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Abstract 

Resource-constrained project scheduling under a net present value objective at-
tracts growing interest. Because this is an AfP-hard problem, it is unlikely that 
Optimum solutions can be computed for large instances. Thus, heuristics have be-
come a populär research field. Up to now, however, tight Upper bounds have not 
been proposed. Therefore, most researchers evaluate their heuristics on the basis 
of a best known lower bound, but it is unclear how good the Performance really 
is. With this contribution we close this gap and derive tight Upper bounds on the 
basis of a Lagrangean relaxation of the resource constraints. We also use this ap-
proach as a basis for a heuristic and show that our heuristic as well as the cash flow 
weight heuristic proposed by Baroum and Patterson yield solutions very close to 
the Optimum result. Furthermore, we discuss the proper choice of a test-bed, and, 
by reviewing the literature, emphasize that discount rates must be carefully chosen 
to give realistic instances. 

Keywords: Resource-constrained project scheduling, net present value, Lagrangean re
laxation, heuristics 

1 Introduction 

As a matter of fact, one of the key success factors in rnanaging projects is scheduling. By 
having applications in diverse industries (see [22]), this area is known to be a challenging 
field of research (see, e.g., [5] for a recent survey of different research activities). While 
in terms of the number of publications makespan minimization seems to be the primary 
focus, financial objectives have become populär as well. Among them, maximizing the 
net present value of a project has attracted special attention which is plausible, because 
the net present value is the dominant selection criteria. 

To be more specific about what is considered here, we assume that a project consists 
of a set V = {0, l,..t)n,n + 1} of activities. For each activity j, a processing time 
Pj € N0 is given. Preemption is not allowed, i.e. once an activity is started, it must 
run pj time periods until it is completed. Associated with each activity j is a cash flow 
cj € R. Without Ioss of generality, this cash flow occurs at the end of the particular 
activity. Note, if Cj is positive, we have a cash inflow, but if Cj is negative, we have a cash 
outflow. So, roughly speaking, we like to schedule the activities in such a way that cash 
inflows occur early and cash outflows occur late in time. Since, getting one dollar today 
is better than getting one dollar in the future (the reverse is true for paying a dollar), 
cash flows are discounted with a discount rate of a € R>o per time period. 

The activities must be scheduled with respect to precedence constraints among them. 
Let E C V x V be the set of precedence constraints, i.e. (ij) € E means that activity 
j must not be started before activity i is completed. Furthermore, we assume that the 
activity-on-node network G = (V,E) contains no cycles. Without loss of generality, we 
can assume that 0 is the unique source and n + 1 is the unique sink in the network. 
Given the precedence constraints, one can easily compute,Jor each activity j, the set of 
immediate predecessors Vj and the set of all predecessors Vj using the deflnition 

Pj - Vj U |J Vi with Vj = {i£ V | (ij) € E}. 
ieVj 
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Analogously, the set of immediate successors Sj of activity j is defined by Sj — {i G V \ 
j £ p.y it is now easy to compute the earliest completion time ECj for each activity 
j by ECQ = po and ECj = max{ECi + p, | i G Vj} for j > 1. In addition to that, 
we assume that a deadline T e N must be met, i.e. activities must not be completed 
later than time T. Of course, T > ECn+i must hold. For each activity, the latest 
completion time LCj for meeting the deadline T can then be determined by LC^+1 = T 
and LCj = min{LCf - pi \ i G Sj} for j < n. In the sequel we will write LCj instead of 
LCJ whenever it is clear from the context to which deadline T we refer to. 

Finally, resource constraints must be respected, too. We consider a set K of so-called 
renewable resources, where RH € N0 units of resource k are available in period t. Each 
activity j requires rjk G N0 units of resource k in each period it is processed. The 
activities must be scheduled in such a way that the sum of resource requirements does 
not exceed the resource availability in any period and for any resource. 

It is worth to highlight that all data, especially the cash flows, are assumed to be 
deterministic. A straightforward binary linear programming model can now be formulated 
using decision variables Xjt. Such a variable is one, if activity j is completed at time t 
and zero, otherwise. 

LCi 
max 

s.t. 
LCi 

y y mXjt 

^2 Xjt — i jeV 

(i) 

(2) 
t=ECi 

Y, Pi 
t—ECj t=ECi 

min{t+pj — l,LCj} 
yi y! Tjk%jr 5 Likt 
j€V T=max{(,£'CJ} 

Xjt € {0,1} 

(iJ)eE (3) 

k € K; t E {1,..., T} (4) 

j G V; t € {ECj,..., LCj} (5) 

The objective (1) is to maximizethe net present value. Each activity must be scheduled 
(2). A feasible schedule must take the precedence constraints (3) as well as the resource 
constraints (4) into account. The decision variables are defined by (5). Apparently, the 
completion time Cj of activity j is determined by ^ ' xjt-

This problem is known to be an AAP-hard optimization problem which Covers the 
makespan minimization problem as a special case (a = 1, cn+i = 1, and Cj = 0 for j < n) 
which is A^TMiard already [4]. Without resource constraints, the problem can be solved 
in polynomial time. To the best of our knowledge, A.H. Russell [33] was the first who 
considered this case. Later, Grinold [15] developed an efficient Solution procedura, More 
recently, De Reyck and Herroelen [10] presented another Optimum algorithm. 

For the resource-constrained problem, optimum Solution methods have been developed 
by Yang et al. [41], Icmeli and Erenguc [19], De Reyck and Herroelen [10], and Neumann 
and Zimmermann [28]. Baroum and Patterson [2] present an optimum algorithm which is 
confined to the case that all cash flows are non-negative. A bulk of publications is devoted 
to heuristics. See, e.g., Baroum and Patterson [1], Icmeli and Erenguc [18], Padman et 
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al. [31], Finder and Marucheck [32], R.A. Rüssel [34], Smith-Daniels and Aquilano [36], 
Smith-Daniels et al. [37], and Yang et al. [42]. A more comprehensive survey on project 
scheduling with maximum net present value objective can be found in Brucker et al. [5], 
Herroelen et al. [17], Icmeli et al. [21], Kolisch and Padman [24], and Özdamar and 
Ulusoy [29]. 

Sophisticated upper bounds have not been developed so far. Icmeli and Erenguc [18] 
have used the LP-relaxation of the model formulation to evaluate their heuristics, but 
theses bounds were not tight. Padman and Smith-Daniels [30] as well as R.A. Rüssel [34] 
have relaxed the resource constraints. But, this bound was weak} too. As a result, it is 
common Standard to evaluate heuristics on the basis of the best known lower bound. This 
paper is devoted to close this gap and discusses the computation of tight upper bounds. 

The text is organized as follows: In Section 2 it is shown how upper bounds can 
efficiently be computed by a Lagrangean relaxation of the resource constraints. A heuristic 
is then presented in Section 3 which tries to derive a feasible Solution from the Lagrangean 
relaxation result. Finally, a computational study is performed in Section 4. Concluding 
remarks finish the paper. 

