
Drexl, Andreas; Kimms, Alf

Working Paper — Digitized Version

Optimization guided lower and upper bounds for the
resource investment problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 481

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Kimms, Alf (1998) : Optimization guided lower and upper bounds
for the resource investment problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre
der Universität Kiel, No. 481, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147584

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147584
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 481

Optimization Guided

Lower and Upper Bounds for

the Resource Investment Problem

A. Drexl and A. Kimms

September 1998

MM «. Christian-

Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
emaik Drexl@bwl.uni-kiel.de

Kimms@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwliTistitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract

The resource Investment problem deals with the issue of providing resources
to a project such that a given deadline can be met. The objective is to make the
resources available in the cheapest possible way. For each resource, expenses depend
on the maximum amount required during the course of the project. In this paper we
develop two lower bounds for this ATP-hard problem using Lagrangean relaxation
and column generation techniques, respectively. Both procedures are capable of
yielding feasible solutions as well. Hence, we also have two optimization guided
heuristics. A computational study consisting of a set of 3210 instances compares
both approaches and allows insight into the Performance. E.g., for the instances
from Möhring's test set it turns out that in 56% of the cases the heuristic Solution
derived on the basis of Lagrangean relaxation is optimal. Using column generation,
the gap between the lower bound and the Optimum objective function value is below
5% in 50% of the cases, it is below 10% in 71% of the cases, and it is below 20% in
all cases.

Keywords: resource Investment problem, Lagrangean relaxation, column generation,
lower bounds, upper bounds

1 Introduction

Completing a project means to find a schedule for the activities, which constitute the
project, subject to some side constraints. UsuaHy, precedence constraints have to be
taken into account. In such a setting, a common objective is to minimize the makespan of
the project, i.e. to answer the question of what is the shortest possible project duration.
If the activities compete for scarce resources, it may happen that activities may not be
processed in parallel. This resource constrained project scheduling problem is known to
be MV-hard [2].

Being motivated by a practical case of bridge construction where time is scarce (see
[13]), Möhring [11] invented the resource Investment problem. In contrast to the problem
above, we face a tight deadline for the project completion here. To be able to finish the
project in time, one must provide a sufficient amount of resources. The objective is to do
so in the cheapest possible way. This problem is jVT-hard, too [11].

The remaining text is organized as follows: A formal statement of the resource Invest­
ment problem is given in Section 2. In Section 3 lower bounds are obtained by means of
Lagrangean relaxation in combination with subgradient optimization. In Section 4 col­
umn generation techniques are developed to compute lower bounds. We will see that both
algorithms are capable of generating feasible solutions as well. A computational study in
Section 5 examines the Performance of both procedures. Conclusions and some hints for
future work are given in Section 6.

2 Problem Setting

The resource Investment problem is about completing a project consisting of a set of
V = {0,1,..., n, n + 1} activities such that a given deadline T € N is met in time.
Precedence relations E C V x V among the activities have to be taken into account
where G = (V,E) forms an acyclic activity-on-node network. Without loss of generality

1

we assume that activity 0 is the unique source and that activity n +1 is the unique sink,
respectively, in the network. For each activity j, a duration Pj € N0 is given where once
that activity j is started, it runs pj time units without preemption. Earliest and latest
completion times ECj and LCj, respectively, of the activities can be computed easily
performing forward and backward recursions with ECQ ~ po and LCn+1 = T as starting
points. A set K of resources are necessary to fulfill the project. Each activity j requires
rjk G NQ units of resource k £ K per period in order to be processed. If activities are
processed concurrently, the per period availability Rk € NQ — a decision variable must
not fall below the request for any resource fc. Since providing a resource k incurs a cost
ck € FL* per unit, the aim is to find a schedule, i.e. completion times Cj, and resource
availabilities Rk such that the project can be completed in the cheapest possible way.
Formally, this problem can be described as follows:

min £ ckRk W
keK

s.t.
LCi

Y, x3t = 1 jeV (2)
t=ECi

Y, t-xjt- t-xa> Pj
t= ECj t=ECi

min{t+pj —l,LCj }
Rk-E iL r}kx3T > 0

j€V T=ma.x{t,ECj}

Xjt € {0,1}
Rk> 0

(U)SE

k E K\t G {1,... ,T}

(3)

(4)

jeV;t€{ECjl...,LCj} (5)

keK (6)

The variable Xjt is one, if activity j is completed in period t (zero, otherwise). It
directly corresponds to the completion times Cj and allows to State the problem as a
linear mixed-binary programming model. The objective (1) is to minimize the sum of
the costs for providing the resources. (2) states that every activity must be completed
where (3) makes sure that the activities are scheduled in accordance with the precedence
constraints. (4) guarantees that the resource units provided are sufficient to implement the
schedule. Note, a non-negativity condition (6) for Rk (instead of Rk € NQ) is sufficient,
because all parameters r# are integer-valued and, thus, (4) in combination with (1) yields
integer values for Rkj too, in every optimal Solution.

Related to the resource Investment problem is the resource constrained project schedul-
ing problem. A feasible Solution of that type of problem can be described with (2) thru
(5) where the difference is that Rk are known parameters. The objective is to complete
the project as soon as possible. Another class of problems which are somehow related are
resource levelling problems. Again, the Rk values are parameters (oo in the unconstrained
case). The objective functions, however, depend on the resource requirements within the
periods and, for instance, measure the sum of squares of the usage amounts per resource
and per period. For a recent survey on these and other related project planning problems,
we refer to [4].

Only little research has been undertaken to tackle the presented problem. Möhring [11]
has developed an exact Solution method for the resource Investment problem and solved
instances with n = 16 activities and four resources. Demeulemeester [5] has presented an

2

optimal algorithm which outperforms Möhring's procedura Though the results on small
instances (in the sense of a small number of activities and a small number of resources)
are impressive, the shortcoming of his approach is that the first feasible Solution found
is known to be the Optimum Solution. Hence, it cannot be truncated to a heuristic to
be applied to larger instances. Also, his approach is highly sensitive to variations in
the number of resources. The results he presents indicate that instances with up to 20
activities must not have more than six resources. Recently, Nübel [12] considered the
extension with maximal time Iags between the activities and implemented a branch-and-
bound procedure to find Optimum solutions. He performed a computational study using
instances with 10, 20, and 30 non-dummy activities combined with one, three, and five
resources. The Performance of his procedure highly depends on these parameters. While
all instances with 10 activities can be solved optimally, there are instances in his test-bed
with 20 and 30 activities, respectively, for which no Optimum Solution is known yet. For
example, given five resources about 79% out of 270 instances with 20 activities and about
53% out of 270 instances with 30 activities can be solved optimally.

