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Abstract 
This contribution presents an efficient Solution method for solving the major short-term planning 

Problems which occur, if lot production has to be managed. In our focus are the two most important 
aspects, i.e. lot sizing and scheduling. Since both problems heavily interact, we propose an approach 
which solves these problems siraultaneously. This is in contrast fco what traditionaJ Manufacturing 
Resource Planning (MRP II) logic suggests. Bufc, since we pay special attention on complex product 
stmctures and several scarce resources, our approach dominates MRP II. A computational study 
reveals that suboptimal results within the 6.6% scope from the Optimum are obtained within less 
than half a second for small instances. 

Keywords: Production Management, MRP II, Lot Sizing, Scheduling, Complex Product Structures, 
Multiple Scarce Resources, Dynamic Demand 

1 Introduction 

Lot production occurs when several non-customized products are manufactured under a make-to-order 
regime. Managing this Situation means that, besides some medium-term problems such as designing 
the product line, forecasting demand, providing sufficient capacity, and generating a master production 
schedule, hard planning problems remain to be solved on the short-term. These are lot sizing and 
scheduling. 

Precedence constraints among the items which define a complex multi-level gozinto-structure, and 
several resources, say machines, which provide scarce capacity make these problems even harder in a 
real-world environment and must not be ignored. The traditional logic of MRP II [12, 39], which is 
probably the most widespread planning philosophy, suggests the following: Lot sizing and scheduling 
should be done in a stepwise fashion moving through three planning stages. Stage 1 performs lot sizing. 
To keep the problem easy at this stage, capacity restrictions are neglected. Starting with the end items, 
a sequence of single-item Wagner-Whitin lot sizing problems [3, 14, 37, 38] is solved. The result of the 
lot size decision for an item defines the demand of its immediate predecessors. Successively, lot sizing 
can thus be done for all items. Note that the computation of the lot sizes for an item is only affected by 
the decisions made for its successors. Preceding items do not affect the computation of lot sizes. Also 
note that the Overall result is not optimal even for the uncapacitated multi-level lot sizing problem which 
requires much more sophisticated approaches [1, 2]. Given the result obtained so far, the second stage of 
MRP II takes over now. Stage 2 performs capacity requirements planning. Because capacity restrictions 
were ignored up to here, capacity demand at some points in time usually exceeds the available capacity. 
By shifting some lots forward or backward in time, the second phase tries to meet the capacity limits. 
Finally, Stage 3 determines a sequence in which Orders are released to the shop floor. 

As it became clear, the reason why practitioners complain about short-term production planning is 
inherent in the MRP II logic. Hence, an improved concept for lot sizing and scheduling in the presence 
of multi-level gozinto-structures and several scarce resources is needed. This is to be presented in this 
text. But, before we tum into more details, we should have a brief look at what other researchers have 
published. 

Many authors have considered a multi-level Wagner-Whitin-type of problem, i.e. they ignored capac­
ity constraints. Most of them have tested so-called improved heuristics where methods for the single-level 
Wagner-Whitin problem are applied Ievel by level in Order to construct a feasible plan. More sophis­
ticated approaches are described in [18, 31, 32]. A sensitivity analysis is done in [36], and complexity 
results for uncapacitated, multi-level lot sizing are provided in [4]. 

Most authors who consider capacitated, multi-level lot sizing make restrictive assumptions. [34], for 
example, takes only a single bottleneck machine into account. [30] focuses on assembly gozinto-structures. 
The work in [6] is confined to two levels only. Multi-level lot sizing, where general gozinto-structures 
and multiple machines are taken into account, is dealt with in [17, 35]. 

The literature on multi-level lot sizing and scheduling is sparse. A hierarchical Integration of some 
lot sizing and some scheduling procedure is discussed in [7, 29]. As pointed out in [11], most work on lot 
sizing and scheduling is confined to the single-level case. 

Work of our own also started with restrictive cases. For multi-level lot sizing and scheduling with a 
single-machine, we refer to [21, 22, 23]. Methods for the multi-machine case are published in [25, 26] 
which are the ones we have to compete with. In [24] our efforts are summarized comprehensively. 
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The paper at band extends the so-called demand shuffie algorithm described in [23] for the single-
machine case to yield an efficient procedure for multi-level lot sizing and scheduling with multiple ma-
chines. The text is organized as follows: Section 2 introduces a mixed-integer program (MIP) to give a 
precise definition of the problem to solve. In Section 3, the sophisticated Solution method is presented. A 
computational study in Section 4 shows that the procedure improves previous work decidedly. Concluding 
remarks in Section 5 complete the paper. 

2 The Short-Term Flanning Problem 

The problem to be solved can be described as follows: Several items are to be produced in order to 
meet some known (or estimated) dynamic demand without backlogs and stockouts. Precedence relations 
among these items define an acyclic gozinto-structure of the general type. In contrast to many authors 
who allow demand for end items only, now, demand may occur for all items including component parts. 
The finite planning horizon is subdivided into a number of discrete time periods. Positive lead times are 
given due to technological restrictions such as cooling or transportation, for instance. Furthermore, items 
share common machines with scarce capacity. The capacities may vary Over time. Producing one item 
requires an item-specific amount of the available capacity. All data are assumed to be deterministic. 

Items which are produced in a period to meet some future demand must be stored in inventory and 
thus cause item-specific holding costs. 

Bach item requires one machine for which a setup State has to be taken into account. Production can 
only take place if a proper State is set up. Setting a machine up for producing a particular item incurs 
item-specific setup costs which are assumed to be sequence independent. Setup times are not considered 
here. Once a certain setup action is performed, the setup State is kept up until another setup changes the 
current State. Hence, same items which are produced having some idle time in-between do not enforce 
more than one setup action. 

The most fundamental assumption here is that for each machine at most one setup may occur within 
one period. Hence, at most two items sharing a common machine may be produced per period. Due 
to this assumption, the problem is known as the proportional lot sizing and scheduling problem (PLSP) 
[10, 11, 16, 24]. By choosing the length of each time period appropriately small, the PLSP is a good 
approximation to a continuous time axis. It refines the well-known discrete lot sizing and scheduling 
problem (DLSP) [9,11,15, 28, 33] as well as the continuous setup lot sizing problem (CSLP) [5,11,19, 20]. 
Both assume that at most one item may be produced per period. All three models could be elassified as 
small bücket models since only a few (one or two) items are produced per period. In contrast to this, the 
well-known capacitated lot sizing problem (CLSP) [8, 11, 13, 27] represents a large bücket model since 
many items can be produced per period. Note, the CLSP does not include sequence decisions. 

Let us now introduce some notation. In Table 1 the decision variables are defined. Likewise, the 
Parameters are explained in Table 2. Using this notation, we are now able to present a MlP-model 
formulation. 

Symbol Definition 
Tjt Inventory for item j at the end of period t. 
Qjt Production quantity for item j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j occurs in period t (xjt = 1) or not (xjt = 0). 
Vjt Binary variable which indicates whether machine m 

is set up for item j at the end of period t (yjt = 1) 
or not (yu = 0). 

