padman [17], and Özdamar and Ulusoy [24]. Moreover, it is Important for 
practitioners as well with various applications ranging from project management Software 
to leitstand systems for production planning. 

Applying the self-adapting genetic algorithm concept to the RCPSP, we show that it 
is useful to consider two different decoding procedures in the genetic algorithm because it 
cannot be decided in advance which of them will be the more promising one for an RCPSP 
instance to be scheduled. Therefore, we define a genetic algorithm that is capable of 
adapting itself by determining the decoding procedure that is found to be more successful 
when solving the project instance under consideration. Subsequently, we provide the 
results of our computational investigation in which we compared the new approach with 
several project scheduling heuristics from the literature. 

2 Framework for Seif-Adapting Genetic Algorithms 

2.1 Genetic Algorithm Components 

Introduced by Holland [11], genetic algorithms (GAs) serve as a heuristic meta strategy to 
solve hard optimization problems. Following the basic principles of biological evolution, 
they essentially recombine existing solutions to obtain new ones. The goal is to successively 
produce better solutions by selecting only the best of the existing ones for recombination. 
For an introduction into GAs, we refer to Goldberg [8]. The classical genetic algorithm 
concept includes the following four basic components: 

• The fitness Function measures the quality of a Solution, usually in terms of the 
underlying objective function, but it may also consider violations of constraints. 

• The crossover operator defines how two (or, occasionnally, more than two) existing 
solutions are recombined to a new Solution. 

• The mutation operator randomly changes parts ("genes") of an existing Solution. 

• The selection operator is responsible for deciding which solutions are good enough 
to "survive" (and produce offspring in the next generation) and which are deleted 
from the population. 

In many optimization problems, GAs operate on so-called representations of solutions 
rather than on solutions themselves. Such an approach is common if it is impossible to 
find appropriate genetic Operators that modify existing solutions. For example, in many 
scheduling problems, it would be difficult to find a crossover operator that would recombine 
two existing solutions (i.e., schedules) to a new Solution while observing all constraints of 
the problem at hand. Hence, in GAs, schedules are often represented by, e.g., scheduling 
Orders or priority sequences from which the schedules have to be computed. In general, 
many GAs also include the following two components: 

• The representation makes up the individuals' genotypes and encodes the solutions 
for the optimization problem. 

• The decoding procedure is needed for Computing the actual Solution that is rep­
resented by an individual. 

3 



While these GA components are the most important ones, there are several more 
that can be incorporated for certain problem characteristics. As an example, consider 
so-called repair Functions that are sometimes used to turn infeasible solutions (or their 
representations) into feasible ones. For a more detailed discussion of this and further GA 
components, we refer to Michalewicz [21]. In this paper, we focus on the six components 
listed above. 

2.2 Designing a Genetic Algorithm 

When designing a GA for a specific optimization problem, each of the general components 
has to be defined with respect to the requirements of the problem. Typically, there is more 
than one choice for a component. For example, the selection operator may be deterministic 
or probabilistic (cf. Michalewicz [21]), and the crossover operator may follow a one-point, 
two-point or uniform strategy (cf. Hart mann [9]). These choices give the designer of the 
GA a lot of possibilities to construct a very good heuristic. But this also means that 
many computational tests of alternative GA settings are necessary before really the best 
crossover operator or the best decoding procedure is determined, because the choices can 
be crucial for the success of the heuristic. Using genetic algorithm principles alone does not 
guarantee a good heuristic; the choice of the components seems to have a higher impact 
than the metaheuristic strategy (cf. Hartmann and Kolisch [10]). We will consider this 
issue in our computational experiments. 

Consequently, the usual way to design a GA is to test as many alternative GA settings 
as possible on the basis of a set of test problems that is representative for the problem 
instances to be solved. Then the best GA variant is chosen, in other words, the combination 
of representation, crossover operator, decoding procedure and so on that performs best. 
This foregoing is appropriate for many situations. There are, however, some important 
cases in which this foregoing may not always lead to the best possible GA heuristic: 

• The problems (and hence also the test problems) are heterogenous in the sense that 
for some problem characteristics one variant (e.g., one representation) performs best 
but for other problem characteristics another variant is better. This would make the 
choice of a GA variant as the overall best questionable. 

• It is not a priori clear which set of test problems can be viewed as representative for 
the real-world application of the GA after its design is completed. Clearly, different 
test sets may favor different GA variants. 

• A component might be better suited for longer computation times whereas an alter­
native one is superior for short-term optimization. 

• Some component may perform well in the first few generations of the GA (which 
is usually characterized by a rough search not yet close to the Optimum) while an 
alternative one is favorable for the Iater generations. In-depth computational studies 
allow to detect such an effect. In this case, considering both components in the GA 
is more promising that selecting only one. 
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2.3 Seif-Adaptation 

Instead of a GA in which each component is fixed by the designer, we propose a more 
general seherne which we call self-adapting genetic algorithm. The underlying idea is to 
include more than one alternative for a component into the GA and make the choice which 
alternative is actually used subject to genetic mechanisms. This means that not only the 
solutions of the optimization problem to be solved are subject to genetic optimization 
but also the GA components themselves. In other words: We extend the optimization 
problem from finding a good Solution to finding a good GA that finds a good Solution for 
the specific problem instance currently solved. The basic idea is to include the Information 
which GA components are to be used into the individual's genotypes, extending the latter 
by one gene for each variable component. 