Lower bounds and/or heuristics have not been developed so far and are the subject
of this paper. But, before we turn to study more sophisticated procedures, we give here
simple bounds which turn out to be useful later on. First, we consider lower bounds for
the Rk values. It is clear that the minimum level cannot fall below of what a Single activity
requires. Also, it is easy to compute the Overall requirement of a resource k which, when
distributed equally over the planning horizon, also defines a lower bound for the resource
units to be provided. Formally,

Rk = max { maxrjkj

E Pf jk
3<cV

(7)

is a lower bound for what must be available of resource k. This defines a lower bound for
the optimum objective function value as follows:

LB0 = Yl ckRk (8)
heK

An upper bound on what should be provided can be derived from the Situation in which
all activities are executed concurrently, i.e.

Ä*! = 5Z M

This would allow to compute an upper bound on the Optimum objective function value,
but we can do better. The earliest Start schedule where all activities are completed at
their earliest finish times is a feasible Solution. The minimum resource units which allow
to implement the earliest start schedule define an upper bound on the optimum objective
function value:

^0=^CfcIMX 53 r3k (10)
k€K J€ V t<ECj<t+pj-1

3 Lagrangean Relaxation

In this section we consider model (1) thru (6) together with the two additional constraints

Rk>Rk (11)

3

Rk < Rk keK (12)

where Rk and respectively, are lower and upper bounds for the Rk values as defined
by (7) and (9). (11) and (12) are redundant in this model, but they are not, if we relax
(4). We will consider a Lagrangean relaxation (see, e.g., [7]) with Xkt e IRQ being the
Lagrangean multipliers associated with (4). Given a set of multipliers, the relaxed problem
reads as follows:

T / mm{t+pj-l,LCj} \
min Y ckRk + Y Y *kt S Y TjkXjr - Rk) (13)

keK keKt= 1 v'€V r=max{t,ECj} /
S.t.

(2), (3), (5), (11), and (12)

Rearranging the terms in the objective (13) yields

/ T \ LCj
min 52 (ck - 52 / Rk + 52 52 w3txjt (14)

keK \ t= 1 / j€Vt=ECj

where

Wjt = 52 ^ ^kr^jk- (1^)
keK r=f-pj+l

This problem decomposes and can be optimized by solving two subproblems indepen-
dently. The first subproblem is:

min Y (ck ~ IT'O Rk (16)
keK \ t= 1 /

s.t.

(11) and (12)

The second subproblem is:

LC,-
min Y Y wjtxjt (17)

jev t=ECj
s.t.

(2), (3), and (5)

The sum of the Optimum objective function values of these two subproblems gives the
Optimum objective function value (13).

In turn, subproblem one decomposes and can be solved efficiently by inspecting the

expression (ck — £ Xkt) for each keK. If this expression is negative, the optimum Rk

value is Rk. If the expression is non-negative, the optimum Rk value is R
Subproblem two is a problem of minimizing the total weighted completion times of

the activities subject to precedence constraints. Drexl and Kimms [6] have presented
a ü(n2Tmax{n,T}) polynomial time dynamic programming algorithm and, therefore,
subproblem two can also be solved efficiently. It is remarkable to note that any Solution
of subproblem two represents a feasible schedule for the problem (1) thru (6). Given such

4

a schedule with completion times Q, the smallest possible Rk values which do not violate
(4) can be derived in polynomial time:

Rk = max Y, rik (18)
j€V

t<Cj<t+Pj-1

Hence, for each optimum Solution of subproblem two, we can derive a heuristic Solution
for the resource Investment problem in polynomial time.

In summary, for a given set of Lagrangean multipliers A&t, the relaxed problem can be
solved in polynomial time and a suboptimal Solution for the resource Investment problem
can be computed in polynomial time as well.

What remains is to discuss the question of how to find appropriate values for Akt. We
make use of subgradient optimization as presented in [8]. That is to say that starting
with Akt = 0 we solve the relaxed problem and update the multipliers afterwards before
starting a new Iteration. Updating is done according to

A f-t — max °,Xu + SiVB'\LB">Au

£ Eft 1

(19)

where UB* is the best known upper bound and LB* is the best known lower bound. We
update these values after each iteration. Initially, we set UB* = oo and LB* = —oo. The
Parameter 6 is assigned the value two, initially, and it is reduced to its half whenever the
lower bound cannot be improved after, say, five iterations. The values A&* are computed
using the Rk and Xjt values just determined for optimizing (16) and (17), respectively:

min{t+pj-l,LCj}
Afct = Y1 E Tik'Xjr - Rk (2°)

j€V r=max{t,BCj}

The Lagrangean relaxation procedure runs until a certain number of iterations are
performed. We will refer to the result as LB\ and UB\, respectively, denoting the best
bounds found during the course of iterating.

4 Column Generation

The second lower bound that we will present is based on column generation techniques
(see, e.g., [1, 15]). We do not apply column generation to the model (1) thru (6), but to
the following model reformulation:

min £ ckRk (21)
k€K

s.t.
S rain{t+pj-l,LCj}

i] rjkxjTSys >0 k € K; t = 1,..., T (22)
a=lj€V r—max{ttECj}

El/. = 1 (23)
S=1
ys 6 {0,1} s — 1,..., S (24)

Rk>Bk k$K (25)

5

In this model, each column s which corresponds to a decision variable ys represents a
schedule. In contrast to what has been defined in former sections, xju is a 0-1-valued
parameter now where the value one indicates that activity j is completed at time t in
column s. The binary decision variable y$ models the selection of a schedule. Due to
(23) exactly one schedule is selected. (22) makes sure that the resource units provided
are sufficient to implement the selected schedule. S is the total number of schedules. The
parameters Rk used in (25) are defined as given by (7) in our Implementation.

Now, our aim is to solve the LP-relaxation of the model (21) thru (25), the so-called
master problem, optimally which yields a lower bound. In other words, we replace (24)
with

ys> o 5 = 1,..., 5 (26)

and seek for an optimum Solution. Note, the constraints ys < 1 for s = 1,...,S are
redundant and can thus be omitted, because (23) in combination with (26) guarantee
that this restriction is fulfilled, too.

