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Abstract: For most computationally intractable problems there exists no heuristic which performs 
best on all instances. Usually, a heuristic characterized as best will perform good on the majority of in-
stances but leave a minority on which other heuristics do better. In priority rule-based scheduling, 
attempts to remedy this have been made by combining simple priority rules in a fixed and predeter-
mined way. We investigate another way, viz. the design of adaptive control schemes which dynami-
cally combine algorithms as appropriate, taking into account instance-specific knowledge. We scruti-
nize recently proposed algorithmic approaches from the open literature. Although these have been 
used in various settings (e.g. lotsizing and scheduling, course scheduling), a thorough experimental 
investigation, comparing their Performance on Standard benchmark instances to that of other contem-
porary methods, has been lacking. Our research aims to close this gap by validating these approaches 
on one of the best-researched scheduling problems, viz. the resource-constrained project scheduling 
problem (RCPSP). We provide the results of a comprehensive computational study. We then show how 
to improve algorithmic effectiveness by adding a sampling stage; the arising algorithm is almost as 
effective as the most effective construction methods currently known, and it enjoys several additional 
advantages over these which facilitate the researcher's task of designing good algorithms. 

Keywords: PROJECT SCHEDULING; HEURISTICS; ADAPTIVE CONTROL SCHEMES 

1. Introduction 

Despite the intellectual appeal of trying to find 'the best heuristic' for a problem, for most 

computationally intractable problems there simply exists no heuristic which performs best on 

all instances. Usually, a heuristic characterized as best will perform good on the majority of 

instances but leave a minority on which other heuristics do better. For the field of priority 

rule-based scheduling, for example, recent experimental results suggest that some rules per­

form best on certain classes of instances while other rules do so on other instance classes, con-

sequentially no single rule will perform best on all possible instances of a problem (Schirmer, 

Riesenberg 1998). A similar view is adopted by Wolpert, Macready (1995) whose no-free-

lunch-theorem states the same for neighborhood search algorithms in general. 

For the most widely used form of fast scheduling methods, viz. priority rule-based construc­

tion ones, this implies that restricting oneself to merely one rule means to waive the capability 

to address the specifics of particular instances. Attempts to avoid this limitation have been 

made with the design of composite (or combinatorial) rules (cf. Barman 1997 and the litera­

ture cited therein), which combine simple priority rules in a fixed and predetermined way. In 

this contribution, we investigate another way of tackling that issue, viz. the design of adaptive 

control schemes which dynamically combine algorithms as appropriate. In essence, we aim for 

algorithms with a 'learning' capability, i.e. here the ability to extricate good rule combinations 

from an uninformed compilation of good and bad rules by gathering - for each instance at-

tempted anew - instance-specific knowledge of which combinations work well and which do 

not. This concept therefore provides a unifying framework allowing to clarify commonalities 

and differences between certain algorithmic approaches. Although the very name 'adaptive 

control scheme' has, to the best of our knowledge, not been used before, algorithmic ap­

proaches constituting such control schemes have been around for some time. 
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We therefore begin by testing two such approaches which have been recently proposed in the 

literature, a randomized one (Kimms 1996) and a local search-based one (Haase 1996; Haase 

et al. 1998). These or similar algorithms have been used in various settings (e.g. lotsizing and 

scheduling, course scheduling); still a thorough experimental investigation, which would 

compare them to other contemporary methods by means of Standard benchmark instances, has 

been lacking. Our research aims at closing this gap by validating the algorithms on one of the 

best-studied scheduling problems, the resource-constrained project scheduling problem 

(RCPSP). Our analysis reveals both approaches to be markedly less effective than well-known 

simpler heuristics. We demonstrate, however, that their effectiveness can be substantially im-

proved by adding a random sampling stage. This defines a new algorithmic approach proceed-

ing in two stages: The first, deterministic stage uses an adaptive control scheme to identify, 

separately for each attempted instance, a well-performing combination of priority rules. The 

second, randomized stage uses the best currently known combination of scheduling and ran­

dom sampling scheme for the problem to run the composite rule found in the first stage as a 

sampling algorithm. This approach allows to exploit the benefits of sampling while enabling 

the algorithm to compose a priority rule tailored to the particular instance at hand. 

Our computational results show that this yields an algorithm competitive with all but the best 

state-of-the-art construction heuristics. In addition, adaptive control schemes enjoy two impor-

tant advantages over these state-of-the-art algorithms, which facilitate the researcher's task of 

designing good priority rule-based heuristics: First, by construction they are robust to changes 

in the instances attempted, thus obviating the need of expertise on the characteristics of in-

stances. Second, they are - at least moderately - robust to changes in the rules employed, thus 

lessening the importance of expertise on the characteristics of such rules for the problem at 

hand. Expertise on both areas would otherwise be necessary to identify good algorithms, and 

usually extensive experimentation is required to acquire it (Schirmer, Riesenberg 1998; 

Schirmer 1998a). Therefore, adaptive control schemes provide a commendable approach in 

situations where little knowledge is available on what constitutes a good rule or what makes 

an instance easy or difficult to solve. 

The remainder of this work is structured as follows. In Section 2 we briefly recount the RCPSP 

as far as it is needed here. The requisite algorithmic components, viz. scheduling scheme, 

simple and composited priority rules, random sampling schemes, and bounding rules are cov-

ered in Section 3. Section 4 is devoted to a taxonomy of control schemes, based upon which 

we describe the adaptive approaches to be explored. Section 5 details the experimentation car-

ried out and analyzes the respective results. A short summary, along with some conclusions, 

in Section 6 wraps up this work. 
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2. Resource-Constrained Project Scheduling 

2. L Problem Setting 

The classical single-mode variant of the resource-constrained project scheduling problem can 

be characterized as follows: The Single project consists of a number of activities of known du-

ration; all activities have to be executed in order to complete the project. Düring their nonpre-

emptable execution the activities request renewable resources whose available amount is lim­

ited in each period by a constant capacity. Precedence relations between activities stipulate 

that some activities must be finished before others may be started. Table 1 summarizes the 

problem parameters of the RCPSP, where w.l.o.g. J, R, dj, Kr (kjr) are assumed to be positive 

(nonnegative) integers. 

The goal is to find an assignment of periods to activities (a schedule) that Covers all activities, 

ensures for each renewable resource r that in each period the total usage of r by all activities 

performed in that period does not exceed the per-period availability of r, respects the partial 

order Z, and minimizes the total project length. This problem is notoriously intractable. Its 

optimization variant is known to be strongly NP-hard, even strongly NP-equivalent (Schirmer 

1998b, pp. 10-14); indeed, assuming a deadline to be given for the project completion even its 

feasibility variant is strongly NP-compIete (Garey, Johnson 1975). 

Problem Definition 
Parameter 

dj Duration of activity j 

J Number of activities, indexed by j 

kjr Per-period usage of renewable resource r required to perform activity j 

Kr Per-period availability of renewable resource r 

R Number of renewable resources, indexed by r 

Z Partial order on the activities, representing precedence relations 

Table 1: Problem Parameters ofthe RCPSP 

2.2. Model Formulation 

To simplify the formulation of the mode], w.l.o.g. it is assumed that the activities 1 and J are 

dummy activities, having durations and resource requirements of zero, and that activity 1 (J) is 

the unique first (last) activity w.r.t. /. Also, several parameters are derived from the above 

problem parameters. First, in order to restrict the number of periods to be considered, let de-



4 

note T an upper bound for the makespan of the project. Second, let denote Fj (2 < j < J) the 

set of all immediate predecessors of activity j w.r.t. Z. Third, for each activity j (1 < j < J) ear-

liest finish times EFTj and Iatest finish times LFTj are calculated (Kelley 1963). Finally, let At 

(1 < t < T) denote the set of all (non-dummy) activities being active in period t and T the set 

of all periods in which at least one activity begins. Then, using integer variables yj (1 <j < J) 

to denote the period in which activity j is finished, the RCPSP can be couched as: 

Minimize 

Z(y) = yj O) 

subject to 

yi^yj-dj (2 < j < J; i e Pj) (2) 

£kjr<Kr (l<r<R;te T) (3) 

EFTj < yj < LFTj (1 <j<J) (4) 

Minimization of the objective function (1) enforces the earliest possible completion of the last 

activity J and thus leads to the minimal schedule length. The precedence constraints (2) guar-

antee that the precedence order is respected while the capacity constraints (3) limit the total re-

source consumption of each renewable resource in each period to the available amount. 