Classical GAs operate on individuals ri,r2)... of (fixed) representation type R. Via 
(fixed) decoding procedure d, they lead to solutions Si, sg,... of the optimization problem 
to be solved, that is, d(n) = si,d(r2) = Let us for the following discussion 
assume that we want to use alternative decoding procedures d and d' in the GA. Now 
an individual's genotype consists of both the problem representation and the decoding 
procedure. That is, the genotype has the form (ri, d), (7*1, d!), (r2, d)} (7*2, d'),— In the 
classical GA described above, n would always be decoded by procedure d to d(rx). Now the 
individual additionally includes the Information which decoding procedure is to be used, 
that is, genotype (ri,d) leads to Solution d(r 1) while genotype (ri,d!) leads to Solution 
d'(r 1). Note that we may have d(ri) ^ d'(r{) for some representation r\ (otherwise 
both decoding procedures would be identical). We now need to extend the crossover 
operator already defined for representations of type R by stating from which of its parents 
a new child individual inherits the gene indicating the decoding procedure. Alternatively, 
we could allow only individuals with the same decoding procedure to mate (although 
this may be a bit too restrictive). As the GA lets only the best individuals survive, 
the percentage of the more promising decoding procedure (d or d') will increase in the 
population. This means that the better suited GA variant (with the better suited decoding 
procedure component) develops while it is solving the actual problem instance. 

Clearly, other alternative components of the GA can also be included into an extended 
genotype. For example, an individual of (r, d, c, m) would contain the representation r of 
the Solution itself, the decoding procedure d, the crossover operator c which applies when 
this individual mates, and the mutation operator used in its offspring. It is also possible 
to have more than one representation type. This, however, may lead to the particular 
difficulty to define a crossover operator to recombine genotypes containing different prob­
lem representations. This problem can always be considered by allowing only genotypes 
with representations of the same type to recombine. Generally speaking, a self-adapting 
GA based on an extended genotype is able to choose its components with respect to the 
experience gained over the previous generations spent on the actual problem instance. 

It should be mentioned, though, that one should be careful when deciding which com­
ponents should be chosen by the GA and which fixed in advance by the designer. Of 
course, it may deteriorate the GA not to consider alternative components, but using alter­
natives for another component may in fact also deteriorate the GA. The latter case occurs 
if one includes a component that is generally inferior to an alternative one because time is 
wasted for constructing solutions using inferior operators. Therefore, specific knowledge 
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of the problem to be solved as well as an in-depth computational analysis should always 
be the basis for designing a GA—especially a self-adapting GA. 

3 The Resource-Constrained Project Scheduling Problem 

Our goal is to demonstrate the applicability of the self-adapting GA using the classical 
resource-constrained project scheduling problem (RCPSP). This section briefly describes 
this problem. 

We consider a project which consists of J activities (jobs) labeled j = 1,..., J. The set 
of activities is referred to as J — {1,..., J}. Due to technological requirements, there are 
precedence relations between some of the jobs. These precedence relations are given by 
sets of immediate predecessors Vj indicating that an activity j may not be started before 
all of its predecessors are completed. Analogously, Sj is the set of the immediate successors 
of activity j. The precedence relations can be represented by an activity-on-node network 
which is assumed to be acyclic. We consider additional activities j — 0 representing the 
Single source and j — J -f1 representing the Single sink activity of the network. 

With the exception of the (dummy) source and (dummy) sink activity, each activity 
requires certain amounts of (renewable) resources to be performed. The set of resources 
is referred to as K. For each resource k e K the per-period-availability is constant and 
given by R&. The processing time (duration) of an activity j is denoted as pj, its request 
for resource k is given by r^. Once started, an activity may not be interrupted. W.l.o.g., 
we assume that the dummy source and the dummy sink activity have a duration of zero 
periods and no request for any resource. 

The Parameters are assumed to be nonnegative and integer valued. The objective 
is to determine a schedule with minimal makespan such that both the precedence and 
resource constraints are fulfilled. Mathematical programming formulations of the RCPSP 
have been given by, e.g., Demeulemeester and Herroelen [6, 7], Mingozzi et al. [22], and 
Sprecher [30]. 

4 Self-Adapting Genetic Algorithm for Project Scheduling 

4.1 Basic Scheine 

This section introduces a self-adapting GA for the RCPSP. It is based on a genotype which 
consists of a problem representation of so-called activity lists as well as information which 
of two available decoding procedures is to be used. That is, the self-adaptation mechanism 
selects the decoding procedure whereas the other components are fixed. A more detailed 
description of the genotype is given in Subsection 4.2. 

The GA starts with the computation of an initial population, i.e., the first generation, 
which is described in Subsection 4.3. The number of individuals in the population is re­
ferred to as POP which is assumed to be an even integer. The GA then determines the 
fitness values of the individuals of the initial population. After that, the population is ran-
domly partitioned into pairs of individuals. To each resulting pair of (parent) individuals, 
we apply the crossover operator (see Subsection 4.4) to produce two new (child) individ­
uals. Subsequently, we apply the mutation operator (see Subsection 4.5) to the genotypes 
of the newly produced children. After Computing the fitness of each child individual, we 
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add the children to the current population, leading to a population size of 2 • POP. Then 
we apply the selection operator (see Subsection 4.6) to reduce the population to its former 
size POP and obtain the next generation to which we again apply the crossover operator 
and so on. This process is repeated for a prespecified number of generations which is 
denoted as GEN or, alternatively, until a given CPU time limit is reached. 

If the best Solution found so far has not been improved over a given number of gener­
ations denoted as IMP and if the maximal number of generations GEN has net yet been 
reached, we stop the self-adapting GA prematurely and start a local search phase. The 
idea behind this is that the genetic search appears to be not successful in further improv-
ing the best Solution found. In such a Situation it seems more promising to continue with 
local search; exploring the neighborhood of a good Solution already found may be a more 
efficient way to lead us very close to the Optimum than the rather rough genetic search. 
We pick the best individual from the last population of the GA (ties are broken arbitrarily) 
and try to improve it by local search. If, during that local search execution, some stopping 
criterion is met, we skip to the next best individual of the last population for local search 
improvement and so on. If altogether POP • GEN schedules have been visited (i.e., by 
the GA itself and by local search) or if a global time limit has been reached, the heuristic 
stops. That is, denoting the last generation of the GA with G} at most POP • (GEN — G) 
schedules are generated by local search. Note that if the self-adapting GA continuously 
leads to improved solutions, the local search phase is not executed at all. A detailed de-
scription of the local search phase of our RCPSP heuristic in given in Subsection 4.7. The 
underlying local search neighborhood is outlined in Subsection 4.8. 

