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Abstract: It is well-known that for many project scheduling problems the Space AS of active sched-
ules contains at least one optimal Solution for each feasible instance, so restricting heuristic construc-
tion methods to AS will improve algorithmic efficiency without foresaking the chance to eventually 
find an optimal schedule. Yet, for some problems such results are not directly applicable. We address 
one such problem, namely the resource-constrained project scheduling problem under partially renew-
able resources (RCPSP/TI). Here delaying certain activities may yield better solutions than starting 
each activity as soon as possible. Since AS is the smallest space guaranteed to contain optimal sched
ules, it would be desirable to devise methods which sample AS, or at least the next-larger Space SAS 
of semi-active schedules. However, no such methods are in sight because the "delay problem" of 
which activities should be delayed and by how many periods cannot be properly addressed during the 
construction process, when not all remaining resource capacities are known. Indeed, all priority rule-
based construction methods for the RCPSP/TI use scheduling schemes which sample the next-larger 
Space FS of feasible schedules. But while the delay problem withstands Solution during the construc
tion of schedules, it can be solved afterwards, suggesting the idea of fast iterative improvement algo-
rithms which use appropriate shift Operations to improve heuristically constructed feasible schedules. 
We develop several such approaches, using local and global shifts, and evaluate the effect of different 
design choices on effectiveness and efficiency of the algorithms. Computational results validate the 
efficacy of our approach. 

Keywords: PROJECT SCHEDULING; PARTIALLY RENEWABLE RESOURCES; ACTIVE 
SCHEDULES; SHIFT; ITERATIVE IMPROVEMENT 

1. Introduction 

Most project scheduling problems are strongly NP-equivalent, in other words notoriously in-

tractable, so the majority of algorithms developed for these are heuristic in nature. Although 

no theoretically provable results exist which would allow a quantitative analysis of Perform

ance measures, some theoretical results exist which at least provide some qualitative insight 

into the behaviour of heuristics. For sampling-based construction methods these results show 

that for each instance the space AS of active schedules - though it may fail to comprise all 

optimal schedules - will certainly contain at least one optimal schedule, provided the instance 

was feasible in the first place. Hence, restricting the sampling process to AS will improve 

algorithmic efficiency, without foresaking the chance to eventually find an optimal schedule. 

For problems such as the resource-constrained project scheduling problem (RCPSP) construc

tion methods have been devised (Kelley 1963) which can be shown to sample AS (Kolisch 

1996). Yet, for a recent extension of the RCPSP, namely the RCPSP under partially renewable 

resources (RCPSP/TI), such results are not directly applicable. Partially renewable resources 

constitute a nontrivial generalization of all known resource concepts (Böttcher et al. 1996a, 

1996b) and allow to model a variety of logical and other relations between scheduling deci-

sions (Schirmer, Drexl 1997). Such relations are of importance for the formulation of various 

constraints found in real-world applications (cf, e.g. the aviation industry case studies of 

Haase et al. 1997,1998; Schirmer 1999, Chapters 18, 19). 

For the RCPSP/TI, we have shown that delaying certain activities may yield solutions better 

than those achieved from starting each and every activity as soon as possible (Schirmer 1999, 
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Theorem 9.5); we will discuss the properties leading to this effect later. Since AS is the small-

est Space guaranteed to contain optimal schedules, it would be desirable to devise methods 

which sample AS, or at least the next-larger Space SAS of semi-active schedules. However, 

no such methods are in sight because the underlying "delay problem , viz. to decide which 

activities should be delayed and by how many periods, cannot be properly addressed during 

the construction process, where not all remaining resource capacities are known. Indeed, all 

authors devising priority rule-based construction methods for the RCPSP/TI (Böttcher et al. 

1996b; Schirmer 1999, Chapters 11-14) use scheduling schemes which sample the next-larger 

space FS of feasible schedules (Schirmer 1999, Theorem 11.1). Nevertheless, while the delay 

problem withstands Solution during the construction of schedules, it can be solved afterwards, 

when all remaining capacities are readily available. 

This insight motivated our idea of devising fast iterative improvement algorithms which use 

appropriate shift Operations to improve heuristically constructed feasible schedules in what 

might be called a post-processing stage. Not much research has been published that touches 

upon iterative improvement used that way, the only sources we are aware of are Hartmann 

(1997) and Sprecher et al. (1997) where so-called multi-mode left-shifts are employed within 

genetic algorithms and branch-and-bound methods for the multi-mode variant of the RCPSP, 

respectively. Albeit we concentrate on shift algorithms for the RCPSP/TI, we thus believe these 

or similar approaches would also be worthwhile for other scheduling problems where 

effective construction heuristics sample spaces larger than AS. 

We develop several such algorithms, using local and global shifts, and evaluate the effect of 

different alternatives for several design choices on effectiveness and efficiency. Computa-

tional results validate the efficacy of our algorithms. We also show that straightforward 

approaches to shifting activities have pseudo-polynomial time complexities, making them 

unwise choices when tackling large instances. We demonstrate how these complexities can be 

cut down to a low-degree polynomial level by analyzing the schedules at band, and we 

develop a number of so-called shift rules for this task. We also complement the theoretical 

worst-case complexity results by an experimental evaluation of the average-case Performance 

on a test bed of 3,840 benchmark instances used in other studies on the RCPSP/II. 

The remainder of this work is organized as follows. In Section 2 we introduce the RCPSP/TI, 

focussing on the idiosyncrasies of partially renwable resources which make it differ substan-

tially from other scheduling problems. In Section 3, we briefly review the concepts 

fundamental to schedule space classifications and shift Operations, as far as they are needed 

here. We then use these concepts to develop three shift-based iterative improvement 

algorithms. Section 4 details computational results; a summary in Section 5 concludes the 
paper. 
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2. Partially Renewable Resources 

2.1. Problem Setting 

Partially renewable resources may be characterized by the following assumptions: 

• All activities have to be processed within a number of T periods. 

• Processing the activities requires the presence of one or several partially renewable 

resources p; the demand for resource p entailed by activity j is given by kjp. 

• Associated with each resource p is a so-called period subset IIp which is a subset of the 

set of all periods. 

• For each resource p, the amount which is available over all periods of that subset is 

limited by Kp. 

Apart from these assumptions which speciflcally pertain to partially renewable resources, we 

employ the usual parameters of the RCPSP. All problem parameters are summarized (in alpha-

betical order) in Table 1. W.l.o.g. the parameters P and all dj are assumed to be nonnegative 

integers, J and T to be positive integers, kjp and Kp to be integers. These restrictions entail no 

loss of generality since they are equivalent to allowing rational numbers, i.e. fractions, and 

multiplying them with the smallest common multiple of their denominators. Let denote J = 

{1,...,J} the set of all activities and T = {1,...,T} the set of all periods. Finally, all flp are as

sumed to be subsets of the set T. 

The goal is to find an assignment of periods to all activities (a schedule) that ensures for each 

partially renewable resource p and each period subset üp that the total consumption of p by 

all activities performed in that period subset does not exceed the total capacity of p within Dp, 

respects the partial order Z, and minimizes the total project length. 