The problem with this model is that, if we want to consider all feasible schedules
explicitly, 5, the number of columns, is extremely large. This is where the idea of column
generation comes in. The basic working principle is as follows: Starting with a small set
of columns, we try to find out if any other column can exist which, when added, may
reduce the objective function value. If such a column exists, we add it and reoptimize
with an augmented set of columns. If we figure out that no such column can exist, we
stop and the final objective function value is known to be a lower bound. Hopefully, the
number of iterations, i.e. the number of columns to be generated, is small compared to
the number of feasible schedules.

In our Implementation, we start with a Single column 5=1 which represents the
earliest Start schedule, i.e. XjtI = 1, if t = ECj, and Xjti = 0, otherwise.

Suppose now that S schedules are considered explicitly (initially, 5 = 1). The question
is, how can we find out that no additional schedule (column) exists which may reduce
the objective function value. To give an answer to this question, we consider the dual
of the LP-model (21)-(23), (25), and (26) with 7i>£, /x, and uk being the dual variables
associated with (22), (23), and (25), respectively:

maxfj, + EkVk (27)
keK

S.t.
T

+ keK (28)
t=l

Y, *ktTjkXjrs <0 S = l,...,S (29)
j€V keK £=1 r—max{£,ECj}

^>0 k€K;t=l,...,T (30)

R (31)

^ > 0 kQK (32)

From duality theory we know that the optimum objective function values of the primal
(21) and the dual (27) are equal. The question, if there is a column which, when added
to the primal, may reduce the optimum objective function value is thus equivalent of

6

asking whether or not there exists a row which, when added to the dual, may reduce the
optimum objective function value. More precisely, we seek for a row of the form (29)
which cuts off the current optimum Solution, i.e. we look for a schedule 5+ 1 for which

T min{t+pj* —IJLCJ* }
/'-EEE E nktrjkXjT(s+i) > 0 (33)

j€V k€K t—1 T=ma.x{t,ECj }

holds. Note, 7rkt and ß (and vk) are Parameters now, and %jt(s+i) are the decision variables.
By rearranging the terms, (33) can also be written as

LCj
M > E E vjt*jt(s+1) (34)

j€Vt=BCj

where
t

Vjt = ^2 ^2 ^kTrjk' (35)

Hence, if, for a given set of weights Vjt, the minimal total weighted completion time subject
to (2), (3), and (5) (the index S 4-1 in (34) can be ignored) is greater than or equal to
/i, pricing out occurs and no further columns need to be added. In other words, our
subproblem of finding a new column again reduces to be the problem of minimizing the
total weighted completion times subject to precedence constraints which can be solved in
polynomial time [6]. This is exactly the same type of problem as subproblem two of the
Lagrangean relaxation procedure which was discussed in the previous section. It should
be highlighted that generating columns this way guarantees that every schedule, together
with (18), represents a feasible Solution to the model (1) thru (6). Thus, our column
generation procedures produces upper bounds for the resource Investment problem as
well.

In the sequel we will refer to the lower bound computed with column generation as
LB2- The best upper bound found during the course of generating columns will be denoted
as UB2.

5 Computational Study

To study the Performance of the Lagrangean relaxation and the column generation algo-
rithms, we implemented both methods in GNU C. The Computer codes were executed on
a Pentium II machine with 266 MHz running a LINUX operating system. For solving the
master problems of the column generation procedure, we employed the callable library
CPLEX.

5.1 ProGen Instances with 30 Non-Dummy Activities

As mentioned before, only optimal Solution procedures for the resource Investment prob­
lem have been presented so far making use of rather small test sets. Hence, we decided
to adapt well established instances for the resource constrained project scheduling prob­
lem for our purposes. The project scheduling problem library PSPLIB [9] provides a
collection of systematically generated instances. We used the 480 instances with n = 30

7

n = 30 9 = 1.0 9 = 1.1 9 = 1.2 0 = 1.3 9 = 1.4 9 = 1.5

<20 77 58 88 115 139 153

<50 153 113 124 171 203 233

<100 214 128 145 187 228 258

<500 424 311 210 232 266 310

Total 480 480 480 480 480 480

Table 1: Cumulative Frequency Distribution of the Number of Instances

non-dummy activities and four resources. The resource limits of these instances have
no meaning in our context, so we simply ignored them. The so-called ProGen instances
have different network complexities NC 6 {1.5,1.8,2.1} and different resource factors
RF e {0.25,0.5,0.75,1.0} both of which are problem parameters with a big impact on
the Performance of project scheduling procedures (see [10]). The network complexity re-
flects the average number of immediate successors of an activity, and the resource factor
is a measure of the average number of resources requested per activity. For each Param­
eter level combination of NC and RF, 40 instances are provided which gives the total of
3.4.40 = 480 instances. To get a resource Investment problem instance, we additionally
need a time limit T. In our studies, we computed T on the basis of the length of the
criticai path in the network. Formally, we defined

T=[9-ECn+1\ (36)

where 6 6 {1.0,1.1,1.2,1.3,1.4,1.5} was used. This gives a test bed consisting of 6 *480 =
2880 instances. For each of these instances we generated real-valued objective function
coefficients c& randomly out of the interval [0,10] with uniform distribution.

In a first experiment, we tested how many columns are generated by the column gener-
ation procedure upon termination. Table 1 provides the cumulative frequency distribution
of the number of instances with respect to the number of columns upon termination de-
pending on 6. One can see that 9 has an impact on the run-time Performance of the
column generation procedure, because the number of columns upon termination is posi-
tively correlated with the run-time upon termination. It seems that a value 9 close to 1.2
causes longer run-times than other 9 values. We decided to consider only those instances
further which can be solved with column generation such that the number of columns
does not grow over 500. Thus, 1753 instances were investigated in depth.

Table 2 shows how many of the 1753 instances correspond to different parameter level
combinations of NC, RF, and 9. One can observe that especially the problem parameter
RF has an impact on the run-time Performance of column generation. High RF values
make Short run-times unlikely. Though not that dramatic, NC also affects the run-time
Performance. It seems that for low NC values column generation requires to generate
more columns than for high NC values. Thus, the choice of adapted ProGen instances as
done here for testing the Performance of resource Investment problem methods appears
to be appropriate.