4.2 Problem Representation and Decoding Procedure 

The problem representation for the RCPSP is based on the activity list concept which 
performed better than other representations the computational experiments of Hartmann 
[9]. Within an activity list A = (j'%,... ,jj), each of the J non-dummy activities of the 
project appears exactly once. We consider only precedence feasible activity lists. An 
activity list is called precedence feasible if an activity's predecessors occur always before 
that activity in the list. Formally, that is Vj. C {OJi,... for i = 1,..., J. 

In several metaheuristics from the literature, the so-called serial schedule generation 
scheme (serial SGS for short) is employed as decoding procedure for activity list represen­
tations (cf., e.g., Baar et al. [1], Bouleimen and Lecocq [3], and Hartmann [9]). The serial 
SGS constructs schedules from activity lists as follows: First, the dummy source activity 
is started at time 0. Then the activities are scheduled in the order that is prescribed by 
the list (ji,... Jj). Thereby, each activity is assigned the earliest precedence and resource 
feasible start time. Clearly, the serial SGS always constructs a feasible schedule for any 
instance of the RCPSP. 

In the context of priority rule based heuristics, another scheduling algorithm for the 
RCPSP, the so-called parallel SGS, has been employed (cf. Kolisch [14]). Having sched-
ulesd the dummy sink activity at time 0, the prarallel SGS computes a so-called decision 
point which is the time at which an activity to be scheduled is started. This decision point 
is determined by earliest finish time of the activities currently in process. For each deci­
sion point, the set of eligible activities is computed as the set of those activities that can 
be feasibly started at the decision point. The eligible activities are selected successively 

7 



and started until none are left. Then the next decision point and a related set of eligible 
activities are computed. This is repeated until all activities are feasibly scheduled. We 
can adapt the parallel SGS to make it suitable as decoding procedure for activity lists by 
choosing that activity from the eligible set that has the lowest index in the activity list. 

It is important to note that these two decoding procedures, the serial and the parallel 
SGS, are inherently different (we will see this in the computational results of Section 5). 
The reason for this is that the serial SGS constructs so-called active schedules whereas the 
parallel one constructs so-called non-delay schedules (cf. Sprecher et al. [31]). The set of 
the non-delay schedules is a (in most cases proper) subset of the set of the active schedules. 
While the set of the active schedules always contains an optimal schedule, this does not 
hold for the set of the non-delay schedules. Consequently, the parallel SGS may miss 
an optimal schedule. On the other hand, it produces schedules of good average quality 
because it tends to utilize the resources as early as possible, leading to compact schedules. 
This leads to different behavior in computational experiments (cf., e.g., Kolisch [14] and 
Hartmann and Kolisch [10]): 

• On instances with many activities and/or scarce resource capacities, the parallel 
SGS performs better than the serial one. 

• If long computation times are allowed (i.e., if many schedules can be computed), the 
serial SGS leads to better results than the parallel one. 

These observations can be explained as follows: Many activities and scarce resources 
imply 1 arger search spaces, where the focus on compact, but often only suboptimal non-
delay schedules is a promising heuristic strategy. Longer computation times may allow to 
find an optimal or a near optimal Solution, which is typically only possible if the serial 
SGS is used. However, it is often impossible to predict which SGS would perform better 
for a specific instance. 

The idea is now to allow both SGS to be employed as decoding procedures. This allows 
the GA to adapt itself to the specific instance (which is from a heterogenous set of possible 
project instances) and to the chosen computation time. We define the genotype as follows: 
An individual I = (A, SGS) consists of an activity list A and an indicator 

gQg _ f 1) if activity list A is to be decoded by the serial SGS 
| 0, if activity list A is to be decoded by the parallel SGS. 

Having computed a schedule for an individual by the SGS specified in the genotype, 
the fitness of the individual is defined as the makespan of the schedule. That is, a lower 
fitness implies a better individual (and thus a higher chance to survive). 

4.3 Initial Population 

Having set up a genotype consisting of an activity list and a decoding procedure, we have to 
make clear how an initial population containing POP individuals of this genotype should 
be determined. We will proceed in two steps. First, we will consider the construction of 
an activity list. Second, we will describe the selection of a decoding procedure, i.e., an 
SGS with which an already determined actity list is to be transformed into a schedule. 
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An activity list is constructed by a modified serial priority rule based sampling heuristic 
(cf. Kolisch [14]). The next activity for the list is successively chosen from those unsched-
uled activities the predecessors of which have already been selected for the list. This way, 
we obtain a precedence feasible activity list. The decision which activity is chosen next is 
made on the basis of one of two well-known priority rules. We first select the priority rule; 
either the LFT (latest finish time) or the LST (latest start time) rule is chosen with a 
probability of 0.5 each. From the resulting priority values of the activities, we then derive 
regret based biased selection probabilities that are used to select the next activity (for 
details on the priority rules and the regret based biased sampling approach, we refer to 
Kolisch [14]). Using two good priority rules and a randomized activity selection method 
leads to a diversified initial population of good activity lists. 

Now we have to choose an SGS in order to make the current activity list a complete 
genotype. We proceed as follows: The SGS for the first activity list in the initial popu­
lation is the parallel one. Then, with an increasing number of completed individuals, the 
probability of selecting the parallel SGS decreases and, thus, the probability of selecting 
the serial SGS increases. Starting with an initial probability to select the parallel SGS of 
^parallel = ^ probability is successively updated for the t-th selection (i = 2,..., POP) 

by / \ _ppanül«. . 

where rj > 0 and > 1 are parameters that determine how fast the probability decreases. 
Clearly, the respective probability to select the serial SGS is 1 — p?araJlel, Computational 
tests revealed that the parameter choices r) = 100 and # = 2 lead to good results (consid-
ering real-world instances as well as available test sets, we assume J > 10). 