Table 1: Decision Variables for the PLSP 

min ÜOw+v*) (i) 
j=11=\ 

subject to 



Symbol Definition 
aji Gozinto-factor. Its value is zero if item i is not an 

immediate successor of item j, Otherwise, it is the 
quantity of item j that is directly needed to 
produce one unit of item i. 

Cmt Available capacity of machine m in period t. 
djt Externa! demand for item j in period t. 
h3 Non-negative holding cost for having one unit of 

item j one period in inventory. 
Initial inventory for item j. 

3m Set of all items that share the machine m, 
i.e. Jm d— {j G {1,..., J} | rrij = m}. 

J Number of items. 
M Number of machines. 
rrij Machine on which item j is produced. 
Pj Capacity needs for producing one unit of item j. 
S3 Non-negative setup cost for item j. 

Set of immediate successors of item j, 
i.e. Sj =' {i g {1,..., J} | an > 0}. 

T Number of periods. 
V3 Positive and integral lead time of item j. 
ViO Unique initial setup State. 

Table 2: Parameters for the PLSP 

Jj(t-i) + Qjt - djt ~ 53 
i€Sj 

j = 1,.. 
t = 1,.. •,T (2) 

mm{t+Vj,T} 
ht > 52 52 a3i<liT 

i&Sj r=t+l 

-T
o­

ll 
II 

.,J 

.,T- 1 (3) 

J2 < i 
Jm 

m = 1,. 
t = 1,.. •,T (4) 

Xjt > Vjt - Vj(t-3) 
3 = 
t = 1,.. •,T (5) 

PjQjt 5 Cmjt{yj(t-i) + Vjt) 
3 = • 
t = 1,.. -,T (6) 

^ ^ PjQjt ^ t 
7m 

m = 1,. 
t = 1,.. •,T (7) 

Vjt € {0,1} 
3 = h • • 
t= 1,.. -,T (8) 

Ijti Qjti xjt > 0 II 
II 

-,T (9) 

The objective (1) is to minimize the sum of setup and holding costs. Equations (2) are the inventory 
balances. At the end of a period t we have in inventory what was in tbere at the end of period t — 1 plus 
what is produced minus externa! and internal demand. To fulfill internal demand we must respect positive 
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the setup State of each machine 
is uniquely defined at the end of each period. Those periods in which a setup happens are spotted by (5). 
Note that idle periods may occur in order to save setup costs. Due to (6) production can only take place 
if there is a proper setup State either at the beginning or at the end of a particular period. Hence, at 
most two items can be znanufactured on each machine per period. Capacity constraints are formulated in 
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(7). Since the right hand aide is a constant, overtime is not available. (8) define the binary-valued setup 
State variables, while (9) are simple non-negativity conditions. The reader may convince himself that 
due to (5) in combination with (1) setup variables xjt are indeed zero-one valued. Hence, non-negativity 
conditions are sufficient for these. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 

3 Demand Shuffie Heuristic 

In this section we get acquainted with a novel heuristic to attack the PLSP with multiple machines. It 
is an extension of what has been presented in [23] for the single-machine case. For the procedure to be 
described, the name demand shuffle has been coined. Demand shuffle is a random sampling method that is 
combined with a data structure which affects the construction of production plans. Due to some problem 
specific data structure manipulations each iteration has a tendency to yield a different production plan. 
Hence, the approach can be seen as a diversified search for production plans with low objective function 
value. An example in the appendix illustrates the procedure. 

The basic idea of this method is that upper bounds Qjt for the sizes of lots for items j = 1,..., J in 
periods t = 1,... ,T bring in a means to control the generation of production plans. Roughly speaking, 
the three ingredients of the method proposed here are a rule to compute the Qjf-values, a construction 
scheme respecting these upper bounds, and a way to enforce that the upper bounds will likely change 
from iteration to iteration. 

3.1 Data Structure 

A graphical representation derived from the gozinto-trees helps to compute Upper bounds Qjt for the 
production quantities. The fundamental idea is that for each positive entry in the external demand matrix 
a gozinto-tree-like structure not only contains the information what (external or internal) demand occurs 
for what item, but also a deadline at which this demand is to be met. 

More formally, the initial data structure TDS can be defined as 

r°s äg u (J fffß,«%,Wiü,0,0,-1) (10) 
J—1 (=1 

where the function w% is defined by 

def * 1 
Wi {h t) = x(dir)nodesi + ^ x(dit)nodeSi (11) 

i=l r= 1 t=l 

and computes unique labels for the root nodes of the gozinto-trees with x being an auxiliary function 
defined as 

^ {o; - dz) 

The expression nodesj stands for the number of nodes in a gozinto-tree with item j being its root node. 
It can recursively be computed using 

d nodes j = ^ nodes ji (13) 
i=i 

where 

nodesji d= (14) 
1 , if j = i 
0 , if j ^ i and i g Pj 
Y^heSi nodesjh , otherwise 

is the number of nodes with item index i in the gozinto-tree having item j as its root node. The function 
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ffs is given by 

0 , if demand = 0 

ff s {period, demand, label, path, successor) , |J fPs( period 

{( j,period,period, demandjabel, 
Oi{j,path), 
successor, 

(15) 
i€Vj Oij demand, 

0J2(j,i,label)y 
a(j,path), 
label)} 

, otherwise 

where the function CJ2 is defined by 

u)2(j,i}label)d^ 1+ label 4- ^ nodes & (16) 

to compute unique labels for the internal demand nodes. 
As introduced above (see (15)), each node is represented by an eight-tuple. The first entry is the 

number of the respective item and the last entry is the set of immediately preceding nodes. At the second 
Position we find the deadline until which the demand represented by the node is to be met. This deadline 
is known for external demands only, hence we temporarily fill in a deadline derived from a lot-for-lot 
policy at this position for internal demands and update the entry at this position as we proceed. The 
third position also contains a period's index. It is the deadline of the node when scheduling is done on a 
lot-for-lot basis. Initially, the entries at position two and three are equal. At position four we have the 
demand size that is represented by the node. For root nodes this equals the external demand. The fifth 
Position contains a unique label out of C to identify each node where C equals the interval 

At the sixth position we find an encoding of the path from the root node to the current node in the 
gozinto-tree. This encoding scheme is based on a J-ary code where 

In the sequel, for h G C, let item(h) denote the item number of the node with label h, and let 
deadline(h) a retrieval function that yields the deadline entry at the tuple position two. For retrieving 
the initial deadline entry at position three of a node h, deadlineL4L(h) will be used. To access the demand 
size of node h we use demand(h). Furthermore, let us use path(h) to access the value defined by the 
function a when the node has label h. Note, in the data structure TDS we may have several nodes with 
the same path value. This happens to be if there is more than one period in which externa! demand 
occurs for the same item. At position seven in the tuple we have the label of the immediate successor in 
the gozinto-tree. The value -1 marks root nodes. For h € £, let succ(h) be a retrieval function for that 
value. Analogously, let preds(h) denote the set of labels of immediately preceding nodes which are the 
nodes listed at position eight. 