Model Definition 
Parameter 

dj Non-preemptable duration of activity j 
J Number of activities, indexed by j 

kjp Per-period consumption of partially renewable resource p required to perform activity j 
Kp Total availability of partially renewable resource p over all periods of ITp 
P Number of partially renewable resources, indexed by p 

Üp Period subset associated with resource p 
T Number of periods, indexed by t 
JC Partial order on the activities, representing precedence relations 

Table 1: Problem Parameters ofthe RCPSP/TI 
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To simplify matters, it is assumed w.l.o.g. that activity 1 is the unique first and activity J the 

unique last activity w.r.t. Z, i.e. 1 Z j and j Z J (2 < j < J-l). The fictitious activities 1 and J 

are called dummy activities, meaning that di = dj = 0 and kip = kjp = 0 (1 < p < P). We also 

follow common practice by deriving some additional parameters ftom the above problem Pa

rameters; though not necessary prerequisites, they usually allow to reduce the number of vari

ables within some of the constraints. First, let denote Pj (1 < j < J) the set of all immediate 

predecessors of activity j w.r.t. Z. Second, for each activity j (1 < j < J) earliest finish times 

EFTj and latest finish times LFTj may be calculated by traditional forward and backward re-

cursion, the latter starting at time T. 

Using the above parameters, a schedule can be represented by integer variables yj (1 < j < J) 

denoting the period in which activity j is completed. In addition, we denote by (1 < t < T) 

the set of all activities which are processed in period t (Talbot, Patterson 1978) and thus may 

consume resources. Then the RCPSP/TI can be described in the following way: 

Minimize 

Z(y) = yj (1) 

subject to 

yi < yj - dj (2<j ̂  J;i Zj) (2) 

E £kjp^KP d<p<p) o) 
tenp jeAt 

yje {EFTj,...,LFTj} (1 <j < J) (4) 

Minimization of the objective function (1) enforces the earliest possible completion of the last 

activity J and thus leads to the minimal schedule length. The precedence constraints (2) guar-

antee that the precedence order is respected while the capacity constraints (3) limit the total 

resource consumption of each partially renewable resource in each period subset to the avail-

able amount. A number of alternative model formulations as well as their respective advan-

tages and disadvantages are discussed in Schirmer, Drexl (1997). The problem is strongly 

NP-equivalent, its feasibility variant strongly NP-complete (Schirmer, Drexl 1997). 

2.2. Special Properties 

Nonrenewable resources n are capacitated over the complete planning horizon, therefore the 

exact time when an activity j starts has no bearing on the total activity demand kjn incurred. 

The capacity of renewable resources r, in contrast, is limited for each period separately, while 

the total activity demand of j for r is kjr • dj. Hence the feasibility of a schedule depends on 
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the periods to which the activities are assigned: If two activities overlap in a period, they may 

overload a resource in that period, requiring to delay one activity until the other terminales, 

freeing capacities again. Large capacities allow for more parallel execution of activities while 

small capacities entail more sequential execution. In this sense, the total demand for and so 

the remaining capacities of nonrenewable resources are independent from the corresponding 

schedule. Yet, for renewable resources only the individual activity demand kjr and the total 

activity demand kjr • dj are schedule-independent whereas the total demand for a specific re

source r in a period t and thus the corresponding remaining capacities are schedule-dependent. 

Partially renewable resources, in contrast, are capacitated over their respective period subsets 

only; in all other periods of the planning horizon there are no limitations. Also in the presence 

of partially renewable resources the feasibility of a schedule is determined by the position of 

the activities on the time axis: Two activities overlapping within a period subset may require 

more than the capacity of the corresponding resource; thus scarce resources may delay certain 

activities into uncapacitated periods, outside the period subsets. Consequentially, although in 

principle the total activity demand is kjp * dj, only that part falling into capacitated periods, 

i.e. within a period subset, is relevant for algorithmic purposes. Hence, attention can be re-

stricted from the total activity demand to the relevant demand. 

nr 

1 2 3 4 5 6 7 

2 £ kjp < Kp 
terip j€At 

•11 

3 kjp - Kp 

BL 

1 2 3 4 5 6 7 

2 £ kjp < KpS 

tensjeAt 

U 

2 kjp - Kp 

n, 

1 2 3 4 5 6 7 

£ £ kjp ^ KpS 

tensjeAt 

JJ 

® kjp ^ Kp 

Figure 1: Total Activity Demand for Partially Renewable Resources 

To determine the relevant demand RDjpt of activity j for partially renewable resource p when 

started in period t, let Qji denote those periods of T in which (non-dummy) activity j would be 

active were it started in period t, i.e. 
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öjt={t t+dj-1} (2<j < J-l; 1 <t<T) (5) 

Then, the relevant demand can be calculated from 

RDjpt = kjp • | öjt n np | (2 < j < J-l; 1 < p < P; ESTj+1 < t < LSTj+1) (6) 

as soon as earliest and latest Start times ESTj and LSTj are determined in the usual fashion for 

each activity j. In this regard, relevant demand RDjpt and thus remaining capacities are sched-

ule-dependent although the individual activity demand kjp is schedule-independent. An exam-

ple is shown in Figure 1 where scheduling activity j to different periods results in different 

relevant demand for a partially renewable resource, depending on whether all, some, or none 

of the active periods fall into the corresponding period subset. A more comprehensive discus-

sion of these concepts is given in Schirmer, Drexl (1997). 

3. Iterative Improvement Algorithms 

Iterative improvement algorithms belong to the class of neighborhood search algorithms: they 

move iteratively from Solution to Solution, starting from some - usually feasible - initial 

Solution and proceeding to other solutions which are neighboring in some sense, to be defined 

as appropriate. The neighborhood of a Solution comprises all admissible moves, which 

implies that certain moves may be excluded from consideration; each move is associated with 

the Solution to which it leads. The quality of each Solution - and thus of each move - is meas-

ured by an evaluation function. Iterative improvement methods accept only improving moves, 

as to avoid cycling on plateaux in the Solution space; if several such moves exist in a 

neighborhood, the best of these is chosen (steepest descent, assuming a minimization 

objective). Such methods may also be characterized as greedy ones, as they iteratively select a 

candidate which is the (locally) best choice, given what has been selected before. They 

usually terminale if the incumbent neighborhood contains no improving move; in addition, 

an exogenous termination criterion, such as an iteration or a CPU time limit, may be used. We 

develop several such algorithms, using local and global shifts to improve heuristically 

constructed feasible schedules. 

3.1. Classification and Connectedness of Solution Spaces 

In the following, we briefly recapitulate the concepts fundamental to classifying shifts and 

schedules as they are needed here. Let for each scheduled activity j denote FTj the finish time 

of j. For details, proofs, and examples, we refer the reader to Sprecher et al. (1995) and Nübel, 

Schwindt (1997). We also give a brief characterization of the algorithms to be presented. 

Definition 1 A left-shift of an activity je J is an operation which transforms a schedule S = 

(FTi,...,FTj) into a schedule St = (FT'i FTj) where FTj <FTj andFT'j* = FTj* for allj'#j. 
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Definition 2 Given a feasible schedule S, a left-shift of an activity j e / is called global iff it 

transforms S into a feasible schedule S\ 

Definition 3 Given a feasible schedule S, a left-shift of an activity j e J is called a feasible 

one-period left-shift iff it transforms S = (FTi„..,FTj) into a feasible schedule 5* = 

(FT'i,...,FTrj) such that FTj < FTj and FT'j» = FTj1 for all j' ^ j, local iff it can be produced by 

a sequence of feasible one-period left-shifts. 

Corollary 1 Any local left-shift is global. 

Definition 4 A semi-active (active) schedule is a feasible schedule where no activity can be 

locally (globally) left-shifted. Let denote SAS (AS) the space of all semi-active (active) 

schedules for a given instance. 

We can now State the following theorem, which is due to Sprecher et al. (1995). 