The rationale behind this approach is that for a larger number of schedules allowed 
to be computed and a smaller number of activities in the project, the serial SGS yields, 
on the average, better results than the parallel one. Note that this method results in 
a "fuzzy" decision on the SGS for some genotype, leaving further decisions on the SGS 
to the process of genetic optimization. The SGS distribution in the initial population is 
guided by the probability mechanism which considers the instance to be solved and the 
population size, providing a good starting point for the self-adapting GA. 

4.4 Crossover 

Let us assume that two individuals of the current population have been selected for 
crossover. We have a mother individual M = (AM,SGSM) and a father individual 
F — (AF, SGSF). Now two child individuals have to be constructed, a daughter D = 
(,\D, SGSD) and a son S = (A5, SGSs). 

We start with a definition of the daughter D. In a first step, we determine the daugh-
ter's activity list XD. Combining the parent's activity lists, we have to make sure that each 
activity appears exactly once in the daughter's activity list. Therefore, we adapt a gen­
eral crossover technique presented by Reeves [27] for permutation based genotypes. Our 
approach also secures that precedence feasibility is maintained. We perform a two-point 
crossover for which we draw two random integers q\ and q% with 1 < q\ < q2 < J. Now 
the daughter's activity list XD is determined by taking the activity list of the positions 
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i = 1,..., q\ from the mother, that is, 

The positions i = qi -f1,..., <72 are derived from the father. However, the activities already 
selected may not be considered again. We obtain: 

3? := 3k where k is the lowest index such that j[ g {j®,... ijfLi}. 

The remaining positions i = q<i + 1,..., J are again taken from the mother, that is, 

3? === jff where k is the lowest index such that jjf £ {j\, • •. 

The second step determines the daughter's decoding procedure. The daughter inherits the 
Information which SGS should be used from the mother, that is, we set 

SGSD := SGSM. 

The son individual is computed analogously. For the son's activity list, the first and 
the third part are taken from the father and the second one is taken from the mother. He 
inherits the gene that determines his decoding procedure from the father. 

4.5 Mutation 

The following mutation operator is applied to each newly produced child individual. The 
mutation operator modifies the genes of the genotype with a probability of pmutation-
First, we show how the mutation operator modifies the individual's activity list. With a 
probability of pmutationi we swap activities ji and ji+i in the activity list, where i runs from 
1 to J — 1. Such a swap is executed only if the resulting activity list is precedence feasible. 
That is, we do not swap activities ji and ji+\ if ji is a predecessor of ji+\. Second, we 
consider the gene indicating the decoding procedure to be applied. Interpreting the gene 
as a boolean indicator for the SGS to be used, we set SGS := -»SGS with a probability 
of Pmutation- That is, by applying mutation, the serial SGS is replaced by the parallel 
one in the current individual and vice versa. On the basis of preliminary computational 
experiments, we selected a mutation probability of pmutation = 0.05. 

4.6 Selection 

We have tested several variants of the selection operator (cf., e.g., Michalewicz [21]). All 
of them follow a survival-of-the-fittest strategy. The ranking method sorts the individuals 
with respect to their fitness values and selects the POP best ones while the remaining ones 
are deleted from the population (ties are broken arbitrarily). The proportional selection 
derives fitness based probabilities for the individuals in order to decide which individuals 
are selected for the next generation. Finally, in the tournament selection, a number 
of individuals (in our case two or three) compete for survival. These competitions, in 
which the least fit individual is removed from the population, are repeated until POP 
individuals are left. In preliminary computational studies, we observed that the ranking 
method consistently gave better results than the other alternatives, confirming the results 
obtained in Hartmann [9]. We therefore fixed the selection component to the ranking 
approach. 
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4.7 Local Search Phase 

In what follows, we discuss the local search phase that starts when the self-adapting GA 
stops because IMP consecutive generations have not brought a improvement of the best 
Solution found so far. 

We first clarify how to perform local search on one individual. Our intention is to 
employ local search in order to get very close to an optimal Solution. However, as outlined 
in Subsection 4.2, we may miss good or optimal solutions if we use the parallel SGS because 
of its reduced search space. Therefore, we want to perform local search using only the 
serial SGS. Thus, having selected an individual I = (A, SGS) based on the parallel SGS 
(i.e., SGS = 0) for local search, we transform activity list A into activity list A' such that 
applying the parallel SGS to A leads to the same schedule as applying the serial SGS to A'. 
Note that such a transformation is always possible because the search space of the parallel 
SGS is a subset of the search space of the serial SGS (cf. Subsection 4.2). Actually, A' is 
obtained from sorting the activities with respect to non-decreasing start times. Now we 
start the local search phase from activity list A'. Obviously, if the selected individual is 
already based on the serial SGS, we do not have to modify its activity list. Düring the 
local search phase, all activity lists are decoded by means of the serial SGS. 

The local search approach follows a first fit strategy. That is, we generate a neighbor 
of the current activity list by performing a move as defined below. Then we compute 
the related schedule with the serial SGS. If the resulting makespan is worse than the 
previous one, we reject the neighbor and keep the original list, for which we test the next 
neighbor. Otherwise, we keep the neighbor activity list and test one of its neighbors. If a 
maximal number of consecutive rejected moves (i.e., a maximal number of consecutively 
tested worse neighbors) has been reached, the next individual from the last GA population 
is selected for local search improvement. Based on preliminary computational tests, we 
set the maximal number of consecutive rejected moves to the number of activities J in 
the current project instance. Of course, if POP • GEN schedules have been constructed 
altogether during the GA and the local search phases, the heuristic stops. Clearly, we 
have to count all computed schedules, i.e., the accepted as well as the rejected ones, in 
order to check whether we have already computed POP • GEN solutions altogether and 
need to stop. 