3.2 Data Structure Manipulations 

An upper bound for the production quantity of an item j in a period t is 

J T 
(17) 

J=1 6=1 

a(j,path) d= path • (J -h 1) 4- j. (18) 

hec 
<tca<ttine(h)>t 

(19) 
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Since the deadline entries in the initial data structure are computed under a lot-for-lot assumption, 
the cumulative demand for an item always is less than or equal to this upper bound in the first run of the 
construction scheine. But, modifying the deadline values after each construction phase (e.g. by assigning 
an earlier deadline) may give Upper bounds smaller than the cumulative demand and therefore affects 
the construction of production plans. 

What we need to discuss now is the way the deadline entries are modified. Choosing some nodes at 
pure random and updating their deadline values with random numbers out of the interval [1,T] would 
be an easy-to-implement possibility, though not a very insightful one. The strategy that we use can 
be outlined as follows: First, choose a node on the basis of some priority rule. Then, decide if the 
deadline entry should be increased or decreased using problem specific insight. And finally, compute the 
new deadline. For the sake of convenience, let us from now on in this subsection assume that initial 
inventories do not exist. For all nodes in the data structure the deadline entries can thus be assumed to 
be positive. 

The process of modifying deadlines becomes a bit more illustrative if we imagine a table with J rows 
and T columns similar to a demand matrix. At a position (j, t) of that matrix we find the sum of all 
demands that are represented by nodes with label h for which item(h) = j and deadline(h) = t holds. 
Modifying the deadline entry of a node then corresponds to shifting some demand to the left or to the 
right, respectively, to give a new table. When doing so over and over again, it looks like shuffling the 
demand. This coins the name demand shuffle as we like to call the heuristic as a whole. 

Before more details are given, let us discuss what side constraints the modification of deadlines should 
respect. As preliminary studies revealed, shifting demands should not be done arbitrarily. Since we face 
scarce capacities, the condition 

t 
Pium{h)demand(h) (20) 

T-1 h£C 
deadltne(h)<t 

should be guaranteed to be true for m = 1,..., M and t = 1,... ,T\ Initially, this ought to be true, 
because no feasible Solution exists, otherwise. Note, we only need to test this condition when some 
demand is shifted to the left. Right shift Operations cannot lead to a violation of this restriction. 

Furthermore, the gozinto-structure defines some precedence relations that should be taken into ac­
count. Shifting some demand to the left (which corresponds to decreasing the deadline entry of a node) 
should respect the internal demand that is to be met. Stating this mathematically, a lower bound for a 
valid deadline entry of a node h € £ is: 

deadline{B(h) d= j ^x{d^dline(k) 4- vit€m{k) | k € preds(h)} , if preds(h) ^ 0 ^ 

Something similar applies when shifting demand to the right (which corresponds to increasing the 
deadline entry of a node). This time we compute an upper bound for the deadline entry of a node he £ 

Note, initially 
deadlineiB ~ deadline(h) = deadline\jB(h) 

holds for he {k € £\ preds(k) ^ 0} and 

deadlineiß = 1 < deadline(h) = deadlineijB(h) 

is valid for h 6 {k € £ \ preds(k) = 0}. 
In addition, we utilize the fact that without loss of generality two external demands for the same 

item are met so that production fulfilling the early demand takes place before the production for the 
late demand does (this is often called the earliest due date rule). In a multi-level case this result can 
be extended for internal demands in the following way: If two internal demands have the same position 
in a gozinto-tree representation then the earliest due date rule applies for these, too. In summary and 
in terms of our representation of a PLSP-instance, we can now State that or.ly those production plans 
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need to be considered where for each node with label h 6 £ its demand is met by production in a certain 
period only when the demand for all nodes in the set 

£W(h) d= {k € C | path(k) = path(h) A deadline141 (k) < deadlineL4L(h)} (23) 

is met by production no later than that period. For h G C we easily verify the property 

ku k2 € CW(h) and ki<k2=> CW{k{) C CW(k2) C £W(h) (24) 

which enables us to avoid testing the complete set CW{h) to see if the earliest due date rule is respected 
when shifting the demand represented by node h to the left. It suffices to check the node with label 
leftwing(h) where 

(25) 

and where the value —1 indicates that no such test is to be made, because there simply is no demand 
that should be met prior to the demand represented by node h according to the earliest due date rule. 
As a result we have another lower bound for the deadline entry of a node h G C: 

,unr,Knjr (hs I deadline(leftwing(h)) , if leftwing(h) # -1 . , 
deadlineLB{h) - j dea(üinet4L(A) , otherwise (26) 

A remarkable point to note is that in the case leftwing(h) = — 1 the lower bound is not necessarily 
the value one as it would be reasonable to expect, because the demand could be left shifted to period 
1 without violating the earliest due date rule. The explanation is that shifting demands for an item to 
the left should help to build large lots for that particular item. Left shifts can therefore be omitted if 
there is no other demand for that item in earlier periods, or, which is a bit more restrictive, if there is no 
demand for which the earliest due date rule must be respected. The lower bound deadlineL4L(h) which 
equals the initial deadline entry of node h prevents a left shift of the demand represented by node h. 

What is done for left shift Operations can also be done for right shift Operations with minor modifi-
cations. Due to the earliest due date rule we have a precedence relation between each node h € C and 
every node in the set 

TZW(h) d=f {keC\ path(k) = path(h) A deadlineL4L{k) > deadlineL4L(h)} (27) 

or, which is more efficient, between each node h € C and the node rightwing(h) where 

and — 1 again signals that there is no additional precedence relation due to the earliest due date rule. 
Note, for h € L the following properties identify the rightwing and the leftwing function being reversal: 

h = rightwing(leftwing(h)), if leftwing(h) / -1 (29) 

h — leftwing(rightwing(h))7 if rightwing(h) ^ -1 (30) 

For h € L an Upper bound for the deadline entry is 

J -if Ii /i.\def f deadline(rightwing(h)) , if rightwing(h) ^ -1 
deadhn,eUB(h) = | L{h) , otherwise ' (31j 

As a result we have that shifting demand to the left or to the right by decreasing or increasing the 
deadline value of a node h G C should be done so that the new entry deacUine(h) fulfills 

maxldeadlineiß (h), deadline(h)} 
< 

deadline(h) (32) 
< 

min {deadlinelfB(h), deadline{JB (h)}. 
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Note, once the deadline entry of a node h is modified, not only the bounds for the deadline entry of 
the node h but also the bounds deadHneiB(succ(}i)), deadline ijß(Tightwing(h)) (if rightwing(h) ^ —1), 
deadline\jB[k) forte preds(h), and deadline\jlB{le}twing{h)) (if leftwing(h) # -1) for deadline entries 
must be updated before another shiffc Operation can be performed. All other bounds are kept unchanged. 

hi preliminary tests it turned out that it is best to perform full-size shifts. A left shift of ths demand 
represented by a node h then yields the value 

deadline(h) =max{deadlineiB(h)ideadlineIiB(h)}. (33) 

