~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Drexl|, Andreas; Kimms, Alf

Working Paper — Digitized Version
Optimization guided lower and upper bounds for the
resource investment problem

Manuskripte aus den Instituten flr Betriebswirtschaftslehre der Universitat Kiel, No. 481

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl|, Andreas; Kimms, Alf (1998) : Optimization guided lower and upper bounds
for the resource investment problem, Manuskripte aus den Instituten fiir Betriebswirtschaftslehre
der Universitat Kiel, No. 481, Universitat Kiel, Institut fir Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147584

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147584
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte
aus den
Instituten fUr Betriebswirtschaftslehre
der Universitat Kiel

No. 481

Optimization Guided
Lower and Upper Bounds for
the Resource Investment Problem

A. Drexl and A. Kimms

Manuskripte
aus den
Instituten fiir Betriebswirtschaftslehre
der Universitat Kiel

No. 481

Optimization Guided
Lower and Upper Bounds for
the Resource Investment Problem

A. Drex] and A. Kimms

September 1998

Andreas Drex] and Alf Kimms ..
Lehrstuhl fiir Produktion und Logistik, Institut fiir Betriebswirtschaftslehre, Christian—

Albrechts—Universitit zn Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Drexl@bwl.uni-kiel.de

Kimms@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp: / /ftp.wiso.uni-kiel.de/pub / operations-research

Abstract

The resource investment problem deals with the issue of providing resources
to a project such that a given deadline can be met. The objective is to make the
resources available in the cheapest possible way. For each resource, expenses depend
on the maximum amount required during the course of the project. In this paper we
develop two lower bounds for this A"P-hard problem using Lagrangean relaxation
and column generation techniques, respectively. Both procedures are capable of
yielding feasible solutions as well. Hence, we also have two optimization guided
heuristics. A computational study consisting of a set of 3210 instances compares
both approaches and allows insight into the performance. E.g., for the instances
from Mohring’s test set it turns out that in 56% of the cases the heuristic solution
derived on the basis of Lagrangean relaxation is optimal. Using column generation,
the gap between the lower bound and the optimum objective function value is below
5% in 50% of the cases, it is below 10% in 71% of the cases, and it is below 20% in
all cases.

Keywords: resource investment problem, Lagrangean relaxation, column generation,
lower bounds, upper bounds

1 Introduction

Completing a project means to find a schedule for the activities, which constitute the
project, subject to some side constraints. Usually, precedence constraints have to be
taken into account. In such a setting, a common objective is to minimize the makespan of
the project, i.e. to answer the question of what is the shortest possible project duration.
If the activities compete for scarce resources, it may happen that activities may not be
processed in parallel. This resource constrained project scheduling problem is known to
be A'P-hard [2].

Being motivated by a practical case of bridge construction where time is scarce (see
[13]), M6hring [11] invented the resource investment problem. In contrast to the problem
above, we face a tight deadline for the project completion here. To be able to finish the
project in time, one must provide a sufficient amount of resources. The objective is to do
s0 in the cheapest possible way. This problem is NP-hard, too [11].

The remaining text is organized as follows: A formal statement of the resource invest-
ment problem is given in Section 2. In Section 3 lower bounds are obtained by means of
Lagrangean relaxation in combination with subgradient optimization. In Section 4 col-
umn generation techniques are developed to compute lower bounds. We will see that both
algorithms are capable of generating feasible solutions as well. A computational study in
Section 5 examines the performance of both procedures. Conclusions and some hints for
future work are given in Section 6.

2 Problem Setting

The resource investment problem is about completing a project consisting of a set of
V ={0,1,...,n,n + 1} activities such that a given deadline T € IV is met in time.
Precedence relations E C V x V among the activities have to be taken into account
where G = (V, E) forms an acyclic activity—-on—node network. Without loss of generality

1

we assume that activity 0 is the unique source and that activity n+ 1 is the unique sink,
respectively, in the network. For each activity j, a duration p; € IN, is given where once
that activity j is started, it runs p; time units without preemption. Earliest and latest
completion times EC; and LCj, respectively, of the activities can be computed easily
performing forward and backward recursions with ECo = po and LCr41 =T as starting
points. A set K of resources are necessary to fulfill the project. Each activity j requires
i € IN units of resource k € K per period in order to be processed. If activities are
processed concurrently, the per period availability R; € INy — a decision variable — must
not fall below the request for any resource k. Since providing a resource k incurs a cost
¢ € IR* per unit, the aim is to find a schedule, i.e. completion times Cj;, and resource
availabilities Ry such that the project can be completed in the cheapest possible way.
Formally, this problem can be described as follows:

min E ¢ Ry, (1)
keK

s.t.

LC;

Z Zjt = 1] ev (2)
t=EC;

LC; LC;

S tezp— Ytz >p; (i,j)e E (3)
t=EC; t=EC;

min{t+p; -1,LC;}
R.- > > TikTir >0 ke K;te{l,...,T} (4)
JEV r=max{t,EC;}

Zjt € {0, 1} jevV;te {EC]‘, ceey LCJ} (5)
Ry >0 ke K (6)

The variable z;; is one, if activity j is completed in period ¢ (zero, otherwise). It
directly corresponds to the completion times C; and allows to state the problem as a
linear mixed-binary programming model. The objective (1) is to minimize the sum of
the costs for providing the resources. (2) states that every activity must be completed
where (3) makes sure that the activities are scheduled in accordance with the precedence
constraints. (4) guarantees that the resource units provided are sufficient to implement the
schedule. Note, a non-negativity condition (6) for Ry (instead of Ry, € INp) is sufficient,
because all parameters 7, are integer—valued and, thus, (4) in combination with (1) yields
integer values for Ry, too, in every optimal solution.

Related to the resource investment problem is the resource constrained project schedul-
ing problem. A feasible solution of that type of problem can be described with (2) thru
(5) where the difference is that R, are known parameters. The objective is to complete
the project as soon as possible. Another class of problems which are somehow related are
resource levelling problems. Again, the Ry, values are parameters (oo in the unconstrained
case). The objective functions, however, depend on the resource requirements within the
periods and, for instance, measure the sum of squares of the usage amounts per resource
and per period. For a recent survey on these and other related project planning problems,
we refer to [4].