Theorem 1 (Hierarchy theorem) Let for a scheduling problem instance denote S the Space of 

all schedules and FS the space of all feasible schedules for a given instance. Then AS c SAS 

cFS<=S. 

All improvement methods discussed here are neighborhood search algorithms. Following the 

lines of Glover et al. (1993) we employ a neighborhood decomposition strategy as we use J 

separate neighborhoods in each iteration, one per activity. In each iteration, the neighborhood 

for an activity j comprises all schedules which can be built from the current one by applying a 

local or global left-shift to j. From each of these one schedule is selected, which is evaluated 

either in terms of its objective function value or some measure of the resource demand and the 

resource scarcity entailed by the schedule. The algorithms terminale when in an iteration all J 

neighborhoods were found to be empty. Such methods may also be characterized as greedy 

ones, as they iteratively select candidates, each of which is the (locally) best choice, given 

what has been selected before, 

We finish this subsection by noting an important implication of the above neighborhood 

definition. Of great importance for the development of neighborhood search-based methods 

for a problem are the topological structures, in particular the connectedness of its Solution 

spaces. For combinatorial problems, Solution space connectedness is usually defined via the 

graph-theoretical concept of connectedness, by defining a graph whose nodes represent 

solutions. Edges between these nodes reflect that the solutions are "adjacent" in some sense to 

be defined as appropriate, so traversing the graph is equivalent to moving among the solu

tions. Whenever the resulting graph is connected, the Solution space is called connected (cf. 

e.g. Ehrgott, Klamroth 1997). For our purposes, we will consider two feasible schedules 

adjacent iff they have J-l finish times in common. This definition allows to traverse the space 

FS by applying local and global shifts. Now, algorithmically a connectedness result for FS 
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would mean that all feasible schedules could be determined by repeated shifts, starting from 

an arbitrary feasible schedule. However, for the RCPSP/TI the space FS, even its subspaces AS 

and SAS, as well as the space OS of optimal solutions are disconnected. 

Theorem 2 For the RCPSP/TI, the spaces AS, SAS, FS, and OS are disconnected. 

Proof: Assume an instance of the RCPSP/TI with J = 2 (discounting dummies), d% = d% = 2, P 

= 1, T = 4, Tip = {1, 2}, Kp = k]r • dj = k2r • d2 , and Z empty. Confer to the examplary 

schedules in Figure 2. Both schedules are optimal, thus also active, semi-active, and feasible. 

Yet, due to the tight horizon T, there are no shifts possible at all, so both schedules are non-

adjacent and the assertion holds. • 

DE Tip 

Figure 2: On the Disconnectedness of RCPSP/Tl-Solution Spaces 

As a consequence, any neighborhood search-based algorithm for the RCPSP/II must either de-

fine the neighborhood in a way as to include moves leading to infeasible schedules or risk to 

exclude feasible and optimal schedules. Clearly, our neighborhood definition belongs to the 

second class; yet we accept this impediment in order to keep our algorithms as fast as possi

ble, deliberately trading efficiency for effectiveness. More involved neighborhood search 

based algorithms, which trade effectiveness for efficiency, are covered in Schirmer (1999, 

Section 16). 

3.2. Local Left-Shifting 

Feasible schedules that are not semi-active can be improved by local left-shifts. The easiest 

way to maintain feasibility throughout this process consists of repeatedly checking for each 

activity j whether a one-period left-shift would still produce a feasible schedule. Notice that 

resource feasibility is the only real concern here since precedence feasibility can be 

maintained by checking only the Start times between the current Start time STj and the earliest 

precedence-feasible Start time EPSTj. Döing so, however, would entail a time complexity of 

O(J-P-T), as T is pseudo-polynomial in the input length (Schirmer, Drexl 1997) this way ap-

pears as a somewhat undesirable choice. 

In the sequel, we therefore present a more evolved approach whose time complexity depends 

not on T but on the number of intervals; we will see that this is indeed a polynomial quantity. 
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We trim the number of considered Start times by exploiting the fact that it suffices to consider 

the Start and finish times of the period subset intervals, plus some additional times around 

these. The well-known rule of Johnson (1967) uses a similar idea to reduce the complexity of 

the parallel scheduling scheme for the RCPSP. (Let us add at this point that the above time-

complexity is a worst-case one, without implications on the average case. We will thus 

experimentally explore the pseudo-polynomial alternative later, in the context of an algorithm 

using global left-shifts.) 

Some additional notation will facilitate the forthcoming presentation. Given a feasible sched

ule S = (FTi„..,FTj), let for each activity j denote STj the corresponding Start time, i.e. 

STj <— FTj - dj (1 <j < J) (7) 

Let also denote, for each activity j, EPSTj the (dynamically computed) earliest precedence-

feasible Start time of activity j, i.e. 

EPSTj <- max {FTi | iZj} (1 < j < J) (8) 

and Pi?j the set of resources requested by j, i.e. 

PÄJ<-{1<P<P| kjp>0} (l<j<J) (9) 

Finally, note that each period subset ITp can be represented, rather than by listing all its peri

ods explicitly, in terms of Ip intervals of the form STIpj,...,FTIpj (1 < p < P; 1 < i < Ip) where 

STIpi (FTIpi) (0 < STIpj < T-l; I < FTIpj < T) denotes the start (finish) time of interval i of 

period subset IIp. Figure 3 depicts an example where Ip = 2, STIpi = 2* FTIpl = 3, STIp2 = 

4, and FTIp2 = 7. 

II II 
! 

W 
1 2 3 4 5 6 7 

Figure 3: Exemplary Interval Structure of a Period Subset 

The operating principle of the local left-shift (LLS) algorithm is to consider all activities in 

the order of their index (recall that they are assumed to be topologically sorted) and to apply 

local left-shifts to each activity as long as possible. By following the topological order each 

activity can be treated separately (neighborhood decomposition) without running the risk of 

loosing the precedence feasibility of the solutions constructed. For the sake of transparency, 

which a closed-form recursive equation would lack, we decompose the shifting process into a 

number of elementary steps. In each step, the current Situation is considered - for each of the 
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requested resources p e PRj separately - according to two criteria: first, whether j is incident 

with one or with more intervals of the corresponding period subset, and second, where j is 

positioned w.r.t. the incident intervals. This analysis yields one local left-shift (not necessarily 

the maximum possible) of j per requested resource, calculated in terms of a candidate Start 

time (CSTjp). In order to assure feasibility w.r.t. all resources, the actual left-shift is then 

performed to CSTj, the maximum of the CSTjp. Afterwards, the remaining capacities of the 

resources requested by j are updated, if j has been moved at all. This stepwise process 

continues until no further local left-shift can be applied to j. The algorithm then proceeds to 

the next activity, attempting to left-shift it, until eventually all activities have been considered. 

Thus, within each neighborhood of activity j, we select that schedule which minimizes STj. 

Due to the neighborhood decomposition strategy, this criterion excludes the possibility of ties. 

W.r.t. the worst-case time complexity of the algorithm, note that the fact that the shifts are 

feasible frees us from checking resource-feasibility of each point in time over the whole 

planning horizon. Their number might well reach 0(T) which is pseudo-polynomial in the 

instance length (for details cf. Schirmer, Drexl 1997). If we let denote I the largest number of 

intervals over all period subsets, i.e. 

I<— max {Ip| l<p<P} (10) 

then, by construction, the above steps can be applied at most 2 P I times to each activity, so 

the algorithm has a complexity of O(JPI) which is polynomial in the instance length. 