In the case of a right shiffc, we get 

deadline(h) = mm{deadlineijB(h)ideadlinei;B(h)}. (34) 

Let us now return to discuss how to select a node to modify its deadline entry. Assume the existence 
of at least one node h G C with leftwing{h) ^ -1. Otherwise, demands cannot be shifted and the 
demand shuffle heuristic repeatedly passes the construction phase using the initial data structure again 
and again. Hence, consider the set of valid labels 

VC "= {hec\ lejtwing(h) £ -1} (35) 

which identifies nodes that are allowed to be shifted. Attached to each node h € VC is a priority value 
TT/,, which guides the choice of nodes. It is a random process that works as follows. First, choose a label 
/i(°) € VC with uniform distribution. Then, iterate the following Iines where the index i — 1,2,... denotes 
the number of the iteration performed. Choose hfö G VC with uniform distribution. If 
then start a new iteration. Otherwise, terminate the loop with node being the one whose deadline 
entry should be modified. Note, this process is guaranteed to terminate, because the priority values 
increase from iteration to iteration. The priority rule that is used in our tests compares the additional 
holding costs that are incurred when some demand is shifted to the left with the setup costs that are 
saved when a lot can be built. More formally, we use 

Ith d— ( ) ttem(h) . (deadline{h) - deadline(leftwing(h)) 4- 1) (36) 
Sitem(h) 

for h € VC. 
Suppose now that we have chosen a node, say h e VC. The next decision to be made is whether the 

demand represented by that node should be shifted to the left or to the right. Basically, we do a random 
choice again where 7r/e/t and nright = 1 — respectively, are probability values for doing a left or 
a right shift. Before we give a formal definition of these probabilities, let us motivate some properties. 
Remember that we perform full-size shift Operations, i.e. 

Aticft d- deadline(h) — max{<ieacKme£B(/i)) deadlinefLrB(h)} (37) 

is the number of periods a demand would be shifted to the left, and 

&Uight d- mm{deadline\jB{h), (feadline\jB(h)} - deadline(h) (38) 

is the number of periods a demand would be shifted to the right. Note, Atu/t > 0 and Atright > 0 
remains true. To ease the notation, let Deadline(h) denote the period in which the production that 
meets the (internal or external) demand represented by node h is actually needed, i.e. 

«•««•>«{ tZßT • (»> 

To start with, assume that + Ätright > 0 holds. This is the case in which the demand of the 
selected node h can indeed be shifted to some direction. The conditions 

Atje/t = 0 Trieft = 0 (40) 

and 
Ätright — 0 ^ T^right ~ 0 (41) 
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then should hold to enforce that the demand is shifted if it is possible to do so. Another relevant point is 
that left shift Operations cause additional holding costs and thus right shifts should be preferred if Atrigu 
exceeds At^ft- Matheraatically, this means to fulfill the condition 

A^right ^ Atieft ^ Tright ^ ^left• (42) 

Fbrthermore, a key idea of the shifting of demands is to facilitate the building of lots, hence a large 
value Atief t or Atrigw, respectively, should result in a high probability 7rleft or Xright- Eventually, the 
importance of deciding for a left or a right shift decreases as the difference Deadline(h) - deadline(h) 
increases. A definition of TTi€/t (and 7rright) that meets all the points mentioned above is 

"" y^Afr---Kf 1 ) (43) 
1 I Z^Af=x1 Deadlineih) — dea.dlinc(h)-At+1 

D«adline(h)—d«a«tHne(h)+At+1 

if Atieft > o, and TTUft = 0, otherwise. 
The case Atieft + AUight = 0 virtually means that the demand of the selected node cannot be shifted 

to any direction. But we do not give up soon and decide if we would like to shift that demand to the 
left or to the right by means of a random choice again. Assume that we decided for a left shift. We then 
perform recursive full-size left shift Operations with all preceding nodes in the gozinto-tree starting with 
the leafs of the tree. Afterwards, evaluating Atleft again may give a positive value. If this is so, we shift 
the demand to the left and we are done. If Atieft still is zero, we keep the left shifted internal demand 
at its new position, but do not modify the deadline entry of the original node h. We proceed analogously 
when a right shift Operation should be performed. This time, the successor nodes are recursively shifted 
to the right starting with the root node of the gozinto-tree containing node h. If we end up with a 
positive value AtTxghu the demand represented by node h is right shifted, too. Otherwise, we keep the 
changes but do not shift the original demand. What is left, is a definition of the probabilities Kuft (and 
nright) with which we decide for a left or a right shift, respectively. In contrast to the definition above, 
we now use 

def 1 , . 
Kleft — ^ ^ (deadlineL*L(h)—deadline(h))demand(h)hitem(il) ' ' ' 

if ( at least one feasible Solution has been found 
during former iterations) 

repeat SHIFTOPS times 
choose h € VC. 
decide whether h should be shifted to the left or 

to the right. 
if (h should be shifted to the left) 

leftshift(h). 
eise 

rightshift(h). 

Table 3: The Data Structure Manipulation 

This formula is chosen so that we face a fifty-fifty chance for a left shift or a right shift, respectively, if 
the costs for holding the quantity demand(h) in inventory up to the initial period deadlineL4L (h) equal 
the setup costs for item(h). The greater the difference between the node's current deadline and its initial 
deadline, the more probable is a right shift of that demand. 

In summary, Table 3 describes the manipulation of the data structure as it happens after each con­
struction phase. The parameter SHIFTOPS is specified by the user and determines the number of shift 
Operations to be executed. Note, due to the definition of the initial data structure, the very first data 
structure manipulations actually are left shift Operations only. Since shifting demand to the left bears the 
risk of infeasibility, we only enter the data structure manipulation phase if at least one feasible Solution 
has been found in previous construction phases. 

Table 4 gives a precise definition of how to shift the demand represented by a node h 6 VC to the 
left. 
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Mieft ;= deadline(h) 
- max{deadlineIL B (h), deacUine^ß (h)}. 

if (Atieft = 0) 
treeleftshift(h). 

eise 
if ( Vdeadline(h) — Atje/t < t < deat#ine(/i) : 

E Cm„.m(Mr > Pium(h)demand{h)+ 
r=1 E Pitem(k)demand(k)) 

fc€C 4«adiin«(lr)<t 

deadfme(/i) := max{deac#ine£B(/i), deadline1^(h)}. 

Table 4: The Left Shift Procedure leftshift(h) 

Table 5 provides the details of shifting the demand represented by node h and all the internal demand 
for fulfilling it to the left. 

if (preds(h) ^ 0) 
for k G preds(h) 

treeleftshift(k). 
Atieft '= deadline(h) 

— max{deadlineILB(h)i deadline^ßQi)}. 
if (AtUft * 0) 

if ( VdeacWine(/i) - Atuft < t < deadline(h) : 
t 
E > Pitcm(ft)demand(/i)+ 

T_1 E Pitem(k)demand(k)) 
*€£ deadiine(fc)<t 

deadfine(/i) := max{cfeacüine£B(/i),deadiine{7B(/i)}. 