2 Lagrangean Relaxation of Resource Constraints 

An upper bound for the optimum objective function value of model (1) thru (5) can be 
computed by considering a Lagrangean relaxation which is a well-known technique [14]. 
In our case, we consider a Lagrangean relaxation of the resource constraints (4). That 
is, for a given set of Lagrangean multipliers \kt > 0, to get an upper bound, we seek an 
optimum Solution for the model: 

LCj T / min{i+pj —l,LCj} \ 
max E E n + E Exkt [Rkt - E E rikXjT (6) 

jeVt=ECj l1 a) k€Kt= 1 \ j€V r=m&x{t,ECj} ) 

s.t. (2), (3), and (5) 

By rearranging the terms in the objective function (6), we get 

LC5 / T \ 
max Y, wjtxjt + Y Y ^htRkt (7) 

j€Vt=ECj \ keKt= 1 / 

where 

Wjt = (1 +aY ~ E E AkrTjk• (8) 
^ +°7 T=t-Pj+1 k€K 

Since, in (7), the second term is a constant, we can ignore it for the purpose of opti-
mization. Thus, given a set of Lagrangean multipliers Xkt ^ 0, this is a maximum total 
weighted completion time objective. It is important to be able to solve this problem ef
ficiently, because the basic working principle of the Lagrangean relaxation approach is to 
solve this problem repeatedly with different Lagrangean multipliers in each iteration. 

It should be remarked that in the context of resource-constrained project scheduling, 
the Lagrangean relaxation of the resource constraints has previously been studied by 
Christofides et al. [7], who considered makespan minimization. They derived a problem 
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with an objective Function similar to (7) and proposed a branch-and-bound procedure 
to solve it. Meanwhile, it is clear that this kind of problem can be solved in polynomial 
time, because Möhring et al. [27] showed how it can be transformed into a minimum cut 
problem. These ideas do also apply in our case, and we have implemented a maximum 
flow algorithm according to Cherkassky and Goldberg [6]. 

The remaining question to be discussed is how to choose the Lagrangean multipliers. 
As already mentioned above, the basic idea of the Lagrangean relaxation approach is to 
solve the problem repeatedly with a new set of Lagrangean multipliers in each iteration. 
As a result of each iteration, we get an upper bound for the maximum net present value, 
and the best (i.e. the lowest) bound obtained defines the result of the Lagrangean relax
ation. Initially, we start with all multipliers being zero. Thus, iteration one actually gives 
the upper bound obtained by ignoring the resource constraints completely. Subgradient 
optimization [16] is then applied to update the Lagrangean multipliers after each iteration 
by 

Xkt = max ^ 0, Xkt + ö 

K&K T= 1 

(9) 

where 
min{t+pj-l,LCj} 

^kt — 5Z rjh%jr ~ Rkti (10) 
j£V T—msLx{t,ECj] 

UB* is the best known upper bound, LB* is the best known lower bound, and 6 is scme 
scaling factor. Initially, 8 is chosen to be two, and it is reduced to its half whenever UB* 
has not been improved within five consecutive iterations. At the beginning, UB* =00, 
and, therefore, the value of UB* is updated after iteration one for the first time. As we 
will discuss in the next section, we try to derive a feasible Solution in each iteration, and, 
hence, the value of LB* is updated as well. Initially, one could choose LB* = —00, but 
we will return to this point when we report about the computational study. 

To logic behind (9) is that, if some resource constraint is violated, the corresponding 
A^ value is positive (see (10)), thus, increases (see (9)), and, thus, the values wjt 
decrease due to (8). Hence, there is a tendency that, in order to maximize (7), the next 
iteration yields a schedule that resolves the resource conflict. 

3 Lagrangean Relaxation Based Heuristic 

In each iteration of the Lagrangean relaxation procedure, the computed schedule contains 
some useful Information which can be used to derive a feasible schedule for the resource-
constrained problem. Hence, we describe a heuristic which tries to construct a feasible 
schedule on the basis of the result of the Lagrangean relaxation of the resource constraints. 

Roughly speaking, we try to construct a feasible schedule by scheduling one activity 
after the other. If there is a choice which activity should be scheduled next, we use a 
permutation 7r : V —» {0,..., n + 1} to make that decision where activities with a low 
value are favored. This permutation is defined by making use of the completion times 
CjR determined with the Lagrangean relaxation procedure. Given the completion times, 
we also know the start times SjR = CjR — pj of that schedule. Formally, IT is the unique 
function which fulfills the following four conditions for i ^ j £ V: 
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(i) i G Vj => TT(i) < ir(j) 

(ii) SfR < SfR => TT(i) < it(j) 

(iii) 5/"R = Sj'11 A i\\j A (1+^Pj > jp^r ^ ""W < 7rÜ) 

(iv) 5fÄ = 5fÄ A «| |j A = j^pj- A t < ; => TT(«) < ir{j) 

We want to schedule an activity j only if all its preceding activities are scheduled already. 
This comes in via (i). If there is a choice to schedule the next activity, we want to select 
the one that starts earliest in the schedule computed with Lagrangean relaxation. This 
is stated by (ii). In case two activities start at the same time and there is no precedence 
relation among them, which is formally defined by 

we schedule that activity first which, loosely speaking, incurs the highest cash flow. That 
is covered by (iii). Finally, if ties remain, we simply choose the lowest numbered activity 
as stated in (iv). 

As an example, consider the network with n = 6 given in Figure 1 (boxes represent 
activities where the width of a box j illustrates pj and the height illustrates r^), the 
Parameter values in Table 1, and \K\ = 1, T = 16, and Rkt = 3 for all t. For the sake 
of simplicity, we do not care about the concrete cash flow values c^, but only about the 
sign of the cash flows as indicated in Figure 1, too. Suppose now that the Lagrangean 
relaxation procedure yielded the schedule depicted in Figure 2(a). The resulting function 
7r can be seen in Table 2. 

+ 

0 

Figure 1: A Network with Eight Activities 

The heuristic goes thru four phases in order to construct a suboptimal schedule for the 
resource-constrained problem. Phase one tries to construct a feasible Solution by means 
of a so-called parallel scheduling scheme. If feasibility can be achieved, phases two to 
four try to improve that schedule without giving up feasibility If phase one fails to find 
a feasible schedule, the procedure stops and further phases are not entered. 
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3 0 1 2 3 4 5 6 7 

Pj 1 1 3 2 3 2 2 1 

rH 1 2 1 2 1 3 3 1 

sign(cj) — + — — — + + + 

Table 1: The Data of the Example 

nU) 0 1 2 3 4 5 6 7 
j 0 1 3 5 2 6 4 7 

Table 2: 7r Derived from the Schedule in Figure 2(a) 

In more detail, phase one is specified in Table 3. It maintains a set U of activities 
which have not been scheduled so far. It beging at time t = 0 and determines the set D of 
activities which may be started at this time without violating the precedence constraints, 
the resource constraints, and the deadline. Formally, the precedence constraints are tested 
by a function 

«,•() = / ifWeTVGät 
^ | 0, otherwise 

which yields 1 for activity j at time t, if all predecessors of j are scheduled in such a way 
that their completion times are not later than t. The resource constraints are tested by a 
function 

1, if Wk € K : Vr € + 1,... ,min{t + Pj,T}} : 
Tjk -ßfcr ^2 Tik 

<€V\{j> 
r<C\<min{r+pf-l,T} 

0, otherwise 

which gives 1 for activity j at time t, if the remaining resource availability in periods 
{£ + 1,..., min{( + pj,T}} suffices to schedule activity j. If more than one activity is 
contained in D, TT is used to select the activity to be scheduled. At time £, activities are 
scheduled one after the other until no further activities can be started at t. Then, the 
procedure moves on to the very next period. This time spot becomes the new focus of 
attention. For the example, the result of phase one can be seen in Figure 2(b). 

