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1 Introduction 

The resource-constrained project scheduling problem (RCPSP) can be stated as follows. A Single 
project consists of n + 1 activities where each activity has to be processed in order to complete 
the project. The fictitious activities 0 and n -f- 1 correspond to the 'project start' and to the 
'project end', respectively. The activities are interrelated by two kinds of constraints. First, 
precedence constraints force activity j not to be started before all its immediate predecessor 
activities have been finished. Second, performing the activities requires resources with limited 
capacities. Altogether we have a set of K resource types, the number of resource types is K.. 
While being processed, activity j requires units of resource type k 6 JC during every time 
instant of its non-preemptable duration pj. Resource type k has a limited capacity of i?* at any 
point in time. The parameters pj, and Rk are assumed to be non-negative and deterministic; 
for the project start and end activities we have pj = 0 and = 0 for all k € IC. The objective 
of the RCPSP is to find precedence and resource feasible completion times for all activities such 
that the makespan of the project is minimized. 

Since its advent the RCPSP has been of interest for practitioners and researchers. Recent years 
have witnessed a tremendous increase in research for the RCPSP, both in terms of heuristic and 
optimal procedures. We refer to the surveys provided by Icmeli et al. [13], Özdamar and Ulusoy 
[28], Herroelen et al. [12], Kolisch and Padman [20], and Brucker et al. [6]. Recently, Kolisch and 
Hartmann [19] have given a specific overview of heuristics for the RCPSP. The paper focuses on the 
building blocks (schedule generation schemes, priority rules, schedule representations, operators, 
and search strategies) and the way these building blocks are combined to methods such as X-pass 
methods (single pass methods, multi pass methods, sampling procedures) and different type of 
metaheuristics (simulated annealing, genetic algorithms, and tabu search). This paper is a follow-
up study which provides an in-depth investigation of the Performance of recent RCPSP heuristics. 
We give a detailed Performance of the heuristics and provide explanations for their Performance. 
Based on these observations, we subsequently give recommendations about prosperous directions 
for further research efforts. 

2 Proposed Heuristics 

This section gives a short survey of the tested heuristics. We start with the description of schedule 
generation schemes which are (with the exceptio» of Baar et al. [3]) a core building block of all 
procedures. 

2.1 Schedule Generation Schemes 

Schedule generation schemes (SGS) start from Scratch and build a feasible schedule by stepwise 
extension of a partial schedule. A partial schedule is a schedule where only a subset of the 
TI + 2 activities have been scheduled. There are two different SGS available which can be distin-
guished w.r.t. activity- and time—incrementation. The so—called serial SGS performs activity— 
incrementation while the so—called parallel SGS performs time—incrementation. We give a brief 
non—technical description of both SGS. For details cf. Kolisch and Hartmann [19]. 

Serial Schedule Generation Scheme and List Scheduling. The serial SGS consists of 
g = 1 ,..,,71 stages, in each of which one non-dummy activity is selected from the eligible set 
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and scheduled at the earliest precedence- and resource-feasible completion time. The eligible 
set comprises all unscheduled activities which are eligible for scheduling because all predecessor 
activities have already been scheduled. The time complexity of the serial SGS is G(n2 • K) (cf. 
Pinson et al. [30]). The serial SGS generates active (and thus feasible) schedules which are for the 
resource-unconstrained scheduling problem optimal (cf. Kolisch [17]). Active schedules have the 
property that none of the activities can be started earlier without delaying some other activity (cf. 
Sprecher et al. [34]). For scheduling problems with regulär Performance measure (for a definition 
of the latter cf. Sprecher et al. [34]) such as makespan minimization, the optimal Solution will 
always be in the set of active schedules. Hence, the serial SGS does not exclude optimal schedules 
a priori. 

A variant of the serial SGS is list scheduling. Here, the activities of the project are first ordered 
within a list A = (jufa •.., jn] where jg denotes the activity at list position g. This list has to 
be precedence feasible, i.e., each activity has all its network predecessors as list predecessors (cf. 
Hartmann [11]). Given A, the activities can be scheduled in the order of the list at the earliest 
precedence- and resource-feasible start time. As a special case of the serial SGS, list scheduling 
has the same properties as the serial SGS. That is, it generates active schedules and hence there is 
always a list A* for which list scheduling will generate an optimal schedule when a regulär measure 
of Performance is considered. 