Table 5: The Left Shift Procedure treeleftshift(h) 

Similarly, Table 6 provides the details of how to shift the demand represented by a node h € VC to 
the right. 

ktright min{deadlinefjB{h), deadlinej/B (h)} 
-deadline(h). 

if (Atright = 0) 
treerightshi ft( h). 

eise 
deadline(h) := xmri{deadline{jB(h), deadline\]B(h)}. 

Table 6: The Right Shift Procedure rightshift(h) 

See Table 7 for a specification of shifting the demand represented by node h and all its successors to 
the right. 

3.3 Construction of Production Plans 

We are now in the position to describe the details of the construction of a production plan. The con­
struction scheme is a backward oriented procedure which schedules items period by period starting with 
period T and ending with period one. 
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if (succ(h) j^—1) 
treerightshift(succ(k)). 

Atrighi '= Tmn{deadlinei;B(h), deadline{JB (h)} 
—deadline(h). 

if (Atfight 0) 
deadline(h) rnin{deadlineljB (h), deadline{JB(h)}. 

Table 7: The Right Shift Procedure treerightshift(h) 

Roughly speaking, when period t is the current focus of attention, the scheme works as follows: First, 
the setup State at the end of period t, which is the beginning of period t + 1, of course, is chosen for 
each machine. Second, items are scheduled at the beginning of period i +1 such that the setup State just 
determined is respected. Third, items are scheduled at the end of period t. Afterwards period t — 1 is 
the new focus of attention and we return to the first step. 

To define the details, we choose here a recurrent representation which enables us to develop the 
underlying ideas in a stepwise fashion. Now, let us assume that DS-construct(£, At, m) is the procedure 
to be defined and t + At is the period and m is the machine under concern. At € {0,1} where At = 1 
indicates that the setup State for machine m at the beginning of period t +1 is to be fixed next and 
At = 0 indicates that we already have chosen a setup State at the end of period t. The symbol jmt will 
denote the setup State for machine m at the end of period t. Assume jmt = 0 for m = 1,..., M and 
t = 1,... ,T initially. 

Note that from the problem parameters, we can easily derive Vj, the set of the immediate predecessors 
of item j, and Vj, the set of all predecessors of item j. Also, nrj, the net requirement of item j, and idji, 
the internal demand for item i that is directly or indirectly caused by producing one unit of item j, are 
easy to compute. 

Before the construction mechanism starts, the decision variables y# and qjt are assigned zero for 
j = 1,..., J, m = 1,...,M, and t = 1,... ,T. Remember, given the values for Vjt and qjt the values for 
Xjt and Ijt are implicitly defined. Furthermore, assume auxiliary variables djt and CDjt for j = 1,..., J 
and t = 1,..., T. The former ones represent the entries in the demand matrix and thus are initialized 
with djt = djt. The latter ones stand for the cumulative future demand for item j which is not been met 
yet. As we will see, the cumulative demand can be efficiently computed while moving on from period 
to period. For the sake of convenience we introduce CDj^+i) = 0 for j = 1,..., J. The remaining 
capacity of machine m in period t is denoted as RCmt• Initially, RCmt = Cmt for m = 1,..., M and 
t = 1,..., T. Additionally, we have upper bounds Qjt for j = 1,..., J and t = 1,..., T where QJ(T+I) = 0 
for j = 1,..., J is assumed for the sake of notational convenience. 

Starting with the program given in Table 8 we begin with fixing the setup states of the machines at 
the end of period T. 

Choose jmT E ImT' 
if (JmT # 0) 

VjmTT •= 1-
if (m = M) 

DS-construct(T, 0,1). 
eise 

DS-construct(T, 1 ,m + 1). 

Table 8: Evaluating DS~construct(Tt 1, •) 

A definition of Xmt and a rule to choose jmt out of it will be given later. All we need to know at this 
Point is that Xmt C Jm U {0} for m - 1,..., M and t = 1,.. -, T is the set of items among which items 
are chosen. Item 0 is a dummy item. 

After all machines are assigned certain setup states at the end of period £, the procedure given in 
Table 9 takes over. 
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for j e Jm T 
CDjt := min |c/?j((+i) 4- J#,max{0,- Er=*+i &>}}• 
Qjt := min{ Qj(t+i) + E demand(h), 

»tem(h)=j d*adlin*{K)s=t 
max{0,nrj - Er=t+i «?>}}• 

Qjmtt m^n Qjmttl pj™* J 
Qjmtt := Qjmtt ~~ Qjmtt-
CDjmtt •— CDjmtt — Qjmtt• 
RCmt RCmt ~~ PjmtQjmtt' 
for i G Vjmi 

if (t - Vi > 0 and qjmtt > 0) 
di(t-Vi) dt{t—Vi) + aijmt Qjmt t • 

if (m = M) 
DS-construct(t — 1,1,1). 

eise 
DS-constructfa 0, m + 1). 

Table 9: Evaluating DS-construct(t, 0, •) where 1 < t < T 

Note, the production quantity qjmtt is not only constrained by the available capacity and the cumu­
lative demand for item jmt but also by the upper bound Qjmtt which is derived from the data structure 
TDS (see also (19)). 

Table 10 specifies how to evaluate calls of the form DS~construct(tt 1, •) where 1 < t < T. 

choose jmt € 2mt-
if (jmt # 0) 

Vjmtt := !• 
if (jmt 7^ jm(i+l)) 

%.,('+]) := min {CDjmt(i+i),Qjml(t+i), }• 
Qim((t+i) := Qjmt(t+i) -<ijmt(t+i)-

:= ^Djmt(t+l) ~ Qjmt(t+1)-
^Cm(t+i) == RCm(t+i) - Pjmtqjmt(t+i)-
f<>r i € Vjmt 

if (t + 1 - Vi > 0 and qjmt(t+i) > 0) 
di(t+l-Vi) := <k(t+l-Vi) 

try to increase the capacity utilization in period t + 1. 
if (m = M) 

DS-construct(t, 0,1). 
eise 

DS-construct(til,rn+ 1). 