As an alternative to the parallel construction scheme one could also use a so-called 
serial construction scheme during phase one. The details for such scheme are given in 
Table 4. The underlying idea behind the serial construction scheme is to schedule an 
activity j only if all its preceding activities have already been scheduled. If ties exist, 7r is 
used to make a decision. Once an activity is selected, it is scheduled as early as possible 
where the earliest possible completion time Cj is defined by Cj = pj + min{£ | $ (j, = 
1A ty(j,t — pj) = 1}. For the example, the result can be seen in Figure 2(b); it is identical 
to the result of the parallel construction scheme. 

In case phase one succeeds in finding a feasible Solution, phase two takes over to modify 
the schedule. Details are given in Table 5. The basic idea of phase two is to shift the 
activities to the right where the activities are tested for possible shifts in the order of 
decreasing ir values. When shifting an activity, resource constraints are respected. Also, 

Hht) = 
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Resource Usage 
i 

(a) 

3 + 
2 
1 

-1-

4 7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Resource Usage 
i 

(b) 
2 

1 3 
5 6 

0 
1 

4 7 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Resource Usage 

c) 

A 
3 -

5 6 
2 4 7 

2 3 4 5 6 7 8 9 10 il 12 13 14 15 16 

Figure 2: Heuristic Construction and Improvement Scheme 

precedence constraints must not be violated, i.e. an activity j must not be completed 
later than Cj = min{Q - Pi \ i £ Furthermore, we use the information contained 
in the schedule derived by the Lagrangean relaxation of the resource constraints and do 
not allow shifts beyond the completion time CjR. The idea behind considering CfR is 
that although it may be useful to shift activities with a positive cash flow to the right, 
we do not want to shift such activities too far. Our hope is that the schedule derived 
by Lagrangean relaxation contains some senseful information in this respect. Thus, Cj = 
mm{Cj,m&x{Cj,CjjR}} is the latest possible completion time disregarding the resource 
constraints. Phase two is repeated until no further shifts are perform ed. Figure 2(c) 
shows the result of phase two for the example. 

After termination of phase two, phase three performs additional right shifts. Table 
6 provides the details. This phase improves the current schedule by shifting activities 
with a negative cash flow as far as possible to the right. Of course, resource constraints, 
precedence constraints as well as the deadline must be taken into account. Again, the 
activities are considered in the order of decreasing 7r values. Phase three is repeated until 
no further right shifts can be performed. For the example, no improvements are possible 
during phase three. 

Finally, phase four is reached. See Table 7 for the details. Similar to phase three, 
phase four improves the current schedule by shifting activities. This time, activities 
with a positive cash flow are shifted as far eis possible to the left. Besides the resource 
constraints and the earliest completion time, precedences have to be taken into account, 
too, thus Cj = max{Q+pj | i € Vj} gives the earliest possible completion time of activity 
j respecting the schedule of preceding activities. For the example, no improvements are 
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u = v 
Cj = T +1 for all j G V 
t = 0 
repeat 
{ repeat 

{ D = {jeu\ $(j, t) = 1 A t) = 1 A t + Pj < T} 
if {D ? 0) 
{ j = argmin{7r(«) | i £ D} 

Cj = t + pj 
u = U\{j} 

} } until (D = 0) 
t = t + 1 
if (i > T A U £ 0) STOP 

} until (£/ = 0) 

Table 3: The Parallel Construction Scheme (Phase 1) 

possible during phase four. If at least one activity is shifted during phase four, the 
heuristic loops back to phase three to test for further improvements. 

4 Computational Study 

To test the Performance of the proposed approaches, we have implemented them in GNU 
C on a Pentium II Computer with 300 MHz and 64 MB RAM running a Linux operating 
system. 

4.1 Test-B ed 

We have used the ProGen instances from the project scheduling problem library (PSPLIB) 
[25] to create a test-bed. This library contains systematically generated instances for 
resource-constrained project scheduling. We have used the instances with n € {30,60,90}. 
Each of theses instances has four resources. The instances have different network com-
plexities NC 6 {1.5,1.8,2.1}, different resource factors RF 6 {0.25,0.5,0.75,1.0}, and 
different resource strengths RS € {0.2,0.5,0.7,1.0} — parameters which are known to 
have a strong impact on the Performance of resource-constrained project scheduling pro-
cedures [26]. The network complexity reflects the average number of immediate successors 
of an activity, the resource factor is a measure of the average number of resources requested 
per activity divided by the total number of resources, and the resource strength measures 
the scarceness of the resources where a low resource strength indicates that the resource 
constraints are tight. For each parameter level combination, ten instances are provided 
which gives a total of 3 • 3 • 4 • 4 -10 = 1440 instances. 

Cash flows are not specified in the library, so we followed Icmeli and Erenguc [19] and 
draw, for each instance, a different set of random numbers Cj E [—500; 1000] with uniform 
distribution. 
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u = y\{o} 
Co =Po 
Cj =T + 1 for all j S l/\{0} 
repeat 
{ D = {j eU \C'j< T} 

if (D ^ 0) 
{ j = argmin{7r(i) | i € D} 

Q = q 
cf = ^0} 

} } until (D = 0) 
if (U ^ 0) STOP 

Table 4: The Serial Construction Scheme (Phase 1) 

do 
{ flag = false 

U = V 
repeat 
{ j — argmax{7r(i) | i £ U} 

t = max-jr 6 {Cj;. ..,<%} | V(j, r - pj) = 1} 
if (t > Cj) flag = true 
Cj = t 
[/ = 

} until (U = 0) 
} while (flag = true) 

Table 5: Modification of the Schedule (Phase 2) 

In order to specify a deadline, we wanted to make sure that each instance has a 
feasible Solution. Hence, we applied a simple heuristic for minimizing the makespan. In 
our tests, we used a deterministic parallel priority rule procedure, i.e. a procedure that 
works similar to our phase one using a deadline that is not restrictive and a priority rule 
7r that is defined on the basis of the latest start time LSfCn+1 = LCfCn+1 —Pj. Ties are 
broken favoring the lowest numbered activity. This way, we have computed a deadline 
rpMmLS for whjch a feasible Solution exists and derived the deadline T used in our studies 
by T = 6 - TMmLS. In our tests, we have used 0 6 {1.0,1.25,1.5,1.75,2.0}. Moreover, 
the net present value of the initial schedule gives a Iower bound which is used to initialize 
LB* used for subgradient optimization. 