In order to get a bit more insight into the actual run-time Performance measured in
CPU-seconds, Tables 3 and 4 provide the average figures for the Lagrangean relaxation
and the column generation procedure, respectively. Besides for instances with RF = 0.25,

8

8
 II £

O

T—
1

II rH r-H II 9= 1.2 6 = 1.3 rH II 4=1.5
RF = 0.25 40 40 40 40 40 40

NC = 1.5 RF ' 0.5 40 32 18 24 27 33 NC = 1.5
RF = 0.75 29 13 4 5 11 13
RF = 1.0 25 11 2 3 5 7
RF = 0.25 40 40 40 40 40 40

NC = 1.8
RF = 0.5 40 34 28 27 32 37 NC = 1.8
RF = 0.75 30 17 6 12 16 23
RF = 1.0 32 14 2 1 1 9
RF = 0.25 40 40 40 40 40 40

NC = 2.1 RF = 0.5 40 34 22 33 37 40 NC = 2.1
RF = 0.75 37 24 7 5 15 22
RF = 1.0 31 12 1 2 2 6
Total 424 311 210 232 266 310

Table 2: Number of Instances per Parameter Level Combination

the run-time for performing 100 iterations of the Lagrangean relaxation method is much
shorter than the run-time of the column generation procedure upon termination. While
the average run-time of the former method is positively correlated with 0, the average
run-time of the latter algorithm has its peak with 0 = 1.1 or 9 = 1.2 (for RF > 0.75 this
is not always true which is conjectured to be, because the number of evaluated instances is
rather small; often it is less than 10). It seems that different levels of NC and RF do not
affect the run-time of the Lagrangean relaxation approach, but that column generation
is very sensitive towards changes of these values. As mentioned before, the impact of RF
on the run-time behavior of column generation is much stronger than the impact of NC.
It should be noted that the Lagrangean relaxation method could have solved all 2880
instances in the test-bed within reasonable time, but the average results are given for the
aforementioned 1753 instances only to allow a comparison with the column generation
results.

To see if Lagrangean relaxation and column generation pay off, we examined whether
or not the simple lower bound LB0 has been improved. Tables 5 and 6, respectively, show
the average improvement of LB0, where the improvement is measured in percentage by

LBi~LB° • 100 for i e {1,2}. (37)
LBo

It turns out that the column generation procedure yields decidedly better lower bounds
than Lagrangean relaxation. For 9 = 1.0 and RF > 0.75 it happens that the lower bounds
obtained with Lagrangean relaxation are even worse than LBQ on average although the
Information in (11) is used to guide the search for good lower bounds. Due to (25),
the column generation lower bound cannot be worse than LBo- Roughly speaking, the
improvement of LBQ declines if 9 increases. For 9 = 1,5 neither Lagrangean relaxation
nor column generation can improve LBQ; both methods compute LBo (neglecting slight
improvements). This indicates that studying instances with 9 > 1.5 is not promising
for the approaches presented here. From this result we learn for future work that those
who develop exact methods should evaluate, if the Optimum Solution for instances of the

9

n = 30 9 = 1.0 <9 = 1.1 9 = 1.2 9 = 1.3 9 = 1.4 9 = 1.5

RF = 0.25 2.37 3.11 3.97 4.87 5.81 6.82

NC = 1.5
RF = 0.5 2.18 2.72 3.73 4.81 5.88 6.68

NC = 1.5
RF = 0.75 2.15 2.60 4.86 6.42 7.35 8.74
RF = 1.0 2.00 2.23 2.27 5.21 6.47 7.26
RF = 0.25 2.23 3.05 3.99 4.99 6.04 7.18

JVC = 1.8
RF = 0.5 2.24 3.08 4.11 5.38 6.58 7.58

JVC = 1.8
RF = 0.75 2.28 2.68 4.09 6.48 7.90 9.04
RF = 1.0 2.19 2.55 2.96 3.39 6.99 8.61
RF = 0.25 2.48 3.48 4.66 5.88 7.21 8.64

JVC = 2.1
RF = 0.5 2.45 3.39 4.60 5.93 7.33 8.70

JVC = 2.1
RF = 0.75 2.39 3.14 4.17 5.82 8.71 9.88
RF = 1.0 2.36 2.94 3.28 7.08 9.80 10.48

Table 3: Average Run-Time of the Lagrangean Relaxation Method

n = 30 0 = 1.0 9 = 1.1 9=1.2 9 = 1.3 9= 1.4 9= 1.5
RF = 0.25 0.82 1.48 0.98 0.87 0.73 0.81

NC = 1.5 RF ~ 0.5 11.32 24.28 31.50 15.68 7.83 11.77 NC = 1.5
RF = 0.75 20.30 34.15 28.68 57.05 63.91 21.64
RF = 1.0 22.84 36.08 35.37 164.30 201.25 41.62
RF = 0.25 0.74 0.77 1.10 0.65 0.63 0.72

NC = 1.8 RF = 0.5 6.30 24.51 32.80 17.70 10.41 6.79 NC = 1.8
RF = 0.75 21.47 30-99 51.93 22.70 23.10 45.02
ÄF = 1.0 24.59 32.95 42.17 47.93 77.23 195.23
RF = 0.25 0.61 1.03 0.89 0.60 0.67 0.78

n

II to

i—«
 RF = 0.5 6.01 25.30 23.94 11.65 4.73 4.41 n

II to

i—«

RF = 0.75 13.37 39.61 42.40 87.89 56.53 30.51
RF = 1.0 22.00 48.36 102.82 42.53 113.57 115.47

Table 4: Average Run-Time of the Column Generation Method

10

n = 30 9 = 1.0 9 = 1.1 9 =1.2 9 = 1.3 0 = 1.4 9 = 1.5
RF = 0.25 9.78 2.38 0.18 0.02 0.00 0.00

NC = 1.5
RF = 0.5 13.86 7.39 3.54 0.24 0.00 0.00 NC = 1.5
RF = 0.75 3.23 6.06 2.42 1.51 0.00 0.00
RF = 1.0 -13.80 2.93 0.00 0.00 0.00 0.00
RF = 0.25 13.00 3.77 0.47 0.00 0.00 0.00

NC = 1.8
RF = 0.5 19.19 8.74 2.88 0.62 0.14 0.02 NC = 1.8
RF = 0.75 -6.74 1.52 0.00 0.00 0.00 0.00
RF = 1.0 -10.18 3.88 3.05 6.24 0.00 0.00
RF = 0.25 15.65 3.02 0.04 0.00 0.00 0.00

NC = 2.1
RF = 0.5 20.45 9.54 1.06 0.02 0.00 0.00 NC = 2.1
RF = 0.75 -1.08 3.04 2.08 1.12 0.00 0.00
RF = 1.0 -18.92 1.97 0.00 0.00 0.00 0.00