The main difference between our greedy local search procedure and simulated annealing 
as well as tabu search is that it never accepts worse neighbors. If we cannot find a neighbor 
of at least equal quality for some time, we select the next best individual from the GA 
population. We do so because the individuals of the last population are already the 
product of an optimization process. This allows us to continue the search in a possibly 
different, but also promising region of the search space. 

Finally, we describe an approach that avoids to get back to a Solution that we just left 
and to test a worse neighbor again. This is achieved by a list of moves that are "forbidden." 
As long as we reject neighbor activity lists, we put the related moves into the list in order 
to avoid to test a (worse) neighbor twice. Once we have accepted a new activity list, the 
recorded moves are deleted (and hence no longer forbidden). Having accepted a neighbor 
of equal quality bears the possibility of cycling, that is, the next move may lead us back to 
the previous activity list. As we are dealing with right shifts (see Subsection 4.8), this may 
only occur if the last accepted move was a shift from some position i to i + 1. In this case 
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we put the same move (from i to % + 1) into the forbidden list because this would lead us 
back to the previous Solution. This concept to avoid cycling can be viewed as some kind of 
simple "tabu list." Note that cycling can only occur when a neighbor of equal quality has 
been accepted because worse neighbors are never accepted. If all possible moves for the 
current individual are forbidden, the local search method skips to the next best individual 
of the last GA population. 

4.8 Problem-Specific Local Search Neighborhood 

The neighborhood of our local search component is defined by right shift moves which, 
given i 6 {1,..., J — 1} and h € {i + 1,..., J}, transform a precedence feasible activity 
list 

^ Oli i jii ••• 13hi ••• i3j) 

into a precedence feasible neighbor activity list 

That is, some activity ji is right shifted within the activity list and inserted immediately 
after some activity jh without violating the precedence assumption. Recall, during the 
local search phase, the activity lists are always decoded by the serial SGS. 

Having randomly selected some position % G J — 1} of an activity to be right 
shifted, we need to determine between which positions activity ji should be allowed to be 
shifted. Let us first consider the most right position ip(i) which is defined as the highest 
index that would yield a precedence feasible neighbor activity list. If activity ji has no 
(non-dummy) successor in the list, it can be shifted to the end of the list. Otherwise, we 
must not shift it to a position higher than one of its successors in the list. This leads to 

Next, we consider the most Ieft position As we are dealing with right shifts, 
we could set ip(i) — % + 1, implying that activity ji would have to be right shifted by at 
least one position. Now we could randomly draw an index h 6 {<p(i),... and shift 
ji immediately after jh. This would result in a precedence feasible neighbor activity list. 
The drawback of this straightforward approach, however, is that this leads us to a different 
activity list but eventually not to a different schedule. 

The consequence is to adapt the definition of the most left position cp(i) in order to 
exclude as many right shifts as possible that do not change the schedule. To do so, we 
in corporate schedule-dependent knowledge into the right shift move. The foundation for 
this is laid by the following theorem which examines right shifts by one position. 

Theorem 4.1 Consider an activity list A = Üi,... ,jj) which leads, by means of the serial 
SGS, to schedule S{A) associated with start times Sjt and finish times fji} i = 1J. 
Let further s?Tec — maX{/A | h 6 Vj{} denote the earliest precedence feasible start time of 
activity ji in schedule S{A). Now consider a right shift of activity ji by one position after 
activity ji+i with ji £ Vji+l in A, leading to neighbor activity list Xf with related schedule 
S(X'). If at least one of the following four conditions holds, then we have S(A) = 5(A').* 

^ Oli***) ji—1) ji+Ii • • • ijhijii jh+1) * * • ) jj)' 

(1) 

(2) 
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prec 
fli ^ °ji+i S'. 

.«,=c 

fji ^ sji+l and sji+1 

(3) 

(4) 

(5) 

Proof. Basically, we can obtain a different schedule from such an adjacent pairwise 
interchange only if activity ji+1 can be assigned an earlier start time in schedule S{\') 
than in S(X). Hence, the main idea is to show that activity ji+1 cannot be started earlier 
if it is scheduled before activity ji is scheduled. With this in mind, we now examine the 
four conditions sepaxately. The conditions are illustrated in Figure 1. 

ji+1 ji+l 

>3i+1 

Ji 

1 1 

(2) 

Ji 

,prec 
yji+i 

(3) 

i<+i ji+l 

ji ji 

l 1 1 1 l l I I I I I I I I 

(4) (5) 

Figure 1: Illustration of conditions for equal neighbor schedules 

Consider condition (2): Scheduling activity 1 before ji cannot lead to an earlier 
start time of activity ji+i because delaying activity ji does not free any resources before 
the previous start time of activity jt-+1-

Condition (3) implies that activity ji+\ cannot be started before the previous finish 
time of activity ji due to the precedence relations. Thus delaying activity ji does not free 
resources that can be used by activity ji+\ to allow the latter to start earlier. 

Condition (4) considers the case of activity j{+\ starting at its earliest precedence 
feasible start time. Clearly, it cannot be started earlier. 

Finally, condition (5) works as follows: We assume < Sji+1 (otherwise, condition 
(4) would already be fulfilled). Activity ji+i cannot be in process at t = Sji+1 — 1 due 
to the resource constraints because delaying activity ji would not free any resources at 
that time. Consequently, after the right shift, activity ji+1 must be finished at or before t 
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in order to start earlier. Therefore, activity ji+1 must be performed within {s?™, ...,<}. 
This time Span must be at least of the same length as its processing time; otherwise, 
activity ji+i cannot start earlier. • 

Theorem 4.1 states conditions under which a right shift by one position does not 
change the related schedule. Exploiting the fact that each right shift can be obtained 
from successively applying right shifts by one position, the following theorem extends this 
approach to arbitrary right shifts. 