To complete the specification of the instances, we need to define a, the discount rate 
per period. In practice, it is common to specify /?, the discount rate per year, rather than 
the discount rate per period. Given that one period corresponds to ^ years, the a value 
can easily be computed by 

a = ^/l 4- ß — 1. 

For instance, T0 = 52 means that one period corresponds to one week, and T0 = 12 means 
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{ flag = false 
u = {j e v | cj < 0} 
while (U ^ 0) 
{ j == argmax{7r(i) | i e C/} 

t = max{r € {C,,..., min-fC,-, T}} | ̂ (j,r -p,) = 1} 
if (t > Cj) flag = trwe 
Cj- — ( 
U = c/\{i} 

} } while (flag = Srne) 

Table 6: Improvement of the Schedule (Phase 3) 

that one period corresponds to one month. Unfortunately, it has become usual practice in 
the literature to specify a without making a definite statement about T0. Table 8 provides 
some overview over what a has been used and what would be the ß depending on which 
T0 we assume (if ß has been given and/or TQ has been specified, we leave the remaining 
entries empty). The list of references in this table is not comprehensive, mainly because 
some authors do not report about their a values at all. 

We like to point out that the discussion of a depending on T0 is extremely crucial, 
and that specifying a without T0 is meaningless. The problem setting treated here and in 
the references listed in Table 8 assumes deterministic data. Hence, a realistic value for ß 
is a value that corresponds to the discount rate of risk-free assets on the capital market. 
Nowadays, real-life discount rates for risk-free assets are low, usually below 10%. These 
data are confirmed by a real-world case studies provided by Tavares [39, 40]. Thus, to 
make sure that the computational study does not use artificial data and that it makes some 
sense with respect to practice, we must use ß values in that ränge, i.e. we must specify 
a and T0 accordingly. By having a look at what is used in the literature so far (compare 
Table 8), we see that some authors use very unrealistic data. We also find that the 
understanding of what a period stands for is quite different. Some authors consider days 
while others must have meant quarter years. This, however, is not surprising, because 
the application area for project scheduling is wide. Nevertheless, if the discount rates 
indicate that months or even longer periods are meant, we must carefully check how 
long the investigated projects run. Especially when several hundreds of activities are 
considered, the makespan of the projects in the test-bed is likely to be several decades 
which would not make much sense either. 

In our tests, we have used T0 = 52 and ß € {5%, 10%}. In total, we thus have 
1440 - 5 • 2 = 14400 instances in our test-bed. 

4.2 Results 

To present the results, we have aggregated the data and do not show how the resource 
factor RF and the network complexity NC afTect the Performance. For each parameter 
level combination of the number of activities n, the resource strength RS, the deadline 
factor 0, and the discount rate ß we thus have 4 • 3 * 10 = 120 instances. 
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do 
{ flagjphase 3 = false 

do 
{ flag = false 

U = {jeV \Cj> 0} 
while (U / 0) 
{ j ~ argmin{7r(z) | ieU} 

t = min{r € {max{Q, ECj}, ...,Cj}\ tf(j5 r - Pj) = 1} 
if (t < Cj) 
{ flag — true 

flagjphase^ = true 
} 
Cj = t 
U = U\{j} 

} } while {flag = true) 
if (flagjphase3 = true) Phase 3 

} while (flagjphase3 = true) 

Table 7: Improvement of the Schedule (Phase 4) 

For studying the results, we have tested the Lagrangean relaxation based approach 
with a parallel construction scheme in phase one, LRp for short, and the Lagrangean 
relaxation based approach with a serial construction scheme in phase one, LRs for short. 
In either case 100 iterations were performed. To see, if our results are competitive, we 
have also implemented the so-called BIAS-CFW cash flow weight heuristic of Baroum 
and Patterson [1], BP for short, because it is a recent procedure and it gave amazing 
results as reported in [1], This is an iterative procedure, too, and we performed 100 
iterations as well. 

Table 9 shows the number of instances for which a feasible Solution could have been 
found. Recall that a feasible Solution exists for every instance. Not surprisingly, we find 
that, if the deadline is not tight, i.e. 6 > 1.25, every instance is feasibly solved by all 
heuristics. The same is true, if resource constraints do not exist, i.e. RS = 1.0. For a 
tight deadline, i.e. 6 — 1.00, and scarce resources, i.e. RS < 1.0, we have instances for 
which no feasible Solution can be found. As we see, BP is the best performer when the 
number of activities is small, i.e. n = 30. If the number of activities grows, LRp seems 
to be best, if resources are really scarce, i.e. RS < 0.5. For RS = 0.7, BP remains to 
be the top performer even for instances with many activities. BP shows weak results if 
resource constraints are very tight, i.e. RS < 0.2, especially when the number of activities 
is high. For n — 90 and RS = 0.2, for instance, only 34 out of 120 instances could have 
been feasibly solved with BP. The discount rate has almost no effect on the ability to 
find feasible solutions. 

If we consider the run-time as a measure of Performance (see Table 10 for CPU-
seconds), it becomes apparent that BP is extremely fast even for larger instances. The 
computational bürden of the Lagrangean relaxation based approach, LR for short, lies in 
solving the total weighted completion time subproblem. While the discount rate ß has 
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References 

0.00002 0.7% 0.1% 0.0% 0.0% [37] 

0.00006 2.2% 0.3% 0.1% 0.0% [36] 
— 4.2% — — — [12] 

0.0008 33.4% — — — [35] 
— 6.5% — — [40] 

0.00167 82.3% — — — [23], [35] 

0.0018 — 9.8% — — [39] 

0.00333 231.0% — — — [35] 
— 20.0% — — [9] 

0.008 1661.1% — — — [23] 

0.01 — — 12.7% — [15], [34] 

0.01 3495.0% 67.8% 12.7% 4.1% [18], [19], [20], [33], [42] 

0.ÖT 3626.7% 68.6% 12.8% 4.1% [28] 

0.02 — — 26.8% — [11], [38] 

0.02 1.2 • 105% 180.0% 26.8% 8.2% [1], [3], [13], [18], [20] 

0.03 4.2 -10=% 365.1% 42.6% 12.6% [13] 

0.05 4.2 -10»% — — — [23] 

0.05 4.2 -10»% 1164.3% 79.6% 21.6% [19], [20], [32] 
0.1 8.0-10^% 1.4 -10"% 213.8% 46.4% [19] 
0.12 5.2 • 10"% 3.6 -10"% 289.6% 57.4% [32] 
0.2 1.3 • 106% — — [8] 
0.2 3.2 • 1030% 1.3 -10% 791.6% 107.4% [32] 

Table 8: Some Discount Rates from the Literature 

no effect on the run-time Performance, increasing RS values reduce the run-time effort 
for both BP and LR. The deadline significantly affects the run-time of the Lagrangean 
relaxation based procedure, but its effect on the BP Performance is beyond what we can 
measure. The figures with 9 = 1.00 are small, because it is very likely that many iterations 
do not yield a feasible Solution and the construction part of the heuristics terminates as 
soon as infeasibility is detected. 