Parallel Schedule Generation Seherne. The parallel SGS does time incrementation. For 
each iteration g there is a schedule time tg and a set of eligible activities. An activity is eligible 
if it can be precedence- and resource-feasibly started at the schedule time. Activities are chosen 
from the eligible set and started at the schedule time until there are no more eligible activities left. 
Afterwards, the scheduling scheme steps to the next schedule time which is given by the earliest 
finish time of the activities in process. The time complexity of the parallel SGS is 0(n2 • K). 
The parallel SGS generates (precedence- and resource-feasible) non-delay schedules which are 
optimal for the resource-unconstrained case (cf. Kolisch [17]). A non-delay schedule is a schedule 
where, even if activity preemption is allowed, none of the activities can be started earlier without 
delaying some other activity (cf. Sprecher et al. [34]). The set of non-delay schedules is a subset 
of the set of active schedules. It thus has, on average, a smaller cardinality. But it has the severe 
drawback that it might not contain an optimal schedule for a regulär Performance measure. E.g., 
in Kolisch [17] it is shown that in a well known instance set 40.3% of the instances have optimal 
solutions which are not in the set of non-delay schedules. Hence, the parallel SGS might exclude 
optimal Solution a priori. 

2.2 X—Pass Methods 

X-pass methods, also known as priority rule based heuristics, employ one or both of the SGS in 
order to construct one or more schedules. Dependant on how many schedules are generated, we 
distinguish Single pass methods (X = 1) and multi pass methods (X > 1). Each time a schedule is 
generated, X-pass methods start from Scratch without considering any knowledge from previously 
generated solutions. In order to select at each stage of the generation procedure one activity which 
consequently has to be scheduled, a priority rule is employ ed. The latter is defined by a mapping 
which assigns each activity j in the eligible set a value v(j) and an objective stating whether an 
activity with a large or a small v(j)-value is desired. 
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Single Pass Methods. Single pass heuristics select in each Iteration the activity which max-
imizes or minimizes the v(j)-vaJue. In case of ties, one or several tie breaking rules have to 
be employed. A simple way to resolve ties is to choose the activity with the smallest activity 
label. There has been an overwhelming amount of research on priority rules for the RCPSP; an 
extensive survey is given in Kolisch and Hartmann [19]. For our computational analysis we have 
selected the two priority rules which have shown favourable results in the experimental studies of 
Alvarez-Valdes and Tamarit [2], Davis and Patterson [10], and Kolisch [15, 17]: LFT (latest finish 
time) and WCS (worst case slack). LFT is a well-known priority rule. WCS has been introduced 
by Kolisch [16] for the parallel scheduling scheme only. The rule calculates for an activity j the 
slack which remains in the worst case if j is not selected in the current iteration. 

Multi Pass Methods. There are many possibilities to combine SGS and priority rules to a 
multi pass method. The most common ones are according to Kolisch and Hartmann [19] multi 
priority rule methods (cf. Boctor [4], Ulusoy and Özdamar [37], and Thomas and Salhi [36]), 
forward-backward scheduling methods (cf. Li and Willis [25], Özdamar and Ulusoy [29]), and 
sampling methods (cf. Alvarez-Valdes and Tamarit [1], Cooper [9], Kolisch [16]). 

Multi priority rule methods employ the SGS several times. Each time a different priority rule 
is used. Forward-backward scheduling methods employ an SGS in order to iteratively schedule 
the project by alternating between forward and backward scheduling. Both approaches are not 
considered in this study. 

Sampling methods generally make use of one SGS and one priority rule. Different schedules are 
obtained by biasing the selection of the priority rule through a random device. In addition to a 
priority value u(j), a selection probability p(j) is computed. Dependent on how the probabilities 
are computed, it is distinguished between random sampling, biased random sampling, and regret 
based biased random sampling (cf. Kolisch [15]). Random sampling (RS) assigns each activity 
in the eligible set the same probability. Biased random sampling (BRS) (cf. Alvarez-Valdes 
and Tamarit [1], Cooper [9]) employs the priority values directly in order to obtain the selection 
probabilities. I.e., if the objective of the priority rule is to select the activity with the largest 
priority value, then the probability is calculated by dividing the priority value of the activity 
under consideration by the sum of the priority values of all eligible activities. Regret based 
biased random sampling (RBRS) uses the priority values indirectly via regret values. I.e., if, 
again, the objective is to select the activity with the largest priority value, the regret value 
r(j) is the absolute difference between the priority value v(j) of the activity under consideration 
and the worst priority value of all activities in the eligible set. Before calculating the selection 
probabilities based on the regret values, the latter are modified by adding e > 0. This assures 
that each activity in the eligible set has a selection probability greater than zero and thus every 
schedule of the population can be generated. Schirmer and Riesenberg [33] propose a variant of 
RBRS where e is determined dynamically. 