What remains to be shown is the way in which the remaining capacities are managed. Let de

note RKp (1 < p < P) the remaining capacity of resource p. With S the schedule at hand, the 

remaining capacities can be initialized by 

J-l 
RKp <— Kp - % RDjfPiST (1 < p < P) (11) 

j=2 

and, once an activity j has been shifted from STj to CSTj, updated by 

RKp <- RKp + RDj p STj ~ RDj,p,CSTj (P e PRj) (12) 

Having laid the groundwork, we can now present the local left-shift rules themselves. Recall 

that all rules examine one particular activity j and one particular resource p at a time. Then, 

the first two rules formulate conditions under which the Start of j takes place before, between, 

or after the intervals of the corresponding period subset Elp. The third rule applies to situ-

ations where the processing of j occurs completely within one interval of a period subset. The 

last rule Covers conditions under which an activity starts in one interval and terminales either 

in another or between two intervals of period subset Hp. 
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Local left-shift rule 1 (LLS1) Let j be an activity and p e PRj a resource requested by j 

where j starts before any interval of the corresponding period subset ITp, i.e. 

EPSTj < STj < STIpi (13) 

Then, w.r.t. p, j could be left-shifted to 

CSTjp<-EPSTj (14) 

Proof: Under the conditions of LLS1 for an activity j, no left-shift would change either the 

relevant demand for or the remaining capacity of resource p. Starting j at STj is feasible, so 

starting j at EPSTj is feasible as well. • 

Local left-shift rule 2 (LLS2) Let j be an activity and p e PRj a resource requested by j 

where j starts either between two intervals or after the last interval of period subset üp, i.e. 

((3 1 < i < Ip-1) FTIpi < STj < STIp i+i) v ((3 i = Ip) FTPpi< STj) (15) 

Also, let Qjp denote the overlap of j with the interval i* of resource p in which j terminales, 

i.e. the number of periods by which i' and j overlap. ßjp can be determined from 

Q. -STIpi' ifßl<i'<Ip)STIpi.<FTj<FTIpi. 
JP [0 otherwise 

Then, w.r.t. p, j could be left-shifted to 

EPSTj ifdj-Qjp<LRKp/kjpJ (i^ 

max{EPSTj,FTIpj ~|_RKp /kjpJ_£2jp) otherwise 
CSTjp <-

Proof: (17) determines the maximum number of periods which may fall into intervals of üp 

without overloading the current remaining capacity of p. Since by assumption the schedule at 

hand is feasible, an overlap of £2jp periods is feasible in any case. [_RKp/kjpJ states the num

ber of additional periods by which the current overlap could be feasibly increased. Recall that 

dj • kjp is the maximum possible resource demand entailed by activity j. Under the conditions 

of LLS2, dj - Qjp is the number of periods which j is processed outside of üp. Now, the first 

branch of (17) exploits that if this number is not greater than [_RKp/kjpJ then there is no way 

of overloading resource p with activity j; therefore w.r.t. p activity j could be started anytime, 

in particular at its earliest precedence-feasible Start time. Otherwise, the second branch speci-

fies the number of periods by which j could currently be left-shifted without overloading p. 

Since, however, j may not be left-shifted further than EPSTj without violating the precedence 

order on the activities, j may only shifted to the larger of both times. • 
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While Qjp is empty if the processing of j does not overlap with some interval i' > i, it allows 

us to cover two cases, viz. that j finishes between intervals as well that it does in some 

interval, in one rule. 

Local left-shift rule 3 (LLS3) Let j be an activity and p e PRj a resource requested by j 

where j is active completely within one interval of period subset FIp, i.e. 

(3 1 < i < Ip) STIpj < STj A FTj < FTIpi (18) 

Then, w.r.t. p, j could be left-shifted to 

CSTjp <— EPSTj (19) 

Proof: Shifting activity j within interval i would not change the remaining capacity RKp of p, 

left-shifting j out of i would possibly even increase RKp. Since starting j at STj is feasible, so 

is starting j at EPSTj. • 

Local left-shift rule 4 (LLS4) Let j be an activity and p e PRj a resource requested by j 

where j starts within an interval i of period subset Tip without finishing in i, i.e. 

(3 1 < i < Ip-1) STIpj < STj < FTIpi A FTIpi < FTj (20) 

Then, w.r.t. p, j could be left-shifted to 

CSTjp <- max {EPSTj, STj -(LRKp/kjpJ + Qjp)} (21) 

Proof: Again, |_RKp/kjpJ + Qjp specifies the number of periods which activity j may be left-

shifted from its current Start time w.r.t. resource p. Yet, to maintain precedence feasibility, the 

shift may not exceed EPSTj. • 

Note that the conditions of the rules (cf. Figure 4) are mutually exclusive, so for each combi-

nation of activity j and requested resource p we can use LLSjp to denote the currently appli

cable local left-shift rule and CSTjp to denote the candidate Start time derived from LLSjp. 

Note also that even one shift may free enough capacity to allow another activity to be shifted; 

therefore we have to reconsider all activities whenever at least one of them has actually been 

moved. Now, the LLS algorithm can be formulated as in Table 2 (the bounds PB and RB are 

discussed below). 



Input 

a feasible schedule S 

Initialization 

for each(l<p<P) 
initialize RKp according to (11) 

determine PR; according to (9) 
some_j„may_be_shiftable <— TRUE 

Execution 

while (some_j_may_be_shiftable) 
somej_may_be_shiftable <— FALSE 
forj<-2toJ 

calculate EPSTj according to (8) 
if (STj = EPSTj) 

j_may_be_shiftable <— FALSE 
eise 

j_may_be_shiftable <— TRUE 
while (j_may_be_shiftable) 

for each p e PR: 
determine LLSjp 
calculate CSTjp according to LLSjp 

endfor 
CST; <- max {CST:p | p e W?;} 
if(PBorRB) 

STj <- CSTj 
for each p e PRj 

update RKp according to (12) 
j_may_be_shiftaoIe <— FALSE 
someJ„may_be__shiftable <- TRUE 

eise if (CSTj = STj) 
j_may_be_shiftable <— FALSE 

eise if 
STj <- CSTj 
for each p e PR; 

update RKp according to (12) 
some_j_may_be_shiftable <— TRUE 

endif 
endwhile 
FTj^STj + dj 

endfor 
endwhile 

Result 

For each activity j € 5, FT; denotes the period in which j is finished. 

Table 2: Local Left-Shifi Algorithm 
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Figure 4: On the Local Left-Shift Rules 

Even if the time complexity of the above algorithm is polynomial in the length of the 

respective instance tackled, the effbrt of considering possible shifts can be further reduced by 

employing lower bounding techniques similar to those used in other constructive scheduling 

heuristics (Kolisch, Drexl 1996; Schirmer, Riesenberg 1998). 

Precedence-based bound (PB) Whenever STj = EPSTj for an activity j, shifting j can be ter-

minated because in this case j cannot possibly be scheduled any earlier. • 

Resource-based bound (RB) Whenever, for an activity j and one of its requested resources 

p 6 PRy CSTj lies within an interval of Dp whereas CSTj + dj lies outside all intervals of Elp, 

i.e. 