Only little research has been undertaken to tackle the presented problem. Méhring [11]
has developed an exact solution method for the resource investment problem and solved
instances with n = 16 activities and four resources. Demeulemeester [5] has presented an

2

optimal algorithm which outperforms Mohring’s procedure. Though the results on small
instances (in the sense of a small number of activities and a small number of resources)
are impressive, the shortcoming of his approach is that the first feasible solution found
is known to be the optimum solution. Hence, it cannot be truncated to a heuristic to
be applied to larger instances. Also, his approach is highly sensitive to variations in
the number of resources. The results he presents indicate that instances with up to 20
activities must not have more than six resources. Recently, Niibel [12] considered the
extension with maximal time lags between the activities and implemented a branch-and-
bound procedure to find optimum solutions. He performed a computational study using
instances with 10, 20, and 30 non—dummy activities combined with one, three, and five
resources. The performance of his procedure highly depends on these parameters. While
all instances with 10 activities can be solved optimally, there are instances in his test~bed
with 20 and 30 activities, respectively, for which no optimum solution is known yet. For
example, given five resources about 79% out of 270 instances with 20 activities and about
53% out of 270 instances with 30 activities can be solved optimally.

Lower bounds and/or heuristics have not been developed so far and are the subject
of this paper. But, before we turn to study more sophisticated procedures, we give here
simple bounds which turn out to be useful later on. First, we consider lower bounds for
the Ry, values. It is clear that the minimum level cannot fall below of what a single activity
requires. Also, it is easy to compute the overall requirement of a resource k which, when
distributed equally over the planning horizon, also defines a lower bound for the resource
units to be provided. Formally,

2 Piik
R = max MAX Tk, | (7)
is a lower bound for what must be available of resource k. This defines a lower bound for
the optimum objective function value as follows:
LBy = Z cr By, (8)
kEK
An upper bound on what should be provided can be derived from the situation in which
all activities are executed concurrently, i.e.
—Ek = Z Tik- (9)
jev
This would allow to compute an upper bound on the optimum objective function value,
but we can do better. The earliest start schedule where all activities are completed at
their earliest finish times is a feasible solution. The minimum resource units which allow
to implement the earliest start schedule define an upper bound on the optimum objective

function value: T
UBy= Y. max Y ik (10)

kEK - i€V
t<EC;<ttpj—1

3 Lagrangean Relaxation

In this section we consider model (1) thru (6) together with the two additional constraints

R, > B, ke K (11)

R, <R, | ke K (12)

where R, and Ry, respectively, are lower and upper bounds for the Ry values as defined
by (7) and (9). (11) and (12) are redundant in this model, but they are not, if we relax
(4). We will consider a Lagrangean relaxation (see, e.g., [7]) with A € IR} being the
Lagrangean multipliers associated with (4). Given a set of multipliers, the relaxed problem
reads as follows:

min{t+p; —1,LC;}

min }: Ry + Z i Akt Z Z TikTjr — Rk) (13)

keK keK i=1 jEV T=max{t,EC;}
s.t.

(2),(3),(5), (11),and (12)

Rearranging the terms in the objective (13) yields

T LG;
min Y (ck - Z)\kt) Rp+ . Y, wixj (14)
keK t=1 JEV t=EC;
where ¢
Wit = Z Z AkrTijk- (15)

keK r=t—p;+1

This problem decomposes and can be optimized by solving two subproblems indepen-
dently. The first subproblem is:

T

min Z (Ck - Z/\kt) Rk (16)
keK =1

s.t.

(11) and (12)

The second subproblem is:

LC;
minz Z W4T 5¢ (17)
JEV I=EC;
8.t.

(2), (3),and (5)

The sum of the optimum objective function values of these two subproblems gives the
optimum objective function value (13).

In turn, subprgblem one decomposes and can be solved efficiently by inspecting the
expression (¢ — tz_jl Akt) for each k € K. If this expression is negative, the optimum Ry

value is Ry. If the expression is non-negative, the optimum R;, value is R,.

Subproblem two is a problem of minimizing the total weighted completion times of
the activities subject to precedence constraints. Drexl and Kimms [6] have presented
a O(n*T'max{n,T}) polynomial time dynamic programming algorithm and, therefore,
subproblem two can also be solved efficiently. It is remarkable to note that any solution
of subproblem two represents a feasible schedule for the problem (1) thru (6). Given such

4

a schedule with completion times C;, the smallest possible Ry values which do not violate
(4) can be derived in polynomial time:

Ry = ‘?zaix D Tk (18)
<o
Hence, for each optimum solution of subproblem two, we can derive a heuristic solution
for the resource investment problem in polynomial time.

In summary, for a given set of Lagrangean multipliers Ay, the relaxed problem can be
solved in polynomial time and a suboptimal solution for the resource investment problem
can be computed in polynomial time as well.

What remains is to discuss the question of how to find appropriate values for A;;. We
make use of subgradient optimization as presented in [8]. That is to say that starting
with Az = 0 we solve the relaxed problem and update the multipliers afterwards before
starting a new iteration. Updating is done according to

(UB* — LB*) Ay

)\kt = max 0, Akt +46 T (19)
Y X AL
kEK =1
where UB* is the best known upper bound and LB* is the best known lower bound. We
update these values after each iteration. Initially, we set UB* = oo and LB* = —oo. The

parameter ¢ is assigned the value two, initially, and it is reduced to its half whenever the
lower bound cannot be improved after, say, five iterations. The values Ay; are computed
using the Ry and z;; values just determined for optimizing (16) and (17), respectively:
min{t+p; —1,LC;}
A=Y 3> TikZir — Ry (20)
JEV r=max{t,EC;}
The Lagrangean relaxation procedure runs until a certain number of iterations are
performed. We will refer to the result as LB; and U B, respectively, denoting the best
bounds found during the course of iterating.