So called adaptive RBRS have been proposed by Kolisch and Drexl [18] as well as Schirmer 
[32]. The essence of adaptive sampling is to select the SGS, the priority rule, and the way the 
selection probabilities are calculated based on characteristics of the problem instance at hand. 
We refer to these characteristics, e.g., the number of activities, the resource strength, and the 
resource factor, henceforth as problem parameters (cf. Subsection 3.1). The method of Kolisch 
and Drexl [18] applies the serial SGS with the LFT-priority rule and the parallel SGS with the 
WCS-priority rule while employing deterministic and regret based sampling activity selection. 
The decision on the specific method is based on an analysis of the problem at hand and the 
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number of iterations already performed. Schirmer [32] has extended this approach by employing 
both schedule generation schemes together with four different priority rules and two different 
sampling schemes (RBRS and a variant of RBRS). 

2.3 Metaheuristic Approaches 

Many metaheuristic strategies such as genetic algorithms, simulated annealing, and tabu search 
are applied to solve hard combinatorial optimization problems. In this subsection, we briefly 
describe those metaheuristic approaches for the RCPSP that are used in our computational study. 
For each heuristic, we mention the underlying representation, the method to produce an initial 
Solution, and the Operator to generate new solutions from existing ones. For a more detailed 
introduction into the representations and Operators, we refer to Kolisch and Hartmann [19]. This 
reference also includes a description of those metaheuristic algorithms for the RCPSP that could 
not be considered for the following experimental analysis. 

Baar et al. [3] develop two tabu search (TS) algorithms. For our analysis, the approach based 
on the so-called schedule scheme representation has been tested. A schedule scheme consists 
of four disjoint relations. These relations specify whether two activities are precedence related 
(conjunctions), may not be processed in parallel (disjunctions), must be processed in parallel 
(parallelity relations), or are not subject to any restrictions (flexibility relations). A schedule 
scheme represents those (not necessarily feasible) schedules in which the relations are maintained. 
In order to transform the current schedule scheme into a schedule, Baar et al. [3] employ a decoding 
procedure that constructs a feasible schedule in which all conjunctions and all disjunctions and 
a 'large' number of parallelity relations of the schedule scheme are satisfied. The neighborhood 
definition is made up by moves that transform flexibility relations into parallelity relations and 
parallelity relations into flexibility relations. The neighborhood size is reduced by a critical path 
calculation and impact estimations for the moves. The tabu search procedure uses a dynamic 
tabu list as well as priority rule-based start heuristics. 

Bouleimen and Lecocq [5] propose a simulated annealing (SA) procedure. A Solution is represen-
ted by an activity list which is assumed to be precedence-feasible, i.e. each activity must appear 
later in the list than all of its predecessors (cf. Subsection 2.1). As a decoding procedure, the 
serial SGS is used. From the current activity list, a neighbor activity list (and thus a neighbor 
Solution) is obtained by applying the so-called shift Operator. This Operator selects some activity 
from the list and inserts it at some other position, such that the resulting activity list is again 
precedence feasible. The initial Solution is constructed using a priority rule based heuristic. 

Hartmann [11] proposes a genetic algorithm (GA) based on the activity list representation de-
scribed above and compares it to genetic algorithms which make use of the random key and 
priority rule representations, respectively. For all three representations, the serial SGS is used as 
a decoding procedure. The random key (or priority value) representation encodes a Solution as 
n-vector of (real) numbers where the j-th number relates to activity j. The random key array is 
transformed into a schedule by successively scheduling the activity with the highest random key 
among the eligible activities. Thus the random keys play the role of priority values. In the pri­
ority rule representation, a Solution is given by a list of priority rules. A schedule is obtained by 
successively selecting an activity from the set of the eligible activities. Thereby, the first activity 
to be scheduled is selected using the first priority rule in the list and so on. All three approaches 
employ two-point crossover Operators related to the respective representation. In the activity 
list based GA, the regret based biased random sampling method with the serial SGS and the 
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LFT-ruIe is used to determine the initial generation. 