Table 5: Average Improvement of LBQ due to Lagrangean Relaxation

n = 30 4=1.0 0=1.1 0 = 1.2 (9 = 1.3 0 = 1.4 0 = 1.5
RF = 0.25

wc=1-5

RF =1.0

13.63 3.27 0.20 0.02 0.00 0.00
36.27 17.16 6.65 1.04 0.09 0.05
30.62 18.31 6.95 1.95 0.00 0.00
20.85 14.03 8.89 2.04 0.00 0.00

RF = 0.25

RF = 1.0

16.82 6.26 0.90 0.00 0.00 0.00
42.11 17.98 5.09 1.20 0.17 0.13
28.70 18.95 4.86 0.00 0.00 0.00
24.18 17.28 14.01 10.68 0.00 0.00

RF = 0.25

RF = 1.0

22.96 4.53 0.12 0.00 0.00 0.00
43.56 17.93 2.27 0.25 0.03 0.01
42.51 21.71 13.71 6.63 0.03 0.00
22.53 15.15 16.15 0.00 0.00 0.00

Table 6: Average Improvement of LBQ due to Column Generation

11

n = 30 0 = 1.0 0 = 1.1 0 = 1.2 0 = 1.3 0 = 1.4 0 = 1.5

RF = 0.25

NC'1S ^:ü:75
RF = 1.0

27.08 29.76 28.52 28.39 27.48 26.88
22.06 25.84 29.45 33.85 33.89 35.98
15.91 26.30 33.54 30.56 35.82 37.34
17.85 20.90 29.10 28.10 31.27 35.47

RF = 0.25

wc=1-8 £?:S:575
RF = 1.0

22.06 26.24 26.62 24.97 23.95 21.39
20.87 25.57 30.02 29.90 30.83 31.84
13.47 15.19 22.09 33.46 30.67 32.84
8.97 15.96 10.08 23.62 17.95 31.15

ÄF = 0.25

ÄF = 1.0

Table 7: Average I

18.95 24.50 23.07 22.81 22.19 23.22
19.03 24.78 25.17 28.92 29.33 28.31
10.64 15.83 20.18 24.23 28.98 30.84

7.85 17.38 9.56 15.84 31.88 21.41

mprovement of UB0 due to Lagrangean Relaxation

n = 30

o

rH II 0 = 1.1 ll H-
1 9 = 1.3 9 = 1.4 9 = 1.5

RF = 0.25 20.17 23.42 18.91 16.57 16.33 15.96

NC = 1.5 RF = 0.5 25.72 30.21 31.01 30.36 27.97 28.96 NC = 1.5
RF = 0.75 26.75 33.94 41.53 30.64 35.64 33.12
ÄF=1.0 29.60 30.85 37.49 32.20 29.07 35.42
RF = 0.25 18.21 18.25 17.31 14.16 13.29 12.74

NC = 1.8 RF = 0.5 22.17 27.85 29.32 25.59 24.87 25.26 NC = 1.8
RF ~ 0.75 24.93 27.37 28.21 29.20 28.87 30.39
RF = 1.0 22.30 24.48 17.30 25.66 31.41 39.90
RF = 0.25 15.63 18.07 13.53 12.37 11.72 11.30

§

II to
 RF = 0.5 20.91 25.67 23.82 24.98 24.05 22.76 §

II to

RF = 0.75 19.45 25.19 25.60 26.54 26.73 25.58
RF = 1.0 24.64 27.11 28.52 29.81 29.52 32.35

Table 8: Average Improvement of UBÖ due to Column Generation

12

n = 30 9 = 1.0 0 = 1.1 0 = 1.2 9 = 1.3 !

Th t-H II 9 = 1.5

ÄF = 0.25 16.23 17.76 21.14 21.30 22.72 23.29

NC = 1.5
RF = 0.5 33.72 35.72 36.57 36.48 39.35 39.03 NC = 1.5
RF = 0.75 35.43 33.51 38.73 45.91 47.01 47.79
RF = 1.0 40.35 29.08 29.18 38.57 41.88 46.54
RF = 0,25 15.60 17.83 19.81 21.58 22.79 25.03

NC = 1.8
RF
RF

= 0.5
= 0.75

30.58
42.35

34.26
37.46

35.57
42.64

36.49
43.02

37.61
45.45

38.19
45.88

RF = 1.0 39.29 31.29 34.54 30.95 49.35 45.71
RF = 0.25 13.94 16.79 20.60 20.99 21.84 20.85

NC = 2.1
RF
RF

= 0.5
= 0.75

30.28
42.23

33.57
38.36

36.22
41.91

37.30
44.05

37.65
44.98

39.14
45.80

RF = 1.0 46.01 34.31 38.63 43.72 47.90 50.27

Table 9: Average Gap between LBX and the Best Known Upper Bound

n = 30 6» = 1.0 6 — 1.1 (9=1.2 0 = 1.3 6 = 1.4 6 = 1.5
RF = 0.25

RF = 1.0

13.42 17.10 21.12 21.30 22.72 23.29
21.03 30.00 34.77 35.98 39.30 39.00
18.62 25.83 35.65 45.67 47.01 47.79
17.84 21.55 22.84 37.21 41.88 46.54

RF = 0.25
wc=18

RF = 1.0

12.80 16.05 19.52 21.58 22.79 25.03
17.58 28.89 34.25 36.14 37.59 38.12
20.80 26.92 39.83 43.02 45.45 45.88
16.82 22.41 27.63 28.07 49.35 45.71

RF = 0.25

w-s-1

RF = 1.0

Table 10: Average G

9.10 15.68 20.55 20.99 21.84 20.85
17.07 28.55 35.49 37.15 37.63 39.13
17.01 27.36 35.30 41.10 44.97 45.80
18.74 25.95 28.72 43.72 47.90 50.27

ap between LB^ and the Best Known Upper Bound

13

resource Investment problem with 9 > 1.5 is close to LBQ or if there still remains a gap
between LB0 and the optimum result.

As explained above, both, the Lagrangean relaxation method and the column gener­
ation algorithm, compute feasible solutions as a byproduct. Tables 7 and 8, respectively,
reveal, if the simple upper bound UB0 can be improved on average. Improvements are
measured as

UBo '100 fOT *€ {1'2}" (38)

Both procedures give very promising results and improve UBo decidedly. For the La­
grangean relaxation method, there is a tendency that improvements are positively cor-
related with increases of 9. This is what one would expect, for UB0 being derived from
the earliest start schedule. The earliest start schedule seems to be a poor Solution, if 6 is
large, because periods beyond ECn+1 are kept idle which goes along with a high resource
request in early periods. Only for RF = 0.25 this effect is not clear from the data. For
the column generation method, this Observation cannot be made. We conjecture that the
reason for this is that for large 9 values the number of instances for which few columns are
generated upon termination is large compared to instances with low 9 values (see Table
1). Hence, less feasible solutions are generated and the chance for finding a good feasible
Solution decreases. Similarly, since the run-time of the column generation procedure is
positively correlated with RF (see Table 4), the upper bounds found with column gener­
ation are better than the upper bounds found with Lagrangean relaxation, if RF > 0.5,
and are worse, if RF — 0.25.

