
Sprecher, Arno

Working Paper — Digitized Version

Network decomposition techniques for resource-
constrained project scheduling

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 505

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Sprecher, Arno (1999) : Network decomposition techniques for resource-
constrained project scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 505, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147593

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147593
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Abstract

Numerous exact algorithms have been developed for solving the resource-constrained project schedul-

ing problem. Experimental studies have shown that currently even projects with only 60 activities cannot
be optimally solved within a reasonable amount of time. Therefore heuristics employing genetic concepts,

sampling strategies, simulated annealing or taboo search have been developed. Additionally truncated
versions of the branch-and-bound algorithms are studied. By limiting the CPU-time, the total number

of node evaluations, or the number of branching alternatives, the Solution time is reduced at the expense
of the quality of the generated schedules.

The purpose of this paper is to study a combination of exact and heuristic elements. The project

to be considered is decomposed into subprojects, the related subproblems are optimally solved, and the

solutions are concatenated. The Solution strategy has been implemented and tested on the benchmark

instances provided by ProGen.

The numerical results show that the decomposition approach outperforms the truncated version of

the branch-and-bound algorithm employed. On average, the quality of the Overall Solution depends on
the size of the subproblems, and the quality of the solutions of the subproblems. Consequently the

approach will benefit from the progress made in the development of exact Solution procedures.

Keywords: Project Scheduling, Resource Constraints, Branch-and-Bound, Decomposition, Compu-

tational Results.

1 Introduction

In resource-constrained project scheduling the projects consist of activities that have a deterministic duration

and a deterministic usage of renewable resources. The resource availability is limited. Precedence relations

between some of the activities define further constraints on the temporal arrangement of the activities. The

objective is the minimization of the makespan. Since the resource-constrained project scheduling problem

is NP-hard (cf. [5]) branch-and-bound algorithms (see, e.g., [3], [4], [12], [14], [16]) and heuristics (see, e.g.,

[1], [6], [8], [9]) have been developed.

The purpose of this paper is to study a combination of heuristic and exact Solution approaches. The project

to be considered is decomposed into subprojects, the related subproblems are solved optimally, and the

solutions of the subproblems are concatenated to a Solution of the original problem.

We proceed as follows: Section 2 describes the problem more thoroughly and summarizes the problem

Parameters. Section 3 sketches the exact Solution procedure employed. Section 4 presents the decomposition

into subprojects, the subproblem definition strategy and the concatenation strategy. Section 5 presents the

computational results. Conclusions are drawn in Section 6.

2 The Model

We employ the Classification scheme and notation suggested in [2]. The project we consider consists of n

activities (jobs, tasks). Due to technological requirements, precedence relations between some of the activities

1

enforce that an activity j may not be started before all its predecessors h, h 6 Pred(j), are finished. The

structure of the project is depicted by a so-called activity-on-node (AON) network where the nodes and the

arcs represent the activities and precedence relations, respectively. The network is acyclic and numerically

labeled, that is an activity j has always a higher number than all its predecessors. W.l.o.g. activity 0 is the

dummy Start activity (source) and activity n + 1 is the dummy finish activity (sink). We can denote the

precedence relations by the set H of pairs (h,j) with h G Pred(j), j = 0,..., n + 1.

The activities may not be preempted, i.e., an activity once started has to be completed without Interruption.

Performing activity j takes pj periods and uses renewable resources from a set Vf. Given a horizon, that

is, an Upper bound T on the project's makespan, Rpkt units of renewable resource k, k G W, are available

in a period t, t = 1,..., T. An activity j, j = 1,..., J, requires rp-k units of renewable resource k, k € ltp,

each period activity j is in process. The objective is to find a makespan minimal schedule that meets the

constraints imposed by the precedence relations and the limited availability of the renewable resources. The

problem can be modeled as a linear program. Following the Classification suggested in [2] the problem is

referred to as PS | prec | Cmax •

3 The Optimal Solution Procedure

In this section we summarize the branch-and-bound algorithm employed to solve the partial projects. For

the details, we refer to [14]. The search is guided by the precedence tree introduced by Patterson et al.

(cf. [13]). The nodes of the precedence tree correspond to the nodes of the branch-and-bound tree. The root

node 1 of the tree is given by the Single start activity and the leaves are copies of the only finish activity J.

The descendents of a node j within the precedence tree are built by the activities that are eligible after

scheduling the activities on the path leading from the root node 1 to node j. Thereby, an unscheduled

activity is called eligible, if all its predecessors are scheduled. An activity is firstly considered for scheduling

when all of its predecessors are scheduled. The Start time of the activity under consideration is the lowest

feasible Start time, which (a) is not less than the start time of the activity most recently scheduled, and (b)

does not violate the precedence or resource constraints. If scheduling of the current activity is not feasible

w.r.t. the bounds imposed by the latest start time then backtracking is performed. On this level the next

untested eligible activity is selected. If there is no untested eligible activity left then backtracking to the

previous level is performed. At this level the next eligible activity is chosen. The procedure terminates if

backtracking leads to level 0 of the branch-and-bound tree or if the makespan of a Solution found coincides

with a lower bound.

In order to speed up the convergence we employ the following lower bounds and dominance concepts (cf. [14]).

First, the critical path based bound is implemented by calculating the latest starting times of the

activities for a given makespan. If an improved Solution is found then the latest starting times are adapted

to guarantee that solutions to be found later will improve the current best Solution.