Leon and Ramamoorthy [24] introduce two local search approaches and a genetic algorithm. 
As the latter outperforms the former two heuristics, only the genetic algorithm is used in our 
computational investigation. It employs the so—called problem—space based representation which 
is similar to the random key representation described above. As decoding procedure, an extended 
version of the parallel SGS is used which does not restrict the search space to the set of the 
non-delay schedules. The Standard one-point crossover is used to determine the next generation 
in the artificial evolution. The initial random keys are computed by a priority rule. 

Further metaheuristic procedures which are not included in our study have been proposed by Cho 
and Kim [7], Kohlmorgen et al. [14], Lee and Kim [23], Naphade et al. [26], Pinson et al [30], 
and Sampson and Weiss [31]. 

3 Computational Results 

3.1 Test Design 

As test instances we have employed the Standard sets j30, j60, andj120 for the RCPSP presented 
in Kolisch et al. [21]. The sets j30 and j60 consist of 480 projects with 4 resource types as well as 
n = 30 and n = 60 activities, respectively. The levels of the three independent problem parameters 
network complexity, resource factor, and resource strength are systematically altered to define a 
füll factorial experimental design. The network complexity (NC) defines the average number of 
precedence relations per activity. The resource factor (RF) gives the average percent of different 
resource types for which each non-dummy activity has a non-zero resource demand. Finally, the 
resource strength (RS) defines how scarce resource are. An .RS-value of 0 defines the capacity 
of each resource to be no more than the maximum demand of all activities while an ÄS-value of 
1 defines the capacity of each resource to be equal to the demand imposed by the earliest start 
time schedule. The following levels are realized: NC € {1.5,1.8,2.1}, RF 6 {0.25,0.5,0.75,1}, 
and RS € {0.2,0.5,0.7,1.0}. 

The set j 120 consists of 600 projects, each with n = 120 activities and 4 resource types. Again, 
a füll factorial design with the three independent problem parameters NC, RF, and RS is used. 
The levels of the parameters are NC 6 {1.5,1.8,2.1}, RF 6 {0.25,0.5,0.75,1}, and RS € 
{0.1,0.2,0.4,0.4,0.5}. 

The following heuristics are included in our experimental investigation (cf. Subsections 2.2 and 
2.3): Within (deterministic) single pass heuristics we employed WCS with parallel SGS and LFT 
with parallel and serial SGS (cf. Kolisch [16, 17]). These three methods are also employed as 
RBRS variants (cf. Kolisch [17]). Addionally, pure random sampling with the parallel and the 
serial SGS is used (cf. Kolisch [15]). Adaptive sampling approaches included are due to Kolisch 
and Drexl [18] as well as Schirmer [32]. Metaheuristics tested in this study include the schedule 
scheme based TS method of Baar et al. [3], the activity Iist based SA procedure of Bouleimen 
and Lecocq [5]. Furthermore, three GA methods based on activity list, random key, and priority 
rule representation of Hartmann [11] as well as the problem space GA of Leon and Ramamoorthy 
[24] are considered. This gives altogether 16 heuristics which have been tested. 

Each algorithm was tested by its author(s) using the original Implementation. This allowed the 
authors to adjust the parameters in order to obtain good results. As a consequence, however, 
the tests were performed on different Computer architectures and operating systems. Therefore, 
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we could not impose a bound on the computation time to provide a basis for the comparison. 
Instead, we limited all tested non-single pass heuristics the number of generated and evaluated 
schedules to 1000 and 5000, respectively. This decision is based on the assumption that the effort 
needed for generating one schedule is similar in the tested heuristics. With the exception of the 
schedule scheme representation based TS approach of Baar et al. [3], all algorithms considered 
for our investigation make use of an SGS as described in Subsection 2.1. Hence, we found this 
assumption justified. At the end of Subsection 3.2 we will give some observations regarding the 
computation time. 