Next, we are interested in the Solution quality in terms of the gap between the lower
bound and the best known upper bound of an instance. Tables 9 and 10 provide this
Information in terms of average results. The gap is measured as

•'SS,8'" «"«o.»- <»>

For both methods there is a clear tendency that the gap increases if 9 does (outliers are
ignored). This indicates that instances with, say, 9 = 1.5 are much harder to solve than
instances with 9 = 1.0. Note, though not investigated in our studies, we conjecture that
if 9 is large enough, instances become easier to solve again, because if T > £ p,• then

j&V
instances are trivial. RF also seems to have a big impact on the gap, though a tendency
is not obvious which might be, because there are only a few instances with a high RF
value (often less than 10; see Table 2). NC seems to have a minor effect only, if at all.
In summary we have that column generation yields better lower bounds than Lagrangean
relaxation combined with subgradient optimization.

5.2 Möhring's Instances

According to Tables 9 and 10 the gap between lower and upper bound does not indicate
tight bounds and it is not clear whether this is due to poor lower bounds, due to poor
upper bounds, or both. Hence, we need to investigate further what makes the results
look that bad. To make a definite Statement, one needs instances for which the optimum
solutions are known.

For a bridge construction project with n = 16 non-dummy activities and four re­
sources, Möhring [11] provides detailed data. He studies 15 instances which differ in

14

n = 16 II M

ö

0 - 1.1 0 = 1.2 0 — 1.3 0 = 1.4 0 = 1.5
1/1/1/1 11.24 16.24 1.03 18.26 11.75 0.00
3/1/1/1 19.22 12.20 2.80 13.00 8.64 0.00
1/3/1/1 13.39 8.09 1.05 13.04 8.74 0.00
1/1/3/1 11.80 8.60 5.88 22.10 23.17 0.00
1/1/1/3 8.55 16.16 6.93 22.87 7.80 0.00
3/3/1/1 14.75 6.77 1.48 13.04 11.11 0.00
3/1/3/1 14.07 15.51 6.26 18.17 1.46 0.00
3/1/1/3 13.80 13.57 6.08 19.14 22.51 0.00
1/3/3/1 11.88 13.00 3.04 19.34 19.33 0.00
1/3/1/3 11.00 9.23 3.58 20.04 6.25 0.00
1/1/3/3 9.57 13.47 5.05 24.14 16.21 0.00
3/3/3/1 12.89 18.82 3.95 15.43 0.92 0.00
3/3/1/3 11.80 6.79 3.59 19.21 20.35 0.00
3/1/3/3 10.65 16.06 7.11 19.98 15.10 0.00
1/3/3/3 10.17 12.96 3.55 20.26 14.08 0.00

Table 11: Gap between LBX and the Optimum Solution

n = 16 0 = 1.0 0 = 1.1 0 = 1.2

CO r-H II fl = 1.4

T-H II

1/1/1/1 6.67 12.70 0.00 15.00 8.57 0.00

3/1/1/1 14.29 10.39 0.00 11.25 6.12 0.00

1/3/1/1 4.76 5.30 0.00 11.25 6.12 0.00

1/1/3/1 4.17 4,62 3.89 17.73 19.44 0.00

1/1/1/3 4.17 7.62 6.25 19.00 2.38 0.00

3/3/1/1 11.11 3.85 0.00 9.00 4.76 0.00

3/1/3/1 10.00 13.45 3.24 14.74 0.00 0.00

3/1/1/3 10.00 6.72 5.21 15.83 19.70 0.00

1/3/3/1 3.33 10.46 1.04 14.77 15.91 0.00

1/3/1/3 3.33 3.43 0.00 15.83 1.85 0.00

1/1/3/3 3.03 3.16 0.00 19.64 11.69 0.00

3/3/3/1 8.33 16.33 0.89 12.64 0.00 0.00

3/3/1/3 8.33 2.63 0.00 13.57 16.67 0.00

3/1/3/3 7.69 9.94 0.00 16.87 9.89 0.00

1/3/3/3 2.56 7.73 0.00 17.19 9.89 0.00

Table 12: Gap between LB2 and the Optimum Solution

15

n = 16 4 = 1.0 0 = 1.1 9 = 1.2 0 = 1.3 0 = 1.4 0 = 1.5

1/1/1/1 0.00 0.00 0.00 16.67 40.00 0.00

3/1/1/1 0.00 18.18 12.50 37.50 28.57 0.00

1/3/1/1 0.00 18.18 0.00 0.00 14.29 0.00
1/1/3/1 0.00 0.00 10.00 0.00 11.11 16.67
1/1/1/3 0.00 0.00 0.00 10.00 14.29 33.33

3/3/1/1 0.00 0.00 0.00 30.00 44.44 37.50
3/1/3/1 0.00 0.00 8.33 0.00 44.44 0.00
3/1/1/3 0.00 11.76 8.33 0.00 45.45 62.50
1/3/3/1 0.00 0.00 25.00 0.00 36.36 0.00
1/3/1/3 0.00 11.76 0.00 8.33 44.44 50.00
1/1/3/3 0.00 0.00 7.14 0.00 18.18 0.00
3/3/3/1 0.00 0.00 0.00 0.00 54.55 0.00
3/3/1/3 0.00 10.53 0.00 21.43 30.77 70.00
3/1/3/3 0.00 0.00 6.25 6.25 7.69 0.00
1/3/3/3 0.00 0.00 0.00 0.00 30.77 0.00