Theorem 4.2 Consider activity list X ~ leading to schedule S(X) with start 
times Sj{, finish times Jj., and precedence feasible start times s?*ec as in Theorem 4.1. Let 
ji be an activity to be right shifted. Furthermore, let l e {i-(-1,..., ip(i)} denote the highest 
position for which at least one of the following conditions holds: 

Define <p(i) l + 1. Then right shifting activity ji behind any activity with k < (p(i) 
would lead to a schedule equal to S(X). Moreover, if ip(i) > ip(i)} all right shifts of activity 
ji lead to the same schedule. 

Proof Let l be as given in the theorem. We define A& to be the activity list obtained 
from right shifting activity ji behind activity jk in A for k = i + 1, • • •, l- We have to show 
S(Xk) = S(A) for all k = i -f 1,..., l. This is done by induction: Assume that we have 
S(Afc) = S(A) for some k 6 {i + 1,..., J — 1}. We want to show S{A^+i) = S(A). 

Clearly, right shifting ji after jk+i can be done in two steps: First, ji is right shifted 
after in A, leading to A& with S(A&) = S( A) according to the assumption of the induction. 
Second, in A&, jf~ (the former activity ji of A) is right shifted by one position after jfc+i, 
leading to A&_n_ As we have k + 1 < at least one of the conditions (6)-(9) holds for the 
right shift of ji after j^i in A. Then at least one of the conditions (2)-(5) of Theorem 4.1 
holds for the right shift of jk by one position after jk+\ in A&, because ji in A is the same 
activity as jk in A& and S(A&) = S'(A). That is, Theorem 4.1 leads to S(Ajt+i) = S(A^). 
With 5(Afc) = S(X) due to the assumption of the induction, we obtain S^Afc+i) = S(A). 

The second part of the proof is straightforward. O 

With the definition of (p(i) in Theorem 4.2, we have completed the definition of the 
neighborhood moves used in the local search procedure: After randomly selecting a posi­
tion i e {1,..., J — 1} of an activity to be right shifted, we determine ip(i) as defined in 
(1) and y(i) according to Theorem 4.2. If we have <p(i) > ip(i), we select another position 
i e {1,..., J — 1} of an activity to be shifted. Otherwise, we randomly chose a position 

fii < »h <md Sj, - 1 - s?rec < pjt 

(6) 

(7) 

(8) 

(9) 

h e 

in order to insert activity ji immediately after 
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It should be emphasized, however, that the definition of <p(i) does not ensure that 
the resulting right shift leads to a different schedule. In other words, the conditions of 
Theorem 4.2 (and hence also those of Theorem 4.1) are sufficient but not necessary. It 
does, however, exclude a large number of right shifts that would lead to the same schedule 
at a very low computational effort. Also excluding the remaining of such right shifts 
would increase the computation time needed to determine the related tp{%) substantially. 
In the worst case, further excluding positions by Computing an improved most left position 

> <p(i) would lead to the same effort as not excluding that position and testing the 
respective neighbor. 

5 Computational Results 

5.1 Test Design 

In this section we present the results of the computational studies. The experiments have 
been performed on a Pentium-based IBM-compatible personal Computer with 133 MHz 
clock-pulse and 32 MB RAM. The self-adapting GA for the RCPSP has been coded in 
ANSI C, compiled with the GNU C Compiler, and tested under Linux. 

We have performed experiments with two different designs. First, we have taken two 
Standard sets of RCPSP instances from the literature which were constructed by the 
project generator ProGen of Kolisch et al. [18]. The first set contains 480 instances with 
30 activities per project while the second one consists of 600 instances with 120 activities. 
The self-adapting GA computed 1000 schedules for each project (with parameter settings 
POP = 40, GEN = 25, TMP = 12) and, in an additional run, 5000 schedules (with 
POP = 100, GEN — 50, TMP = 25). This test design allowed us to compare our results 
with those obtained for several RCPSP heuristics from the literature which were tested 
for the evaluation study of Hartmann and Kolisch [10]. In their study, also 1000 and 5000 
schedules were computed by each heuristic for each instance. The authors of the heuristics 
tested their approaches themselves such that they were able to adjust the parameters in 
order to obtain the best possible results. As the computational effort for constructing one 
schedule can be assumed to be similar in all of the tested heuristics, this test design should 
allow for a fair comparison. 

The second experimental design uses the well-known instance set assembled by Pat-
terson [26]. It contains 110 RCPSP instances with up to 51 activities. This instance set 
enabled us to compare the self-adapting GA with some heuristics for which no results for 
the ProGen set were available. We report the results of the respective heuristics given in 
the literature by the authors of the approaches. Here, however, the number of schedules 
computed for each instance was not equal (and the results were obtained on different Com­
puters and with different computation times). As a basis for the comparison, we therefore 
selected a time limit of 5 seconds per instance for the self-adapting GA. 

5.2 Behavior of the Self-Adapting Genetic Algorithm 

This subsection analyzes the new GA approach for the RCPSP, with a focus on the 
mechanism of self-adaptation. We summarize the main observations of our computational 
experiments. 
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Let us first have a look at the distribution of the two alternative decoding procedures 
in the initial population. For the projects with 120 activities, the parallel SGS occurs 
more often in the initial population than for the projects with 30 activities. Computing 
5000 schedules for an instance instead of only 1000 leads to a higher percentage of the 
serial SGS in the initial population. This is what we intended; see again the discussion of 
the differences between both decoding procedures in Subsection 4.2. 

The percentage of the decoding procedures in the population changes over the gen­
erations. In most cases, one of the SGS dominates in the last generation, that is, it has 
led to better results during the evolution. There is a tendency that the parallel SGS 
is dominant at the end of shorter evolutions (in our case after the computation of 1000 
schedules) and if 1 arger projects are considered (in our case with 120 activities). How­
ever, the length of the evolution and the project size alone do not allow to predict which 
SGS will be dominant. We observed that scarce resource capacities (as measured by the 
so-called resource strength parameter of ProGen, cf. Kolisch et al. [18]) tend to make the 
parallel SGS favorable, but still we never know exactly which SGS survives. Generally, 
we can state that the instance sets are heterogenous with respect to the quality of the 
Performance of the two decoding procedures. As the genetic metaphor assumes the more 
successful decoding procedure to survive, the difficulty to predict which SGS dominates 
at the end of the evolution makes self-adaptation of the GA promising. 