3. Components of Priority Rule-Based Algorithms 

Priority rule-based methods consist of at least two components, viz. one (or more) scheduling 

schemes and one (or more) priority rules. A scheduling scheme determines how a schedule is 

constructed, building feasible füll schedules (which cover all activities) by augmenting partial 

schedules (which cover only a proper subset of the activities) in a stage-wise manner. On each 

stage, the scheme determines the set of all activities which are currently eligible for schedul­

ing. In this, priority rules serve to resolve conflicts where more than one activity could be 

feasibly scheduled. Also, such methods may be complemented by bounding rules which serve 

to improve their Performance. 

3. /. Scheduling Scheme 

Two variants of scheduling schemes are usually distinguished, viz. serial and parallel ones. 

We restrict our attention to the serial scheduling scheme (SSS) for two reasons. First, when 

priority rules are applied in a deterministic manner, the SSS allows for better discrimination 

between good and bad rules than its parallel counterpart (Schirmer, Riesenberg 1997; 
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Schirmer 1997). Second, we intend to apply those composite rules identified as good in a ran-

dom sampling scheme afterwards (in a second stage). Due to the neglectable computation 

times required per Iteration (at the order of milliseconds for the instances considered here), 

such algorithms are commonly run for at least 100 iterations, and so they will be in the second 

stage. As the serial scheme is clearly dominant (Kolisch 1996b; Schirmer 1997) for higher It­

eration numbers, we intend to find those rules which perform good under the SSS. 

The SSS divides the set of activities into three disjoint subsets or states: scheduled, eligible, 

and ineligible. An activity that is already in the partial schedule is scheduled. Otherwise, an 

activity is called eligible if all its predecessors are scheduled, and ineligible otherwise. The 

scheme proceeds in N = J stages, indexed by n. For notational purposes, we refer on stage n to 

the set of scheduled activities as Sn and to the set of eligible activities as decision set Dn. Dn 

is determined dynamically from 

Dn {j I j £ A /j c Sn} (1 < n < N) (5) 

On each stage n, one activity j from Dn is selected - using a priority rule if more than one ac­

tivity is eligible - and scheduled to begin at its earliest feasible start time. Then j is moved 

from Dn to Sn which may render some ineligible activities eligible if now all their predeces­

sors are scheduled. The scheme terminales on stage N when all activities are scheduled. The 

SSS has been dealt with, among others, in numerous studies (cf. the literature cited in 

Schirmer (1997) where also a formal description is given). Note that for each feasible RCPSP-

instance the SSS probes the set of active schedules (Kolisch 1996b) which always contains at 

least one optimal schedule. 

3.2. Simple Priority Rules 

We briefly introduce the priority rules to be used. Let for each activity j (1 < j < J) denote Sj 

the set of all immediate successors w.r.t. z and EFSTj (1 < j < J) the - dynamically updated -

earliest feasible start time w.r.t. all constraints. Using this notation, the rules used can be de-

fined as done in Table 2 where also a Classification in terms of several straightforward criteria 

is given. The first well-known four of these rules were selected because in several studies 

(Davis, Patterson 1975; Alvarez-Valdes, Tamarit 1989; Ulusoy, Özdamar 1989; Boctor 1990; 

Kolisch 1996a; Schirmer 1997) they have been found to hold particular promise for the 

RCPSP. The other four were found to perform rather poorly (Schirmer 1997); they were delib-

erately included for reasons about to unfold later. 



6 

Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

MIN SLKj <- LSTj - EFSTj D L 

MIN LSTj <- LFTJ - dj S G 

MIN LFTj <- LFTj S L 

MAX MTSj «- lü'l S L 

MIN SPTj «-dj S L 

MIN DRDj I,.kjr/max (kj'rlj' eDn) D G 

MIN TRDj S L 

MIN TRSj <- Sj. kjr / Kr S L 

Table 2: Simple Priority Rules - Definition and Classification 

3.3. Parameterized Composite Priority Rules 

All above priority rules can be characterized as simple ones (cp. Kolisch 1995, p. 86). As we 

aim at minimizing the project makespan, it is straightforward that certain (precedence-based) 

rules perform better on less capacitated instances while other (resource-based) ones do so on 

instances with scarce resources. It would therefore be unreasonable to expect one particular 

rule to outperform all its companions on all problem instances; we will come back to this is-

sue below. In addition, some rules may accord similar or even identical priority values to sev-

eral candidate activities, especially so when scheduling large projects; therefore the discrimi-

native potential of simple rules may be rather limited in certain situations. This insight moti-

vates the concept of composite rules, which are made up from several simple priority rules. 

Such rules combine several numerical measures, each reflecting Information about the desir-

ability to select a specific candidate, into one priority value. It is also noteworthy that experi-

mental results suggest that good composite rules need not neccessarily be made up from good 

simple rules: Ulusoy, Özdamar (1989) report that, although the rules MAX MIS (most imme-

diate successors) and MAX TRS perform poorly as individuals, their weighted combination 

WRUP performs rather well. In other words, an appropriately balanced combination of differ-

ent priority rules may do better than each of its parts. 

Let I denote the number of priority rules to be combined. Let also for each activity j e Dn de­

note vj(j) the priority value accorded by rule i, and let finally for each rule i be aj e [-1, 1] an 

(exponential) control parameter or weight assigned to rule i. Now, we can define a composite 

rule in general as 
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I 
vö)<- Evi(j)ai extr = max QeDn) (6) 

i=l 

Obviously, for I = 1 this definition includes the special case of a simple rule. For each priority 

rule i, the corresponding control parameter oq allows to vary the influence of the rule as well 

as whether candidates with high or with low priority values are to be preferred. On one hand, 

oq e (0,1] implies extr = max and increasing values tend to pronounce the differences be-

tween the candidate activities; on the other hand, cq e [-1,0) implies extr = min and increas­

ing values tend to reduce the differences between the activities. For oq = 0, all candidates re-

ceive the same priority value. In our Implementation, ties are broken by activity index j. 

It stands to reason that combining rules with different domains may overemphasize the influ­

ence of some rules. Suppose for instance that one rule draws priorities from {0,...,1} while 

another draws from {1,...,100}; a composite rule using these with identical weights will es-

sentially behave like the latter. This imbalance of scales can either be adjusted explicitely by 

normalizing or scaling the priorities or implicitely by adjusting the weights (Whitehouse, 

Brown 1979). Following the former approach, we counter this effect by scaling the priority 

values to the interval [0,1] by 

1 V' ̂  r if extr; = min 

v'iö) <-

maxjvi(j')|j'eDn} 

Vj(j) 

max{vi(j')|j'eJDn| 

(1 <i<I;j e Dn) (7) 

if extr; = max 

If the denominator is zero, the priorities remain unchanged. Note that formula (7) transforms 

the priority values of all rules i with extq = min to values with extq = max, so it suffices to let 

oq e [0,1]. We thus compose the individual priority values only after having scaled them, i.e. 

I 
v(j) <- %v'i (j)ai extr = max (j e Dn) (8) 

i=l 

If a value of v'j(j) is zero, then v'jQ)^ is set to zero. We should point out that we have also 

tried a multiplicative variant (cf. Eq. 9) of composing the individual priorities. Yet, as it 

yielded noticeably worse results, we use the exponential one in the sequel. 

I 
v(j) ^ Xai' v'i (J) extr = max (j e Dn) (9) 

i=l 
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Note that, given a scheduling scheme and a set of I priority rules, each control parameter vec-

tor d = (oq,...,ai) fully specifies one scheduling algorithm. Since each algorithm can be con-

ceived as a mapping from the problem to the Solution space, it is straightforward to regard any 

a -vector as encoding a specific Solution of the instance tackled. Hence, for any algorithm em-

ploying composite rules, the parameter Space [0,1]* can be said to represent that subspace of 

the Solution space that is sampled by the algorithm. 

3.4. Random Sampling Schemes 

The idea of randomization in selecting between several alternative candidates is based on 

measures of attractiveness which are mapped monotonically into selection probabilities. Thus, 

a randomized method chooses among the available candidates according to probability values 

which are biased to favour apparently attractive selections. In the framework considered here, 

these measures are determined by priority rules. A biased random sampling scheme consists 

of a mapping p: Dn -> [0,1] assigning a probability value p(j) to each candidate in the deci-

sion set. In essence, this mapping simply transforms the priority value of each candidate into a 

probability value. Of course, all probabilities sum to unity. To formalize the (randomized) se­

lection once the probabilities are calculated, let denote P (Dn) = (p(7i(l)),...,p(7c( | Dn |))) the 

sequence of probability values of all candidates in a decision set Dn; w.l.o.g. we assume 

P (Dn) to be ordered by ascending activity index. Also, let denote £ e [0,1] a random number. 