(3 1 < i < Ip-1) STIpi < CSTj < FTIpi A (3 i < i' < Ip) FTIp)i'_i < CSTj + dj < STIp}i-(22) 

shifting j can be terminated as j cannot be locally left-shifted further without overloading p. • 
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3.3. Global Lefi-Shifiing 

Non-active feasible schedules can be improved by administering global left-shifts until 

eventually they become active. The straightforward way to do this is to check for each 

activity j all start times between the current one and EPSTj by iteratively applying one-period 

left-shifts; the activity can then be shifted to the earliest feasible start time encountered during 

this process. Yet this way is rather inefficient: as it proceeds from the right to the left on the 

time-axis, it requires to check STj - EPSTj start times in any case. A more efficient way is to 

proceed from the left to the right, by checking whether j can be started at EPSTj, and 

checking the subsequent start times for resource-feasibility if that start time is infeasible. This 

way requires STj - EPSTj start times to be evaluated in the worst case only. Although, as we 

have noted above, this entails a pseudo-polynomial time complexity in the worst case, 

preliminary tests showed computation times not to be prohibitive for the benchmark instances 

used. 

Recall that for each activity j, the local left-shift algorithm begins with an existing, feasible 

schedule, where j starts at STj. As we intend to decrease this start time, the algorithm itera

tively tests earlier start times which might possibly be feasible. This process continues until 

no earlier feasible start time may exist, i.e. after EPSTj has been tested. Note that only 

resource-feasibility has to be verified since all times considered are precedence-feasible by 

construction. Now, the global left-shift (GLS) algorithm starts from a Virtual schedule where j 

is assumed to start at its earliest precedence-feasible start time EPSTj. This candidate start 

time may or may not be feasible. In the latter case, the algorithm iteratively tests later start 

times which might possibly be feasible. This process terminales as soon as the first feasible 

one has been found or if all possible start times up to STj-1 have been examined. Again, it 

suffices to check resource-feasibility. If an activity has been actually shifted, the remaining 

capacities of its requested resources are updated. Each activity is considered at least once, in 

index order. Again, any shift may free resource capacities and thus allow other shifts as well, 

so all activities must be reexamined once one of them has been shifted. Again, we select that 

unique schedule from each neighborhood which minimizes STj. 

The time complexity of this procedure is O(J-P-T). The GLS algorithm can be formulated as 

in Table 3. 
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Input 

a feasible schedule S 

Initialization 

for each (1 < p < P) 
initialize RKp according to (11) 

determinePR; <— {1 <p<P| kjp>0} 
some_j_may_be_shiftable <— TRUE 

Execution 

while (some_j_may_be_shiftabIe) 
somej_may_be_shiftable <— FALSE 
for j <- 2 to J 

calculate EPSTj according to (8) 
if (STj > EPSTj) 

CSTj f- EPSTj 
while ((3 p G PRj) (RD j,p,cSTj > RKp + ̂  j,p,STj )) 

CST; <- CST: + 1 
if (CSTj < STj) 

STj <- CSTj 
for each p e PRj 

update RKp according to (12) 
someJ_may_be_shiftable <— TRUE 

endif 
endif 
FTj <- STj H- dj 

endfor 
endwhile 

Result 

For each activity j e 5, FTj denotes the period in which j is finished. • 

Table 3: Global Left-Shift Algorithm 

3.4. Hybrid Left-Shifting 

Another approach to turning feasible schedules into active ones proceeds in two stages. We 

call this approach a hybrid left-shift (HLS) algorithm as it employs a combination of local and 

global left-shifts. While the second stage is identical to the GLS algorithm, the first stage, 

using local left-shifts, can be seen as preparing the initial schedule for the GLS algorithm. 

Rather than shifting the activities to the left-most, i.e. earliest, of the Start times reachable by 

feasible one-period left-shifts, as done by the LLS algorithm, they are shifted to one of the 

Start times minimizing their total relevant demand, thus maximizing the remaining capacities. 

Freeing more capacities in the beginning, we hoped, would pave the way for more effective 

global shifts in the end. 
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In the following, we will detail the first stage of the HLS. Notice that, since we use local left-

shifts, we do not necessarily consider all start times t between EPSTj and STj but only those 

which can be reached by feasible one-period left-shifts, starting from STj. The left-most of 
these, which we denote by tj, can be determined from 

tj <- max {EPSTj < t < STj | RDjpt < RKp (pe PRj)} (2 < j < J) (23) 

such that we consider all start times t between tj and STj. 

In order to avoid bottlenecks formed by resources with scarce remaining capacities, not all 

resources are treated equal. Rather, an implicit resource levelling is performed by preferring 

shifts which free capacities of scarce resources over those which free capacities of non-scarce 

ones. This is achieved by means of weights C0p expressing the scarcity of resource p and thus 

the importance of freeing some of its capacity. These weights, derived dynamically from 

are used to prioritize the relevant demand of activities for resources: the scarcer a resource, 

the higher the priority to free some of its capacity. We therefore aim at finding, for each 
activity j, a candidate start time CST*j (tj < CST*j < STj) such that the total weighted 

relevant demand TWRDjt of activity j starting at time t is minimal, i.e. 

TWRDjt <— %ü)p "RDjpt (25) 
pePRj 

CST*j <- argmin {TWRDj | tj < t < STj} (26) 

Activity j is then shifted to start at CST*j. In other words, we chose from each neighborhood 

that schedule whose start time for activity j minimizes TWRDjt, ües to be broken by smallest 

activity index. Again this process is repeated for each activity in index order, as long as some 

activity has been shifted. The time complexity of this procedure is O(J-PT). Now, the HLS 

algorithm can be couched as in Table 4 where the GLS algorithm is called as the second 

stage. 

In order to illustrate the potential advantage of the HLS over the GLS algorithm, assume an 

instance where J = 2 (we omit the dummy activities), d% = d2 = 4, P = 2, k\ \ = k\2 = k2i = 1, 

k22 = 2, T = 12, and Z empty. The period subsets are depicted in Figure 5, where the 

intervals i of the period subsets p (denoted by p, i) are put in shading. Let us also assume that 

EPSTj = 0 and that RKj = 1 and RK2 = 1 for the initial schedule 1. 
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Input 

a feasible schedule S 

Initialization 

for each (1 <p<P) 
initialize RKp according to (11) 

determinePR: <- {1 <p<pTlyn>0} 
some_j_may_be_shiftable <— TRUE 

Execution 

while (some j_may_be_shiftable) 
some_j_may_be_shiftable <— FALSE 
for j <- 2 to J 

calculate EPSTj according to (8) 
calculate 0)p according to (24) 
if(STj> EPSTj) 

CSTj <- STj 
calculate TWRDj according to (25) 
CSTj f- ST; -1 
CST*j STj 
TRWD*j <- TWRDj 
while ((V p G PRj) (RD j)P,cSTj - RKp + ^ j,p,STj )) and (CSTj > EPSTj) 

calculate TWRDj <— according to (25) 
if (TWRDj < TRWD*j) 

TRWD*j <— TWRDj 
CST*; CST: 

endif 
. CSTj CSTj-I 

endwhile 
if (CST*j < STj) 

STj <— CST*j 
for each p e PR; 

update RKp according to (12) 
some J_may_be_shiftable <— TRUE 

endif 
endif 
FTj STj + dj 

endfor 
endwhile 

call GLS 

Result 

For each activity j e S, FTj denotes the period in which j is finished. • 

Table 4: Hybrid Left-Shift Algorithm 
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Figure 5: On Global vs. Hybrid Left-Shift Algorithm 

Now, the GLS algorithm shifits activity 1 by one period, after which no further shifts are 

possible (schedule 2). The first stage of the HLS algorithm, however, begins by Computing 

the weights C0| = 0.5 and ©2 = 1. It then evaluates the TWRDjt f°r activity 1, checking the 

start times 7 (TWRDJJ = 1.5) and 6 (TWRD% ^ = 2) (further shifts of activity 1 are 

infeasible due to RK] = 0), and leaves activity 1 unmoved since TWRDit is minimal for the 

current start time STj =7. For activity 2, start times 8 (TWRD2,g = 4) and 7 (TWRD2J = 

2.5) are checked (further shifts of activity 2 are infeasible due to RK\ = 0), and activity 2 is 

shifted by one period as TWRD2t minimal for t = 7. No further local shifts are feasible for 

both activities, so the first stage terminales (schedule 3). Now, RK2 has been increased from 
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0 to 2 units, which allows the second stage to globally shift activity 1 to start at EPSTj = 0. 