There are some cases in which the percentage of one of the decoding procedures in-
creases over the first generations and then decreases. This can especially be observed for 
the parallel SGS which, as explained in Subsection 4.2, is well suited for quickly finding 
schedules of good average quality but not so much for getting very close to the Optimum. 
In other words, the advantage of the parallel SGS is exploited in the first generations 
while using the serial SGS pays in a later phase of the evolution. Note that the process 
of first increasing and later decreasing of some component's occurrance in the population 
is supported by the mutation operator which occasionnally reintroduces the component 
that has almost diminished in the current population. 

We close this subsection with a brief look at the computation times of the self-adapting 
GA needed for Computing 1000 schedules. The average computation time on the ProGen 
instance set with 30 activities was 0.29 seconds per instance. On the ProGen set with 
120 activities, the average computation time increased to 3.07 seconds. Computing 5000 
schedules takes approximately five times as long. We remark here that we have imple-
mented two methods to speed up the self-adapting GA that have similarly been used by 
Kolisch [12]. They are based on the relaxation of the resource constraints. The first ap­
proach can be summarized as follows: If we have found a schedule with a makespan equal 
to the earliest possible project end that would be obtained from relaxing the resource con­
straints, we have found an optimal Solution and stop the GA. The second approach makes 
use of the worst upper bound Z on the makespan that occurs in the current population. 
Proceeding from this upper bound Z, we determine the so-called latest start time LSj for 
each activity j G J. LSj reflects the latest time at which activity j must start to allow 
the project to be completed in period Z when the resource constraints are relaxed. If, 
while Computing the schedule for a new child individual, an activity j is assigned a start 
time Sj > LSj, we can stop the scheduling process for this individual and remove it from 
the population immediately. Clearly, the latter Situation would lead to a schedule with 
a makespan Zf > Z, that is, it would be removed from the population by means of the 
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ranking selection anyway. 

5.3 Comparison with other Heuristics for the RCPSP 

The results of our experimental study on the ProGen instance sets are summarized in 
Tables 1-3. They compare the self-adapting GA with several RCPSP heuristics from 
the literature. The metaheuristics considered here are the schedule scheme based tabu 
search method of Baar et al. [1], the activity list based simulated annealing approach of 
Bouleimen and Lecocq [3], the activity list based GA of Hartmann [9], and the problem 
space based GA of Leon and Ramamoorthy [20]. The tested priority rule based sampling 
methods include the adaptive procedure of Kolisch and Drexl [15], the latest finish time 
(LFT) rule and worst case slack (WCS) rule based methods of Kolisch [14], the random 
sampling heuristic of Kolisch [12], and the adaptive approach of Schirmer [29]. The LFT 
based as well as the random sampling method was tested separately with the serial and 
the parallel SGS. 

Table 1 gives the average percentage deviations from the optimal makespan for the 
ProGen instance set with 30 activities in a project obtained from the evaluation of 1000 
and 5000 schedules, respectively. As for the ProGen instance set with 120 activities per 
project some of the optimal solutions are not known, we measured for these sets the average 
percentage deviation from an upper and a lower bound, respectively. The Upper bound is 
set to the best makespan that was found by any heuristic in our study for each project; 
the respective results are provided in Table 2. As lower bound, we chose the critical path 
based lower bound (cf. Stinson et al. [32]). As this lower bound can be easily computed, 
this allows researchers to compare their future results with those reported here. The lower 
bound based results for the instances with 120 activities can be found in Table 3. In each 
table, the heuristics are sorted according to descending Performance with respect to 5000 
iterations. In order to detect significant differences in the heuristic Performance for 5000 
iterations, we compared the results of each heuristic with those of the next best one by 
means of the Wilcoxon signed-rank test using SPSS (cf. Norusis [23]). A star (*) in the 
last column of Tables 1 and 2 indicates that the respective heuristic performs significantly 
better than the next best one at the 5% level of confidence. 

Finally, the results for the classical Patterson instances are provided in Table 4. In 
addition to the self-adapting GA, it includes the two-phase heuristic of Bell and Han 
[2], the extended random key based simulating annealing method of Cho and Kim [5], the 
activity list based GA of Hartmann [9], the random key based simulating annealing method 
of Lee and Kim [19], the problem space based GA of Leon and Ramamoorthy [20], the 
local constraint based analysis (LCBA) approach of Özdamar and Ulusoy [25], the local 
search procedure of Sampson and Weiss [28], and the tabu search method of Thomas and 
Salhi [33]. We give the average percentage deviation from the optimal makespan, the 
percentage of instances for which an optimal schedule was found, and Information about 
the computation time and the Computer that was used for testing. The procedures are 
sorted according to increasing deviation from the Optimum. 

The results show that the new self-adapting algorithm leads to the best results on all 
instance sets, outperforming several heuristics from the literature. This makes it the most 
promising heuristic to solve the RCPSP. For all instances of the Patterson instance set, 
an optimal Solution is found within at most 5 seconds of CPU time (this also holds for the 
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Iterations 
Algorithm reference 1000 5000 
self-adapting GA (new) 0.36 0.17 
simulated annealing Bouleimen, Lecocq [3] 0.38 0.23 
GA Hartmann [9] 0.54 0.25* 
adaptive sampling Schirmer [29] 0.65 0.44 
tabu search Baar et al. [1] 0.86 0.44* 
adaptive sampling Kolisch, Drexl [15] 0.74 0.52 
serial sampling (LFT) Kolisch [14] 0.83 0.53* 
serial random sampling Kolisch [12] 1.44 1.00 
parallel sampling (WCS) Kolisch [13, 14] 1.40 1.28 
parallel sampling (LFT) Kolisch [14] 1.40 1.29* 
parallel random sampling Kolisch [12] 1.77 1.48* 
problem space GA Leon, Ramamoorthy [20] 2.08 1.59 