4 Column Generation

The second lower bound that we will present is based on column generation techniques
(see, e.g., [1, 15]). We do not apply column generation to the model (1) thru (6), but to
the following model reformulation:

min z ckRk (21)
keK

s.t.
s min{t+p;—1,LC;}

Re=3% X TikSirys 20 keKit=1,....,T (22
s=1j€V r=max{t,EC;}

S

Zys =1 (23)

s=1

ys € {0,1} s=1,...,8 (24)

Ry 2 By ke K (25)

In this model, each column s which corresponds to a decision variable y, represents a
schedule. In contrast to what has been defined in former sections, z; is a 0—-1-valued
parameter now where the value one indicates that activity j is completed at time ¢ in
column s. The binary decision variable y, models the selection of a schedule. Due to
(23) exactly one schedule is selected. (22) makes sure that the resource units provided
are sufficient to implement the selected schedule. S is the total number of schedules. The
parameters Ry used in (25) are defined as given by (7) in our implementation.

Now, our aim is to solve the LP-relaxation of the model (21) thru (25), the so—called
master problem, optimally which yields a lower bound. In other words, we replace (24)
with

Yy >0 s=1,...,8 (26)

and seek for an optimum solution. Note, the constraints y, < 1 for s = 1,...,S are
redundant and can thus be omitted, because (23) in combination with (26) guarantee
that this restriction is fulfilled, too.

The problem with this model is that, if we want to consider all feasible schedules
explicitly, S, the number of columns, is extremely large. This is where the idea of column
generation comes in. The basic working principle is as follows: Starting with a small set
of columns, we try to find out if any other column can exist which, when added, may
reduce the objective function value. If such a column exists, we add it and reoptimize
with an augmented set of columns. If we figure out that no such column can exist, we
stop and the final objective function value is known to be a lower bound. Hopefully, the
number of iterations, i.e. the number of columns to be generated, is small compared to
the number of feasible schedules.

In our implementation, we start with a single column s = 1 which represents the
earliest start schedule, i.e. ;1 =1, if t = ECj, and zjy; = 0, otherwise.

Suppose now that S schedules are considered explicitly (initially, S = 1). The question
is, how can we find out that no additional schedule (column) exists which may reduce
the objective function value. To give an answer to this question, we consider the dual
of the LP-model (21)~(23), (25), and (26) with my;, u, and v, being the dual variables
associated with (22), (23), and (25), respectively:

maxp+ Y Ry (27)
keK
s.t.
T
e+ T < o ke K (28)
t=1
T min{t+p;~1,LC;}
N—'ZZZ z WktTjkiL'j.,.sSO S——-l,...,s (29)
JEV keK i=1 r=max{t,EC;}
Tkt > 0 keKit=1,...,T (30)
LER (31)
v 20 keK (32)

From duality theory we know that the optimum objective function values of the primal
(21) and .the dual (27) are equal. The question, if there is a column which, when added
to the primal, may reduce the optimum objective function value is thus equivalent of

6

asking whether or not there exists a row which, when added to the dual, may reduce the
optimum objective function value. More precisely, we seek for a row of the form (29)
which cuts off the current optimum solution, i.e. we look for a schedule S + 1 for which

T min{t+p; —-1,LC;}

TEDIDIDY > TreT ik Tir(s+1) > 0 (33)

JEV k€K t=1 r=max{t,EC;}

holds. Note, 7rz; and u (and vy) are parameters now, and Zjy(s+1) are the decision variables.
By rearranging the terms, (33) can also be written as

LC;

B> D Upiys+) (34)

JEV I=EC;

where

t
vie= Y. Y. Tk (35)
k€K T=t—p;+1
Hence, if, for a given set of weights v, the minimal total weighted completion time subject
to (2), (3), and (5) (the index S + 1 in (34) can be ignored) is greater than or equal to
U, pricing out occurs and no further columns need to be added. In other words, our
subproblem of finding a new column again reduces to be the problem of minimizing the
total weighted completion times subject to precedence constraints which can be solved in
polynomial time [6]. This is exactly the same type of problem as subproblem two of the
Lagrangean relaxation procedure which was discussed in the previous section. It should
be highlighted that generating columns this way guarantees that every schedule, together
with (18), represents a feasible solution to the model (1) thru (6). Thus, our column
generation procedures produces upper bounds for the resource investment problem as
well.
In the sequel we will refer to the lower bound computed with column generation as
LB,. The best upper bound found during the course of generating columns will be denoted
as U BQ.

5 Computational Study

To study the performance of the Lagrangean relaxation and the column generation algo-
rithms, we implemented both methods in GNU C. The computer codes were executed on
a Pentium IT machine with 266 MHz running a LINUX operating system. For solving the
master problems of the column generation procedure, we employed the callable library
CPLEX.

5.1 ProGen Instances with 30 Non—Dummy Activities

As mentioned before, only optimal solution procedures for the resource investment prob-
lem have been presented so far making use of rather small test sets. Hence, we decided
to adapt well established instances for the resource constrained project scheduling prob-
lem for our purposes. The project scheduling problem library PSPLIB [9] provides a
collection of systematically generated instances. We used the 480 instances with n = 30

7

n=30]|6=10 =11 =12 =13 =14 0=15
<20 7 58 88 115 139 153
<560 153 113 124 171 203 233
<100 214 128 145 187 228 258
< 500 424 311 210 232 266 310
Total 480 480 480 480 480 480

Table 1: Cumulative Frequency Distribution of the Number of Instances

non-dummy activities and four resources. The resource limits of these instances have
no meaning in our context, so we simply ignored them. The so-called ProGen instances
have different network complexities NC € {1.5,1.8,2.1} and different resource factors
RF € {0.25,0.5,0.75,1.0} both of which are problem parameters with a big impact on
the performance of project scheduling procedures (see [10]). The network complexity re-
flects the average number of immediate successors of an activity, and the resource factor
is a measure of the average number of resources requested per activity. For each param-
eter level combination of NC and RF, 40 instances are provided which gives the total of
3-4-40 = 480 instances. To get a resource investment problem instance, we additionally
need a time limit 7. In our studies, we computed T on the basis of the length of the
critical path in the network. Formally, we defined

T =|f-ECp1) (36)

where 8 € {1.0,1.1,1.2,1.3,1.4,1.5} was used. This gives a test bed consisting of 6-480 =
2880 instances. For each of these instances we generated real-valued objective function
coefficients ¢, randomly out of the interval [0, 10] with uniform distribution.