The most important Performance measure is the deviation of the objective function 
value of a feasible Solution from the upper bound. Table 11 lists these figures for the three 
heuristics BP, LRp, and LRs as well as for the heuristic, abbreviated with LST, that is 
used to compute the deadline TMtnLS. For each instance which was feasibly solved, the 
deviation in percent is defined as 

NPVUB-NPVLB 

00 NPVUB 

where NPVUB is the upper bound and NPVLB is the objective function value of the 
feasible Solution computed with the heuristic. As we see, the Lagrangean relaxation 
based approach gives tight bounds. The average result for LRp is below 0.8% for every 
Parameter level combination. The serial construction scheme LRs does not pay off and, 
given the results in Table 9, it is clear that the Lagrangean relaxation based approach 
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n = 30 ß 0.05 
RS 0.2 0.5 0.7 1.0 

0 BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 107 102 89 105 88 80 114 86 83 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 
n = 30 ß 0.10 

RS 0.2 0.5 0.7 1.0 
e BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 107 101 87 105 87 79 114 85 81 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 
n = 60 ß 0.05 

RS 0.2 0.5 0.7 1.0 
9 BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 63 98 65 81 88 84 116 71 88 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 
n = 60 ß 0.10 

RS 0.2 0.5 0.7 1.0 
6 BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 63 92 68 81 87 86 116 74 87 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 
n = 30 ß 0.05 

RS 0.2 0.5 0.7 1.0 
0 BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 34 104 57 81 89 86 112 76 89 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 
n = 90 ß 0.10 

RS 0.2 0.5 0.7 1.0 
0 BP LRp LRs BP LRp LRs BP LRp LRs BP LRp LRs 
1.00 34 104 58 81 87 88 112 76 90 120 120 120 
1.25 120 120 120 120 120 120 120 120 120 120 120 120 
1.50 120 120 120 120 120 120 120 120 120 120 120 120 
1.75 120 120 120 120 120 120 120 120 120 120 120 120 
2.00 120 120 120 120 120 120 120 120 120 120 120 120 

Table 9: Number of Feasibly Solved Instances 
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n = 30 ß 0.05 
RS 0.2 0.5 0.7 1.0 

0 BP LR BP LR BP LR BP LR 
1.00 0.04 3.54 0.03 0.90 0.03 0.70 0.03 0.51 
1.25 0.08 5.63 0.05 1.84 0.04 1.61 0.03 1.18 
1.50 0.08 8.44 0.05 3.04 0.05 2.80 0.03 2.18 
1.75 0.08 11.91 0.05 4.42 0.05 4.26 0.03 3.36 
2.00 0.08 16.09 0.05 5.99 0.05 5.90 0.03 4.70 
n = 30 ß 0.10 

RS 0.2 0.5 0.7 1.0 
e BP LR BP LR BP LR BP LR 
1.00 0.04 3.53 0.03 0.90 0.03 0.70 0.03 0.51 
1.25 0.08 5.68 0.05 1.85 0.04 1.62 0.03 1.18 
1.50 0.08 8.28 0.05 3.04 0.05 2.82 0.03 2.19 
1.75 0.08 11.83 0.05 4.46 0.05 4.28 0.03 3.40 
2.00 0.08 16.18 0.05 6.01 0.05 5.93 0.03 4.72 
n = 60 ß 0.05 

RS 0.2 0.5 0.7 1.0 
0 BP LR BP LR BP LR BP LR 
1.00 0.09 20.52 0.07 3.73 0.07 2.32 0.08 1.96 
1.25 0.19 34.26 0.13 8.22 0.11 5.85 0.08 5.29 
1.50 0.19 51.08 0.13 14.57 0.11 10.76 0.08 10.22 
1.75 0.19 70.85 0.13 23.17 0.11 17.24 0.08 16.86 
2.00 0.19 92.50 0.13 32.90 0.11 24.83 0.08 24.89 
n = 60 ß 0.10 

RS 0.2 0.5 0.7 1.0 
6 BP LR BP LR BP LR BP LR 
1.00 0.09 20.55 0.07 3.74 0.07 2.33 0.08 1.97 
1.25 0.19 34.63 0.13 8.19 0.11 5.92 0.08 5.40 
1.50 0.19 51.69 0.13 14.62 0.11 10.84 0.08 10.29 
1.75 0.19 71.67 0.13 23.29 0.11 17.44 0.08 16.93 
2.00 0.19 93.31 0.13 33.06 0.11 25.19 0.08 25.08 
n = 90 ß 0.05 

RS 0.2 0.5 0.7 1.0 
6 BP LR BP LR BP LR BP LR 
1.00 0.15 60.37 0.13 8.90 0.13 5.67 0.15 4.87 
1.25 0.34 92.72 0.24 20.83 0.20 15.35 0.15 14.50 
1.50 0.35 131.16 0.24 36.59 0.20 28.80 0.15 29.13 
1.75 0.35 175.79 0.24 55.21 0.20 44.97 0.15 47.37 
2.00 0.35 225.99 0.24 75.98 0.20 63.27 0.15 68.14 
n = 90 ß 0.10 

RS 0.2 0.5 0.7 1.0 
6 BP LR BP LR BP LR BP LR 
1.00 0.16 60.63 0.13 8.95 0.13 5.70 0.15 4.89 
1.25 0.34 93.11 0.24 20.78 0.20 15.33 0.15 14.54 
1.50 0.35 131.78 0.24 36.60 0.20 28.82 0.15 29.15 
1.75 0.35 176.31 0.24 55.08 0.20 45.38 0.15 47.78 
2.00 0.35 227.48 0.24 75.80 0.21 63.79 0.15 68.78 

Table 10: Average Run-Time Performance 
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n = 30 ß 
RS 

e 
0.2 

LST BP LRp LRs 

0 
0.5 

LST BP LRp LRs 

.05 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

1.58 0.41 0.41 0.45 0.57 0.13 0.13 0.13 0.48 0.09 0.11 0.09 0.17 0.04 0.00 0.00 
1.74 0.40 0.38 0.39 0.69 0.16 0.14 0.14 0.62 0.13 0.12 0.11 0.27 0.09 0.00 0.00 
1.88 0.49 0.38 0.40 0.79 0.23 0.15 0.15 0.74 0.19 0.13 0.12 0.37 0.14 0.00 0.00 
2.02 0.58 0.38 0.40 0.90 0.30 0.15 0.15 0.86 0.25 0.13 0.12 0.46 0.20 0.00 0.00 
2.15 0.66 0.39 0.41 1.00 0.37 0.16 0.16 0.97 0.31 0.14 0.13 0.54 0.24 0.00 0.00 