3.2 Influenae of the Project Size 

Tables 1-5 display the results of the computational comparison obtained from the evaluation 
of 1000 and 5000 schedules, respectively. In each Table, the heuristics are sorted according to 
descending Performance with respect to 5000 iterations. Table 1 summarizes the percentage 
deviations from the optimal makespan for the instance set j30. As for the other two instance sets 
some of the optimal solutions are not known, we measured for these sets the average percentage 
deviation from an Upper and a lower bound, respectively. The Upper bound was set to the lowest 
makespan found by any of the tested heuristics while the lower bound was selected to be the 
critical path based lower bound (cf. Stinson et al. [35]). We employed the lower bound in order 
to allow researchers to compare their results with the ones obtained in this study. All lower and 
Upper bounds can be obtained from the authors upon request. For the j60 set, the percentage 
deviations from the upper and lower bounds are reported in Tables 2 and 4, respectively.1 Finally, 
Tables 3 and 5 provide the respective deviations for the j 120 set. 

In order to detect significant difFerences between the heuristic Performance for 5000 iterations we 
did for each heuristic and the next best one pairwise comparison with the Wilcoxon signed-rank 
test using SPSS [27]. A significant difFerence in Performance at the 5% level of confidence is 
marked with a star (*) in the last column of Tables 1-3. 

Best Heuristics. The heuristics that performed best in our study are the SA of Bouleimen and 
Lecocq [5] and the GA of Hartmann [11]. While the procedure of Bouleimen and Lecocq performs 
best on the j30 set, the approach of Hartmann dominates on the instance sets with larger projects. 
Only on the j 120 set, however, the difFerence between both procedures is significant. On the other 
hand, these two procedures significantly outperform all other heuristics on each instance set. 

Comparison of Metaheuristics and X—Pass Methods. Generally, the results show that the 
best metaheuristics outperform the best sampling approaches. Increasing the number of generated 
schedules from 1000 to 5000 results in a stronger superiority of the metaheuristic results. This 
is mainly because sampling procedures generate each schedule anew without considering any 
Information given by already visited solutions while metaheuristic algorithms typically exploit 
the knowledge gained from the previously evaluated schedule(s). 

Random Sampling as Benchmark. We have included two simple sampling procedures in 
which the eligible activity to be scheduled next is selected by pure random choice. Here, the 

1 Note that the schedule scheme based TS heuristic of Baar et al. [3] was additionally run using the original 
termination criterion, which allows 2 trials each of which was terminated after no improved Solution was found 
after 250 iterations. This way, the deviation from the upper bound was lowered to 1.14%. 
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Iterations 
Algorithm SGS Reference 1 1000 5000 
SA - activity list ser. Bouleimen, Lecocq [5] - 0.38 0.23 
GA - activity list ser. Hartmann [11] - 0.54 0.25* 
sampling - adaptive ser./par. Schirmer [32] - 0.65 0.44 
TS - schedule scheme spec. Baar et al. [3] - 0.86 0.44* 
sampling - adaptive ser./par. Kolisch, Drexl [18] - 0.74 0.52 
single pass/sampling - LFT ser. Kolisch [17] 5.58 0.83 0.53 
GA - random key ser. Hartmann [11] - 1.03 0.56* 
sampling - random ser. Kolisch [15] - 1.44 1.00 
GA - priority rule ser. Hartmann [11] - 1.38 1.12 
single pass/sampling - WCS par. Kolisch [16, 17] 3.88 1.40 1.28 
single pass/sampling - LFT par. Kolisch [17] 4.39 1.40 1.29* 
sampling - random par. Kolisch [15] - 1.77 1.48* 
GA - problem space ext. par. Leon, Ramamoorthy [24] - 2.08 1.59 

Table 1: Average : deviations from optimal Solution — • n — 30 

Iterations 
Algorithm SGS Reference 1 1000 5000 
GA - activity list ser. Hartmann [11] - 0.88 0.33 
SA - activity list ser. Bouleimen, Lecocq [5] - 1.05 0.37* 
sampling - adaptive ser./par. Schirmer [32] - 1.09 0.82 
GA - priority rule ser. Hartmann [11] - 1.32 0.94* 
sampling - adaptive ser./par. Kolisch, Drexl [18] - 1.48 1.14* 
GA - random key ser. Hartmann [11] - 2.36 1.34 
TS - schedule scheme spec. Baar et al. [3] - 1.68 1.42 
single pass/sampling - LFT ser. Kolisch [17] 4.88 1.76 1.43* 
single pass/sampling - WCS par. Kolisch [16, 17] 4.30 1.76 1.44 
single pass/sampling - LFT par. Kolisch [17] 4.78 1.71 1.45* 
GA - problem space ext. par. Leon, Ramamoorthy [24] - 2.36 1.71* 
sampling - random par. Kolisch [15] - 2.71 2.28* 
sampling - random ser. Kolisch [15] - 3.34 2.73 