In a first experiment, we tested how many columns are generated by the column gener-
ation procedure upon termination. Table 1 provides the cumulative frequency distribution
of the number of instances with respect to the number of columns upon termination de-
pending on 6. One can see that § has an impact on the run~time performance of the
column generation procedure, because the number of columns upon termination is posi-
tively correlated with the run—time upon termination. It seems that a value 8 close to 1.2
causes longer run~times than other 8 values. We decided to consider only those instances
further which can be solved with column generation such that the number of columns
does not grow over 500. Thus, 1753 instances were investigated in depth.

‘Table 2 shows how many of the 1753 instances correspond to different parameter level
combinations of NC, RF, and 6. One can observe that especially the problem parameter
RF has an impact on the run-time performance of column generation. High RF values
make short run—times unlikely. Though not that dramatic, NC also affects the run—time
performance. It seems that for low NC values column generation requires to generate
more columns than for high NC values. Thus, the choice of adapted ProGen instances as
done here for testing the performance of resource investment problem methods appears
to be appropriate.

In order to get a bit more insight into the actual run-time performance measured in
CPU-seconds, Tables 3 and 4 provide the average figures for the Lagrangean relaxation
and the column generation procedure, respectively. Besides for instances with RF' = 0.25,

8

n =30 0=10 6=11 =12 6=13 =14 6=15

REF = 0.25 40 40 40 40 40 40

_ RF =05 40 32 18 24 27 33
NC=15 RF =0.75 29 13 4 5 11 13
RF=1.0 25 11 2 3 5 7

RF =0.25 40 40 40 40 40 40

_ RF =0.5 40 34 28 27 32 37
NC=18 RF =0.75 30 17 6 12 16 23
RF=1.0 32 14 2 1 1 9

RF =0.25 40 40 40 40 40 40

_ RF =05 40 34 22 33 37 40

NC =21 RF =0.75 37 24 7 5 15 22
RF =10 31 12 1 2 2 6

Total 424 311 210 232 266 310

Table 2: Number of Instances per Parameter Level Combination

the run—time for performing 100 iterations of the Lagrangean relaxation method is much
shorter than the run—time of the column generation procedure upon termination. While
the average run—time of the former method is positively correlated with 8, the average
run—time of the latter algorithm has its peak with 8 = 1.1 or 8 = 1.2 (for RF > 0.75 this
is not always true which is conjectured to be, because the number of evaluated instances is
rather small; often it is less than 10). It seems that different levels of NC and RF do not
affect the run—time of the Lagrangean relaxation approach, but that column generation
is very sensitive towards changes of these values. As mentioned before, the impact of RF'
on the run-time behavior of column generation is much stronger than the impact of NC.
It should be noted that the Lagrangean relaxation method could have solved all 2880
instances in the test-bed within reasonable time, but the average results are given for the
aforementioned 1753 instances only to allow a comparison with the column generation
results.

To see if Lagrangean relaxation and column generation pay off, we examined whether
or not the simple lower bound LB, has been improved. Tables 5 and 6, respectively, show
the average improvement of LBy, where the improvement is measured in percentage by

LB; —~ LBy
LB,

It turns out that the column generation procedure yields decidedly better lower bounds
than Lagrangean relaxation. For # = 1.0 and RF > 0.75 it happens that the lower bounds
obtained with Lagrangean relaxation are even worse than LB, on average although the
information in (11) is used to guide the search for good lower bounds. Due to (25),
the column generation lower bound cannot be worse than LB,. Roughly speaking, the
improvement of LB, declines if # increases. For # = 1.5 neither Lagrangean relaxation
nor column generation can improve LBy; both methods compute LBy (neglecting slight
improvements). This indicates that studying instances with § > 1.5 is not promising
for the approaches presented here. From this result we learn for future work that those
who develop exact methods should evaluate, if the optimum solution for instances of the

100 fori € {1,2}. (37)

9

n =30 =10 6=11 =12 =13 H=14 #=15
RF=0.25 2.37 3.11 3.97 4.87 5.81 6.82
RF =05 2.18 2.72 3.73 4.81 5.88 6.68
NC=15 pp_o7s| 215 260 48 642 735 874
RF =10 2.00 2.23 227 521 6.47 7.26
RF =0.25 2.3 3.05 3.99 4.99 6.04 7.18
RF =05 2.24 3.08 4.11 5.38 6.58 7.58
NC=18 pp_o75| 2928 268 409 648 790 9.04
RF=1.0 2.19 2.55 296 3.39 6.99 8.61
RF = 0.25 2.48 3.48 4.66 5.88 7.21 8.64
NC =91 RF=05 2.45 3.39 4.60 5.93 7.33 8.70
- % RF=075 2.39 3.14 4.17 5.82 8.71 9.88
RF =10 2.36 2.94 3.28 7.08 9.80 10.48
Table 3: Average Run-Time of the Lagrangean Relaxation Method
n =30 =10 =11 =12 0=13 =14 0=15
RF = 0.25 0.82 1.48 0.98 0.87 0.73 0.81
NC =15 RF=05 11.32 2428 3150 15.68 783 11.77
RF=075| 2030 34.15 2868 57.05 6391 21.64
RF =10 22.84 36.08 3537 164.30 201.25 41.62
RF = 0.25 0.74 0.77 1.10 065 0.63 0.72
NC =18 RF=05 6.30 2451 3280 17.70 10.41 6.79
RF=0.75| 2147 3099 51.93 2270 23.10 45.02
RF=1.0 24.59 32.95 4217 4793 7723 195.23
RF = 0.25 0.61 1.03 089 060 0.67 0.78
NC =97 RF=05 6.01 2530 2394 11.65 4.73 4.41
" RF=0.75| 1337 3961 4240 8789 5653 30.51
RF =1.0 22.00 48.36 102.82 4253 113.57 115.47