Second, the bound LB3Mod is a variant of the bound provided by Mingozzi et al. (cf. [12]). The bound is

valid when resource availability is constant. In a preprocessing routine we generate a priority list of the set

2

of activities. Each activity g in the list is assigned another list of activities containing all the activities that

can be performed simultaneously with activity g without violating the precedence and resource constraints,

and which are not placed before activity g in the priority list. Düring the enumeration at each node of the

branch-and-bound tree an activity which is scheduled is eliminated from the priority list, and again added to

the list through backtracking. The remaining activities in the priority list are considered from the beginning

to the end of the priority list. Starting with LB = 0, and no activity marked, the first non-eliminated

and non-marked activity is selected and its duration is added to LB. Afterwards the elements from its list

are marked. The procedure continues as far as unmarked elements can be found in the priority list. The

finally valid LB is then a bound on the minimal time necessary to complete the partial schedule. In our

Implementation we have built three priority lists and determined the bound LB3 as the maximum of the

bounds obtained from all the priority lists. The lists have been constructed as described in [14].

Third, the Extended Single Enumeration Rule excludes multiple enumeration of one and the same

(partial) schedule. Identical partial schedules would be obtained if two activities that are eligible on a

certain level have identical starting times, and if the starting times are unaffected by the sequence the

activities are scheduled in.

Fourth, the Local Left Shift Rule reduces the enumeration to the so-called semi-active schedules (see

[15]), where the Start time of none of the activities can be reduced by a Single period without delaying any

other activity or producing a constraint violation.

Fifth, the Global Left Shift Rule studies global left-shifts, i.e., left shifts that cannot be obtained by a

local left. If an activity, eligible on the current level, can be globally left-shifted, then all the continuations

of the current partial schedule are dominated. Consequently backtracking can be performed.

Sixth, the Contraction Rule employs completion times of earlier considered activities to define an upper

bound on the starting time of the current activity. The rule reduces feasibility of global left-shifts on later

levels. The bounds are derived from the completion times that have been obtained through scheduling,

locally or globally left-shifting.

Seventh, the Set-Based Dominance Rule compares the quality of the current partial schedule with the

quality of an earlier studied partial schedule. The partial schedules have identical sets of scheduled activities.

If the starting time of the current activity is greater than or equal to the maximum completion time of the

partial schedules studied earlier then the current activity can be skipped.

Eighth, the Permutation Rule excludes a partial schedule from continuation if by permutation of two

activities an earlier studied schedule can be derived.

4 Decomposition and Concatenation Strategies

In order to describe the decomposition strategies we need some definitions. First, for sake of simplicity,

we use J ~ n + 1, and denote a precedence feasible sequence of the activities 0, ...,n -f 1, by Seqj =

[<?i, • • that is, it is Pred(gi+1) C Uj=i{&} for i = 1,..., J - 1. Second, for a given precedence feasible

sequence Seqj = [gi,...,gj], we define by ESS(Seqj) the earliest Start schedule obtained by successively

3

scheduling the activities An activity gi+1 is thereby scheduled at its earliest precedence and

resource feasible starting time with respect to the left-over capacity of the already scheduled partial sequence

Seqi = [gu.. - ,pi]. Note, for a given sequence ESS(Seq) is unique. We denote the starting time and the

completion time of an activity & by Sgi and Cg., respectively. Third, for a given schedule S with starting

times 5j, t = 1,...,weus e Seq(S) = [gx,... ,gj], as a sequence of the activities gx,... ,gj with Sgi <

i ~ 1,..., J - 1. Note, for a given schedule S the sequence Seq(S) is not unique in general.

A precedence feasible sequence can be generated randomly: We define probabilities pj to select randomly

an activity j out of the eligible set i = 1,..., J. The probabilities are specified in accordance with given

non-negative priority value II and criterion a, a € {min,max}. The criterion decides to prefer the selection

of activities associated with smaller (min) or larger (max) priority values. For a certain level i and eligible

set Ei, the probabilities prob^ (minimization) and prob, (maximization), respectively (cf. [9]), j 6 Ei are

max{II(*); * € Ei} ~ ü(j) + 1 r _ ü(j) - mm{U(k);k € E{} + 1
P j''~ £ (max{II(fc); k € Ei} - II(e) + 1) ' PC° j " £ (ü(e) - mm{U(k); k € Et} + 1)'

e£Ei e£Ei
Considering a priority rule we can now generate a precedence feasible sequence Seqj = [gi,...,gj] by

selecting g{ out of Ei, i = 1,..., «7, in accordance with the specified probabilities. The sequence will be used

to determine the subproblems we need to solve.

For the definition of the subproblems we have to determine (1) the size of the subprojects, (2) the activities

of the subprojects, and (3) the constraints of the subproblems.

The subproblems can be of deterministic size (DS) or stochastic size (SS). Assuming that the non-negative

integers n\,..., ns fulfill £f=1 ni = n, the deterministic sizes of s subprojects are denoted by [s; 0; ri\,.. . , na]

and the stochastic sizes of s subprojects are denoted by [s; <5; m,..., nÄ]. In the deterministic case subpro-

ject l, l = 1,..., s, consists of nt = ni activities. In the stochastic case subproject /, l = 1,..., 5, consists of

fij,ni 6 [n/ - <5; n/ + 6], activities. We call the tuple [s; 5; fi\,..., hs] a size specification, and the parameter

S disturbance. If the disturbance is non-zero we proceed as described in Table 1 to guarantee J2i=i ni = n-

Step 1: If all the subprojects have been assigned a size, then STOP;

Step 2: If there is only one subproject l to which no size has been assigned then define nt := m and goto
Step 1;

Step 3

Step 4

Step 5

Step 6

Randomly select two subproject / and /' the size of which is not fixed;
Randomly select S € [-Ö, +$];
Define hi :=m - 6 and fii< := n,, + 6;

Remove subprojects l and l' from the set of projects the size of which is not fixed and goto Step 1.