Then, the activity j* to be selected is determined as 

. k 
j* <r~ min {j G Dn | j = %(k) A £ < %p(?[(i))} (10) 

i=l 

One of the two schemes that we use here is the regret-based biased random sampling (RBRS) 

one presented in Drexl, Grünewald (1993). The regret value of a candidate j measures the 

worst-case consequence that might possibly result from selecting another candidate. Let de­

note V(Dn) the set of priority values of all candidates in a decision set Dn. Then, the regrets 

are computed as 

fmaxV(Dn)-v(j) iffextr = min 
V jv(j)-minV(Z?n) iffextr = max ^ Dn) (U) 

and modified by 

v"Q) <- (v'(j) + e)a (JE Dn) (12) 

where ee R>Q and ae R>o; note that this parameter a is not identical to any weight parameter 

<%i defined in the previous section. Now the selection probabilities are derived from 
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<SsDn> (13) 

]'sDrl 

e guarantees v"(j) to be nonzero; otherwise those candidates with priorities of zero could never 

be selected, an undesirable consequence in the presence of scarce resources. a allows to di-

minish or enforce the differences between the modified priorities for a < 1 or a > 1, respec-

tively. Note that for a —> 0 the selection process becomes pure random sampling, since all 

candidates will share the same probability of being selected. On the other extreme, for a = «*> 

the process behaves deterministic: since with increasing a the difference between the highest 

and the second-highest modified priority increases, the probability of the highest-prioritized 

candidate being selected converges to one. 

The second scheme (MRBRS) we use is a modification of the RBRS, in that it computes re-

grets from the original priorities according to (11) and modifies them according to (12). How-

ever, rather than using a constant value of e, £ is determined dynamically. Letting denote 

V(Dn)+ the set of all positive transformed priorities of the candidates in Dn, i.e. 

V(Dn)+«-(v'Ö) I jeZ)nAv'(j)>0} (14) 

£ can be derived from 

£ <— < min V'(Dn)+ /5 iff (3je£»n) v'(j) > 0 (15) 

1 otherwise 

where 8 is a positive integer. Selection probabilities are again derived from (13). Thus, the 

above actually defines a family MRBRS/8 of sampling schemes. This scheme has been found 

to be particularly effective in conjunction with the SSS. Details of these schemes are dis-

cussed elsewhere (Schirmer 1997; Schirmer, Riesenberg 1997). 

3.5. Bounding Rules 

Although bounding rules are mostly used in conjunction with exact methods, to speed them up 

when applied to (strongly) NP-hard or NP-equivalent problems, they can also be put to good 

use with heuristics. Iterative construction algorithms, such as sampling methods, in their piain 

vanilla version cannot utilize experience from earlier iterations, so each iteration virtually 

starts from Scratch. In the worst possible case, the Optimum is found in the first iteration such 

that all subsequent iterations are a waste of effort. To avoid this waste, bounds can be em-

ployed to restrict the Solution Space searched or to stop searching it when no better Solution 

may be found. Here, we use two classical bounding rules, viz. a precedence-based optimality 
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and a time window bound. Resource-based bounds have not been included since their effect 

has been found to be rather small (Kolisch 1995; Schirmer, Riesenberg 1998). 

General precedence-based lower bound (GPLB) This bound is generally applicable when-

ever a feasible füll schedule has been found. It is based upon relaxing the resource constraints, 

so a lower bound on the project makespan is determined as the Iength of a critical path in the 

project network. Whenever 

FTj = EFTj (16) 

holds, the whole run can be terminated. In this case, the heuristically derived upper bound FTj 

on the makespan equals the precedence-based lower bound EFTj such that the schedule at 

hand is optimal. • 

Serial time window bound (STWB) The fundamental idea is to decrease the latest Start 

times of all unscheduled activities whenever an iteration finds an improved upper bound on 
the makespan. Let denote FT j the makespan of the incumbent best Solution and LSTj the lat­

est start time of activity j (Kelley 1963). Whenever a feasible Solution with a shorter 
makespan of FTj < FT j has been found, updated LST-values can be determined for all ac­

tivities by 

LSTj <—LSTj - FTj + FTj- 1 (1 <j<J) (17) 

Now, the current iteration can be terminated whenever a selected activity j* would have to 

start outside its updated time window, i.e. 

EFSTj * > LSTj * (18) 

the reason being that the incumbent partial schedule could not be completed to a füll schedule 

with a makespan better than the best known one. By construction of the STWB, any feasible 

schedule will be better than the previous one since its makespan will at most equal the 

makespan of that one, less one. • 

We will not detail computational results for the algorithms presented with or without bound-

ing rules since the general suitability of bounding rules for scheduling heuristics has been 

analyzed in depth in several studies (Kolisch 1995, pp. 120-127; Schirmer, Riesenberg 1998). 

4. Control Schemes 

Parameterized algorithms possess (one or more) control parameters which allow to direct the 

way in which they proceed. While these may be understood to encompass numerical parame­

ters only, we adopt a broader view and include also the choice of certain algorithmic compo-
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nents, such as priority rules, scheduling and sampling schemes, in the concept. To algorithmic 

schemes which govern the instantiation of the control parameters we refer as control schemes. 

Although this very name has, to the best of our knowledge, not been used before, we maintain 

that some kind of control scheme is always present whenever parameterized methods are used. 

In the sequel, we propose a taxonomy of control schemes, distinguishing between classical 

and adaptive forms. 

4.1. Classical Control Schemes 

4.1.1. Fixed Control 

The most simple class of control schemes might be calledjfixed control schemes (PCS), in that 

the values or the value sequences used to instantiate the control parameters are prescribed in 

advance and for all instances alike. As an example, consider a numerical control parameter a 

e N of an algorithm to be run for three iterations. Under a FCS, a could e.g. be instantiated 

thrice by the same value or by a different value in each iteration. These precepts will, of 

course, reflect the results of previous experimentation, having been found to produce the best 

results on average over all test instances used. Exemplary applications of FCS can be found in 

Kolisch, Drexl (1996), Böttcher et al. (1996), and Schirmer, Riesenberg (1997). 

4.L2. Class-Based Control 

Another approach is motivated by the Observation that for most computationally intractable 

Problems there is no algorithm which performs best for all instances. Thus, as the prescrip-

tions of FCS apply to all instances alike, they are unable to take into account the specifics of 

particular instances. This Observation has already been made, among others, by Davis, Patter-

son (1975). Therefore, a more refined class of schemes, to which we refer as class-based con­

trol schemes (CCS), proceeds by instantiating the control parameters depending on some 

characteristics of the instances attempted. Such schemes utilize a partition of the problems in­

stances into equivalence classes and prescribe the application of specific parameter instantia-

tions for each of the classes. Kolisch, Drexl (1996) propose a control scheme which selects the 

scheduling scheme to be applied according to two quantities: the number of iterations to be 

performed and the resource strength of the instance. Other examples of CCS can be found in 

Kimms (1997) and Schirmer; Riesenberg (1998). Also these schemes are based upon exten­

sive experimentation to develop sufficient insight into the influence of the parameters on the 

algorithms1 Performance. Yet, the individual Performance of an algorithm on a given instance 

may still not be reflected by its average Performance on the corresponding equivalence class. 
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4.2. Adaptive Control Schemes 

4.2.1. Motivation and Concept 

When recommendations on the instantiation of control parameters reflect the results of previ-

ous experimentation, their values are usually related to the best averages observed, either over 

all test instances or over some subset of these; rarely will the resulting values be the most ap­

propriate ones for each and every possible instance of the problem at hand. To demonstrate 

this, we reanalyzed some results from a computational study on priority rule-based algorithms 

for the RCPSP (Schirmer 1997). We focus on the Performance of the simple rules presented 

above, run deterministically under the SSS, such that the rule fully specifies the algorithm 

used. Notice that, since we intend to expose the occurrence, not the degree of mutual domi-

nance, for each instance the best heuristically found Solution is used as a reference point. The 

column "Best" in Table 3 reports the number of instances for which a rule did find the best 

heuristic Solution - an honor it may share with other rules - whereas the column "Best Alone" 

refers to those instances where the rule was the only one to do so. For comparison, we also 

include the numbers of instances solved to optimality. Even the best deterministic rule, SLK, 

ranked best on only 68% of the instances. On the other hand, even the worst rules ranked best 

on 7% of the instances, on some of these they even did so alone. It stands to reason that this 

kind of result extends to other problems as well. 