The result is a decrease of the project makespan by one period (schedule 4). 

3.5. Roads Not Travelled 

As any local shift is also global by Corollary 1, one might expect the GLS algorithm to 

produce schedules at least as good as those produced by the LLS algorithm. Although this 

relationship holds in general, there are cases where the GLS algorithm returns a schedule 

worse than the LLS algorithm, due to the fact that both algorithms prescribe the exact order in 

which the activities are to be examined. 

Lemma 1 There exist schedules for RCPSP/II-instances which are improved more by the LLS 

algorithm than by the GLS algorithm. 

Proof: As an example, assume an instance where J = 2 (we omit the dummy activities), d\ = 

1, d2 = 3, P = 2, kjp = 1 (1 < j < J; 1 < p < P), Ki = K2 = 1, and 1Z2. Consider the schedule 

depicted in Figure 6 where the intervals i of the period subsets p (denoted by p, i) are put in 

shading. Both algorithms examine activity 1 first. Applying the LLS algorithm results in a 

one-period left-shift of activity 1 which frees enough capacity of resource 2 that also activity 

2 can be left-shifted by one period, improving the makespan by one period. Yet, the GLS, 

albeit moving activity 1 by two periods, does not allow activity 2 to be moved at all. • 

2A\ \U\ 

j=l j=2 

1 2 3 4 5 6 

(Initial schedule) 

1,1 1,1 

2,1 2,2 AI 2,2 

j=i j=2 j=l j=2 

1 2 3 4 
w 

5 6 I 2 3 4 5 
• 

6 

(Schedule after LLS) (Schedule after GLS) 

On Local vs. Global Left-Shift Algorithm 

Consequently, an interesting question is whether changing the sequence in which activities 

are considered might improve the effectiveness of the algorithms. Yet, changing the sequence 

of the activities tends to produce negative effects on efficiency. As most sequences other than 

that prescribed by the index order deviate from the activities' topological order, some shifts 

may have to be shorter in order to maintain feasibility, and some activities may not be 

shiftable at all. Hence, if we require an iteration to consider each activity in some order, 

shifting algorithms may need more iterations. 
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Lemma 2 Considering activities in non-topological order may entail more iterations than 

considering them in topological order. 

Proof: Consider an instance where J = 3 (we omit the dummy activities), dj = 1 (1 < j < J), P 

= 1, n = {3, 4}, kji = 2 (1 < j < J), Ki = 2, and 1 Z 2 Z 3, and the schedule depicted in 

Figure 7. If activity 1 is considered first, then activity 1 (2, 3) can be shifted by one (two, two) 

period(s), in one iteration. However, when activity 2 is shifted first it can be shifted by only 

one period, due to the precedence relation between 1 and 2. Shifting activity 3 first is 

infeasible because of 2 Z 3; notice also the resource is already used to capacity. Therefore, at 

least two iterations are required to achieve the same result. 

HFL 

1 2 3 4 5 6 

Figure 7: On the Effect of Shift Sequences 

As the loss in efficiency entailed by attempting other sequences would conflict with the idea 

of using the algorithms presented as fast improvement procedures, we have chosen not to 

examine such algorithmic variants. 

4. Experimental Analysis 

4.1. Experimental Design 

The initial schedules were constructed with a randomized construction method (Schirmer 

1999, Chapter 12) using an appropriate adaptation of the well-known serial scheduling 

scheme. The scheme divides the set of activities into three disjoint subsets or states: sched-

uled, eligible, and ineligible (cp. Kurtulus, Narula 1985): an activity that is already in the par-

tial schedule is scheduled, otherwise, an activity is called eligible if all its predecessors are 

scheduled, and ineligible eise. The scheme proceeds in N = J stages, indexed by n. For nota-

tional purposes, we refer on stage n to the set of scheduled activities as Sn and to the set of 

eligible activities as Dn. On each stage n, one activity j from Dn is selected - using a priority 

rule if more than one activity is eligible - and scheduled to begin at some feasible Start time. 

Then j is moved from Dn to Sn which may render some ineligible activities eligible. The 

scheme terminales either on stage J if all activities are scheduled (feasible Solution found) or 

if no further selection is possible (no feasible Solution found). 
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Eight priority rules were used, as listed in Table 5; formal definitions missing here are pro-

vided in the Appendix. These rules were selected since w.r.t. effectiveness these cover the 

whole spectrum of priority rules for the RCPSP/TI: the frist three are the most effective rules 

currently known whereas RRD is the worst-performing one; the other rules settle between 

these extrema. For further details on these algorithms, we refer the reader to Schirmer (1999, 

Chapter 12) from which also the control parameter settings were taken. 

Extre-
mum 

Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

Simple vs. 
Composite 

MAX DRC/Ejt <- 2p (RKpn - RDjpt - MDEjpt) D G S 

MAX DRC/ESjt ^peSPn (RKpn" RDjpt" MDEjpt) D L S 

MIN DRS/ESjt 2pe SPn (^Rjpt+ ^DEjpt) / RKpn D G S 

MIN ESTj <-EFTj-dj S G s 

MAX MTSj <- lü'l j/j'll S L s 

MIN RRDjt <— £p RDjpt / (kjp * dj) S L s 

MIN SPTj S L s 

MIN TRSjt <- 2p RDjpt/Kp S L s 

Table 5: Priority Rules 

The factors examined in our experimentation comprise shifting algorithm, priority rule em-

ployed in the construction method, and instance size, measured in terms of the number of ac

tivities J. Specifying a set of values for each factor describes over which levels it is varied 

during an experiment, while one value for each factor determines a run of an experiment. The 

outcome of each run is reported in terms of several result variables, related to effectiveness 

and efficiency. Effectiveness is measured in terms of the percentage deviation of the schedule 

retumed from the initial schedule, the number of schedules improved, and the number of 

schedules improved to optimality. Efficiency is measured in terms of CPU-time required in 

seconds. In addition, some related quantities are reported, viz. the number of activities 

actually shifted, the average number of periods by which each such activity has been shifted, 

and the number of iterations. All algorithms were implemented and compiled using Borland 

C, data points were taken on a 486DX/66 personal Computer with 12 MB RAM run under 

Windows 95. 

As a test bed, we used the benchmark instance sets J10, J20, J30, and J40 generated with 

ProGen/TI (Schirmer 1999, Chapter 10). Each instance comprises 10, 20, 30, or 40 non-

dummy activities, as indicated by the naming. Each activity has a nonpreemptable duration of 

between one and ten periods and may require one or several of thirty partially renewable re

sources present. The number of successors and predecessors w.r.t. the precedence order varies 
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between one and three for each activity. Systematically varied design parameters are 

complexity index (CI), resource factor (RF), resource strength (RS), cardinality factor (CF), 

horizon factor (HF), and interval factor (IF). As CI we implemented an estimator of the re-

strictiveness of a network developed and evaluated by Thesen (1977); RF determines the 

number of resources that are requested by each activity, and RS expresses resource scarcity 

measured between minimum and maximum demand. CF controls the cardinality of the period 

subsets, HF the tightness of the planning horizon T up to which all activities must be com-

pleted. IF, flnally, serves to establish the degree of Augmentation of the period subsets (cf. 