Table 1: Determination of the Subproject Size

The activities of the subprojects are determined with respect to a given size specification [s;<5;ni,... ,nsj

and a given sequence Seqj = [gt,..., gj\. The set of activities Ji of subproject /, l = 1,..., s, is determined

4

by

EUinp+I

ji = U {93}
^E::W+2

For the definition of subproblem i,i = l,...,swe use the reduced set of precedence relations Hi := {(z, j) €

H] (i,j) e Ji x Jj}. We define J0 "•= {0}, and S0 := C0 := 0. If the Solution, i.e., the Start times Sj,

j 6 , of the preceeding subproblem l - 1 are known, we can formulate the constraints of subproblem l.

Using the binary decision variables

{1 , if activity j is completed at the end of period t

0 , otherwise.

we obtain the subproblems as described in Table 2. By Smax{l — 1) (Cmax(l - 1)) we denote the maximum

Start time (completion time) of the activities out of Ul=o Jv within the optimal solutions of subproblems v,

v =7 0,- 1. The subproblems are successively solved. The solutions of subproblems 0,...,/ - 1,

LFi
Minimize <&/(z) = m<^x{ ^ ^ ' xjt]

t=EFj
s.t.

LF3

Z x» =1

t=EFj

Smax{l - 1) < Sj
LFh LFi
Y,]T ß- Pj)xjt

t~EFh t=EFj
min{t+pj-l,LFj}

j€U!p=1Jp <7=max{t,EFj }

xjt e {0,1}

Xjq < RPkt

j e Ji

j G Jl
l-1

P=1

j € Ji,t = EFj,... ,LFj

(1)

(2)

(3)

(4)

(5)

(6)

Table 2: Constraints and Objective of Subproblem l

are explicitly taken into account to define the constraints of subproblem l. The objective (1) realizes the

minimization of the makespan. The constraints (2) ensure that each task is assigned a completion time. The

constraints (3) define the lower bound on the start time by the maximum Start time of an activity out of the

preceding subproject. The constraints (4) guarantee precedence feasibility of the Compound Solution. The

constraints (5) ensure that resource availability is met by the Compound Solution. Note, since the constraints

(3) and (5) couple the constraints of successive subprojects the problems have to be solved consecutively.

The general scheine of the algorithm is displayed in Table 3. In Step 1 the variables are initialized. In Step 2,

the sequences are generated with respect to the given priority rule. In Step 3, a sequences Seq[q) is selected,

5

Step 1 T* := Maxint; read size specification [$; 6; m,... ,71,], l = 1;
Step 2 Use priority rule II to generate sequence Seq[q], q = 1,..., NrOfSeq; g := 1;
Step 3 Select sequence Seq[q]\ determine ESS(Seq(q)) and Seq' = 5eg(£?55(5eg[g]));
Step 4 Define Solution of subproblem SPo; / = 1;
Step 5 Use Seq' and solutions of subproblems SPV, v = 0,..., / — 1, to define subproblem SPr, solve

subproblem SPi with at most nps node evaluations; störe best Solution found;
Step 6 If (/ < s) then {l := l + 1; goto Step 5;}
Step 7 Compose solutions of subproblems SPi,..., SPs to a schedule S of the original problem; build

earliest start schedule BSS(Seq(S)) and obtain makespan Sj\
Step 8 If (Sj < T") then {X* := Sj; störe schedule ESS{Seq(S))\}
Step 9 If (q < NrOfSeq) then { q := q + 1; goto Step 3;} eise STOP;

Table 3: Algorithmic Schema

the earliest Start schedule ESS(Seq[q]) is built, subsequently, a related Start time monotone sequence Seq' is

determined. In Step 4, subproblem 0 and its Solution is initialized. In Step 5, the solutions of the previously

solved subproblems are employed to define the current subproblem SPi. Note, since in Step 5 we allow only

nps node evaluations to solve the subproblem, it can happen that the problem is not optimally solved, or

that, due to application of dominance rules no feasible Solution is found. In the former case we use the best

Solution found so far. In the latter case we proceed with the next sequence. If for all the subproblems a

feasible Solution has been found then, in Step 7, a Solution of the original problem is obtained by the earliest

start schedule related to the start time monotone sequence of schedule S.

pj

©

p
Rir6

Figure 1: Example Network

We consider the project instance of Figure 1. The project consists of n = 7 non-dummy activities. The

only renewable resource 1 has an availablility of 6 units per period. We assume that the sequence Seq =

[0,1,5,4,2,6,3, 7,8] has been stochastically determined by using a priority rule II. The related earliest start

6

R It

—i r
1 5 10 15 20 25

Figure 2: Earliest Start Schedule of Sequence Seq = [0,1,5,4,2,6,3,7,8]

schedule ESS(Seq) is displayed in Figure 2. It has a makespan of 24 periods. A sequence Seq' that relates

to the earliest start schedule is given by Seq' = [0,1,5,4,3,2,7,6,8]. Note, the sequence Seq' that relates

to the earliest start schedule does not coincide with the sequence Seq. We use s = 2, n\ = 4, and fi2 = 3,

and obatin two non-trivial subprojects. The first one consists of actvities J\ = {1,3,4,5}, the second one

consists of activities Ji = {2,6,7}. We determine a makespan minimal Solution of the first subproject and

obtain S0 = 0, Si = 0, S3 = 3, S5 = 3, and S4 = 8 with optimal makespan of 12 periods. Subsequently,

the second subproject is optimally solved, and we determine S2 = 12, S7 = 12, and S§ = 19 with optimal

makespan of 11 periods. The Compound Solution is displayed in Figure 3. It has a makespan of 23 periods.