Table 4: Average Run—Time of the Column Generation Method

10

n =30 =10 =11 =12 =13 =14 0=15
RF =0.25 9.78 2.38 0.18 0.02 0.00 0.00
NC =15 RF =05 13.86 7.39 3.54 0.24 0.00 0.00
RF =0.75 3.23 6.06 2.42 1.51 0.00 0.00
RF =10 ~13.80 2.93 0.00 0.00 0.00 0.00
RF=0.25| 13.00 3.77 0.47 0.00 0.00 0.00
NC =18 RF =05 19.19 8.74 2.88 0.62 0.14 0.02
RF =0.75 -6.74 1.52 0.00 0.00 0.00 0.00
RF =1.0 -10.18 3.88 3.05 6.24 0.00 0.00
RF =0.25| 15.65 3.02 0.04 0.00 0.00 0.00
NC = 2.1 RF =05 20.45 9.54 1.06 0.02 0.00 0.00
RF =0.75 -1.08 3.04 2.08 1.12 0.00 0.00
RF =1.0 -18.92 1.97 0.00 0.00 0.00 0.00

Table 5: Average Improvement of LB, due to Lagrangean Relaxation

n =30 =10 =11 =12 #=13 6=14 #=15
RF =025} 1363 3.27 0.20 0.02 0.00 0.00
NC =15 RF =0.5 36.27 17.16 6.65 1.04 0.09 0.05
RF=0.75| 30.62 1831 6.95 1.95 0.00 0.00
RF =10 20.85 14.03 8.89 2.04 0.00 0.00
RF =0.25] 16.82 6.26 0.90 0.00 0.00 0.00
NC =18 RF =0.5 42.11 17.98 5.09 1.20 0.17 0.13
RF =0.75] 2870 18.95 4.86 0.00 0.00 0.00
RF=1.0 24.18 17.28 14.01 10.68 0.00 0.00
RF =0.25| 2296 4.53 0.12 0.00 0.00 0.00
NC =21 RF =0.5 43.56 17.93 2.27 0.25 0.03 0.01
RF =071 4251 21.71 13.71 6.63 0.03 0.00
RF =10 22.53 15.15 16.15 0.00 0.00 0.00

Table 6: Average Improvement of LBy due to Column Generation

11

n =30 =10 =11 =12 =13 0=14 6=15

RF=025] 27.08 2976 2852 2839 2748 26.88

NC =15 RF = 0.5 22.06 2584 2945 3385 33.89 3598
“ RF=075] 1591 2630 3354 3056 3582 37.34

RF =1.0 17.85 2090 29.10 2810 31.27 35.47

RF=025] 2206 2624 2662 2497 2395 21.39

NC =18 RF = 0.5 20.87 2557 30.02 2990 30.83 31.84
RF=0.75| 1347 1519 2209 33.46 30.67 32.84

RF =10 897 1596 10.08 23.62 1795 31.15

RF=0.25] 1895 2450 23.07 2281 2219 23.22

NC =21 RF =0.5 19.03 2478 2517 28.92 29.33 2831
RF=075| 1064 1583 20.18 24.23 2898 30.84

RF =1.0 7.85 17.38 9.56 15.84 31.88 2141

Table 7: Average Improvement of UB, due to Lagrangean Relaxation

n =30

=10 =11 =12 =13 =14 =15

RF=0.25] 2017 2342 1891 16.57 16.33 15.96

NC =15 RF =105 25.72 30.21 3101 3036 2797 28.96
RF=0.75| 2675 3394 4153 3064 35.64 33.12

RF =1.0 2960 30.85 3749 3220 29.07 35.42

RF=0.25| 18.21 18.25 1731 1416 1329 12.74

NC =18 RF =05 2217 2785 2932 2559 24.87 25.26
RF =075} 2493 2737 2821 2920 28.87 30.39

RF =10 2230 2448 1730 2566 31.41 39.90

RF =0.25| 15.63 18.07 1353 1237 11.72 11.30

NC =21 RF =0.5 20.91 25.67 23.82 2498 24.05 22.76
RF=0.75| 1945 2519 2560 2654 26.73 25.58

RF =10 2464 2711 2852 2081 2952 32.35

Table 8: Average Improvement of UB, due to Column Generation

12

n =30 =10 =11 =12 0=13 =14 H=15
RF =025} 1623 17.76 21.14 2130 22.72 23.29
NC = 1.5 RF =0.5 33.72 35672 36.57 36.48 3935 39.03
RF =075 3543 33.51 38.73 45691 4701 47.79
RF =10 40.35 29.08 29.18 38.57 41.88 46.54
RF=025] 1560 17.83 19.81 2158 2279 25.03
NC = 1.8 RF =05 30.58 34.26 3557 3649 3761 38.19
RF=0.75| 4235 3746 42.64 43.02 4545 45.88
RF =1.0 39.29 31.29 3454 3095 4935 45.71
RF=025| 1394 16.79 2060 2099 2184 20.85
NC =21 RF =0.5 30.28 33,57 36.22 3730 3765 39.14
RF =075] 4223 38.36 4191 4405 4498 45.80
RF =10 46.01 34.31 38.63 43.72 47.90 50.27

Table 9: Average Gap between LB, and the Best Known Upper Bound

n =30 =10 =11 =12 #=13 =14 =15
RF =0.25 1342 1710 2112 21.30 22.72 23.29
NC =15 RF =0.5 21.03 30.00 34.77 3598 39.30 39.00
RF =0.75 18.62 25.83 35.65 45.67 47.01 47.79
RF=1.0 17.84 2155 22.84 37.21 41.88 46.54
RF =0.25 12.80 16.06 1952 21.58 22.79 25.03
NC = 1.8 RF =0.5 17.58 28.89 34.25 36.14 3759 38.12
RF=075| 2080 2692 39.83 43.02 4545 4588
RF =10 16.82 2241 2763 28.07 49.35 45.71
RF =0.25 9.10 1568 20.55 2099 21.84 20385
NC =21 RF =105 17.07 2855 3549 3715 37.63 39.13
RF=0.75| 1701 2736 3530 4110 4497 45.80
RF =1.0 18.74 2595 28.72 43.72 4790 50.27

Table 10: Average Gap between LB, and the Best Known Upper Bound

13

resource investment problem with # > 1.5 is close to LBy or if there still remains a gap
between LB, and the optimum result.