n = 30 ß 
RS 

e 
0.2 

LST BP LRp LRs 

0 
0.5 

LST BP LRp LRs 

10 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

3.01 0.78 0.77 0.83 1.10 0.26 0.24 0.25 0.92 0.18 0.21 0.17 0.34 0.07 0.00 0.00 
3.30 0.75 0.71 0.75 1.32 0.30 0.27 0.27 1.18 0.24 0.24 0.22 0.53 0.18 0.00 0.00 
3.54 0.91 0.72 0.76 1.52 0.44 0.29 0.28 1.39 0.36 0.25 0.23 0.70 0.28 0.00 0.00 
3.78 1.06 0.73 0.78 1.71 0.57 0.30 0.29 1.61 0.47 0.25 0.24 0.86 0.37 0.00 0.00 
3.99 1.20 0.74 0.78 1.88 0.69 0.30 0.30 1.80 0.58 0.26 0.24 1.02 0.46 0.00 0.00 

n = 60 ß 
RS 

0 
0.2 

LST BP LRp LRs 

0. 
0.5 

LST BP LRp LRs 

05 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

1.91 0.62 0.38 0.39 0.63 0.17 0.13 0.11 0.39 0.08 0.07 0.05 0.25 0.05 0.00 0.00 
2.03 0.54 0.36 0.38 0.72 0.19 0.13 0.11 0.50 0.11 0.08 0.06 0.36 0.12 0.00 0.00 
2.14 0.63 0.37 0.39 0.79 0.25 0.14 0.12 0.60 0.17 0.09 0.07 0.47 0.19 0.00 0.00 
2.25 0.71 0.38 0.40 0.87 0.31 0.15 0.13 0.69 0.22 0.09 0.07 0.57 0.25 0.00 0.00 
2.36 0.79 0.39 0.41 0.94 0.37 0.15 0.13 0.78 0.27 0.09 0.07 0.66 0.3% 0.00 0.00 

n = 60 ß 
RS 

e 
0.2 

LST BP LRp LRs 

0. 
0.5 

LST BP LRp LRs 

10 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

3.63 1.16 0.71 0.75 1.23 0.32 0.25 0.22 0.76 0.16 0.14 0.09 0.49 0.10 0.00 0.00 
3.86 1.00 0.71 0.72 1.38 0.36 0.26 0.22 0.96 0.21 0.16 0.12 0.69 0.23 0.00 0.00 
4.06 1.16 0.71 0.73 1.52 0.47 0.27 0.24 1.13 0.31 0.17 0.13 0.88 0.35 0.00 0.00 
4.24 1.3 1 0.73 0.74 1.65 0.58 0.28 0.25 1.30 0.40 0.17 0.14 1.06 0.46 0.00 0.00 
4.41 1.44 0.73 0.77 1.77 0.68 0.29 0.26 1.45 0.49 0.18 0.14 1.23 0.57 0.00 0.00 

n = 90 ß 
RS 

e 
0.2 

LST BP LRp LRs 

0.( 
0.5 

LST BP LRp LRs 

)5 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

2.22 0.58 0.40 0.42 0.67 0.19 0.11 0.09 0.43 0.09 0.05 0.04 0.29 0.07 0.00 0.00 
2.35 0.69 0.38 0.43 0.76 0.23 0.12 0.10 0.51 0.13 0.07 0.06 0.38 0.13 0.00 0.00 
2.46 0.76 0.39 0.43 0.85 0.29 0.13 0.11 0.59 0.19 0.08 0.06 0.46 0.19 0.00 0.00 
2.57 0.84 0.39 0.45 0.93 0.35 0.13 0.12 0.67 0.24 0.08 0.07 0.53 0.25 0.00 0.00 
2.68 0.91 0.40 0.46 1.00 0.41 0.14 0.12 0.74 0.29 0.08 0.07 0.61 0.30 0.00 0.00 

n = 90 ß 
RS 

e 
0.2 

LST BP LRp LRs 

0.1 
0.5 

LST BP LRp LRs 

0 
0.7 

LST BP LRp LRs 
1.0 

LST BP LRp LRs 
1.00 
1.25 
1.50 
1.75 
2.00 

4.21 1.09 0.76 0.74 1.30 0.36 0.21 0.19 0.83 0.18 0.10 0.08 0.56 0.14 0.00 0.00 
4.44 1.27 0.71 0.78 1.46 0.43 0.23 0.19 0.99 0.25 0.14 0.11 0.72 0.25 0.00 0.00 
4.64 1.40 0.73 0.81 1.61 0.55 0.24 0.21 1.13 0.35 0.15 0.12 0.86 0.36 0.00 0.00 
4.82 1.54 0.75 0.84 1.75 0.66 0.25 0.22 1.26 0.44 0.15 0.13 1.00 0.46 0.00 0.00 
4.98 1.66 0.74 0.83 1.88 0.76 0.27 0.23 1.39 0.53 0.16 0.14 1.14 0.55 0.00 0.00 

Table 11: Average Gap between Lower Bound and Upper Bound 
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ought to be combined with a parallel construction scheme. The BP results are slightly 
worse, but given that BP works much faster, the results indicate that BP is state-of-
the-art. As expected, the lower bound defined by the makespan oriented heuristic LST 
is poor. The effect of the Parameters is as follows. Increasing RS values reduce the 
gap between lower and upper bound. It is remarkable to note that for RS =1.0 where 
resource constraints do not exist, BP is not capable to find the optimum Solution while 
the Lagrangean relaxation based approach does. The number of activities does not affect 
the Lagragean relaxation based approach decidedly. The Performance of BP, however, 
declines, if the number of activities grows and resource constraints are tight. The impact 
of the deadline on the Performance of the Lagrangean relaxation based procedure is very 
small. For BP, increasing deadlines reduce the Performance. The strengest influence on 
the Performance of the heuristics comes from the discount rate ß. If ß increases, the gap 
between lower and upper bound increases, too. Note, for ß = 0 every feasible Solution 
would be an optimum Solution. Hence, this result is reasonable. Putting all together, 
one could say that the Lagrangean relaxation based approach is more robust than BP, 
because only the discount rate matters. 

Finally, we like to investigate, if Lagrangean relaxation pays off for Computing Up
per bounds. As a point of reference, we use the optimum Solution of the resource-
unconstrained instance, NoR for short. Table 12 shows the outcome of that study by 
presenting the percentage deviation from the best known lower bound computed as 

NPVUB - NPVLB* 
100 NPVLB' 

where NPVUB is the upper bound and NPVLB* is the best known lower bound for in
stances which were feasibly solved. And indeed, the Lagrangean relaxation of the resource 
constraints improves the bound derived by ignoring the resource constraints decidedly. 
These improvements are better the more activities there are, and, of course, the lower the 
value RS is. The deadline has no effect. 