Note, when solving the second subproject, according to the subproblem definition (see Table 2), additional

- 1

5

4

7

- 1
3

4

2
6

l 1 tili 1 l l 1 1 1 1 1 1 1 1 t *
1 5 10 15 20 25

Figure 3: Compound Solution

constraints have to be considered: First, the precedence constraints of (3), i.e., S4 < 52, £4 < 5V, and the

constraint S4 < SQ, which is implicated by the precedence relation (4,6). Second, the reduced availabilities

R[t' of resource 1, in periods 5ma:c(l) = 9,..., Cmax{ 1) = 12.

However, the Compound Solution does not necessarily have a minimal makespan. A Solution with a lower

makespan is displayed in Figure 4.

7

6

3 7

4
1 5 6

2
t

1 5 10 15 20 25

Figure 4: Optimal Solution

5 Computational Results

In this section we present the results of our computational analysis. The algorithm has been coded in GNU

C, Version 2.7.2.1, and implemented on a personal Computer (Pentium, 166 MHz, 64 MB) operating under

LINUX. The data structures allow, through parameter adjustment, to deal with projects of any size. The

algorithm studied in [14] served as the basis of our Implementation. The algorithm has been tested on the

instance sets J30, J60, J90, and J120 that have been generated by ProGen (see [10] and [11]). We have tested

several priority rules to build the initial sequences (schedules) for the decomposition of the problems. The

rules are derived from the precedence relations as well as from the resource usages and availabilities. For the

instance set J30 and size specification [3; 0; 10,10,10] each of the priority rules has been employed to generate

200 sequences (schedules). The best solutions have been compared after 10, 20, 50, 100 and 200 sequences

have been decomposed, that is, after 30, 60, 150, 300, 600 subprojects of 10 non-dummy activities have been

solved. The lowest average deviations have been achieved by using minimum latest finish time (MinLFT)

and maximum resource-based bound on reflexive transitive successors (MaxRB|Succ|). We denote the set

of reflexive, transitive successors of an activity j by Succ(j) and obtain the priority values

Table 4 shows the results for the set J30 (30 non-dummy activities, 480 instances). The sequences have

been generated by using MinLFT. Different size specifications have been selected. Rows 1 and 2, specify

the decomposition, i.e., the sizes of the subprojects and the disturbance. Row 3, displays the precision, i.e.,

the number of nodes of the branch-and-bound tree that have been evaluated at most to solve a subproblem.

The remaining rows show the results after different numbers of decomposed sequences, i.e., the average

(avg.) and maximum (max.) percentage deviation of the makespan found from the MPM-bound (A (MPM)),

the average (avg.) and maximum (max.) percentage deviation of the makespan found from the minimal

makespan (A(opi)), the average (avg.) and maximum (max.) CPU-time (CPU) to solve an instance.

Finally, the last row specifies the average (avg.) and maximum (max.) number of subproblems that have

been optimally solved NOS. We notice: First, if a (maximum) disturbance 6 = 3 is allowed then the average

Jlj=LFTj and IL, = max(^ ps • r"sk/Rpk)
s€Succ(j)

8

Decomposition (10,10,10) (15,15)
S = 0 6 = 3 6 = 0 <5 = 3

Precision [nps] 5,000 10,000
NrOfSeq avg. max. avg. max. avg. max. avg. max.

10 A(MPM)[%] 15.29 133.33 15.21 135.42 14.35 127.08 14.27 133.33
A{opt) [%} 1.43 12.37 1.36 12.07 0.75 13.33 0.67 8.82
CPU [sec] 0.29 0.82 0.29 0.82 0.34 2.53 0.36 2.47

20 A(MPM)[%] 14.90 133.33 14.71 133.33 14.10 127.08 14.01 133.33
A (opt) [%] 1.14 11.29 0.99 9.68 0.55 13.33 0.47 7.27
CPU [sec] 0.34 1.21 0.35 1.37 0.45 4.73 0.49 4.39

50 A(MPM) [%] 14.51 133.33 14.29 131.25 13.93 127.08 13.72 122.92
A (opt) [%] 0.84 7.89 0.66 8.62 0.42 13.33 0.26 4.41
CPU [sec] 0.50 2.34 0.52 2.75 0.77 11.61 0.86 10.21

100 A (MPM)[%] 14.26 133.33 14.06 125.00 13.76 125.00 13.60 120.83
A(opt) [%] 0.65 6.94 0.49 6.58 0.30 13.33 0.17 4.41
CPU [sec] 0.76 4.47 0.80 5.11 1.31 23.11 1.50 20.09

200 A(MPM) [%] 14.09 125.00 13.92 125.00 13.67 125.00 13.53 120.83
A{opt) [%] 0.53 6.94 0.40 6.19 0.22 4.41 0.12 4.41
CPU [sec] 1.28 8.99 1.37 9.64 2.39 45.02 2.75 39.70