Rule Instances Solved 
Optimally Best Best Alone 

SLK 139 242 24 
LST 126 203 0 
LFT 120 179 42 
MTS 93 131 23 
SPT 17 23 4 
DRD 21 24 1 
TRD 19 24 0 
TRS 19 24 2 

Table 3: On the Mutual Dominance of Priority Rules 

We therefore advocate selecting such values by some more flexible device, capable of exploit-

ing the outcome of previous instantiations to steer the algorithm towards better Performance. 

Since such a scheme chooses an instantiation of the control parameters based on past selec-

tions and the respective outcome, we refer to them as adaptive control schemes because, in the 

words of Glover, Laguna (1997), the particular instantiation "chosen at any iteration [...] is a 

function of those previously chosen. That is, the method is adaptive in the sense of updating 

relevant Information from iteration to iteration". In contrast, we might say that class-based as 
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well as fixed control schemes are adapted rather than adaptive in nature. By saying this we 

mean that the former are (hopefully) tailored to the specifics of the problem in general while 

the latter incorporate some capability of adapting the values of control parameters to the spe­

cifics of a given instance (cf. Table 4). Throughout the literature that we are aware of, control 

schemes which are actually adaptive in this sense are scarce. Bölte, Thonemann (1996) apply 

a genetic algorithm-based control scheme to identify good cooling schemes for a simulated 

annealing method. Kraay, Harker (1996) discuss a number of related approaches for repetitive 

combinatorial optimization problems. 

Control Scheme Fixed in Advance Fixed for all Instances 
Fixed yes yes 
Class-Based yes no 
Adaptive no no 

Table 4: Classification of Control Schemes 

4.2.2. Randomized Cooling-Based Control 

To our first approach we refer as a randomized cooling control scheme (RCCS). It is an itera­

tive control scheme which determines the values for each parameter as a function of three 

quantities, namely the so far best-performing value of that parameter, a random value, and a 

measure indicating how successful the last value was. The scheme terminates after a specified 

number Z of iterations. The attraction of this approach lies in the ease with which a - albeit 

restricted - learning capability can be added to a parameterized algorithmic scheme. 

For each cq, let denote cqr a random value from its domain and a*jz that value of oq which 

produced the best Solution in the z (1 < z < Z) iterations performed so far. Then the value oqz 

of oq in iteration z is determined as a convex combination of these two values, i.e. 

aiz <- (1 - ßiz) «*i,z-l + ßiz * <*ir (1 < i < I; 1 < z < Z) (19) 

where ßjz e [0,1]. Clearly, at the endpoints of the one-dimensional parameter space of ßjz, we 

select purely random values cqr if ßjz = 1 and locally optimal values a*iz if ßjz = 0. Initially, 

of course, we set oq] <— oqr by setting ßjj <— 1. 

The construction of this combination intends to eventually steer the process towards a steady 

State, i.e. to make it converge for Z —» to a local Optimum. Thus, ß is kept constant as long 

as this continues to produce better solutions; otherwise ß is decreased in order to favor the 

selection of values close to the so far bestperforming ones. Essentially, this is done by count-

ing the number of iterations, denoted by XF, which found a Solution bettering the incumbent 
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best one, and taking its reciprocal. Now, using FT*jz to denote the best project makespan 

constructed in all z iterations and setting ßil <- 1, ßiz can be calculated from 

where 7 e R>0. As the quotient in (20) decreases monotonically, the values of ßjz converge to 

zero which provides a trajectory along which each ccjz moves monotonically closer to some 

local optimum a*z. The parameter 7 allows to adjust the rate of convergence: 0 < 7 < 1 im­

plies a slower, 7 > 1 a faster convergence than the unadjusted rate 1 / XF. The condition 7 • > 

l serves to ensure that a e [0,1]. The reference to cooling in the naming of this control 

scheme is motivated, of course, by its kinship to schemes used to control the Performance of 

simulated annealing algorithms (Kirkpatrick et al. 1983)1. 

We should emphasize at this point that we need to distinguish between two kinds of control 

parameters: On one hand, those of the Solution method applied (here the oq of the composite 

rule-based scheduling approach), on the other hand those of the control scheme identifying 

appropriate values for the former ones (here the parameter 7 of the RCCS). For the sake of 

distinction, one might refer to the latter as control scheme parameters. While replacing one 

kind of control parameter by another might seem a futile exercise, let us point out that a 

meaningful control scheme will of course use Iess parameters than the actual Solution method; 

e.g., the RCCS requires only one parameter to control the instantiation of an arbitrary number 

I of parameters. Good control schemes, thus, will be intelligently devised to free the user from 

managing a multitude of parameters while - possibly - allowing him some kind of high-level 

or aggregate control via one or two control scheme parameters. 

Let I denote an instance of the RCPSP. Also, let the function call SchedulingAlgorithm(/, äz) 

refer to an implementation of a deterministic scheduling heuristic which, based upon the vec-

tor öcz in iteration z, employs a composite rule as defined in (8) and retums the makespan FTj 

of the schedule constructed for I. Finally, let FT* denote the best makespan found so far. 

Now, an algorithmic description of the scheme can be given as done in Table 5. 

* A commonly used cooling scheme for simulated annealing algorithms is ocz «— ß • az.\ (1 < z < Z) where ß < 
1 (cp. e.g. Kirkpatrick et al. 1983; Wilhelm, Ward 1987). 
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Initialization 

for each^ (1< i < I) 
ßil <-1 
ßi2<~ 1 

draw cqi randomly from [0,1] 
CC*i] <— Ctj] 

endfor 
FT*] <- SchedulingAlgorithm(/, äj) 
0«- 1 

Execution 

for each (1< i < I) 
draw ctj2r randomly from [0,1] 
calculate according to (19) 

endfor 
FTj t— SchedulingAlgorithm(/, ÖL 2) 
if (FTj < FT*) 

FT* <— FTj 
ä*<- ä 
0 <— 0+1 

endif 
for z <r- 3 to Z 

for each (1< i < I) 
calculate ßjz according to (20) 
draw ajzr randomly from [0,1] 
calculate alz according to (19) 

endfor 
FTj f- SchedulingAlgorithm(/, ä z) 
if (FTj < FT*) 

FT* <— FTj 
ä*<- ä 
0 <— 0+1 

endif 
endfor 

Result 

For each priority rule i (1 < i < I), a*j denotes that control parameter value which produced the best Solu­
tion; FT* denotes the corresponding objective function value. • 

Table 5: Randomized Cooling-Based Control Scheme 

We illustrate the procedure for I = 2 priority rules in Figure 1, after 5, 10, and 20 iterations. 

Each symbol represents an evaluated a-vector and thus a Solution for the instance at hand; 

the symbol marks the respective best vector in whose vicinity the search for good vectors 

(and solutions) is intensified. 

^ We use the construct "for each ..." whenever the order in which the respective variable is instantiated is ir­
relevant for the algorithmic outcome, and the construct "for ... to ..." otherwise. 
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Figure 1: Exemplary Application ofRandomized Cooling-Based Control Scheme 

4.2.3. Local Search-Based Control 

The second approach we propose is a local search control scheme (LSCS), which systemati-

cally applies and appraises different control parameter values (Haase 1996; Haase et al. 1998) 

in order to identify promising ones, hopefully guiding the computational effort to promising 

regions of the parameter and thus the Solution space. Following the Classification of local 

search procedures used in Leon, Ramamoorthy (1997), the scheme can be characterized as a 

steepest-descent search method. Recall from above that each parameter vector ä encodes one 

particular Solution. In each iteration, the neighborhood comprises a fixed number of such 

vectors. From each of these one Solution is constructed, which is evaluated in terms of its ob-

jective function value. If the best so-found Solution is better than the incumbent best one, the 

search process is intensified in the surrounding region by focussing on the neighborhood of 

the corresponding vector; otherwise, the procedure terminales. 