Table 2: Average deviations from best Solution — n = 60 

only project scheduling knowledge is contained in the SGS (due to this knowledge, the results 
are not as bad as one may expect). These random procedures serve as benchmarks as they allow 
us to evaluate how much the results can be improved by incorporating more project scheduling 
knowledge. Employing random sampling methods as benchmark solutions is common for the 
evaluation of scheduling heuristics (cf., e.g., Conway et al. [8]). Generally, any procedure should 
perform considerably better than a pure random procedure, especially if the same SGS is used. 
The results for the j30 set show, however, that two of the genetic algorithms yield a higher average 
deviation from the optimal makespan than the respective random sampling procedure with the 
same SGS. For the two other instance sets the two random sampling procedures perform worst 
among all heuristics if 5000 iterations are considered. 
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Algorithm SGS Reference 
Iterations 

1 1000 5000 
GA - activity list ser. Hartmann [11] - 2.36 0.67* 
SA - activity list ser. Bouleimen, Lecocq [5] - 5.50 1.64* 
GA - priority rule ser. Hartmann [11] - 2.58 1.66 
sampling - adaptive ser./par. Schirmer [32] - 2.87 2.04 
Single pass/sampling -- LFT par. Kolisch [17] 5.76 2.69 2.10 
single pass/sampling -•WCS par. Kolisch [16, 17] 5.54 2.71 2.11* 
sampling - adaptive ser./par. Kolisch, Drexl [18] - 3.71 3.10* 
GA - problem space ext. par. Leon, Ramamoorthy [24] - 5.09 3.53* 
single pass/sampling -- LFT ser. Kolisch [17] 8.02 4.55 3.87* 
GA - random key ser. Hartmann [11] - 6.85 4.31* 
sampling - random par. Kolisch [15] - 6.21 5.22* 
sampling - random ser. Kolisch [15] - 9.39 8.19 

Table 3: Average deviations from best Solution — n = 120 

Algorithm SGS Reference 1 
Iterations 

1000 5000 
GA - activity list ser. Hartmann [11] - 12.68 11.89 
SA - activity list ser. Bouleimen, Lecocq [5] - 12.75 11.90 
sampling - adaptive ser./par. Schirmer [32] - 12.94 12.59 
GA - priority rule ser. Hartmann [11] - 13.30 12.74 
sampling - adaptive ser./par. Kolisch, Drexl [18] - 13.51 13.06 
GA - random key ser. Hartmann [11] - 14.68 13.32 
TS - schedule scheme spec. Baar et al. [3] - 13.80 13.48 
single pass/sampling - LFT ser. Kolisch [17] 18.13 13.96 13.53 
single pass/sampling - WCS par. Kolisch [16, 17] 16.87 13.66 13.21 
single pass/sampling - LFT par. Kolisch [17] 17.46 13.59 13.23 
GA - problem space ext. par. Leon, Ramamoorthy [24] - 14.33 13.49 
sampling - random par. Kolisch [15] - 14.89 14.30 
sampling - random ser. Kolisch [15] - 15.94 15.17 

Table 4: Average deviations from critical path lower bound — n = 60 

Performance of Metaheuristics. A comparison of the results obtained from the metaheurist­
ics shows that the choice of the underlying representation is crucial. The two best procedures make 
use of different metaheuristic strategies while they both employ the activity list representation. 
The use of one metaheuristic paradigm itself does not necessarily lead to consistently good solu­
tions. This can be seen by the results of the three GA's of Hartmann [11] and the GA of Leon and 
Ramamoorthy [24]. While the activity list based GA yields the best results for all project sizes, 
the outcome of the random key based GA is of moderate quality on the j30 set and much worse 
on the j 120 set. The Performance of the priority rule based GA, on the other hand, improves with 
increasing project stee. This is because combining good priority rules is a good strategy in huge 
search spaces. But, as shown by Hartmann [11] it might exclude all optimal solutions from the 
search Space which is a severe disadvantage for small project sizes. Note, however, that Hartmann 
[11] reports that the priority rule based GA hardly exploits the benefits of genetic inheritance. 
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Iterations 
Algorithm SGS Reference 1 1000 5000 
GA - activity list ser. Hartmann [11] - 39.37 36.74 
SA - activity list ser. Bouleimen, Lecocq [5] - 42.81 37.68 
GA - priority rule ser. Hartmann [11] - 39.93 38.49 
sampling - adaptive ser./par. Schirmer [32] - 39.85 38.70 
single pass/sampling- LFT par. Kolisch [17] 43.86 39.60 38.75 
single pass/sampling - WCS par. Kolisch [16, 17] 43.57 39.65 38.77 
sampling - adaptive ser./par. Kolisch, Drexl [18] - 41.37 40.45 
GA - problem space ext. par. Leon, Ramamoorthy [24] - 42.91 40.69 
single pass/sampling - LFT ser. Kolisch [17] 48.11 42.84 41.84 
GA - random key ser. Hartmann [11] - 45.82 42.25 
sampling - random par. Kolisch [15] - 44.46 43.05 
sampling - random ser. Kolisch [15] - 49.25 47.61 