NOS 599.30 600.00 598.65 600.00 398.66 400.00 396.04 400-00

Table 4: J30 - Average Deviation and CPU-Time versus Decomposition and
Number of Decomposed Sequences

deviation is less than the average deviation when no disturbance ö = 0 is allowed. This is in line with

general observations for stochastic Solution procedures. An attribute, here the sizes of the subproblems to

be solved, that does not necessarily relate to an optimal Solution of the original problem should not be fixed

as a characteristic of the solutions. Second, the more sequences are studied the higher the quality of the

solutions. Third, the average and maximum CPU-time seem to grow linearly with the number of sequences

to be decomposed. Fourth, at comparable average CPU-times, the average deviation of the size specification

that allows larger subprojects to be considered, i.e., [2; 0; 15,15] ([2; 3; 15,15]) produces a lower average

deviation than the one that allows smaller subprojects, i.e., [3; 0; 10,10,10] ([3;3; 10,10,10]). The results for

[2; 3; 15,15] are the best that have been obtained by heuristic, non-truncated branch-and-bound, strategy

(cf. [7]). Note, the precision of 5,000 (10,000) node evaluations for decomposition (10,10,10) ((15,15)) was

sufhcient to solve nearly all the subproblems to optimality.

Table 5 and Table 6 display the results for the instance set J60 (60 non-dummy activities, 480 instances)

at different decompositions and different precisions. Results for other numbers of decomposed sequences

can be found in Table 11 and in Table 12 of the Appendix. Since not all the optimal solutions of the

instance set could be determined up to now, we have calculated the average deviation A(hrs) from the best

solutions available when the analysis in [7] has been performed instead of A(opi). Again we notice: The

9

Decomposition (15,15,15,15) (20,20, 20)
<5: = 3 ö = = 3

Precision [nps] 25,000 100,000 25,000 100,000
NrOfSeq avg. max. avg. max. avg. max. avg. max.

100 A(MPM)[%] 13.04 112.99 12.92 110.39 12.70 112.99 12.45 110.39
A(fcrs) [%] 1.23 10.91 1.15 10.91 0.95 9.09 0.79 9.09
CPU [sec] 11.88 98.02 27.35 325.92 17.87 114.75 51.02 447.69

Table 5: J60 - Average Deviation and CPU-Time versus Decomposition

Decomposition (30,30)
X — Q

Precision [nps] 50,000 100,000 200,000 500,000
NrOfSeq avg. max. avg. max. avg. max. avg. max.
100 A (MPM){%\ 12.56 116.88 12.27 115.58 12.14 112.99 11.94 111.69

A(hrs) [%] 0.78 8.331 0.55 8.331 0.49 7.96 0.36 7.96
CPU [sec] 41.23 206.26 72.29 411.88 135.19 813.63 303.21 2,077.42

Table 6: J60 - Average Deviation and CPU-Time versus Precision

1 arger the subprojects or the higher the precision of the solutions of the subproblems, the better the quality

of the Compound solutions. However, although the average CPU-time increases only sub-linearly with the

precision, the increase is substantial.

To reduce the CPU-time required we have generated a certain number of sequences and selected only a

portion of them to be decomposed. That is, by the selection of the best sequences we have intensified the

search in the neighborhood of good schedules. Using 200 sequences (schedules) the best 5, 15, and 50 have

been decomposed. We compare the results of the evaluation of a subset of the set of sequences with the

evaluation of the entire set of sequences. The comparison is to be found in Table 7. We see, if, e.g., the best

5 instead of the first 10 sequences or the best 15 instead of the first 50 sequences are employed to form the

subproblems, then the average CPU-time is substantially reduced without decrease of quality, i.e., increase

of the average deviation. If all the sequences are used, i.e., 200, then the evaluation of all the sequences

is better then the evaluation of best 50 sequences. However, approximately four times the CPU-time is

required.

In the next experiment we have examined the influence of the number of initially generated sequences

(schedules) on the quality of the solutions. The results are displayed in Table 8. We have generated 200, 400,

and 1,000 sequences (schedules). The table shows the results after the evaluation of the best 20 sequences.

Results from composing 5, 10, 15, and 50 sequences can be found in Table 13 of the Appendix. Beside

the abbreviations previously introduced, we employ MPM(BestSeq) to denote the average deviation of the

best makespan found through the earliest start schedules of the initially generated sequences from the MPM-

bound. This method coincides with the serial scheme with priority rule MinLFT developed by Kolisch (cf.

10

Decomposition (15,15,15,15) (20,20,20) (30,30)
6 = = 3 S = = 3 6 = = 3

Precision 100,000 100,000 100,000
first 10 best 5 first 10 best 5 first 10 best 5

Avg.A(MPM) [%] 14.23 13.28 13.47 12.96 13.16 12.90
Avg.A(Zirs) [%] 2.19 1.38 1.61 1.14 1.22 1.04
Avg. CPU [sec] 3.45 1.99 5.73 3.16 7.95 4.31

first 50 best 15 first 50 best 15 first 50 best 15
Avg.A (MPM) [%] 13.25 13.00 12.69 12.04 12.48 12.54
Avg.A(/irs)[%] 1.41 1.18 0.97 0.92 0.71 0.78
Avg. CPU [sec] 14.20 4.65 25.86 8.05 26.66 11.58

first 200 best 50 first 200 best 50 first 200 best 50
Avg.A(MPA/)[%] 12.67 12.80 12.20 12.38 12.11 12.54
Avg.A(/irs)[%] 0.95 1.04 0.60 0.72 0.43 0.78
Avg. CPU [sec] 54.40 14.07 101.36 25.48 143.86 36.87

Table 7: J60 - Average Deviation and CPU-Time versus Partial Selection and
Complete Selection

Decomposition (6 = 3; 30,30)
Precision[nps] 200,000 5,000,000
No. of Gen. Seqs 200 400 1,000 1,000
MPM(BestSeq){%\ 14.77 14.42 14.04 14.04