The method spans an I-dimensional grid over the control parameter Space by defining a set of 

equidistant points. In each iteration the grid, which initially embraces the entire space [0,1 ]I, is 

refined to ever smaller subspaces. The number of gridpoints, which remains constant, is deter-

mined by an integral control parameter, the grid granularity G, in the following way. Let for 

each iteration3 denote Loq and Uoq the lower and Upper bound of the parameter subspace of 

rule i. Then for each iteration the so-called grid width A[ of rule i is defined as 

Aj <- (Uoq - Loq) / a (1 < i < I) (21) 

The initial iteration of the procedure starts off with oq = 0, Lcq = 0, and Uoq = 1 for each rule i 

and determines a Solution. It then increments a\ by its grid width A\ and constructs another 

Solution, and so forth, until eventually a\ = Uaj. Then oq is reset to Loq, and (*2 is incre-

3 As the iteration index is not necessary in this section, we shall suppress it for brevity of presentation. 
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mented by A2- When also (%2 has reached its upper bound, it is reset to its lower bound while 

0C3 is incremented by A3 and so forth, until eventually all oq equal their upper bound. Thus, 

the number of gridpoints considered per iteration is (a+1)1. For each gridpoint, which corre-

sponds to one parameter vector, one Solution is constructed. If the iteration fails to improve 

the incumbent best Solution, the algorithm halts (in order to restrict computation times, the al­

gorithm could also be stopped after some time limit; however, this approach is not pursued 

here since computation times have been found to be modest for the test instances attempted). 

Otherwise, let denote a*j that weight of rule i which produced the best Solution in that itera­

tion; ties are broken by taking the first such weight. Now, new bounds are calculated from 

Loq <— max{0, a*i - Aj -(a-1) / a} (1 < i < I) (22) 

Uai^min{l,a*i + Aj-(a-l)/a} (1 <i<I) (23) 

the grid widths Aj of all rules are updated according to (21), and the next iteration starts. 

An algorithmic description of the scheme is given in Table 6. We illustrate the procedure for I 

= 2 priority rules and a grid granularity of a = 3. Figure 2 depicts the first three iterations of 

the scheme. Each evaluated parameter value vector is represented by an intersection point, so 

the shaded area shows the parameter subspace spanned by the grid searched in one iteration. 

Again, the symbol marks the best control parameter vector of each iteration, in whose 

vicinity the search for good vectors (and solutions) is intensified. 
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Initialization 

for each (1 < i < I) 
Lctj <- 0 
Uotj 4- 1 

endfor 
FT* oo 

Execution 

repeat 
no_better_solution_found <— TRUE 
for each (1 < i < I) 

otj<-Lctj 
calculate Aj according to (21) 

endfor 
for z <— 1 to (a + 1)1 

FTj SchedulingAlgorithm(I, a ) 
if (FTj < FT*) 

FT* <— FTj 
a 

no_better_solution_found <— FALSE 
endif 
call UpdateAlpha 

endfor 
for each (1 < i < I) 

calculate La; according to (22) 
calculate Uotj according to (23) 

endfor 
until no_better_solution_found 

Subroutine UpdateAlpha 

i <— I 
while aj = Uaj A i > 1 

aj^-Lctj 
i<-i- 1 

endwhile 
+ Aj 

Result 

For each priority rule i (1 < i < I), a*j denotes that control parameter value which produced the best Solu­
tion; FT* denotes the corresponding objective function value. • 

Table 6: Local Search-Based Control Scheme 
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5. Experimental Analysis 

5.1. Experimental Setting 

5. LL Test Instances and Reference Solutions 

As a test bed, we used the KSD-instance set J30 generated with ProGen (Kolisch, Sprecher 

1997). Each instance comprises four renewable resources and 30 non-dummy activities, hav-

ing a nonpreemptable duration of between one and ten periods and between one and three 

successors and predecessors each. Systematically varied design parameters for these instances 

are the network complexity (NC), the resource factor (RF), and the resource strength (RS). NC 

is defined as the average number of non-redundant arcs per activity, RF determines the num­

ber of resources that are requested by each activity, and RS expresses resource scarcity meas-

ured between minimum and maximum demand. A more comprehensive characterization is 

given in Kolisch et al. (1995). The respective parameter levels used are NC e {1.5, 1.8,2.1}, 

RF e {0.25, 0.5, 0.75, 1.0}, and RS e {0.2, 0.5, 0.7, 1.0}. For each instance Cluster defined 

by a combination of these parameters, J30 contains ten instances, for a total of 480 instances. 

Note that those 120 instances where RS = 1.0 are trivially solvable by the earliest start time 

schedule. The optimal reference solutions were computed with the exact algorithm of De-

meulemeester, Herroelen (1992, 1997). 

5.7.2. Priority Rule Sets and Scheduling Algorithm 

Particular care has to be taken in defining the rule sets to be used. In order to assess the con­

trol schemes' ability to cope with sets of mostly good or bad rules as well as with large and 

small sets, we defined several such rule sets. Our Classification of rules as good or bad draws 

on several studies (Boctor 1990; Valls et al. 1992; Kolisch 1996b; Schirmer 1997; Schirmer, 

Riesenberg 1997), measuring effectiveness in terms of average deviation from optimum when 

applying them deterministically under the SSS; exemplary results taken from Schirmer, Rie­

senberg (1997) are shown in Table 7. 

Good Rules Bad Rules 
SLK LST LFT MTS SPT DRD TRD TRS 

5.58% 6.56% 7.44% 8.74% 22.80% 23.13% 23.38% 24.01% 

Table 7: Effectiveness and Classification of Priority Rules 

Using this Classification, we defined seven rule sets which are blended as shown in Table 8. 
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Rule Sets I Characterization Priority Rules 
1 8 4 good, 4 bad rules SLK, LST, LFT, MTS, SPT, DRD, TRD, TRS 
2 6 3 good, 3 bad rules SLK, LST, LFT, DRD, TRD, TRS 
3 4 2 good, 2 bad rules SLK, LST, TRD, TRS 
4 2 1 good, 1 bad rules SLK, TRS 
5 4 3 good, 1 bad rules SLK, LST, LFT, TRS 
6 4 1 good, 3 bad rules SLK, DRD, TRD, TRS 
7 4 4 good rules SLK, LST, LFT, MTS 
8 3 3 good rules SLK, LST, LFT 
9 2 2 good rules SLK, LST 
10 4 4 bad rules SPT, DRD, TRD, TRS 
11 3 3 bad rules DRD, TRD, TRS 
12 2 2 bad rules TRD, TRS 

Table 8: Priority Rule Sets 

Among other Factors, in the remainder of this work we will analyze the effect of two factors, 

viz. the number of priority rules I and the proportion of good to bad rules, expressed in terms 

of the percentage 0 of good rules. We will refer to these factors as rule set cardinality and 

composition. Note that we can vary the first factor, while holding the second one constant, by 

regarding rule sets 7, 8, 9 for the case of 0 = 100%, 1, 2, 3, and 4 for 0 = 50%, and 10, 11, 12 

for 0 = 0%. Vice versa, to vary the second factor, while keeping the first one fixed, we merely 

need to consider rule sets 7, 5, 3, 6,10 for the case of 1 = 4 and rule sets 9,4, 12 for the case of 
1 = 2. 

As instantiation of SchedulingAlgorithm(/, äz), we always use the serial scheduling scheme 

as has been covered earlier. 

5.1.3. Performance Measures 

Specifying a set of values for each factor within an experiment describes over which levels it 

is varied during an experiment, so one value for each factor determines a run of an experi­

ment. We regard, for each instance and algorithm, the outcome of each run in terms of both 

effectiveness and efficiency. Effectiveness is determined for the best schedule found in a run, 

measuring its deviation from the Optimum as a percentage. Efficiency usually captures the 

CPU-time required for the run, measured in terms of seconds; where appropriate, we also re-

port the number of schedules generated. Measurements were taken using an Implementation in 

Pascal, running on a Pentium 266 personal Computer with 32 MB RAM under Windows 95. 
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5.2. Randomized Cooling-Based Control 

5.2.1. Experimental Design 

The factors examined here are control parameter 7, rule set cardinality I, rule set composition 

0, and number of iterations Z. 

5.2.2. Effect of Gamma 

In order to evaluate the effect of the control parameter 7 on effectiveness, we conducted an ex-

periment in which each rule set was applied with different levels of 7, with the sample size Z 

fixed to 100 iterations. Results are shown in Table 9 where the best value of 7 for each rule set 

is underlined. 