As explained above, both, the Lagrangean relaxation method and the column gener-
ation algorithm, compute feasible solutions as a byproduct. Tables 7 and 8, respectively,
reveal, if the simple upper bound UB, can be improved on average. Improvements are

measured as UB, — UB;
UB,

Both procedures give very promising results and improve UBp decidedly. For the La-
grangean relaxation method, there is a tendency that improvements are positively cor-
related with increases of 8. This is what one would expect, for UBy being derived from
the earliest start schedule. The earliest start schedule seems to be a poor solution, if @ is
large, because periods beyond EC;, 1 are kept idle which goes along with a high resource
request in early periods. Only for RF = 0.25 this effect is not clear from the data. For
the column generation method, this observation cannot be made. We conjecture that the
reason for this is that for large § values the number of instances for which few columns are
generated upon termination is large compared to instances with low 6 values (see Table
1). Hence, less feasible solutions are generated and the chance for finding a good feasible
solution decreases. Similarly, since the run—time of the column generation procedure is
positively correlated with RF (see Table 4), the upper bounds found with column gener-
ation are better than the upper bounds found with Lagrangean relaxation, if RF' > 0.5,
and are worse, if RF = 0.25.

Next, we are interested in the solution quality in terms of the gap between the lower
bound and the best known upper bound of an instance. Tables 9 and 10 provide this
information in terms of average results. The gap is measured as

min{UB,,UB,} — LB;
min{UBI, UBQ}

- 100 for i € {1,2}. (38)

-100 for i € {1,2}. (39)

For both methods there is a clear tendency that the gap increases if does (outliers are
ignored). This indicates that instances with, say, # = 1.5 are much harder to solve than
instances with @ = 1.0. Note, though not investigated in our studies, we conjecture that
if 0 is large enough, instances become easier to solve again, because if T > T p; then
instances are trivial. RF also seems to have a big impact on the gap, though ;Erendency
is not obvious which might be, because there are only a few instances with a high RF
value {often less than 10; see Table 2). NC' seems to have a minor effect only, if at all.
In summary we have that column generation yields better lower bounds than Lagrangean
relaxation combined with subgradient optimization.

5.2 Mohring’s Instances

According to Tables 9 and 10 the gap between lower and upper bound does not indicate
tight bounds and it is not clear whether this is due to poor lower bounds, due to poor
upper bounds, or both. Hence, we need to investigate further what makes the results
look that bad. To make a definite statement, one needs instances for which the optimum
solutions are known.

For a bridge construction project with n = 16 non—-dummy activities and four re-
sources, Mohring [11] provides detailed data. He studies 15 instances which differ in

14

n=16[0=10 =11 =12 =13 9=14 6=15

1/1/1/1| 11.24 1624 1.03 18.26 11.75 _ 0.00
3/1/1/1] 19.22 1220 280 13.00 864 0.00
1/3/1/1| 1339 809 105 13.04 874 0.00
1/1/3/1] 11.80 860 588 2210 2317 0.00
1/1/1/3| 855 1616 693 2287 7.80 0.00
3/3/1/1| 1475 677 148 1304 1111 0.00
3/1/3/1| 1407 1551 626 18.17 146 0.00
3/1/1/3| 13.80 1357 6.08 1914 2251 0.00
1/3/3/1| 11.88 13.00 3.04 19.34 1933 0.00
1/3/1/3| 11.00 923 358 2004 625 0.0
1/1/3/3] 957 1347 505 2414 1621 0.00
3/3/3/1| 1289 1882 395 1543 092 0.00
3/3/1/3| 1180 679 359 19.21 2035 0.00
3/1/3/3| 1065 16.06 711 1998 1510 0.00
1/3/3/3| 1017 1296 355 2026 1408 0.00

Table 11: Gap between LB; and the Optimum Solution

n=16]0=10 =11 =12 =13 §=14 6=15

1/i/i/1| 667 1270 000 1500 857 0.00
3/1/1/1| 1429 1039 000 1125 612 0.00
1/3/1/1| 476 530 000 1125 612 0.00
1/1/3/1] 417 462 389 1773 1944 0.00
1/1/1/3| 417 762 625 1900 238 0.00
3/3/1/1| 1111 385 000 900 476 0.00
3/1/3/1| 1000 1345 324 1474 000 0.0
3/1/1/3| 1000 672 521 1583 19.70 0.00
1/3/3/1| 333 1046 1.04 1477 1591 0.00
1/3/1/3| 333 343 000 1583 185 0.00
1/1/3/3| 803 316 000 1964 1169 0.0
3/3/3/1| 833 1633 089 1264 0.00 0.0
3/3/1/3| 833 263 000 1357 1667 0.00
3/1/3/3| 769 994 000 1687 989 0.00
1/3/3/3| 256 773 000 1719 9.8 0.0

Table 12: Gap between LB, and the Optimum Solution

15

n=1616=10 =11 6=12 =13 =14 6=15
1/i/i/1| 000 000 000 1667 4000 0.00
3/1/1/1| 000 1818 1250 3750 2857 0.00
1/3/1/1| 000 1818 000 000 1429 0.0
1/1/3/1| 000 000 1000 000 1111 16.67
1/1/1/3| 000 000 000 1000 1429 33.33
3/3/1/1{ 000 000 000 3000 4444 37.50
3/1/3/1| 000 000 833 000 4444 0.00
3/1/1/3| 000 1176 833 000 4545 62.50
1/3/3/1| 000 000 2500 000 3636 0.00
1/3/1/3| 000 1176 000 833 4444 50.00
1/1/3/3{ 000 000 714 000 1818 0.0
3/3/3/1| 000 000 000 000 5455 0.00
3/3/1/3| 000 1053 000 2143 3077 70.00
3/1/3/3| 000 000 625 625 7690 0.00
1/3/3/3| 000 000 000 000 3077 0.00

Table 13: Gap between UB; and the Optimum Solution

n=16]0=10 =11 6=12 8=13 =14 §=15
1/i/I/1| 000 0.00 0.00 3333 2000 25.00
3/1/1/1| 0.00 27.27 3750 1250 57.14 50.00
1/3/1/1| 000 1818 0.00 2500 57.14 33.33
1/1/3/1| 000 000 2000 2000 3333 0.00
1/1/1/3| 0.00 000 2000 1000 2857 16.67
3/3/1/1| 000 3846 000 60.00 66.67 12.50
3/1/3/1| 0.00 17.65 3333 33.33 4444 1250
3/1/1/3| 0.00 17.65 16.67 33.33 1818 25.00
1/3/3/1] 0.00 000 2500 3333 18.18 0.00
1/3/1/3| 0.00 1176 833 3333 4444 37.50
1/1/3/3| 0.00 000 714 714 2727 3750
3/3/3/1| 0.00 000 42.86 42.86 5455 0.00
3/3/1/3| 0.00 2632 2143 2857 30.77 40.00
3/1/3/3| 000 13.04 1875 2500 30.77 60.00
1/3/3/3| 0.00 000 625 1250 30.77 60.00