NrOfSeq avg. max. avg. max. avg. max. avg. max.
best 20 A (MPM)[%] 12.29 118.18 12.27 115.58 12.07 114.29 11.61 109.09

A(hrs) [%] 0.60 7.96 0.59 8.33 0.43 7.92 0.14 4.42
CPU [sec] 27.32 166.20 27.31 160.71 29.14 166.54 460.16 4,311.46

Table 8: J60 - Average Deviation and CPU-Time versus Number of Initially
Generated Sequences

[8]). We see: First, the larger the initial sample from which the best sequences are selected, the better are

the results. The decomposition and concatenation algorithm substantially improves the makespans obtained

through the serial scheme. Third, the last two columns show the fundamental influence of the precision.

That is, the better the subproblems are solved the better the quality of the Compound Solution. Table 9

summarizes the results for instance set J90 and J120. The results for the analysis of the best 5, 10, 15, 20,

25 sequences can be found in Table 14 of the Appendix

Table 10 compares different heuristics for the single-mode resource-constrained project scheduling problem:

The truncated version of the general sequencing algorithm GSA ([14]), the developed decomposition and

concatenation algorithm (DACA), and the genetic algorithm presented by Hartmann (GA) ([6]). The genetic

algorithm is currently the best heuristic available to solve the RCPSP (cf. [7]). The algorithms are compared

on the instance set J30, J60, J90, and J120. The sets consist of 480 and 600 instances, respectively. The

fourth and fifth column of the table display the average CPU-time CPU and the maximum CPU-time

Max(CPU). Note, for the GSA the maximum CPU-time is specified by the time allotted for solving a

11

J90 J120
(S = 3; 30,30,30) (6 = 3; 30,30,30,30)

Precision[nps] 500,000 500,000
No. of Gen. Seqs 1,000 1,000
MPM{BestSeq)[%\ 14.13 43.13

NrOfSeq avg. max. avg. max.
best 20 &(MPM)[%\ 12.45 118.64 39.35 214.14

A(hrs) [%] 1.09 8.22 3.52 9.90
CPU [sec] 110.16 673.14 369.38 1,209.36

Table 9: Average Deviation and CPU-Time for Instance Set J90 and J120

Set NrOflnst Algorithm CPU Max{CPU) A Max{ A)
[sec.] [sec.] [%] [%]

J30 480 GSA 1.42 60.00 0.02 4.69
DACA, (2,6 = 3; 15,15), 2.75 39.70 0.12 4.41
200 of 200 seqs, 10,000 nodes
GA, 1000 It. 0.54 - 0.54 -
GA, 5000 It. 2.70 - 0.25 -

J60 480 GSA 88.07 300.00 13.60 131.17
GSA 472.69 1,800.00 13.04 128.57
DACA, (2,6 = 3; 30,30), 605.94 4,161.94 11.78 111.69
200 of 200 seqs, 500,000 nodes
DACA, (2, <5 = 3; 30,30), 116.49 1,079.87 11.97 112.99
best 5 of 1000 seqs, 5,000,000 nodes
DACA, (2,6 = 3; 30,30), 460.16 4,311.46 11.61 109.09
best 20 of 1000 seqs, 5,000,000 nodes
GA, 1000 It. 1.15 - 12.68 -
GA, 5000 It. 5.75 - 11.89 -

J90 480 GSA 120.26 300.00 15.73 123.75
DACA, (3, <5 = 3; 30,30,30), 58.07 325.83 12.59 118.64
best 10 of 1000 seqs, 500,000 nodes

J120 600 GSA 497.03 600.00 44.46 242.42
DACA , (4,6 = 3; 30,30,30,30), 458.53 1,511.33 39.29 214.14
best 25 of 1000 seqs, 500,000 nodes
GA, 1000 It. 3.04 - 39.37 -
GA, 5000 It. 15.20 - 36.74 -

Table 10: Comparison of Different Algorithms

problem. The maximum CPU-time of the GA should be approximately equal to its average CPU-time. The

GSA and the DACA have been executed on a Pentium with 166 MHz and the GA on a Pentium with 133

MHz. The sixth and seventh column display the average and maximum percentage deviation of the best

makespan found from the optimal makespan (J30) or the MPM-bound (J60, J90, J120). On instance set J30

12

the GSA outperforms the DACA and the GA. The DACA produces a lower average deviation than the GA

within nearly identical average CPU-time. On the instance sets J60, J90 and J120 the DACA determines

in comparable average CPU-time solutions of higher quality than the GSA. The GA outperforms both the

GSA and the DACA with respect to average CPU-time and average deviation.

6 Conclusion

We have presented a new heuristic Solution strategy for the resource-constrained project scheduling problem.

The strategy combines elements of exact and heuristic Solution procedures. It relies on decomposition of a

problem into subproblems, near optimal Solution of the subproblems, and concatenation of the subproblem

solutions. The algorithm significantly outperforms the truncated exact branch-and-bound algorithm on

larger instances. The computational results have shown that the quality of the Overall solutions depend on

the size of the subproblems and the quality of the subproblem solutions. Consequently the algorithm will

benefit from the progress made in the development of exact Solution procedures.

Acknowledgments: I am grateful to Sönke Hartmann for helpful comments and suggestions. Moreover, I

would like to thank Andreas Drexl for his continuous support.