5 Conclusions 

In this paper, we have studied the resource-constrained project scheduling problem with 
net present value objective. After reviewing the literature, we have concluded that so-
phisticated upper bounds have not been proposed so far. Hence, our aim was to close this 
gap. To do so, we have discussed the Lagrangean relaxation of the resource constraints 
which yields a total weighted completion time problem which can be solved in polynomial 
time. Subgradient optimization has been used to search for good Lagrangean multipliers. 
Furthermore, we have derived a class of heuristics which use the Lagrangean relaxation 
results for Computing feasible solutions. An in-depth computational study has then been 
performed to investigate the Performance. The test-bed has been constructed on the 
basis of the well-known ProGen instances giving 14400 instances in total. We put special 
emphasis on the question of how to choose the discount rates and argued that it is a must 
to state clearly how periods should be interpreted in the real-world in order to have a 
senseful meaning. By looking at the literature closely, we found that some of the data 
used before is far from being realistic. The results of the computational prove that the 
upper bounds are indeed tight. The Lagrangean relaxation based heuristic finds feasible 
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n = 30 ß 
RS 

9 
0.2 

NoR LR 

0 
0.5 

NoR LR 

05 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

0.73 0.37 0.20 0.12 0.10 0.08 0.00 0.00 
0.62 0.27 0.16 0.09 0.08 0.06 0.00 0.00 
0.62 0.28 0.17 0.10 0.09 0.07 0.00 0.00 
0.62 0.29 0.17 0.11 0.09 0.07 0.00 0.00 
0.63 0.30 0.17 0.11 0.09 0.08 0.00 0.00 

n = 30 ß 
RS 

9 
0.2 

NoR LR 

0. 
0.5 

NoR LR 

10 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

1.41 0.71 0.38 0.23 0.20 0.15 0.00 0.00 
1.18 0.51 0.31 0.18 0.16 0.12 0.00 0.00 
1.19 0.53 0.32 0.19 0.17 0.13 0.00 0.00 
1.19 0.55 0.33 0.21 0.17 0.14 0.00 0.00 
1.20 0.55 0.33 0.21 0.18 0.15 0.00 0.00 

n = 60 ß 
RS 

9 
0.2 

NoR LR 

0. 
0.5 

NoR LR 

05 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

1.15 0.58 0.25 0.14 0.07 0.04 0.00 0.00 
0.87 0.31 0.18 0.09 0.06 0.04 0.00 0.00 
0.88 0.32 0.19 0.10 0.06 0.04 0.00 0.00 
0.88 0.33 0.19 0.10 0.06 0.05 0.00 0.00 
0.89 0.34 0.19 0.11 0.06 0.05 0.00 0.00 

n = 60 ß 
RS 

9 
0.2 

NoR LR 

0. 
0.5 

NoR LR 

10 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

2.33 1.21 0.47 0.27 0.13 0.09 0.00 0.00 
1.67 0.59 0.35 0.17 0.11 0.08 0.00 0.00 
1.67 0.61 0.36 0.18 0.11 0.08 0.00 0.00 
1.68 0.63 0.36 0.19 0.11 0.09 0.00 0.00 
1.68 0.64 0.37 0.20 0.12 0.10 0.00 0.00 

n = 90 ß 
RS 

0 
0.2 

NoR LR 

0.( 
0.5 

NoR LR 

)5 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

1.34 0.52 0.26 0.15 0.07 0.05 0.00 0.00 
1.15 0.35 0.19 0.09 0.06 0.04 0.00 0.00 
1.15 0.35 0.19 0.09 0.06 0.05 0.00 0.00 
1.14 0.36 0.19 0.10 0.06 0.05 0.00 0.00 
1.15 0.37 0.19 0.11 0.07 0.05 0.00 0.00 

n = 90 ß 
RS 

e 
0.2 

NoR LR 

0.1 
0.5 

NoR LR 

0 
0.7 

NoR LR 
1.0 

NoR LR 
1.00 
1.25 
1.50 
1.75 
2.00 

2.59 1.00 0.51 0.30 0.13 0.09 0.00 0.00 
2.19 0.65 0.35 0.16 0.12 0.08 0.00 0.00 
2.19 0.67 0.36 0.18 0.12 0.09 0.00 0.00 
2.19 0.69 0.37 0.19 0.12 0.10 0.00 0.00 
2.18 0.69 0.37 0.20 0.13 0.10 0.00 0.00 

Table 12: Average Gap between Upper Bound and Best Known Lower Bound 
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solutions with a deviation from that bound below 0.8% on average for all parameter level 
combinations in the study. But, it has also been revealed that a heuristic proposed by 
Baroum and Patterson is almost equally good in terms of the deviation from the Upper 
bound, that it is extremely better in terms of the run-time, but that it is weak in finding 
feasible solutions when the deadline is tight. 

Acknowledgement 

We are indebted to Andreas Drexl for his steady support and to Peter Nippel for his 
advice. 

References 

[1] BAROUM, S.M., PATTERSON, J.H., (1996), The Development of Cash Flow 
Weight Procedures for Maximizing the Net Present Value of a Project, Journal 
of Operations Management, Vol. 14, pp. 209-227 

[2] BAROUM, S.M., PATTERSON, J.H., (1999), An Exact Solution Procedure for 
Maximizing the Net Present Value of Cash Flows in a Network, in: Weglarz, J., 
(ed.), Project Scheduling — Recent Models, Algorithms and Applications, Boston, 
Kluwer, pp. 107-134 

[3] BEY, R.B., DOERSCH, R.H., PATTERSON, J.H., (1981), The Net Present Value 
Criterion: Its Impact on Project Scheduling, Project Management Quarterly, Vol. 
12, pp. 35-45 

[4] BLAZEWICZ, J., LENSTRA, J.K., RINNOOY KAN, A.H.G., (1983), Scheduling 
Subject to Resource Constraints: Classification and Complexity, Discrete Applied 
Mathematics, Vol. 5, pp. 11-24 

[5] BRUCKER, P., DREXL, A:, MÖHRING, R.H., NEUMANN, K., PESCH, E., (1999), 
Resource-Constrained Project Scheduling: Notation, Classification, Models, and 
Methods, European Journal of Operational Research, Vol. 112, pp, 3-41 

[6] CHERKASSKY, B.V., GOLDBERG, A.V., (1995), On Implementing Push-Relabel 
Method for the Maximum Flow Problem, in: Balas, E., Clausen, J., (eds.), Proceed-
ings of the 4th Conference on Integer Programming and Combinatorial Optimiza-
tion, Lecture Notes in Computer Science, Vol. 920, Berlin, Springer, pp. 157-171 

[7] CHRISTOFIDES, NM ALVAREZ-VALDES, R., TAMARIT, J.M., (1987), Project 
Scheduling with Resource Constraints: A Branch and Bound Approach, European 
Journal of Operational Research, Vol. 29, pp. 262-273 

[8] DAYANAND, N., PADMAN, R., (1997), On Modelling Payments in Projects, Journal 
of the Operational Research Society, Vol. 48, pp. 906-918 

[9] DAYANAND, N., PADMAN, R., (1999), On Payment Schedules in Contractors 
Client Negotiations in Projects: An Overview of the Problem and Research Is-
sues, in: Weglarz, J., (ed.), Project Scheduling — Recent Models, Algorithms and 
Applications, Boston, Kluwer, pp. 477-508 

18 



[10] DE REYCK, B., HERROELEN, W., (1998), An Optimal Procedure for the 
Resource-Constrained Project Scheduling Problem with Discounted Cash FIows 
and Generalized Precedence Relations, Computers & Operations Research, Vol. 25, 
pp. 1-17 