Table 10: Evaluating DS-construct(t, 1, •) where 1 < t < T 

An important point is the part which tries to increase the capacity utilization in period t + 1. Table 
11 provides more details. For the sake of notational convenience, let us assume that CD0(t+i) = 0, 
Qo(t+i) = 0, ?o(t+i) = 0, and po = 0. Testing whether or not jmt ^ 0 and jm(t+i) ^ 0 to ensure 
well-defined variable accesses can then be left out. 
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tt. 
while ( (CDjmt(i+1) > Qjmt(t+i) Or CDjm(t+1){t+l) > Qjmit+1)(t+1)) 

and RCm(t+1) > 0 and t > 1) 
if (3h. € C: (item(h) = jmt Vitem(h) = 

A deadline(h) = t 
Amin{ deadlineLB(h)t 

deadlinefj^h)} > t -4- 1 
ACT?item(h)(t+l) ^ Qite»7i(A)(i+l)) 

deadline(k) := t -f 1. 
Qitem(h)(t+i) -= niin{ Qit«m(fc)(t+i) 4" dcuiand^h), 

T 
max{0, ~~ Qitem(h)T}}• 

r=<+l 
A$item(h){t+1) •— ITlin{ 

Ä£m£t±lM 
Pit«m(M 

Q'itemf/ijft+l) Qitem(h)(t+l) 4" Aqitem(h){t+1)' 
Qitem(h)(t+1) := Qitem(h)(t+1) ~~ (t-f-1)• 
C^itcm(/i)(*+l) := C'Pitemfftjft+i) - Aqitem(h)(t+1) • 
•^^mCt+l) • ^£m(t+l) ~~ Pitem(h)AfJitern(h)(t+l)-
for i € 

if (t + 1 - vi > 0 and A9item(h)(t+i) > 0) 
d{(t+i— vi) di(t+i~vi) 

~t~ai(item(h))^Qitem(h)(t+1) * 
eise 

t := i - 1. 

Table 11: A Procedure to Increase the Capacity Utilization in Period t + 1 
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The idea behind this piece of code is the following; Suppose, we have scheduled two items jmt and 
jm(t+i) on machine m in period (4-1 where qjmt(t+1) and respectively, are the corresponding 
production quantities. It may then happen that the remaining capacity RCm(W) of machine m is 
positive. Purthermore, assume that in period t +• 1 the cumulative demand for item jmt, or jm{t+1) > or 
both is not totally met. Such situations may occur due to left shift Operations which have modified the 
initial data structure. Since the machine is now set up for these items anyhow, there seems to be no 
reason why we should not use the capacity that is left over in period t 4- 1 to fulfill some additional 
demand. For the reason of consistency, we try to manipulate the data structure in order to shift some 
demand back to the right. To do so, we scan the data structure for nodes that represent demand for 
these two items and, if feasible, perform right shifts to make additional production quantities 
or (t+i), respectively, available in period t + 1 until all cumulative demand is fulfilled or until no 
free capacity remains. As a side effect of increasing the deadline entry of a node, the Upper bounds for 
the deadline entries of some other nodes may change giving the opportunity to set their deadline value to 
t + 1, too. Thus, we consider the nodes in a certain order. That is, nodes with a high current deadline-
value are tested before nodes with a low value are, because shifting the demand that is represented by 
the latter ones to the right does not have an impact on whether or not demand that is represented by 
the former ones can be right shifted. The auxiliary variable t is used to implement this aspect. However, 
this defines only a partial order among the nodes. In our Implementation, remaining ties are broken by 
favoring nodes with a high label. 

Turning back to the piece of code in Table 9 now, we execute the code given in Table 12 when 
DS-construct (0,1, •) is called. 

if 
«JW := min {CDjm0u 

_ %n,ol' 
if (m = M) 

DS-construct(0,0,1). 
eise 

DS-construct(0,1 ,m + 1). 

Table 12: Evaluating DS-construct(0) 1, •) 

A call to construct(0,0,-) terminates the construction phase. What is left is a final feasibility test 
where 

T 
= (45) 

t—l 
must hold for j = 1for being a feasible Solution. Eventually, the objective function value of a 
feasible Solution can be determined. 

It should be emphasized again that the construction scheme described above does not necessarily 
generate an Optimum Solution. It does not even guarantee to find a feasible Solution if there exists one. 
But, as the computational study will show, the method that will be derived from the construction scheme 
will find a (good) feasible Solution for over 99% of the instances in the test-bed. 

The open question that remains to be discussed is the way an item jmt is chosen out of Imf, and Xmt 
itself needs to be defined, of course (see Tables 8 and 10). The set of items machine m= 1,...,M may 
be set up for at the end of period t = 1,..., T can be defined as the set of items with demand in period t 
or t 4- 1, and with some production being allowed regarding the Information in the data structure. More 
formally, 

2m< = {j € Jm | CDj(t+x j 4- djt > 0} (46) 
^ {i E Jm | Qj(H-i) > 0 V 3h € C : ( itern(h) = j A deadline(h) — ()}. 

As before, we choose jmt = 0, if Xmt = 0. 
For selectmg an item jmt G we make a random choice where the probability to choose an item 

j E Zmt is defined on the basis of a priority value 

TTjt - (47) 
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which is an easy-to-compute estimate of the holding costs that are charged if item j is not scheduled in 
period t 4- 1. If 

** = ° 

j€Xmt 
a random choice with uniform distribution is done. Otherwise, 

nit 

is the probability to choose j out of Xmt. 

4 Computational Study 

All test are conducted on a Pentium Computer with 120 MHz. The demand shuffle algorithm is imple-
mented in C running under a LINUX operating system. We perform 1,000 iterations, i.e. 1,000 production 
plans are (tried to be) generated, and choose the method parameter SHIFTOPS = 10. 

Two kinds of tests are done in this study. First, we tested the Performance on Iarge instances. 
Unfortunately, optimum results or good lower bounds are not available for these instances. Hence, all we 
can do is to compare the results of the demand shuffle method with those obtained with other procedures. 
As already stated in the introduction, other procedures for multi-level lot sizing and scheduling than those 
developed by ourselves do not exist. 

Second, we tested the Performance on small instances for which Optimum results are known. Since 
the first part of the study reveals that the demand shuffle algorithm dominates the other heuristics, the 
second part of the study now focuses on demand shuffle and provides in-depth Information on what 
problem parameters have a significant impact on the Performance. 

In our studies, five problem parameters are investigated: 

• M, the number of machines. 

• C, the complexity of the gozinto-structure. C is from the interval [0,1] where values dose to 1 
indicate many precedence constraints among the items. We refer to [24] for a formal definition. 

• fömacroi ^mtcroj ?lrfie)j the demand pattern. We define T = Tmacr0'Tmicr0, Externa! demand occurs 
only at the end of macro periods which are subdivided into Tmicro micro periods each. In the first 
Tidie macro periods, there is no demand. 

• COSTRATIO, the ratio of setup and holding costs. 

• £/, the capacity utilization. 

4.1 Tests with Large Instances 

Since large instances are those which are of utmost importance in real-world applications, the demand 
shuffle heuristic must proof its dominance over other procedures especially for large instances. That is 
what we like to find out in this subsection with a preliminary computational study. 

The test—bed that we use consists of nine parameter level combinations of J and T which are as­
sumed to be an adequate measure for the size of an instance. The number of machines M is chosen 
to be M = | J. Gozinto-structures have a complexity of C ~ 0.2. The demand pattern is defined by 
(TmacroiTmicro> ) = (5-,5,2). The ratio of setup and holding costs is COSTRATIO = 900. Since 
the formerly developed methods have problems in finding feasible solutions if the capacity utilization is 
high, we choose U = 50 to give them a chance to find feasible solutions we may compare the results of 
the demand shuffle procedure with. For each of the nine parameter level combination we generated five 
instances at random. This gives a total of 45 large instances. 