Rule Set I 0 Gamma 
0.25 0.5 0.75 1 2 

1 8 50% 3.62% 3.83% 5.19% 6.11% 8.26% 
2 6 50% 5.26% 5.04% 6.78% 10.34% 14.26% 
3 4 50% 5.74% 5.68% 6.90% 8.71% 12.45% 
4 2 50% 6.88% 7.00% 7.03% 8.35% 10.32% 
5 4 75% 4.35% 3.90% 3.89% 4.59% 6.71% 
6 4 25% 6.87% 7.52% 10.14% 13.81% 16.87% 
7 4 100% 3.91% 4.78% 5.23% 5.75% 6.04% 
8 3 100% 2.91% 2.87% 2.84% 2.96% 3.32% 
9 2 100% 3.39% 3.26% 3.47% 3.54% 3.82% 
10 4 0% 7.48% 8.77% 13.66 % 18.06% 20.68% 
11 3 0% 8.86% 10.62% 18.08% 21.90% 22.28% 
12 2 0% 10.85% 12.02% 17.45% 23.02% 23.26% 

Table 9: Effect of Gamma - Deviations (RCCS) 

The only recommendation to be derived is that for bad rule sets 7 should be set to a small 

value, such as 0.25 (see the results for rule sets 10 through 12 with 0 = 0%, and rule set 6 

with 0 = 25%). Recalling that smaller values of 7 imply a slower convergence to a steady 

State, the Interpretation of this finding is obvious: the smaller the proportion of good rules, the 

more important a slower convergence, as too fast a convergence tends to trap the search proc-

ess in bad local optima early. Vice versa, one is lead to conjecture that large values of 0 favor 

1 arger settings of 7. While this conjecture is mostly corroborated, the results of rule set 7 are 

not exactly in line with this; we tend to attribute this aberration to the fact that here the effect 

of 7 is the smallest over all sets, and to the high variability of random sampling in general. The 

cardinality of the rule sets employed does not show any effect of the best choice of 7. 
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Further, we have analyzed the interaction between 7 and the sample size Z. Clearly, we would 

like the RCCS to keep the middle ground between two extremes, viz. getting trapped too early 

in local optima on one hand, and spending too many iterations on a purely random search on 

the other. It therefore seems reasonable that for small iteration numbers smaller values of 7 

should be preferable: as these imply a more random search, they would allow to sample a 1 ar­

ger part of the Solution space, instead of concentrating the search in the vicinity of local op­

tima. In Table 10, we detail the results accordingly, underlined entries reflect the best 7-value 

per rule set and iteration number. For brevity, we restrict the presentation to 7 e {0.25, 0.5, 

0.75}, as the picture would not change if we included the other values. 

Rule Gamma Sample Size Rule Gamma Sample Size 
Set 40 70 100 Set 40 70 100 
1 0.25 4.30% 3.82% 3.62% 7 0.25 4.58% 4.14% 3.91% 

0.5 4.63% 4.07% 3.83% 0.5 5.18% 4.94% 4.78% 
0.75 6.05% 5.53% 5.19% 0.75 5.69% 5.42% 5.23% 

2 0.25 6.57% 5.61% 5.26% 8 0.25 3.40% 3.08% 2.91% 
0.5 6.80% 5.53% 5.04% 0.5 3.40% 3.03% 2.87% 
0.75 8.82% 7.39% 6.78% 0.75 3.38% 3.03% 2.84% 

3 0.25 7.53% 6.34% 5.74% 9 0.25 3.87% 3.54% 3.39% 
0.5 7.48% 6.24% 5.68% 0.5 3.92% 3.46% 3.26% 
0.75 8.99% 7.77% 6.90% 0.75 3.92% 3.68% 3.47% 

4 0.25 8.22% 7.36% 6.88% 10 0.25 9.42% 8.09% 7.48% 
0.5 8.47% 7.38% 7.00% 0.5 11.53% 9.67% 8.77% 
0.75 8.58% 7.49% 7.03% 0.75 16.51% 14.56% 13.66% 

5 0.25 5.40% 4.76% 4.35% 11 0.25 10.77% 9.26% 8.86% 
0.5 5.29% 4.30% 3.90% 0.5 14.25% 11.81% 10.62% 
0.75 5.04% 4.26% 3.89% 0.75 20.08% 18.71% 18.08% 

6 0.25 8.41% 7.38% 6.87% 12 0.25 13.31% 11.90% 10.85% 
0.5 9.62% 8.06% 7.52% 0.5 15.60% 12.88% 12.02% 
0.75 13.12% 10.97% 10.14% 0.75 20.08% 18.32% 17.45% 

Table 10: Effect of Gamma and Sample Size - Deviations (RCCS) 

Yet, for most rule sets the above results reveal no effect of the sample size on the best choice 

of 7. While we still believe the effect to exist, it can at best be a marginal one because for most 

rule sets the best values of 7 observed are from [0.25, 0.5], an interval of which we only 

measure the extremes (Table 9); thus more fine-grained experimentation, using more levels of 

7, would be necessary to detect it. Still, due to the small effect of 7 on algorithmic effective­

ness, we deemed additional experimentation not to be worthwhile. 

Finally, notice that good rule sets are relatively immune against adverse effects from selecting 

unsuited 7-values: if most rules are good, then their compositions are likely to be good as well; 

conversely, the greater the proportion of bad rules in a set, the greater its susceptability to un­

suited 7-values. Therefore, if one is looking for a general recommendation for 7, a setting of 7 
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= 0.25 should be used for good and bad rule sets alike. In the sequel, we will thus concentrate 

on the results from employing this setting. 

5.2.3. Effect ofRule Set Cardinality and Composition 

To demonstrate the effect that the number of rules in a set exerts on the effectiveness, we pre-

sent the average deviations of the respective rule sets in Table 11. The results were obtained 

from setting 7 = 0.25 and Z = 100. Note that for the sake of compactness also the results of the 

other algorithms are included, which we will explain and discuss later. 

Rule Set I 0 RCCS LSCS RLSCS 
7 4 100% 3.91% 5.23% 2.95% 
8 3 100% 2.91% 2.35% 1.99% 
9 2 100% 3.39% 2.91% 2.32% 
1 8 50% 3.62% 4.25% 2.74% 
2 6 50% 5.26% 3.86% 2.75% 
3 4 50% 5.74% 3.40% 2.55% 
4 2 50% 6.88% 6.33% 3.39% 
10 4 0% 7.48% 9.53% 3.53% 
11 3 0% 8.86% 10.99% 3.64% 
12 2 0% 10.85% 11.23% 3.68% 

Table 11: Effect of Rule Set Cardinality 

For most rule sets it turns out that increasing (decreasing) the number of rules while keeping 

the proportion of good to bad rules fixed produces better (worse) results since the pool is 

1 arger from which an appropriate rule can be selected for each instance. The only exception to 

this finding is set 7, presumably due to the same reasons outlined earlier. 

Similar to the above, we arrange in Table 12 the results pertaining to the influence of the rule 

set composition, given a fixed set cardinality. Again, we used settings of 7 = 0.25 and Z = 100. 

Unsurprisingly, we find that increasing (decreasing) the proportion of good rules in a constant 

number of rules produces better (worse) results since the number of good rules is larger from 

which an appropriate rule can be selected for each instance. 
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Rule Set I 0 RCCS LSCS RLSCS 

7 4 100% 3.91% 5.23% 2.95% 
5 4 75% 4.35% 2.68% 2.11% 
3 4 50% 5.74% 3.40% 2.55% 
6 4 25% 6.87% 6.50% 3.39% 
10 4 0% 7.48% 9.53% 3.53% 
9 2 100% 3.39% 2.91% 2.32% 
4 2 50% 6.88% 6.33% 3.39% 
12 2 0% 10.85% 11.23% 3.68% 

Table 12: Effect ofRule Set Composition - Deviations 

5.2.4. Effect ofBeta 

Another question engaging us was whether the idea of adapting the ßjz according to the num­

ber of iterations that improved the incumbent best Solution is actually beneficial. We thus per-

formed an experiment in which the value of ßjz was fixed to 0.5 for all iterations. The results 

are summarized in Table 13 Juxtaposing them with those from varying ßjz with 7 = 0.25. 

Rule Set Adapting Fixed 
Beta Beta 

1 3.62% 9.02% 
2 5.26% 15.47% 
3 5.74% 13.76% 
4 6.88% 11.48% 
5 4.35% 7.67% 
6 6.87% 17.51% 
7 3.91% 6.21% 
8 2.91% 3.74% 
9 3.39% 4.12% 
10 7.48% 21.79% 
11 8.86% 22.75% 
12 10.85% 23.27% 

Table 13: Effect of Adapting vj. Fixed Beta - Deviations (RCCS) 

Fixing the ßjz makes RCCS markedly less effective. Although the results shown above were 

derived with a setting of 7 = 0.5, this was found to hold true for any choice of 7 tested. Devia­

tions for the fixed variant generally tumed out to be between one-and-a-half and two-and-a-

half times 1 arger than those observed for the adaptive one. Notice that the differences are 

1 arger for worse rule sets; in other words, the better the rule sets, the less harm can be done by 

unsuited values of ßjz. Without providing the numerical results, let us also mention that in-

creasing the iterations from 10 to 100 cuts deviations to about half when adapting the ßjz, yet 

this ten-fold increase in sample size barely improves effectiveness when ßjz is kept fixed. 
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5.2.5. Efficiency 

Computation times required by the RCCS approach in our experimentation are shown in 

Table 14; again the results from Z = 100 and 7 = 0.25 are detailed over the different rule sets. 