[11] DOERSCH, R.H., PATTERSON, J.H., (1977), Scheduling a Project to Maximize Its 
Present Value: A Zero-One Programming Approach, Management Science, Vol. 23, 
pp. 882—889 

[12] ELMAGHRABY, S.E., (1990), Project Bidding under Deterministic and Probabilis-
tic Activity Durations, European Journal of Operational Research, Vol. 49, pp. 
14-34 

[13] ERENGUC, S.S., TUFEKCI, S., ZAPPE, C.J., (1993), SolvingTime/Cost Trade-off 
Problems with Discounted Cash Flows Using Generalized Benders Decomposition, 
Naval Research Logistics, Vol. 40, pp. 25-50 

[14] FISHER, M.L., (1981), The Lagrangean Relaxation Method for Solving Integer 
Programming Problems, Management Science, Vol. 27, pp. 1-18 

[15] GRINOLD, R.C., (1997), The Payment Scheduling Problem, Naval Research Logis
tics, Vol. 19, pp. 123-136 

[16] HELD, M., WOLFE, P., CROWDER, H.P., (1974), Validation of Subgradient Op-
timization, Mathematical Programming, Vol. 6, pp. 62-88 

[17] HERROELEN, W.S., VAN DOMMELEN, P., DEMEULEMEESTER, E.L., (1997), 
Project Network Models with Discounted Cash Flows a Guided Tour Through Re-
cent Developments, European Journal of Operational Research, Vol. 100, pp. 97-121 

[18] ICMELI, O., ERENGUC, S.S., (1994), A Tabu Search Procedure for the Resource 
Constrained Project Scheduling Problem with Discounted Cash Flows, Computers 
& Operations Research, Vol. 21, pp. 841-853 

[19] ICMELI, O., ERENGUC, S.S., (1996), A Branch and Bound Procedure for the 
Resource Constrained Project Scheduling Problem with Discounted Cash Flows, 
Management Science, Vol. 42, pp. 1395-1408 

[20] ICMELI, O., ERENGUC, S.S., (1996), The Resource Constrained Time/Cost Trade-
off Project Scheduling Problem with Discounted Cash Flows, Journal of Operations 
Management, Vol. 14, pp. 255-275 

[21] ICMELI, O., ERENGUC, S.S., ZAPPE, C.J., (1993), Project Scheduling Problems: 
A Survey, International Journal of Operations &; Production Management, Vol. 13, 
pp. 80-91 

[22] ICMELI TUKEL, O., ROM, W.O., (1998), Analysis of the Characteristics of 
Projects in Diverse Industries, Journal of Operations Management, Vol. 16, pp. 
43-61 

19 



[23] KAZAZ, B., SEPIL, C., (1996), Project Scheduling with Discounted Cash Flows 
and Progress Payments, Journal of the Operational Research Society, Vol. 47, pp. 
1262-1272 

[24] KOLISCH, R., PADMAN, R., (1997), An Integrated Survey of Project Scheduling, 
Working Paper 463, University of Kiel 

[25] KOLISCH, R., SPRECHER, A., (1997), PSPLIB — A Project Scheduling Problem 
Library, European Journal of Operational Research, Vol. 96, pp. 205-216 

[26] KOLISCH, R., SPRECHER, A., DREXL, A., (1995), Characterization and Gen
eration of a General Class of Resource-Constrained Project Scheduling Problems, 
Management Science, Vol. 41, pp. 1693-1703 

[27] MÖHRING, R.H., SCHULZ, A.S., STORK, F., UETZ, M., (1998), Resource Con-
strained Project Scheduling: Computing Lower Bounds by Solving Minimum Cut 
Problems, Working Paper 620, Technical University of Berlin 

[28] NEUMANN, K., ZIMMERMANN, J., (1998), Exact and Heuristic Procedures for Net 
Present Value and Resource Levelling Problems in Project Scheduling, Working 
Paper WIOR-538, University of Karlsruhe 

[29] ÖZDAMAR, L., ULUSOY, G., (1995), A Survey on the Resource-Constrained 
Project Scheduling Problem, IIE Transactions, Vol. 27, pp. 574-586 

[30] PADMAN, R., SMITH-DANIELS, D.E., (1993), Early-Tardy Cost Trade-offs in Re
source Constrained Projects with Cash Flows: An Optimization-Guided Heuristic 
Approach, European Journal of Operational Research, Vol. 64, pp. 295-311 

[31] PADMAN, R., SMITH-DANIELS, D.E., SMITH-DANIELS, V.L., (1997), Heuris
tic Scheduling of Resource-Constrained Projects with Cash Flows, Naval Research 
Logistics, Vol. 44, pp. 365-381 

[32] PINDER, J.P., MARUCHECK, A.S., (1996), Using Discounted Cash Flow Heuristics 
to Improve Project Net Present Value, Journal of Operations Management, Vol. 14, 
pp. 229-240 

[33] RUSSELL, A.H., (1970), Cash Flows in Networks, Management Science, Vol. 16, 
pp. 357-373 

[34] RUSSELL, R.A., (1986), A Comparison of Heuristics for Scheduling Projects with 
Cash Flows and Resource Restrictions, Management Science, Vol. 32, pp. 1291-1300 

[35] SEPIL, C., ORTAC, N., (1997), Performance of the Heuristic Procedures for Con
strained Projects with Progress Payments, Journal of the Operational Research 
Society, Vol. 48, pp. 1123-1130 

[36] SMITH-DANIELS, D.E., AQUILANO, N.J., (1987), Using a Late-Start Resource-
Constrained Project Schedule to Improve Project Net Present Value, Decision Sci
ences, Vol. 18, pp. 617-630 

20 



[37] SMITH-DANIELS, D.E., PADMAN, R., SMITH-DANIELS, V.L., (1996), Heuristic 
Scheduling of Capital Constrained Projects, Journal of Operations Management, 
Vol. 14, pp. 241-254 

[38] SMITH-DANIELS, D.E., SMITH-DANIELS, V.L., (1987), Maximizing the Net 
Present Value of a Project Subject to Materials and Capital Constraints, Journal 
of Operations Management, Vol. 7, pp. 33-45 

[39] TAVARES, L.V., (1986), Multicriteria Scheduling of a Railway Renewal Program, 
European Journal of Operational Research, Vol. 25, pp. 395-405 

[40] TAVARES, L.V., (1987), Optimal Resource Profiles for Program Scheduling, Euro
pean Journal of Operational Research, Vol. 29, pp. 83-90 

[41] YANG, K.K., TALBOT, F.B., PATTERSON, J.H., (1992), Scheduling a Project 
to Maximize Its Net Present Value: An Integer Programming Approach, European 
Journal of Operational Research, Vol. 64, pp. 188-198 

[42] YANG, K.K., TAY, L.C., SUM, C.C., (1995), A ComparisonofStochastic Schedul
ing Rules for Maximizing Project Net Present Value, European Journal of Opera
tional Research, Vol. 85, pp. 327-339 

21 