Table 14: Gap between UB, and the Optimum Solution

16

the cost coefficients ¢, only. Actually, he uses all different cost constellations where
cx € {1,3}. We will refer to these instances by means of a tuple ¢;/cy/c3/cs. Note, be-
cause 1/1/1/1 is essentially the same instance as 3/3/3/3, the test~bed consists of 15 and
not of 2* = 16 instances. Méohring also provides the optimum objective function values
for different values of T. We studied instances with T as defined by (36) where, as before,
6 € {1.0,1.1,1.2,1.3,1.4,1.5}. In total we thus have 6-15 = 90 instances. These instances
are included in Mahring’s study, too.

To run the experiment, we used exactly the same method parameters as in the previous
subsection. Tables 11 and 12 give the outcome of this study in terms of the deviation of
the lower bound from the optimum objective function value OPT measured as

OPT - LB;
OPT

One can observe that both procedures are quite sensitive to variations of 8. For almost
all cases with § = 1.3 the lower bounds are loose. It turns out that both algorithms find
the optimum objective function value for all instances with # = 1.5. For # = 1.2 the lower
bounds are tight, too. About all figures are below a 20% deviation from the optimum
solution. For column generation, which gives tighter lower bounds than Lagrangean re-
laxation, the gap is below 10% in about 71% of the cases, and it is below 5% in about
50% of the cases. Variations of the cost coefficients also have an impact on the quality of
the bound, and especially for § < 1.1 and @ = 1.4 the sensitivity to these parameters is
high for both algorithms.

Tables 13 and 14 provide information on the gap between the upper bound and the
optimum objective function value measured as

UB; — OPT
OPT

Again, variations of # and variations of ¢; affect the outcome without a clear tendency.
For # = 1.0, both algorithms find feasible solutions which are optimal in all cases. For
6 > 1.1, the Lagrangean relaxation procedure computes optimum solutions fairly often,
but § = 1.4 is a critical value, because the gaps are large. The upper bounds derived by
column generation are poor in almost all cases with 8 > 1.1. Overall, about 56% of the
instances can be solved optimally.

100 for i€ {1,2}. (40)

100 for i € {1,2}. (41)

5.3 ProGen Instances with 20 Non—-Dummy Activities

As reported above, all (exact) solution procedures proposed so far are highly sensitive to
the number of resources. Hence, we want to examine the impact of the number of resources
on the run—time performance of our procedures as well. To do so, we used the ProGen
software [10] to generate instances with 20 non-dummy activities and |K| € {2,4,6,8}
resources. Again, we defined T' according to (36) with 6 € {1.0,1.1,1.2,1.3,1.4,1.5}. For
each parameter level combination of |K| and T we generated 10 instances. In total we
thus came up with 240 instances.

The real—valued cost coefficients ¢; were randomly drawn out of [0, 10] with uniform
distribution. The input for the ProGen software (see [9] for detailed explanations) was
chosen to be as follows: Activity durations p; are integer values out of [1,10]. The
project networks have three (non-dummy) start activities and three (non-dummy) finish

17

n=2 |6=10 =11 =12 =13 =14 6=15
|K| =2 0.81 1.10 1.44 1.82 2.17 2.59
|K| =4 1.31 1.711 2.14 2.61 3.09 3.51
|K|=6 1.65 2.05 2.54 3.03 3.53 4.10
|K| =28 1.90 2.37 2.90 3.43 3.97 4.59

Table 15: Average Run-Time of Lagrangean Relaxation

n=20 |8=10 =11 =12 =13 0=14 0=15
K| =2 401 1211 1025 5.09 7.93 3.21
|K|=4| 12.26 4893 183.34 338.06 439.95 281.70
|K|=6| 41.47 13431 598.46 78243 1737.41 1651.09
|K| =8| 29.58 92.15 418.97 70440 1570.45 3516.03

Table 16: Average Run—Time of Column Generation

activites. The maximal number of predecessors / successors is three and NC = 1.5 is
the network complexity. The resource demands ry, are integer-valued out of [1,10]. The
resource strength is 0.2 and RF = 1.0 is the resource factor. All other values are chosen
as in [9].

Tables 15 and 16 provide the average run—time (in CPU-seconds) upon termination
of the Lagrangean relaxation (performing 100 iterations) and the column generation pro-
cedure, respectively. Note, all instances were solved with column generation until pricing
out occurs and computation has not been stopped before this criterion has been met. Just
one single instance with |K| = 4 and 8 = 1.5 could not have been solved on our computer
and we stopped the computation on this instances after 2500 columns were generated.

We observe that the number of resources affects both, Lagrangean relaxation as well
as column generation. For both algorithms, the run—time is correlated with the number
of resources. The effect on Lagrangean relaxation, however, is less than linear. This is
reasonable, because only the updating of the Lagrangean multipliers and the solution of
subproblem one is affected. The computational effort grows linear in both cases, and,
therefore, the overall effect is less than linear.

The impact on column generation is stronger. For |K| € {2,4,6}, run—time grows
exponentially as the number of resources inclines. For |K| = 8, however, we observe that
the computational effort is decidedly less than for |[K] = 6 in all but one case. This is
remarkable, because if the number of resources grows, the number of rows in the master
problem grows, too, due to (22) and (25). Hence, one would expect a monotonical growth
of the run—time (see, e.g., [3, 14]). The reason for declining run~time is that the number of

columns being generated declines (see Table 17) and, thus, the number of master problems
to be solved declines, too.

18

n=20 [=10 6=11 =12 6=13 =14 0=15
[K=2 14240 268.30 21590 12540 13850 69.90
|K|=4| 21570 417.10 717.60 898.10 95220 708.78
|K|=6| 280.80 479.60 892.40 1015.60 1312.00 1153.70
|K| =8| 212.50 401.40 766.50 881.90 1161.10 1496.60

Table 17: Average Number of Columns Upon Termination

6 Conclusions

In this contribution we tackled the resource investment problem. Up to now, only exact
algorithms have been proposed and, therefore, there is a need for heuristics and for lower
bounds to attack other than very small instances. A first step in this direction has now
been made.