Table 6). 

Design Parameter Related To Level = 0 Level=I 

CI Complexity Index Network network is parallel 
digraph 

network is serial 
digraph 

RF Resource Factor Resources each activity uses no 
resources 

each activity uses all 
resources 

RS Resource Scarcity Resources minimum resource 
capacities 

maximum resource 
capacities 

CF Cardinality Factor Period Subsets each period subset 
comprises one period 

each period subset 
comprises all periods 

. HF Horizon Factor Period Subsets planning horizon 
equals EFTj 

planning horizon 
equals upper bound 

IF Interval Factor Period Subsets each period subset 
consists of one 
interval 

each period subset 
consists of maximum 
number of intervals 

Table 6: Design Parameters ofProGen/Il 

Due to the complexity of the RCPSP/TI, not all of its instances are feasible. Hence, 96 instance 

Clusters - defined by level combinations of the design parameters - were identified experimen-

tally which consist of mostly feasible instances; a similar approach has been pursued by 

Böttcher et al. (1996b). Each benchmark instance set comprises ten instances per Cluster, or 

960 instances, for a total of 3,840 instances. All instances were attempted with the most effec-

tive of the truncated branch-and-bound algorithms described in Böttcher et al. (1996a). As the 

problem is strongly NP-equivalent, it is no surprise that the computation times required to 

solve harder instances increase exponentially; we hence employed a truncated version of this 

algorithm. To compensate for the fact that larger instances require more computation time, the 

CPU time limit was set to 5 (5, 10, 20) minutes for the instances with 10 (20, 30, 40) non-

dummy activities, using an Implementation in GCC, running under AIX on an IBM RS/6000 

Computer with 66 MHz clockpulse and 64 MB RAM. The corresponding results are 

summarized in Table 7. 
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Instance Non-Opti- Optimally Feasibly Undecided Proven Total 
Set mally Solved Solved Solved Infeasible 

J10 39 901 940 11 9 960 
J20 203 734 937 23 0 960 
J30 181 757 938 22 0 960 
J40 183 743 926 34 0 960 

Total 606 3,135 3,741 90 9 3,840 

Table 7: Characteristics of Instance Sets 

Of course, in the following experiments only those instances were included which were feasi-

bly solved by the respective scheduling algorithm. Also, in order to prevent already optimal 

schedules, which simply cannot be improved, from distorting the results, we had the algo

rithms check each initial schedule for optimality by comparing them against the reference So

lution from the truncated branch-and-bound algorithm. 

4.2. Effectiveness 

Results pertaining to the effectiveness of the algorithms are compiled in Tables 8-10 where 

Avg Improv (Instances, Improved, To Opt) refers to the average percentage improvement 

achieved over the. initial schedule (the number of instances attempted, the number of 

schedules improved, the number of schedules improved to optimality). Note that the differing 

number of instances (and schedules) attempted depend on the different capabilities of the 

scheduling algorithms to construct feasible but non-optimal schedules. 
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Jobs DRC/E DRC/ES DRS/ES EST MTS RRD SPT TRS 
10 Avg Improv 0.89% 1.01% 1.40% 1.38% 0.85% 1.56% 1.02% 1.55% 

Instances 162 160 158 161 122 161 146 171 
Improved 40 50 48 61 29 62 42 55 
To Opt 19 29 21 22 17 27 19 24 

20 Avg Improv 0.95% 0.81% 0.65% 1.38% 1.37% 3.08% 1.60% 2.58% 
Instances 259 258 247 243 222 251 229 244 
Improved 111 88 84 105 81 121 93 119 
To Opt 45 36 31 40 34 35 38 33 

30 Avg Improv 1.18% 1.49% 1.29% 2.79% 2.10% 8.21% 2.85% 8.68% 
Instances 215 211 218 195 186 225 193 227 
Improved 99 88 88 82 76 165 79 166 
To Opt 20 13 23 15 15 45 15 51 

40 Avg Improv 2.35% 3.14% 9.60% 2.54% 1.99% 17.82% 2.43% 17.96% 
Instances 235 271 413 200 200 441 189 441 
Improved 134 156 318 71 61 399 69 404 
To Opt 21 51 190 8 9 257 9 250 

Table 8: Effectiveness of Local Left-Shift Algorithm 

Jobs DRC/E DRC/ES DRS/ES EST MTS RRD SPT TRS 
10 Avg Improv 1.77% 1.77% 2.50% 2.10% 1.90% 2.86% 2.17% 2.98% 

Instances 162 160 158 161 122 161 146 171 
Improved 58 60 64 66 41 70 55 78 
To Opt 25 33 31 27 21 30 29 39 

20 Avg Improv 1.13% 1.10% 0.92% 2.66% 2.18% 5.90% 2.64% 5.62% 
Instances 259 258 247 243 222 251 229 244 
Improved 102 97 89 116 86 142 102 137 
To Opt 48 42 34 46 34 48 43 48 

30 Avg Improv 1.97% 1.63% 1.89% 4.13% 3.05% 11.62% 3.91% 12.09% 
Instances 215 211 218 195 186 225 193 227 
Improved 101 83 91 90 79 158 85 170 
To Opt 20 16 25 17 16 57 17 61 

40 Avg Improv 2.65% 3.60% 9.87% 4.26% 3.30% 20.34% 4.14% 20.38% 
Instances 235 271 413 200 200 441 189 441 
Improved 125 154 316 82 73 409 78 409 
To Opt 21 54 201 10 11 280 11 277 

Table 9: Effectiveness of Global Left-Shift Algorithm 
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Jobs DRC/E DRC/ES DRS/ES EST MTS RRD SPT TRS 
10 Avg Improv 1.75% 1.73% 2.54% 2.16% 1.88% 2.83% 2.20% 2.96% 

Instances 162 160 158 161 122 161 146 171 
Improved 57 60 65 67 41 70 56 77 
ToOpt 27 33 32 29 21 30 32 39 

20 Avg Improv 1.14% 1.11% 0.87% 2.68% 2.24% 5.89% 2.67% 5.70% 
Instances 259 258 247 243 222 252 229 244 
Improved 103 99 89 115 87 144 102 138 
To Opt 48 41 34 46 34 48 44 49 

30 Avg Improv 1.82% 1.62% 1.87% 4.11% 3.20% 11.62% 3.85% 12.14% 
Instances 215 211 218 195 186 225 193 227 
Improved 103 83 93 90 79 158 84 170 
ToOpt 20 16 26 16 16 57 17 61 

40 Avg Improv 2.60% 3.55% 9.87% 4.30% 3.23% 20.34% 4.14% 20.41% 
Instances 235 271 413 200 200 441 189 441 
Improved 124 154 313 80 73 408 78 409 
To Opt 22 54 201 11 11 281 11 277 

Table 10: Effectiveness of Hybrid Left-Shift Algorithm 

It comes as no surprise that the effectiveness of all our algorithms is greater on the schedules 

generated by the worst priority rules, as is evident from comparing e.g. the results for the best 

rules DRC/E and DRC/ES with those of the worst rule RRD. This result was expected and it 

is consistent with elementary insight as worse algorithms leave more room for further 

improvement than better one do. The more interesting result is that even the schedules pro-

duced by the best construction methods can still be improved by between 1.1% and 3.6% by 

the GLS and HLS algorithms. Even the application of mere local shifts allows to reap 

improvements between 0.8% and 3.1%. This picture is corroborated by the numbers of 

instances improved and improved to optimality. Whereas for the best rules between 35% and 

57% of the eligible schedules are improved, and between 15% and 20% are improved to 

optimality, the corresponding percentages lie between 43% and 93% (between 19% and 64%) 

for the worst rule, For the LLS algorithm, the Situation is similar, albeit of course on a lower 

level. 