Table 1: Average deviations from optimal Solution — J = 30 

Algorithm reference 
Iterations 

1000 5000 
self-adapting GA (new) 1.66 0.49* 
GA Hartmann [9] 2.83 1.13* 
simulated annealing Bouleimen, Lecocq [3] 5.98 2.10* 
adaptive sampling Schirmer [29] 3.34 2.50 
parallel sampling (LFT) Kolisch [14] 3.15 2.56 
parallel sampling (WCS) Kolisch [13, 14] 3.18 2.58* 
adaptive sampling Kolisch, Drexl [15] 4.19 3.57* 
problem space GA Leon, Ramamoorthy [20] 5.57 4.00* 
serial sampling (LFT) Kolisch [14] 5.03 4.35* 
parallel random sampling Kolisch [12] 6.70 5.70* 
serial random sampling Kolisch [12] 9.89 8.69 

Table 2: Average deviations from best Solution — J = 120 
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Iterations 
Algorithm reference 1000 5000 
self-adapting GA (new) 37.33 35.60 
GA Hartmann [9] 39.37 36.74 
simulated annealing Bonleimen, Lecocq [3] 42.81 37.68 
adaptive sampling Schirmer [29] 39.85 38.70 
parallel sampling (LFT) Kolisch [14] 39.60 38.75 
parallel sampling (WCS) Kolisch [13, 14] 39.65 38.77 
adaptive sampling Kolisch, Drexl [15] 41.37 40.45 
problem space GA Leon, Ramamoorthy [20] 42.91 40.69 
serial sampling (LFT) Kolisch [14] 42.84 41.84 
parallel random sampling Kolisch [12] 44.46 43.05 
serial random sampling Kolisch [12] 49.25 47.61 

Table 3: Average deviations from critical path lower bound — J = 120 

Algorithm reference av. dev. optimal CPU-sec 
self-adapting GA (new) 0.00 % 100.0 % 5.0° 
GA Hartmann [9] 0.00 % 100.0 % 5.0* 
simulated annealing Cho, Kim [5] 0.14% 93.6 % 18.46 

simulated annealing Lee, Kim [19] 0.57 % 82.7 % 17.06 

problem space GA Leon, Ramamoorthy [20] 0.74 % 75.5 % 7.5C 

LCBA Özdamar, Ulusoy [25] 1.14% 63.6 % 0-25d 

local search Sampson, Weiss [28] 1.98 % 55.5 % 10.26 

tabu search Thomas, Salhi [33] 2.30 % 46.4 % 218.7€ 

two-phase method Bell, Han [2] 2.60 % 44.5 % 28.4/ 
* maximal CPU-tinie on a Pentium 133 MHz 
6average CPU-time on a Pentium 60 MHz 
caverage CPU-time on an IBM RS 6000 
dCPU-time ränge on an IBM PC 486 
caverage CPU-time on a Sun Spare Station 10 
^average CPU-time on a Macintosh plus 

Table 4: Comparison of heuristics — Patterson instance set 
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activity list based GA of Hartmann [9]). 
Observe that metaheuristics typically give better results than priority rule based meth-

ods. This is due to the fact that metaheuristics usually exploit knowledge from one or 
more previously examined solutions whereas priority rule based procedures generate each 
Solution independently. It should be emphasized, however, that using a metaheuristic 
strategy alone does not guarantee a good Performance; this can be seen from the different 
results of the tested GA approaches (cf. also the discussion of Subsection 2.2). 

Let us now return to the difference in the behavior of the two SGS that motivated 
the definition of the genotype of the self-adapting GA (cf. Subsection 4.2). Consider the 
random sampling method and the sampling method based on the LFT priority rule. Both 
were tested in two variants, that is, separately with the serial and the parallel SGS. As the 
only difference lies in the SGS, the computational results show the impact of the choice of 
the SGS. On the average, the serial SGS performs better on the ProGen set with 30 activ­
ities while the parallel SGS becomes superior on the set with 120 activities, demonstrating 
that instance characteristics influence the Performance. These results indicate that it is a 
promising approach to include both SGS into a GA and let the genetic Operators select 
the more successful one—as done in our self-adapting GA. 

6 Conclusions 

We introduced an extension of the classical genetic algorithm paradigm called self-adapting 
genetic algorithm that can be applied to all kinds of optimization problems. It allows 
to identify several promising alternatives for each genetic algorithm component such as 
crossover operator, representation, and decoding procedure. The inherent survival-of-
the-littest strategy is extended to select the best components while the problem itself is 
solved, leading to a genetic algorithm that adapts itself by means of genetic optimization. 
It exploits what it learns from solving the problem by modyfying itself. That is, the 
evolution leads to a good Solution for the problem and to a good algorithm to solve 
the problem at the same time. The main advantage of this approach is that the best 
algorithmic variant is determined automatically for the problem instance actually solved. 

The general framework was applied to the well-known resource-constrained project 
scheduling problem. The genetic algorithm includes two alternative decoding procedures 
which are evaluated and selected by the self-adaptation mechanism. The approach is 
further extended by a local search procedure which makes use of a new problem-specific 
neighborhood that helps to avoid neighborhood moves that would lead back to the current 
schedule. A computational analysis indicated that our self-adapting genetic algorithm out-
performs several state-of-the-art heuristics from the project scheduling literature, making 
it the best heuristic currently available for resource-constrained project scheduling. It 
should be emphasized that problem-specific knowledge as well as preliminary experiments 
led to the design of the heuristic—our computational tests also show that using a meta­
heuristic strategy alone does not necessarily lead to good results. 

We believe that the generality of the concept, its easy applicability, and the good 
computational results make our self-adapting genetic algorithm framework a promising 
approach for many other difficult optimization problems in the future. 
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