References

[1] BAAR, T.; P. BRUCKER; S. KNUST (1998): Tabu-search algorithms and lower bounds for the resource-

constrained project scheduling problem. In: ; S. Voss; S. Martello; I. Osman; C. Roucairol (Eds.): Meta-

heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer, pp. 1-18.

[2] BRUCKER, P.; A. DREXL; R. MÖHRING; K. NEUMANN AND E. PESCH (1999): Resource-constrained project

scheduling: Notation, Classification, model, and methods. European Journal of Operational Research, Vol.

112, pp. 3-41.

[3] BRUCKER, P.; S. KNUST; A. SCHOO AND O. THIELE (1997): A branch & bound algorithm for the resource-

constrained project scheduling problem. European Journal of Operational Research, Vol. 107, pp. 272-288.

[4] DEMEULEMEESTER, E. AND W. HERROELEN (1997): New benchmark results for the resource-constrained

project scheduling problem. Management Science, Vol. 43, pp. 1485-1492

[5] GAREY, M.R. AND D.S. JOHNSON (1979): Computers and intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, CA.

[6] HARTMANN, S. (1998): A competitive genetic algorithm for resource-constrained project scheduling. Naval

Research Logistics, Vol. 45, pp. 733 - 750.

[7] KOLISCH, R. AND S. HARTMANN (1998): Heuristic algorithms for solving the resource-constrained project

scheduling problem: Classification and computational analysis. Manuskripte aus den Instituten für Betrieb­

swirtschaftslehre, Research Report No. 469, Christian-Albrechts-Universität Kiel, Germany.

[8] KOLISCH, R. (1996): Serial and parallel resource-constrained project scheduling methods revisited: Theory

and computation. European Journal of Operational Research, Vol. 90, pp. 320-333.

13

[9] KOLISCH, R. AND A. DREXL (1996): Adaptive search for solving hard project scheduling problems. Naval

Research Logistics, Vol. 43, pp. 23-40.

[10] KOLISCH, R. AND A. SPRECHER (1996): PSPLIB - A project scheduling problem library. European Journal

of Operational Research, Vol. 96, S. 205-216.

[11] KOLISCH, R.; A. SPRECHER AND A. DREXL (1995): Characterization and generation of a general class of

resource-constrained project scheduling problems. Management Science, Vol. 41, pp. 1693-1703.

[12] MINGOZZI, A.; V. MANIEZZO; S. RICCIARDELLI AND L. BIANCO (1998): An exact algorithm for the resource-
constrained project scheduling problem based on a new mathematical formulation. Management Science,

Vol. 44, pp. 714-729.

[13] PATTERSON, J.H.; R. SLOWINSKI; F.B. TALBOT AND J. WEGLARZ (1989): An algorithm for a general class of

precedence and resource constrained scheduling problems. In: Slowinski, R. and J. Weglarz (Eds.): Advances

in project scheduling. Elsevier, Amsterdam, pp. 3-28.

[14] SPRECHER, A. (1997): Scheduling resource-constrained projects competitively at modest memory require-

ments. Manuskripte aus den Instituten für Betriebswirtschaftslehre, Research Report No. 449 (Revised Ver­

sion), Christian-Albrechts-Universität Kiel, Germany.

[15] SPRECHER, A.; R. KOLISCH AND A. DREXL (1995): Semi-active, active and non-delay schedules for the

resource-constrained project scheduling problem. European Journal of Operational Research, Vol. 80, pp.
94-102.

[16] STINSON, J.P.; E.W. DAVIS AND B.M. KHUMAWALA (1978): Multiple resource-constrained scheduling using
branch and bound. AIIE Transactions, Vol. 10, pp. 252-259.

14

A Further Computational Results

NrOfSeq

Decomposition
Precision [nps]

(S — 3; 15
25,000

avg. max

15,15,15)
100, 000

avg. max.

(<5 = 3; 2
25,000

avg. max.

0, 20,20)
100,000

avg. max.
10 A(M P M)[%]

A(hrs) [%]
CPU [sec]

14.28 116.88
2.22 18.18
1.84 11.44

14.23 114.29
2.19 18.18
3.45 34.15

13.76 112.99
1.79 12.73
2.43 12.69

13.47 112.99
1.61 12.73
5.73 45.92

20 A(MPM)[%]
A(hrs) [%]
CPU [sec]

13.79 114.29
1.82 10.91
2.95 20.96

13.72 111.69
1.78 10.91
6.18 68.03

13.35 112.99
1.47 12.73
4.15 24.20

13.11 112.99
1.32 12.73

10.81 90.80
50 A (MPM) [%}

A(hrs) [%]
CPU [sec]

13.35 112.99
1.47 10.91
6.30 50.45

13.25 111.69
1.41 10.91

14.20 168.31

12.92 112.99
1.13 12.73
9.28 58.79

12.69 112.99
0.97 9.09

25.86 225.60
100 A(MPM)\%\

A(hrs) [%]
CPU [sec]

13.04 112.99
1.23 10.91

11.88 98.02

12.92 110.39
1.15 10.91

27.35 325.92

12.70 112.99
0.95 9.09

17.87 114.75

12.45 110.39
0.79 9.09

51.02 447.69
200 A(MPM) [%]

A(hrs) [%]
CPU [sec]

12.75 112.99
1.00 9.09

23.05 193.21

12.67 110.39
0.95 9.09

54.40 638.37

12.48 112.99
0.78 7.27

35.08 231.08

12.20 110.39
0.60 7.27

101.36 882.11
NOS 758.71 800.00 777.57 800.00 526.14 600.00 548.43 600.00

Table 11: J60 - Average Deviation and CPU-Time versus Decomposition and
Number of Decomposed Sequences

NrOfSeq

Decomposition
Precision [nps] 50,000

avg. max.