Rule Set 1 2 3 4 5 6 
Avg CPU 4.74 2.98 1.75 0.93 1.92 2.04 
Rule Set 7 8 9 10 11 12 
Avg CPU 2.75 1.71 1.12 1.99 1.63 0.88 

Table 14: Effect ofRule Sets and Gamma - CPU Times (RCCS) 

5.3. Local Search-Based Control 

5.3.1. Experimental Design 

The factors examined here are control parameter a, rule set cardinality I, and rule set composi­

tion 0. 

In order to demonstrate the influence of I and a on the number of gridpoints, Table 15 sum-

marizes some exemplary numbers. Due to the prohibitive effort required to cover large grid-

point numbers, the experiments were restricted to combinations of I and a lying in the non-

shaded parts of Table 15. Indeed, if not specified otherwise, G is set - for each rule set cardi­

nality I - to the maximum value lying in the non-shaded area. 

<7 I Sol/Iter I Sol/Iter I Sol/Iter I Sol/Iter I Sol/Iter 
1 2 4 3 8 4 16 6 64 00

 

g
 

2 2 9 3 27 4 81 6 72«) III 6*561 
3 2 16 3 64 4 256 III 4.0% III 65,536 
4 2 25 3 125 III 625 III 15.625 III 390,625 
5 2 36 3 216 Iii 136 6 46,656 III 1,679,616 
6 2 49 Iii: 343 III 2,401 6 117,649 III 5,764,801 
7 2 64 Iii 512 1111 4.(190 6 262,144 8 16,777,216 
8 2 81 J 729 4 ft.563 A 531,441 8 43,046,721 
9 2 100 3 1,000 4 m.ooo 6 I.fHKJ.OOO 8 100,000,000 
10 2 121 3 l.tf 1 4 14,641 6 1.771,561 e 214,358,881 

Table 15: Exemplary Numbers of Gridpoints 
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5.3.2. Effect ofSigma 

From the design of the LSCS it is clear that increasing G will tend to increase effectiveness 

but also CPU times entailed. The marginal benefit from increasing G, i.e. the ratio of CPU 

times to deviations, of course decreases at an exponential rate. To verify this, we employed 

the rule sets 7-12 with all G-values up to the maximum one used. The effect of G on effec­

tiveness is illustrated in Table 16, the effect on efficiency in Table 17. The results are repre-

sentative for those obtained from varying G on other rule sets. We might add that also the de­

viations for the rule sets 11 and 12 vary with varying G, but as they decrease only in the third 

decimal the effect remains invisible in Table 16. 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 5.47% 5.24% 5.23% 
8 4.11% 2.89% 2.64% 2.43% 2.35% 
9 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 2.91% 
10 9.95% 9.71% 9.53% 
11 10.99% 10.99% 10.99% 10.99% 10.99% 
12 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 11.23% 

Table 16: Effect ofSigma - Deviations (deterministic LSCS) 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 0.35 1.92 6.22 
8 0.11 0.39 0.92 1.68 2.80 
9 0.04 0.09 0.16 0.24 0.36 0.48 0.63 0.80 0.99 1.10 
10 0.37 1.74 5.51 
11 0.16 0.49 1.16 2.26 3.94 
12 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.80 0.99 1.20 

Table 17: Effect ofSigma - CPU Times (deterministic LSCS) 

5.3.3. Effect ofRule Set Cardinality and Composition 

For the corresponding results refer to Tables 11 and 12. In contrast to the findings for the 

RCCS, for the deterministic LSCS the relationship between rule set cardinality and effective­

ness is not simply a linear one; rather the best results are obtained when two (rule sets 9, 3) or 

three (rule sets 8, 2) good rules are part of the rule set. W.r.t. the composition of the rule sets, 

including good rules in a rule set is clearly important, as the presence of bad rules only cannot 

be compensated by the LSCS. Yet we find that even rule sets with 0 = 100% are not guaran-

teed to be the most effective ones, as again those rule sets which contain two or three good 

rules have the highest effectivity. 
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5.3.4. Efficiency 

The computation times observed for the LSCS approach are reported in Table 18, for each 

rule set the maximum value of a as defined in Table 15 was used. 

Rule Set 1 2 3 4 5 6 
Avg CPU 11.28 1.63 5.36 1.13 5.87 5.41 
Rule Set 7 8 9 10 11 12 
Avg CPU 6.26 3.62 1.62 9.36 5.11 2.03 

Table 18: Effect ofRule Sets - CPU Times (deterministic LSCS) 

Note that due to the use of a dynamic termination criterion for the LSCS approach, instead of 

just setting a fixed sample size, the number of iterations performed by the LSCS algorithm 

may vary substantially for different instances. Also, the number of gridpoints actually visited, 

and thus the number of schedules generated per iteration of the LSCS, may be smaller than 

(a+l)I due to the inclusion of bounding rules in the scheduling algorithm. We therefore give 

the average numbers of generated schedules per rule set in Table 19. 

Rule Set 1 2 3 4 5 6 
Avg Schedules 321 74 334 179 307 382 
Rule Set 7 8 9 10 11 12 
Avg Schedules 344 231 136 413 359 202 

Table 19: Effect of Rule Sets - Generated Schedules (deterministic LSCS) 

5.4. Randomized Local Search-Based Control 

5.4.1. Experimental Design 

It is well-known that the effectiveness of construction methods can be increased when a good 

randomization scheme is added to tum them into sampling methods. This strategy has been 

very successful for simple priority rule-based methods for the RCPSP, improving e.g. the 

effectiveness of the rule LST from 6.56% when applied deterministically to 1.89% when 

applied in a randomized manner (Schirmer 1997). In this section, we follow up on the ques-

tion whether the same improvements can also be reaped for adaptive control schemes. Let us 

mention here that we deliberately decided to add a second, randomized stage to the LSCS 

only, as the RCCS was found to hold less promise for improvement; we refer to the two-stage 

LSCS as RLSCS. The factors examined in the following are control parameter a, rule set 

cardinality I, and rule set composition 0. 
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5.4.2. Effect ofSigma 

In Tables 20 and Table 21 we summarize the results for rule sets 7-12, using all applicable c-

values. For the randomized, second stage control parameters were set as a = 1 and 8 = 10. The 

CPU times reported are the totals ofboth stages, using a sample size of 100 iterations. 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 3.12% 2.96% 2.95% 
8 2.81% 2.22% 2.11% 2.02% 1.94% 
9 3.61% 3.61% 3.61% 3.60% 3.60% 3.61% 3.62% 3.62% 3.67% 2.32% 
10 3.65% 3.66% 3.53% 
11 3.60% 3.62% 3.62% 3.64% 3.64% 
12 3.61% 3.61% 3.61% 3.60% 3.60% 3.61% 3.62% 3.62% 3.67% 3.68% 

Table 20: Effect of Sigma - Deviations (randomized LSCS) 

Rule Set Sigma 
1 2 3 4 5 6 7 8 9 10 

7 1.36 2.94 7.25 
8 1.02 1.33 1.87 2.64 3.77 
9 0.68 0.73 0.80 0.88 0.99 1.12 1.27 1.44 1.63 1.83 
10 1.75 3.12 6.90 
11 1.32 1.65 2.32 3.42 5.39 
12 0.68 0.73 0.80 0.89 1.00 1.12 1.27 1.44 1.63 1.84 

Table 21: Effect ofSigma - CPU Times (randomized LSCS) 

Unsurprisingly, the effect is similar to the one observed for the deterministic LSCS, although 

less pronounced as the beneficial effect of the randomization stage decreases the numbers of 

instances remaining unsolved as well as the average deviations. 

5.4.3. Effect of Rule Set Cardinality and Composition 

For exploring the effect of the control parameters a and 8, we first of all ran nine experiments 

where ae {10,100, 1000} and 8 e {10, 100, 1000}, values which are in line with similar ex­

perimentation in the context of sampling methods using simple priority rules (Schirmer 1997). 