Table 13: Gap between UB\ and the Optimum Solution

n = 16

©

1—
1

II %
 0 = 1.1 0 = 1.2

CO l—
l

II II t—*
 U3 i-H ii

1/1/1/1 0.00 0.00 0.00 33.33 20.00 25.00
3/1/1/1 0.00 27.27 37.50 12.50 57.14 50.00
1/3/1/1 0.00 18.18 0.00 25.00 57.14 33.33
1/1/3/1 0.00 0.00 20.00 20.00 33.33 0.00
1/1/1/3 0.00 0.00 20.00 10.00 28.57 16.67
3/3/1/1 0.00 38.46 0.00 60.00 66.67 12.50
3/1/3/1 0.00 17.65 33.33 33.33 44.44 12.50
3/1/1/3 0.00 17.65 16.67 33.33 18.18 25.00
1/3/3/1 0.00 0.00 25.00 33.33 18.18 0.00
1/3/1/3 0.00 11.76 8.33 33.33 44.44 37.50
1/1/3/3 0.00 0.00 7.14 7.14 27.27 37.50
3/3/3/1 0.00 0.00 42.86 42.86 54.55 0.00
3/3/1/3 0.00 26.32 21.43 28.57 30.77 40.00
3/1/3/3 0.00 13.04 18.75 25.00 30.77 60.00
1/3/3/3 0.00 0.00 6.25 12.50 30.77 60.00

Table 14: Gap between UB2 and the Optimum Solution

16

the cost coefficients c& only. Actually, he uses all different cost constellations where
Ck € {1,3}. We will refer to these instances by means of a tuple ci/c2/c3/c4. Note, be-
cause 1/1/1/1 is essentially the same instance as 3/3/3/3, the test-bed consists of 15 and
not of 24 = 16 instances. Möhring also provides the Optimum objective function values
for different values of T. We studied instances with T as defined by (36) where, as before,
9 € {1.0,1.1,1.2,1.3,1.4,1.5}. In total we thus have 6*15 = 90 instances. These instances
are included in Möhring's study, too.

To run the experiment, we used exactly the same method parameters as in the previous
subsection. Tables 11 and 12 give the outcome of this study in terms of the deviation of
the lower bound from the optimum objective function value OFT measured as

OPOPTBi "100 fori60,2}. (40)

One can observe that both procedures are quite sensitive to variations of 9. For almost
all cases with 9 = 1.3 the lower bounds are loose. It turns out that both algorithms find
the optimum objective function value for all instances with 9 = 1.5. For 9 = 1.2 the lower
bounds are tight, too. Ab out all figures are below a 20% deviation from the optimum
Solution. For column generation, which gives tighter lower bounds than Lagrangean re-
laxation, the gap is below 10% in ab out 71% of the cases, and it is below 5% in about
50% of the cases. Variations of the cost coefficients also have an impact on the quality of
the bound, and especially for 9 < 1.1 and 0 = 1.4 the sensitivity to these parameters is
high for both algorithms.

Tables 13 and 14 provide Information on the gap between the Upper bound and the
optimum objective function value measured as

UBx~p^T • 100 for »€ {1,2}. (41)

Again, variations of 9 and variations of affect the outcome without a clear tendency.
For ß = 1,0, both algorithms find feasible solutions which are optimal in all cases. For
9 > 1.1, the Lagrangean relaxation procedure computes Optimum solutions fairly often,
but 9 = 1.4 is a critical value, because the gaps are large. The upper bounds derived by
column generation are poor in almost all cases with 0 > 1.1. Overall, about 56% of the
instances can be solved optimally.

5.3 ProGen Instances with 20 Non-Dummy Activities

As reported above, all (exact) Solution procedures proposed so far are highly sensitive to
the number of resources. Hence, we want to examine the impact of the number of resources
on the run-time Performance of our procedures as well. To do so, we used the ProGen
Software [10] to generate instances with 20 non-dummy activities and \K\ G {2,4,6,8}
resources. Again, we defined T according to (36) with 9 G {1.0,1.1,1.2,1.3,1.4,1.5}. For
each parameter level combination of \K| and T we generated 10 instances. In total we
thus came up with 240 instances.

The real-valued cost coefficients c& were randomly drawn out of [0,10] with uniform
distribution. The input for the ProGen Software (see [9] for detailed explanations) was
chosen to be as follows: Activity durations pj are integer values out of [1,10]. The
project networks have three (non-dummy) Start activities and three (non-dummy) finish

17

n = 20 0 = 1.0 0 = 1.1 0 = 1.2 0 = 1.3 0 = 1.4 0 = 1.5

1*1=2
1*1=4
1*1=6
1*1=8

0.81
1.31
1.65
1.90

1.10
1.71
2.05
2.37

1.44
2.14
2.54
2.90

1.82
2.61
3.03
3.43

2.17
3.09
3.53
3.97

2.59
3.51
4.10
4.59

Table 15: Average Run-Time of Lagrangean Relaxation

n = 20

o

i—
i

II 0 = 1.1

\K\ = 2 4.01 12.11
\K\ = 4 12.26 48.93
\K\ = 6 41.47 134.31
\K\ = 8 29.58 92.15

0 = 1.2 0 = 1.3 0 = 1.4 0 = 1.5

10.25 5.09 7.93 3.21
188.34 338.06 439.95 281.70
598.46 782.43 1737.41 1651.09
418.97 704.40 1570.45 3516.03

Table 16: Average Run-Time of Column Generation

activites. The maximal number of predecessors / successors is three and NC = 1.5 is
the network complexity. The resource demands are integer-valued out of [1,10]. The
resource strength is 0.2 and RF = 1.0 is the resource factor. All other values are chosen
as in [9].

Tables 15 and 16 provide the average run-time (in CPU-seconds) upon termination
of the Lagrangean relaxation (performing 100 iterations) and the column generation pro­
cedure, respectively. Note, all instances were solved with column generation until pricing
out occurs and computation has not been stopped before this criterion has been met. Just
one Single instance with \K\ = 4 and 0 = 1.5 could not have been solved on our Computer
and we stopped the computation on this instances after 2500 columns were generated.

We observe that the number of resources affects both, Lagrangean relaxation as well
as column generation. For both algorithms, the run-time is correlated with the number
of resources. The effect on Lagrangean relaxation, however, is less than linear. This is
reasonable, because only the updating of the Lagrangean multipliers and the Solution of
subproblem one is affected. The computational effort grows linear in both cases, and,
therefore, the overall effect is less than linear.

The impact on column generation is stronger. For \K\ 6 {2,4,6}, run-time grows
exponentially as the number of resources inclines. For \K\ = 8, however, we observe that
the computational effort is decidedly less than for \K\ = 6 in all but one case. This is
remarkable, because if the number of resources grows, the number of rows in the master
problem grows, too, due to (22) and (25). Hence, one would expect a monotonical growth
of the run-time (see, e.g., [3,14]). The reason for declining run-time is that the number of
columns being generated declines (see Table 17) and, thus, the number of master problems
to be solved declines, too.