As a Performance measure we consider the average deviation from the demand shuffle result where 
the deviation is computed using 

deviation^'mUBH~UBDS (48) 
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with UBH being the upper bound of an instance that is computed by means of the heuristic H e 
{DS,RR,CA,GA,TS}. The short-hand notation DS stands for demand shuffle, RR for randomized 
regret based sampling [21, 25], CA for cellular automaton [24J, GA for genetic algorithm [26], and TS for 
disjunctive arc based tabu search [22]. In this definition we use the result of the demand shuffle procedure 
as a point of reference, because (good) lower bounds are not available for large instances. 

Table 13 summarizes the results of different heuristics when applied to instances of different size. For 
each combination of heuristic and parameter levels for J and T this table provides the average deviation 
from the demand shuffle result. The number of instances for which a feasible Solution is found is given, 
too. The demand shuffle method is able to find a feasible Solution for every large instance in the test-bed. 

J T RR CA GA TS 
5 50 -4.03 [5J 22.52 [5] 24,38 [5] 14.39 [5] 
10 50 3.47 [5] 42.37 [5] 31.35 [5] 42.57 [5] 
20 50 17.47 [5] 38.92 [1] 29.24 [5] — [0] 
5 100 -13.09 [5] 58.07 [5] 27.68 [5] 18.03 [5] 
10 100 -1.38 [5] 38.56 [3] 30.80 [5] -[0] 
20 100 11.22 [5] 34.74 [1] 30.81 [5] -[0] 
5 500 -16.02 [5] 59.86 [5] 25.72 [5] -[0] 
10 500 -4.40 [5] 31.47 [4] 28.72 [5] -[0] 
20 500 13.81 [5] 27.64 [2] 24.26 [5] — roi 

Table 13: Performance for Large Instances 

It turns out that only the randomized regret based sampling method and the genetic algorithm also find 
feasible solutions for all instances in the test-bed. The capability of the disjunctive arc based tabu search 
method to find feasible solutions for large instances is disastrous. In terms of average deviation from the 
demand shuffle result, both, the cellular automaton and the genetic algorithm give disappointing results, 
though the genetic algorithm shows better Performance in almost all cases. Remarkable to note, the 
randomized regret based method reveals itself as a competitive candidate for large instances. Especially 
for instances with a small number of items, i.e. J < 10, this method convinces. However, if the number 
of items is large, i.e. J > 10, the results of the demand shuffle procedure cannot be reached. 

4.2 Tests with Small Instances 

The demand shuffle procedure is now tested on the basis of the 1,033 small PLSP-instances used in 
[25, 26] which are systematically generated using a füll factorial design. These instances are small enough 
to be solved with Standard Software and large enough to be non-trivial. 

The effect of changing certain parameter levels is analyzed on the basis of aggregated data. Table 14 
shows what happens if the number of machines is varied. Only slight differences can be measured for the 
average deviation from the optimum. Remarkable to note is the infeasibility ratio. For all instances with 
M = 1 a feasible Solution is found and only 1.16% of the instances with M = 2 remain unresolved. The 
run-time increases if the number of machines is increased. 

M = 1 M = 2 
Average Deviation 6.28 6.92 
Infeasibility Ratio 0.00 1.16 
Average Run-Time 0.38 0.50 

Table 14: The Impact of the Number of Machines on the Performance 

The complexity of the gozinto-structure and its impact on the Performance is studied in Table 15. 
It can be seen that a high complexity gives significantly larger deviations from the optimum than a low 
complexity. The infeasibility ratio, however, is almost unaffected. Furthermore, the more complex the 
gozinto-structures are, the more run-time is needed to solve the instances. 
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C = 0.2 00 ö
 II 

Average Deviation 5.43 7.80 
Infeasibility Ratio 0.57 0.59 
Average Run-Time 0.41 0.47 

Table 15: The Impact of the Gozinto-Structure Complexity on the Performance 

Table 16 presents different results for different demand patterns. Though the average deviation from 
the Optimum varies among the parameter levels, there is no clear tendency which could prove that 
sparsely-filled demand matrices give lower or higher average deviations than matrices with many non-
zeroes. With respect to the run-time, sparsely-filled demand matrices give best results. The infeasibility 
ratio shows that only for (?l*ocro,?Wcro, ?&%«) = (5,2,2) some instances remain unresolved. 

{Tmacro j Tmicro > Tidle) = 
(10,1,5) (5,2,2) (1,10,0) 

Average Deviation 7.07 5.80 6.83 
Infeasibility Ratio 0.00 1.85 0,00 
Average Run-Time 0.53 0.50 0.30 

Table 16: The Impact of the Demand Pattern on the Performance 

The effect of varying the cost structure is analyzed in Table 17. If the ratio of setup and holding costs 
is high, the demand shuffle method performs best in terms of the average deviation from the Optimum. 
The infeasibility ratio is unaffected by changes in the cost structure. Surprisingly, the average run-time 
declines if setup costs grow. 

COSTRATIO = 
5 150 900 

Average Deviation 9.68 5.25 4.85 
Infeasibility Ratio 0.58 0.58 0.58 
Average Run-Time 0.46 0.45 0.40 

Table 17: The Impact of the Cost Structure on the Performance 

To see if the capacity utilization has an impact on the Performance, let us have a look at Table 18. We 
see that if the capacity utilization inclines, the average deviation from the Optimum does so, too. Those 
few instances for which no feasible Solution is detected, are instances with a high capacity utilization. 
The run-time is more or less unaffected. 

In summary, only six out of the 1,033 instances in the test-bed remain unresolved which is an amazing 
result. The overall infeasibility ratio is 0.58%. The average run-time is 0.44 CPU-seconds. The overall 
average deviation from the Optimum objective function value is an exciting 6.60%. 

Most of the intelligence of the demand shuffle heuristic lies in the way a node is selected for a shift 
Operation, in the way to decide whether a left or a right shift should be performed, and in the way we 
select a setup State for a machine. To show that the presented rules do indeed make a contribution, 
Table 19 shows what happens if we select a node with uniform distribution and try to shift it then, 
assume a fifty—fifty chance for a left or a right shift, and select the setup State of a machine with uniform 
distribution among the valid candidates. 

In terms of the run-time Performance it turns out that we have to pay a cheap price only for using 
intelligent decision rules. The advantage of these rules is that on the basis of both, the average deviation 
from the Optimum and the infeasibility ratio, a better Performance is gained. However, using no intelli­
gence in the demand shuffle method still gives very good results when compared with other heuristics as 
shown in Table 20. 