(£ =
100,000

avg. max.

3; 30,30)
200,000

avg. max.
500,000

avg. max.
10 A(MPM)[%]

A(hrs) [%]
CPU [sec]

13.47 119.48
1.46 11.11
4.80 21.01

13.16 119.48
1.22 11.11
7.95 51.43

13.03 118.18
1.16 11.11

14.23 79.08

12.81 116.88
1.02 11.11

31.03 206.90
20 A(MPM)[%]

A(hrs) [%]
CPU [sec]

13.04 119.48
1.15 9.09
8.89 41.90

12.81 119.48
0.96 9.09

15.13 97.29

12.69 118.18
0.90 9.09

27.67 162.12

12.48 115.58
0.76 9.09

61.43 420.40
50 A (MPM) [%]

A(hrs) [%}
CPU [sec]

12.74 116.88
0.91 9.09

21.08 104.00

12.48 115.58
0.71 9.09

36.66 216.33

12.32 112.99
0.63 9.09

68.04 407.55

12.13 111.69
0.50 9.09

151.82 1,046.17
100 A(MPM)[%]

A(hrs) [%]
CPU [sec]

12.56 116.88
0.78 8.331

41.23 206.26

12.27 115.58
0.55 8.331

72.29 411.88

12.14 112.99
0.49 7.96

135.19 813.63

11.94 111.69
0.36 7.96

303.21 2,077.42
200 A(MPM) [%]

A(hrs) [%]
CPU [sec]

12.35 116.88
0.61 7.96

81.65 412.21

12.11 115.58
0.43 7.96

143.86 821.55

11.98 112.99
0.37 7.96

268.86 1,604.02

11.78 111.69
0.23 6.19

605.94 4,161.94
NOS 312.47 400.00 321.64 400.00 329.29 400.00 338.43 400.00

Table 12: J60 - Average Deviation and CPU-Time versus Precision and Number
of Decomposed Sequences

15

Decomposition
Precision[nps]
No. of Gen. Seqs

(5 = 3; 30,30)
200,000 5,000,000

200 400 1,000 1,000
MPM(BestSeq)[%\ 14.77 14.42 14.04 14.04

NrOfSeq avg. max. avg. max. avg. max. avg. max.
best 5 A(MPM)[%]

A(hrs) [%]
CPU [sec]

12.75 119.48
0.94 9.09
7.28 43.10

12.66 118.18
0.87 9.73
7.68 41.89

12.41 114.29
0.72 8.33
9.84 45.98

11.97 112.99
0.40 7.68

116.49 1,079.87
best 10 A{MPM)\%)

A(hrs) [%]
CPU [sec]

12.50 119.48
0.76 9.09

14.02 85.05

12.43 118.18
0.70 9.73

14.24 81.35

12.25 114.29
0.56 7.92

16.34 86.50

11.70 109.09
0.22 6.19

232.03 2,133.39
best 15 A(MPM) [%]

A(hrs) [%]
CPU [sec]

12.35 118.18
0.65 9.09

20.68 127.08

12.34 118.18
0.63 8.33

20.84 120.93

12.13 114.29
0.47 7.92

22.80 124.33

11.66 109.09
0.19 6.19

345.44 3,233.66
best 20 A(MPM)[%]

A(hrs) [%]
CPU [sec]

12.29 118.18
0.60 7.96

27.32 166.20

12.27 115.58
0.59 8.33

27.31 160.71

12.07 114.29
0.43 7.92

29.14 166.54

11.61 109.09
0.14 4.42

460.16 4,311.46
best 50 A(MPM) [%]

A(hrs) [%]
CPU [sec]

12.12 112.99
0.47 7.08

67.26 415.75

12.04 112.99
0.42 7.96

66.65 410.34

11.92 112.99
0.33 6.19

68.12 400.92
-

NOS 82.33 100.00 82.63 100.00 82.83 100.00 35.85 40.00

Table 13: J60 - Average Deviation and CPXJ-Time versus Selection of a Subset
of Generated Sequences

J90 J120
(6 = 3; 30,30,30) (<5 = 3; 30,30, 30,30)

Precision[nps] 500,000 500,000
No. of Gen. Seqs 1 ,000 1,000
MPM(BestSeq)[%] 14.13 43.13

NrOfSeq avg. max. avg. max.
best 5 A(MPM)[%] 12.76 120.34 40.18 215.49

A(hrs) [%] 1.32 9.59 4.07 13.39
CPU [sec] 31.94 165.38 101.48 311.73

best 10 A(MPM)[%] 12.59 118.64 39.65 215.15
A(hrs) [%] 1.19 9.09 3.72 9.90
CPU [secj 58.07 325.83 191.12 610.12

best 15 A(MPM) [%} 12.49 118.64 39.46 215.15
A(hrs) [%] 1.13 9.09 3.60 9.90
CPU [sec] 84.22 487.85 279.37 899.56

best 20 A(MPM){%] 12.45 118.64 39.35 214.14
A(hrs) [%] 1.09 8.22 3.52 9.90
CPU [sec] 110.16 673.14 369.38 1,209.36

best 25 A(MPM)[%] 12.40 118.64 39.29 214.14
A(hrs) [%] 1.06 8.22 3.46 9.90
CPU [sec] 136.46 853.57 458.53 1,511.33
NOS 66.44 75.00 53.20 100.00

Table 14: Average Deviation and CPU-Time versus Selection of a Subset of Gen­
erated Sequences

16