18

n = 20 0 = 1.0 0 = 1.1 0 = 1.2 0 = 1.3 0=1.4 0 = 1.5

1*1 = 2 142.40 268.30 215.90 125.40 138.50 69.90
\K\ = 4 215.70 417.10 717.60 898.10 952.20 708.78
m = 6 289.80 479.60 892.40 1015.60 1312.00 1153.70
\K\ = 8 212.50 401.40 766.50 881.90 1161.10 1496.60

Table 17: Average Number of Columns Upon Termination

6 Conclusions

In this contribution we tackled the resource Investment problem. Up to now, only exact
algorithms have been proposed and, therefore, there is a need for heuristics and for lower
bounds to attack other than very small instances. A first step in this direction has now
been made.

We presented two algorithms in order to obtain lower bounds. The first one is based on
Lagrangean relaxation combined with subgradient optimization. It turned out that given
a set of Lagrangean multipliers, the remaining subproblem decomposes and can be solved
in polynomial time. Thus, the Lagrangean relaxation approach works fast. The second
algorithm employs column generation techniques. Again, the subproblem of generating
a column can be solved in polynomial time, too. However, since the master problem is
a linear programming problem, the run-time upon termination highly depends on the
number of columns to be generated.

In a computational study with 2880 instances consisting of 30 activities and four re­
sources, the following results were obtained: 1753 of the instances can be solved by column
generation after generating 500 columns at most. Many of them need less than 50 columns
only. However, column generation is the slower technique compared to Lagrangean re­
laxation which solves each instance within seconds. Nevertheless, the column generation
lower bounds are much tighter than those obtained with Lagrangean relaxation. A simple
analytic lower bound can be improved decidedly.

Remarkable to note is that both approaches lead to feasible solutions as a byproduct
and thus give Upper bounds as well. The gap between lower and Upper bound mainly
depends on the planning horizon and on the resource factor. The network complexity
seems to be of minor importance in this context. The Upper bound defined by the earliest
start schedule can be improved decidedly.

A further experiment with 90 instances from a bridge construction project with 16
non-dummy activities and four resources reveals that the lower bounds are below a 20%
deviation from the optimum result in almost all cases; often it is below a 10% deviation
especially when column generation is used (71% of the instances have a gap of less than
or equal to 10%, and 50% of the instances have a gap less than 5%). In about 56% of the
cases the optimization guided heuristics find an Optimum Solution. We conjecture that
the gaps between lower and Upper bounds observed for larger instances are mainly due
to poor Upper bounds.

In another experiment with 240 instances consisting of 20 non-dummy activities each,
the impact of the number of resources on the run-time Performance is studied. Instances
with two, four, six, and eight resources are solved. Lagrangean relaxation is affected only

19

slightly. For column generation, the run-time is positively correlated with the number
of resources for up to six resources. But, it turned out that for instances with eight
resources the run-time is decidedly lower than for instances with six resources. Hence, we
can conclude that more resources do not necessarily lead to higher computational effort
as it is the case with existing (exact) Solution procedures.

This work can serve as a starting point for developing heuristics in the future. A
more sophisticated strategy could use the presented Lagrangean relaxation technique for
generating several feasible solutions fast. Then, some kind of improvement scheme may
take over in order to find improved upper bounds. The column generation method should
be refined in order to speed up convergence. Also, the presented column generation
procedure could be used as the core of a branch-and-price method seeking for optimal
solutions and be compared against existing codes. The advantage of such a strategy would
be that it can be truncated to yield a heuristic.

Finally, it should be noted that minimal time lags between the activities, release dates
of the activities, and deadlines for the activities are easy to incorporate into the model as
well as into the algorithms.

References

[1] BARNHART, C., JOHNSON, E.L., NEMHAUSER, G.L., SAVELSBERGH, M.W.P.,
VANCE, P.H., (1998), Branch-and-Price: Column Generation for Huge Integer
Programs, Operations Research, Vol. 46, pp. 316-329

[2] BLAZEWICZ, J., LENSTRA, J.K., RINNOOY KAN, A.H.G., (1983), Scheduling
Subject to Resource Constraints: Classification and Complexity, Discrete Applied
Mathematics, Vol. 5, pp. 11-24

[3] BORGWARDT, K.H., (1987), The Simplex-Method: A Probabilistic Analysis,
Berlin, Springer

[4] BRUCKER, P., DREXL, A., MÖHRING, R.H., NEUMANN, K., PESCH, E., (1998),
Resource-Constrained Project Scheduling: Notation, Classification, Models, and
Methods, European Journal of Operational Research, to appear

[5] DEMEULEMEESTER, E., (1995), Minimizing Resource Availability Costs in Time-
Limited Project Networks, Management Science, Vol. 41, pp. 1590-1598

[6] DREXL, A., KIMMS, A., (1998), Minimizing Total Weighted Completion Times
Subject to Precedence Constraints by Dynamic Programming, Working Paper 475,
University of Kiel

[7] FISHER, M.L., (1981), The Lagrangean Relaxation Method for Solving Integer
Programming Problems, Management Science, Vol. 27, pp. 1-18

[8] HELD, M., WOLFE, P., CROWDER, H.P., (1974), Validation of Subgradient Op­
timization, Mathematical Programming, Vol. 6, pp. 62-88

[9] KOLISCH, R., SPRECHER, A., (1997), PSPLIB — A Project Scheduling Problem
Library, European Journal of Operational Research, Vol. 96, pp. 205-216

20

[10] KOLISCH, R., SPRECHER, A., DREXL, A., (1995), Characterization and Gen­
eration of a General Class of Resource-Constrained Project Scheduling Problems,
Management Science, Vol. 41, pp. 1693-1703

[11] MÖHRING, R.H., (1984), Minimizing Costs of Resource Requirements in Project
Networks Subject to a Fixed Completion Time, Operations Research, Vol. 32, pp.
89-120

[12] NÜBEL, H., (1998), A Branch-and-Bound Procedure for the Resource Investment
Problem with Generalized Precedence Constraints, Working Paper 516, University
of Karlsruhe

[13] RADERMACHER, F.J., (1985/6), Scheduling of Project Networks, Annais of Oper­
ations Research, Vol. 4, pp. 227-252

[14] SHAMIR, R., (1987), The Efficiency of the Simplex-Method: A Survey, Manage­
ment Science, Vol. 33, pp. 301-334

[15] SOUMIS, F., (1997), Decomposition and Column Generation, in: DeirAmico, M.,
Maffioli, F., Martello, S., (eds.), Annotated Bibliographies in Combinatorial Opti­
mization, New York, Wiley, pp. 115-126

21