17 



U = 30 U = 50 U = 70 
Average Deviation 5.15 6.76 8.06 
Infeasibility Ratio 0.00 0.00 1.88 
Average Run-Time 0.45 0.45 0.42 

Table 18: The Impact of the Capacity Utilization on the Performance 

Average Infeasibility Average 
Deviation Ratio Run-Time 

Intelligent Decision Rules 6.60 0.58 0.44 
Simple Decision Rules 7.71 0.87 0.40 

Table 19: The Impact of the Decision Rules on the Performance 

5 Conclusion 

In this paper we have dealt with multi-level lot sizing and scheduling which is a short-term planning 
problem in the presence of lot production. We pointed out that traditional MRP II logic does not satisfy, 
because important aspects such as scarce capacities and multi-level gozinto-structures are not taken into 
account appropriately. Consequently, we formulated a mixed-integer model to give a precise Statement 
of what is to be solved. By having a look at the literature we found that this approach is indeed new, 
because no other publications (out of some of our own) on this thomy problem exist. A so-called demand 
shuffle procedure has then been introduced to solve the problem heuristically. It is an extension of the 
single-machine procedure specified in [23] recently. A computational study revealed that demand shuffle 
clearly outperforms the existing methods and thus defines the new state-of-the-art. 
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A An Example 

Consider the gozinto-structure given in Figure 1 and the parameters in Table 21. Furthermore, assume 
M = 2, m\ = rrii = 1, 7712 = m3 = 2, and Cu = C21 = 15 for t = 1,..., 10. For illustrating the 
construction of a production plan we do not need any Information about setup and holding costs. 

Suppose, the data structure rDS is given to be 

rDS ={(1,7,7,20,0,1,-1, {(2,6,6,20,1,7,0, 
{(4,5,5,20,2,39,1,0)}), 

(3,6,6,20,3,8,0, 
{(4,5,5,20,4,44,3,0)})}) 

(4,8,8,5,5,4,-1,0), 
(1,10,10,20,6,1, -1, { (2,9,9,20,7,7,6, 

{(4,8,8,20,8,39,7,0)}), 
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Figure 1: A Gozinto-Structure with Four Items 

£•
 

ii ..567 8 9 10 Pj Vj VjO /7*o 
i = i 20 20 1 1 1 0 
i = 2 1 1 1 0 
3 = 3 1 1 0 0 
3 =4 5 1 1 0 0 

Table 21: Parameters of the Example 

(3,6,9,20,9,8,6, 
{(4,5,8,20,10,44,9,0)})}) 

} 

which can be illustrated as in Table 22 where an entry of the form L : DLB/UB in row j and column t 
depicts D units of demand for item j that is to be met no later than period t. The node in the data 
structure that represents this demand has the label L. If the data structure is manipulated, this demand 
cannot be shifted to a period prior to period LB or after period UB. 

rDS t = ...5 6 7 8 9 10 
j = 1 0: 207/7 ' 6; 2010/1° 
j = 2 1 : 206/6 7 : 209/9 

j = 3 3 : 20B/6 

9 : 206/9 

j = 4 2: 205/5 5: 5S/8 

4 : 20s/5 8 : 205/8 

10 : 205/s 

Table 22: A Data-Structure for the Demand Shuffle Heuristic 

For instance, let us have a look at the node with label 9. It represents a demand of demand(Q) = 20 
"Units of item £tem(9) = 3 which is to be met no later than period deadline(9) = 6. Furthermore, the 
Information in the data structure teils us that this demand is an internal demand caused by producing 
the demand represented by node succ(9) = 6 which is externa! demand, because succ(6) = —1. In turn, 
fulfilling the demand represented by node 9 causes internal demand that is represented by the nodes in 
the set preds(9) = {10}. Hence, the path from the root node of the gozinto-tree to the node 10 contains 
the items item(6) = 1, item{9) = 3, and item(10) = 4. The position of the node 10 is thus uniquely 

21 



identified by path( 10) = (1-5 + 3) - 5 + 4 = 44 which equals the position of node 4. An additional shift 
operation may move the demand of node 9 to no period prior to period 

max{dead(ine£B(9), deadline^ßi 9)} 
= max{deadline(10) + v^,deadline( 3)} 
= 6 

and to no period later than period 

min {deadline\j ß(9), deadline\}B (9)} 
= mm{deadline(6) — vs, deadline1,4 L (9)} 
— 9. 

Although it appears to be that the demand represented by the node 8 could be left shifted to period 5 
next, we would not do so, because the condition (20) would no longer be valid for period 5 and machine 
1, i.e. 

tOw T = 1 
= 75 2 80 
= Pitemfs) demand( 8) + £ Pitem(k) demand(k), 

fc€{2,4,10> 

which indicates that no feasible Solution can be found. 
Table 23 provides the first few steps of a run of the construction scheme when using the data structure 

given above. 

Step djt ob.nt+AD Qilt+At) Xmt jmt Qimt.U+At) 
1 (10,1,1) (20,0,0,0) (0,0,0,0) (0,0,0,0) {1} 1 
2 (10,1,2) (20,0,0,0) (0,0,0,0) (0,0,0,0) 0 0 
3 (10,0,1) (20,0,0,0) (20,0,0,0) (20,0,0,0) qir = 15 
4 (10,0,2) (20,0,0,0) (5,0,0,0) (5,0,0,0) 
5 (9,V) (0,15,15,0) (5,0,0,0) (5,0,0,0) {1} 1 
6 (9,1,2) (0,15,15,0) (5,0,0,0) (5,0,0,0) {2} 2 qiT = 0 
7 (9,0,1) (0,15,15,0) (5,0,0,0) (5,0,0,0) 919 = 5 
8 (9,0,2) (0,15,15,0) (0,15,15,0) (0,20,0,0) #9 = 15 
9 (8,1,1) (0,5,5,20) (0,0,15,0) (0,5,0,0) {4} 4 q4g = 0 

10 (8,1,2) (0,5,5,20) (0,0,15,0) (0,5,0,0) {2} 2 
11 (8,0,1) (0,5,5,20) (0,0,15,20) (0,5,0,25) 948 = 15 
12 (8,0,2) (0,5,5,20) (0,5,20,5) (0,5,0,10) q28 = 5 
13 (7,1,1) (20,0,0,5) (0,0,20,5) (0,0,0,10) {4} 4 
14 (7,1,2) (20,0,0,5) (0,0,20,5) (0,0,0,10) 0 0 

Table 23: A Protocol of the Construction Scheme of the Demand Shuffle Procedure 

A possible outcome of the construction phase is shown in Figure 2. 
Some points of interest are worth to be highlighted: 
Step 1: 1 € Zu-, because JIT > 0, deadline(6) = 10, and item{6) = 1. 
Step 6: Although d39 > 0 holds, item 3 is not contained in the set X29. This is because QZT = 0 and 

there is no node h in the data structure which fulfills deadline(h) = 9 and item(h) = 3. In other words, 
the demand for item 3 was shifted to the left. 

A case in which > 0 and CZ^(t+1j == 0 holds for an item j and a period t does not occur in 
this example. It is, however, remarkable to note that we may face such situations. Assume for instance 
that there would not be any external demand for item 4 and that all (internal) demand is shifted leftmost 
(let us suppose this could be done without violating the capacity constraints (20)). Then, in Step 9, the 
set liS would be empty. That is, the presented procedure would handle such cases correctly. 
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2 3 2 2 

12 3456789 10 * 

Figure 2: A Possible Outcome of the Run in the Protocol 
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