It turned out, however, that here the influence of a and 8 is negligible: the Standard deviation 

of the average deviations, computed over all nine combinations of a and 8, is never 1 arger 

than 0.15%, and for 11 of the 12 rule sets ranges between 0.02 and 0.04%. We thus confine 

ourseives in the sequel to the results from using a = 1 and 8 = 10. 

For the results refer again to Tables 11 and 12. Evidently, the effectiveness of all rule sets is 

improved by adding randomization as a second stage. As already good rule sets can be said to 
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start into the second stage with an advantage, their improvements are less dramatical than 

those of the bad rule sets. Still, the ranking of the rule sets remains virtually unchanged such 

that again sets comprising two or three good rules sport the highest effectiveness. 

Another interesting question is how often the additional randomization stage actually im-

proves effectiveness. Table 22 shows, again for a = 1 and 6 = 10, the number of instances for 

which randomization produced a better Solution than the one deterministically found. The re­

sults are representative for other settings of a and 8. 

Rule Set 1 2 3 4 5 6 
Instances 108 97 80 178 60 170 
Rule Set 7 8 9 10 11 12 
Instances 136 41 59 ' 257 277 277 

Table 22: Effect of Randomization - Improved Instances 

5.4.4. Efficiency 

The computation times measured for the randomized LSCS approach are given in Table 23. 

Rule Set 
Avg CPU 

1 
13.58 

2 
3.63 

3 
7.07 

4 
2.00 

5 
7.78 

6 
7.03 

Rule Set 
Avg CPU 

7 
7.46 

8 
5.08 

9 
3.01 

10 
12.06 

11 
6.83 

12 
3.39 

Table 23: Effect ofRule Sets - CPU Times (randomized LSCS) 

5.5. Comparison with Other Algorithms 

In order to assess the merits of the algorithmic approaches dicussed in this paper, we compare 

them to the most effective sampling-based construction methods currently available for the 

RCPSP (Kolisch, Drexl 1996; Schirmer, Riesenberg 1997; Schirmer 1998a). The results for 

the adaptive search procedure of Kolisch, Drexl (1996), which were not reported for all 360 

instances in the original paper, were derived from reimplementing the procedure. For compa­

rison, we also include a number of simple priority rule-based construction algorithms. Let us 

mention that we deliberately exclude more evolved metaheuristic algorithms, using concepts 

such as tabu search or population genetics, from the comparison, for two reasons. One, such 

methods are more complicated by design and thus less efficient than the algorithms consid-

ered here. Two, the benefits of tabu search or genetic algorithms usually come to fully bear 

only when 1 arger samples of solutions are drawn; recent studies thus examine samples of be-
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tween 1000 and 5000 schedules (cf. Kolisch, Hartmann 1998; Hartmann, Kolisch 1998). Yet, 

as we look for fast methods we intend to use much smaller samples. Also, exclusion of such 

metaheuristics is not too severe a restriction, since the best construction method listed below 

outperforms several recent metaheuristic search algorithms even for large sample sizes 

(Schirmer 1998a). For the sake of simplicity, we restrict the presentation of results for the 

adaptive control algorithms to rule set 8. As the first stage of the LSCS-algorithms usually 

performs between 100 and 500 iterations (cf. Table 19), we provide the results from both 

these sizes in Table 24. 

Algorithm Reference Sample Size 
100 500 

Case-based reasoning Schirmer (1998a) 1.53% 1.04% 
Adaptive search Kolisch, Drexl (1996) 1.85% 1.20% 
RLSCS, rule set 8 — 1.94% 
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) 1.95% 1.31% 
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) 1.99% 1.33% 
LSCS, rule set 8 — 2.35% 
PSS, RBRS, WCS Kolisch (1996a) 2.36% 2.08% 
PSS, RBRS, LFT Kolisch (1996b) 2.40% 2.09% 
RCCS, rule set 8 — 2.91% 2.76% 

Table 24: Comparison of Several Construction Methods - Deviations 

We find the RCCS approach to be the least effective of all algorithms considered, even with 

the best rule set found in our experimentation. The LSCS is much more effective, especially 

when augmented by a randomization stage; its Performance is comparable to that of other 

construction methods, which however will tend to require less iterations to attain the same 

Performance. State-of-the-art sampling-based methods still outperform the algorithms consid­

ered here. 

6. Summary and Conclusions 

Similar to other computationally intractable problems, findings suggest that there is no Single 

heuristic which performs best on all possible instances of the RCPSP. Therefore, adaptive con­

trol schemes aim at identifying good algorithms from an unsorted collection of good and bad 

algorithms, using specific knowledge on the particular instance at hand which is acquired 

dynamically as the schemes proceed. Such schemes may be seen as lending a learning capa­

bility to parameterized algorithms; the promise associated with them is that heuristics tailored 

to each instance anew will prove effective even without the extensive experimentation 

required by more conventional approaches of identifying heuristics which perform well over a 

wide ränge of instances. We thus aim at closing the Performance gap between construction 
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and search methods - measured i.t.o. both effectiveness and efficiency - by developing algo­

rithms which use some not too complicated search-based mechanism to select well-suited 

construction methods for each instance tackled. As an outcome, we hope for methods which 

are slightly less efficient than pure construction algorithms but more so than search ones, 

while at the same time being more effective than pure construction and not too much less so 

than evolved metaheuristics. 

We have scrutinized two adaptive control schemes recently proposed in the literature. Apply-

ing these approaches to the RCPSP, we find the RCCS to be too simple to be of much value, 

even when fumished with the best rule set found in our experimentation. The RLSCS, i.e. the 

LSCS combined with a random sampling scheme, achieves an effectiveness comparable to 

that of other good construction methods; it is hampered by a lower efficiency, though, as it 

clearly requires more than 100 iterations with most rule sets to achieve this effectiveness (cf. 

Table 19). 

Even if the RLSCS is not as effective as the most recent construction heuristics for the RCPSP, 

adaptive control schemes should not be disregarded prematurely, on the basis of effectiveness 

alone. Such a focus often turns the process of improving algorithms into a competitive race 

which concentrates on 'beating' other algorithms, rather than on insight why some algorithms 

perform better than others (Hooker 1995). In particular evaluating algorithms on problems 

with such a long history of more and more efficient heuristics as the RCPSP clearly puts new 

algorithms at a disadvantage if the outcome is considered in terms of effectiveness alone. 

Indeed, we believe the concept of algorithms utilizing adaptive control schemes to have merit 

for several reasons. First, by design they are robust to changes in the characteristics of in­

stances attempted, thus obviating previous knowledge on their effects otherwise required to 

devise good algorithms. Second, especially the RLSCS is relatively immune against the 

adverse effects of bad rule sets, thus diminishing the importance of knowledge on what consti-

tutes good rules. This is evidenced by the rather good Performance of the RLSCS even with 

bad rule sets 10 - 12 when compared to that of simple bad rules (cf. Tables 11 and 7). Third, 

they are simple and easy to implement. 

While researchers eventually look for algorithms which are both robust and effective, robust-

ness is often more desirable when having to solve newly arising problems where not much is 

known on which algorithms are suitable for which instance classes. Only later, after some 

substantial amount of experimental research has taken place, the search for better algorithms 

shifts towards a quest for more effectiveness. As adaptive control schemes do not presuppose 

any previous expertise, we therefore advocate using them to obtain good solutions for 

instances of previously untackled problems where experimental expertise, which would allow 

to obtain better solutions, is not yet available. 
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Future work, in order to further unlock the potential of adaptivity in control schemes, should 

be directed at refining the RLSCS. In each iteration of the LSCS, the search is intensified 

around the best-performing point in the parameter space; if several such points exist, the tie is 

broken by using the one found first. A canonical extension of this idea would be to störe sev­

eral or all tied candidates in a list and to intensify the search around all of these in a breadth-

first fashion, continuing with the best candidate then. Also, for certain problems, the assump-

tion that the best rules under a deterministic regime perform best also as sampling algorithms 

may not be justified. In that case, a better idea might be to replace the deterministic call of 

ScheduIingAlgorithm(7, (xz) by a number of randomized iterations, where the best makespan 

found is retumed. While these refinements still keep the algorithm within the realm of local 

search-based control schemes, the basic idea of adaptivity easily allows for more evolved 

control schemes employing other metaheuristic approaches, as well. Exploring such options 

will certainly prove worthwhile. 
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