43. Efficiency 

For all three algorithms, the computation times are given in Table 11. As these directly 

depend on the number of activities shifted and the number of iterations, for the GLS and the 

HLS algorithm also on the number of periods shifted, we provide the corresponding results 

along with the computation times. We refrain from detailing the results for the different 

priority rules since the respective differences are minor only; for all corresponding result vari

ables, averages and Standard deviations over all schedules are listed. 
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Jobs LLS GLS HLS 
Avg StdDev Avg StdDev Avg StdDev 

10 Jobs Shifted 4.96 0.45 5.82 0.51 5.75 0.45 
Periods Shifted 2.56 0.21 4.67 0.43 4.61 0.21 
Iter 3.90 0.26 2.51 0.07 2.50 0.26 
CPU 0.00 0.00 0.03 0.00 0.01 0.00 

20 Jobs Shifted 12.93 1.45 13.76 1.48 13.73 1.45 
Periods Shifted 5.18 1.09 8.27 1.76 8.25 1.09 
Iter 6.85 0.94 2.76 0.15 2.75 0.94 
CPU 0.08 0.01 0.02 0.00 0.02 0.01 

30 Jobs Shifted 22.73 2.54 23.39 2.31 23.39 2.54 
Periods Shifted 9.43 3.93 14.02 4.61 14.01 3.93 
Iter 10.26 1.71 2.99 0.05 2.98 1.71 
CPU 0.18 0.03 0.03 0.00 0.04 0.03 

40 Jobs Shifted 33.93 4.89 34.54 4.48 34.55 4.89 
Periods Shifted 16.35 7.70 20.76 7.37 20.75 7.70 
Iter 10.94 1.11 2.78 0.21 2.76 1.11 
CPU 0.45 0.05 0.05 0.01 0.06 0.05 

Table 11: Efficiency of the Left-Shift Algorithms 

While theoretical analysis revealed the worst-case time complexity of the LLS to be lower 

than that of the other algorithms, Table 11 demonstrates that - at least on the instances tackled 

- its actual running time is higher than that of the other algorithms. One can conclude that 

here the computational effort to evaluate the LLS rules more than compensates the effort of 

checking a - here, not too large - number of periods for resource-feasibility. 

Note also that for the HLS algorithm the values reported for Jobs Shifted, Periods Shifted, and 

Iter refer to the second stage only, in order to facilitate comparisons with the GLS algorithm. 

Clearly, the effect of the first stage of the HLS algorithm is relatively minor and does neither 

allow larger shifts nor more activities to be shifted. 

Now, it is also apparent why we chose to explore the polynomial variant of selecting start 

times in the context of the LLS algorithm, and the pseudo-polynomial variant in that of the 

GLS and the HLS algorithms. As by the definition of global shifts the latter algorithms 

usually examine more start times, they require longer computation times, regardless of the 

selection variant used. Thus, the finding that the LLS algorithm with a polynomial selection 

of candidate start times takes actually longer than its counterparts using a pseudo-polynomial 

selection allows us to infer that - at least for the instances tackled - the pseudo-polynomial 

selection variant is the better choice. So, our experimental design frees us from having to run 

additional experiments on a LLS algorithm with the pseudo-polynomial approach to finding 

candidate start times, or a GLS or HLS algorithm with a polynomial approach. Note, 

however, that for large instances the 'curse of dimensionality' associated with larger-than-

polynomial complexities may prevail nevertheless. 
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5. Summary 

Starting from the finding that currently all known heuristics for the RCPSP/TT sample the Space 

of feasible rather than the desirable space of active schedules, we have proposed several 

iterative improvement algorithms which use local and global shifts to improve heuristically 

constructed schedules. We have also shown that straightforward approaches to selecting 

candidate start times for shifting activities have pseudo-polynomial time complexities. We 

have developed a number of shift rules which analyze the schedules at hand and allow to 

bring these complexities down to a polynomial level. These theoretical complexity results are 

complemented by an experimental evaluation of the average-case Performance, employing a 

test bed of 3,840 benchmark instances that has already been used in other studies on the 

RCPSP/IT. Summarizing the results, we can note that both the GLS and the HLS algorithm 

produce good results in terms of schedule makespan reduction. Even of the eligible schedules 

constructed by the best priority rule-based methods, between 35 and 57% are improved by 

between 1.1 and 3.6%, and between 15 and 20% are improved to optimality. 

Regarding efficiency, it is interesting to note that - for the benchmark instances used in this 

study - the LLS algorithm, albeit constructed in a way as to ensure polynomial worst-case 

time complexity, is less efficient than its pseudo-polynomial companions. Indeed, the GLS al

gorithm shows the least computation times. Clearly, the planning horizons to be considered 

here are not large enough to let the pseudo-polynomial complexities of the latter become 

dominant. From these results, using the GLS algorithm as a post-processing procedure ap-

pears to be a sensible choice. For substantially larger instances, however, additional experi-

mentation would have to verify whether the pseudo-polynomial time complexity induced by 

the way in which periods are checked would have to be replaced by a more evolved, polyno

mial version. 

An always enticing question is whether research results can also be applied or extended to 

other problem settings. For the closely related classical resource-constrained project schedul

ing problem (RCPSP), construction methods are well-known for decades which always 

produce active (or semi-active) schedules, so the application of local or global left-shifts to 

schedules of Repsp-instances would be a futile effort. It seems, however, worthwhile to circle 

out other scheduling problems where construction methods sampling the space of active or 

semi-active schedules are unknown. Developing post-processing procedures based on appro-

priately defined shift Operations would allow to improve also the effectiveness of such 

methods. 
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Appendix 

Let denote RKpn (1 < p < P; 1 < n < N) the remaining capacity of resource p on stage n. It is initialized by 

RKpl<-Kp (I<P*P) (27) 

and updated dynamically according to 

RKpil <-RKpin.i-RDj P)FTJ-dj+l (1 <p<P;2<n<N) (28) 

Let denote MDjpt the minimum (relevant) demand for any requested resource p incurred by starting j no earlier 

than in period t, i.e. 

MDjpt <-min {RDjpt.| t < t" < LSTj} (2 < j <J-1; p e PRy, ESTj+1 < t < LSTj+1) (29) 

and MDEjp; the minimum (relevant) demand entailed for resource p by all successors of activity j when started 

in period t. Assuming j /. j\ let us refer to the longest duration path from j to j' w.r.t. the precedence order Z by 

LPjj. Also, assuming that j is started in period t, updated earliest start times ESTj^ of its successors j' could be 

derived from 

ESTj.jt <- max {ESTjs t + LPJJ. - 1} (j ZjESTj+1 ̂  t < LSTj+1) (30) 

Then, MDEjpt can be calculated from 

MDEjpt<- S MDj'>PjESTj.jt (2<j<J-l;l<p<P;ESTj+l<t<LSTj+l) (31) 

Kj' 

Finally, let denote SPn the set of those resources which can be identified on stage n as potentially scarce. SPn 

can be formally defined as 

SPn <— {1 < p < P | Sjg kjp • dj > RKpn} (1 < n ^ N) (32) 
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