We presented two algorithms in order to obtain lower bounds. The first one is based on
Lagrangean relaxation combined with subgradient optimization. It turned out that given
a set of Lagrangean multipliers, the remaining subproblem decomposes and can be solved
in polynomial time. Thus, the Lagrangean relaxation approach works fast. The second
algorithm employs column generation techniques. Again, the subproblem of generating
a column can be solved in polynomial time, too. However, since the master problem is
a linear programming problem, the run-time upon termination highly depends on the
number of columns to be generated.

In a computational study with 2880 instances consisting of 30 activities and four re-
sources, the following results were obtained: 1753 of the instances can be solved by column
generation after generating 500 columns at most. Many of them need less than 50 columns
only. However, column generation is the slower technique compared to Lagrangean re-
laxation which solves each instance within seconds. Nevertheless, the column generation
lower bounds are much tighter than those obtained with Lagrangean rela,xatlon A SImple
analytic lower bound can be improved decidedly.

Remarkable to note is that both approaches lead to feasible solutions as a byproduct
and thus give upper bounds as well. The gap between lower and upper bound mainly
depends on the planning horizon and on the resource factor. The network complexity
seems to be of minor importance in this context. The upper bound defined by the earliest
start schedule can be improved decidedly.

A further experiment with 90 instances from a bridge construction project with 16
non-dummy activities and four resources reveals that the lower bounds are below a 20%
deviation from the optimum result in almost all cases; often it is below a 10% deviation
especially when column generation is used (71% of the instances have a gap of less than
or equal to 10%, and 50% of the instances have a gap less than 5%). In about 56% of the
cases the optimization guided heuristics find an optimum solution. We conjecture that
the gaps between lower and upper bounds observed for larger instances are mainly due
to poor upper bounds.

In another experiment with 240 instances consisting of 20 non-dummy activities each,
the impact of the number of resources on the run—time performance is studied. Instances
with two, four, six, and eight resources are solved. Lagrangean relaxation is affected only

19

slightly. For column generation, the run-time is positively correlated with the number
of resources for up to six resources. But, it turned out that for instances with eight
resources the run—time is decidedly lower than for instances with six resources. Hence, we
can conclude that more resources do not necessarily lead to higher computational effort
as it is the case with existing (exact) solution procedures.

This work can serve as a starting point for developing heuristics in the future. A
more sophisticated strategy could use the presented Lagrangean relaxation technique for
generating several feasible solutions fast. Then, some kind of improvement scheme may
take over in order to find improved upper bounds. The column generation method should
be refined in order to speed up convergence. Also, the presented column generation
procedure could be used as the core of a branch-and-price method seeking for optimal
solutions and be compared against existing codes. The advantage of such a strategy would
be that it can be truncated to yield a heuristic.

Finally, it should be noted that minimal time lags between the activities, release dates
of the activities, and deadlines for the activities are easy to incorporate into the model as
well as into the algorithms.

References

[1] BARNHART, C., JOHNSON, E.L., NEMHAUSER, G.L., SAVELSBERGH, M.W.P.,
VANCE, P.H., (1998), Branch-and—Price: Column Generation for Huge Integer
Programs, Operations Research, Vol. 46, pp. 316-329

[2] BLazEwICZ, J., LENSTRA, J.K., RINNOOY KAN, A.H.G., (1983), Scheduling
Subject to Resource Constraints: Classification and Complexity, Discrete Applied
Mathematics, Vol. 5, pp. 11-24

[3] BorGWARDT, K.H., (1987), The Simplex-Method: A Probabilistic Analysis,
Berlin, Springer

[4] BRUCKER, P., DREXL, A., MOHRING, R.H., NEUMANN, K., PESCH, E., (1998),
Resource-Constrained Project Scheduling: Notation, Classification, Models, and
Methods, European Journal of Operational Research, to appear

[5] D‘EI\{IEULEMI:JESTER, E., (1995), Minimizing Resource Availability Costs in Time—
Limited Project Networks, Management Science, Vol. 41, pp- 1590-1598

[6] DRF_.‘.XL, A., KimMs, A., (1998), Minimizing Total Weighted Completion Times
Subject to Precedence Constraints by Dynamic Programming, Working Paper 475,
University of Kiel

[7] FISHER, M.L., (1981), The Lagrangean Relaxation Method for Solving Integer
Programming Problems, Management Science, Vol. 27, pp. 1-18

8] I'.IEI’..D, 'M., WoLFE, P., CROWDER, H.P., (1974), Validation of Subgradient Op-
timization, Mathematical Programming, Vol. 6, pp. 62-88

[9] KoLiscH, R., SPRECHER, A., (1997), PSPLIB — A Project Scheduling Problem
Library, European Journal of Operational Research, Vol. 96, pp. 205-216

20

[10] KoLIsCH, R., SPRECHER, A., DREXL, A., (1995), Characterization and Gen-
eration of a General Class of Resource-Constrained Project Scheduling Problems,
Management Science, Vol. 41, pp. 1693-1703

[11] MOHRING, R.H., (1984), Minimizing Costs of Resource Requirements in Project
Networks Subject to a Fixed Completion Time, Operations Research, Vol. 32, pp.
89-120

[12] NUBEL, H., (1998), A Branch-and-Bound Procedure for the Resource Investment
Problem with Generalized Precedence Constraints, Working Paper 516, University

of Karlsruhe

[13] RADERMACHER, F.J., (1985/6), Scheduling of Project Networks, Annals of Oper-
ations Research, Vol. 4, pp. 227-252

[14] SHAMIR, R., (1987), The Efficiency of the Simplex-Method: A Survey, Manage-
ment Science, Vol. 33, pp. 301-334

[15] Soumis, F., (1997), Decomposition and Column Generation, in: Dell’Amico, M.,
Maffioli, F., Martello, S., (eds.), Annotated Bibliographies in Combinatorial Opti-
mization, New York, Wiley, pp. 115-126

21