Table 5: Average deviations from critical path lower bound — n = 120 

Performance of Deterministic Single Pass Heuristics. For all three instance sets we see 
that the WCS priority rule with the parallel SGS performs best followed by the LFT priority 
rule with the parallel SGS and the LFT priority rule with the serial SGS. This is in line with the 
results documented in Kolisch [16]. 

Performance of Sampling Methods. Analyzing the priority rule based sampling procedures, 
we observe that the two rules WCS and LFT give almost identical results when employed within 
the parallel SGS. On none of the three instance sets, a significant difference could be found. On 
the other hand, there is a strong influence of the SGS, as will be explained below. It is evident that 
sampling is capable of improving the results of the associated deterministic single pass approaches. 

Performance of Adaptive Sampling Methods. Considering the adaptive sampling strategies, 
we see that the recent approach of Schirmer [32] outperforms the one of Kolisch and Drexl [18]. 
This is due to the fact that the former procedure is based on a more accurate partitioning of 
the Solution space in terms of problem parameters. The approach of Schirmer [32] makes use 
of the problem parameters number of activities (n), resource factor (&F), and resource strength 
(RS) while the heuristic of Kolisch and Drexl [18] only employs the resource factor. Furthermore, 
the adaptive method of Kolisch and Drexl [18] was not tested on instances with more than 30 
activities during the design phase. This also explains why even some of the simple (non-adaptive) 
sampling procedures outperform the approach of Kolisch and Drexl [18] on the j 120 set. 

Impact of SGS. Both the LFT based and the pure random sampling approach were tested with 
the serial as well as the parallel SGS. We observe a strong influence of the SGS which depends 
on the problem size: While the serial SGS is the better choice for these sampling approaches on 
the j30 instance set, the parallel one takes the lead on the j 120 set. This result can be explained 
as follows: Using the parallel SGS implies that only a subset of the active schedules, namely the 
non-delay schedules, are searched. This is a promising strategy if the search space is huge, as 
it is the case for the jl20 set. On the j30 set, however, the much smaller search space makes it 
possible to find good (or even optimal) solutions within small time limits. There, the restriction 
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to the non-delay schedules is disadvantageous as one may exclude all optimal solutions from the 
search space, hence the serial one becomes the SGS of choice. Similar findings are reported by 
Kolisch [15]. 

Computation Times. The metaheuristic algorithms which make use of the activity list rep­
resentation are the fastest approaches. This is due to the fact that the underlying serial SGS for 
activity lists (cf. Subsection 2.1) neither computes the eligible set nor selects an activity on the 
basis of priority values. This, however, has to be done by all other approaches. Additional effort 
may arise for the priority rule based methods, i.e., X-pass methods as well as metaheuristics with 
priority rule representation. There, in each stage and for each eligible activity the priority value 
has to be calculated if a dynamic priority rule (cf. Kolisch and Hartmann [19]) is employed. Biased 
random sampling approaches spend additional computational effort with the priority value based 
computation of selection probabilities and the random selection. Consequently, the heuristics 
show different computation times when constructing the same number of schedules. 

In order to give an impression of the computation times that occurred in this study, we mention 
some computation times that we obtained on a Pentium based Computer with 133 MHz and 
Linux operating system. There, activity list based GA needs on the average 0.54 seconds when 

* Computing 1000 schedules for the j30 set. The LFT based sampling method with serial SGS 
needs 0.78 seconds while the priority rule based GA requires 0.91 seconds. Considering the 
j 120 set, the time needed by the activity list based GA to compute 1000 schedules increases to 
3.04 seconds. Note that there is no linear relationship between the number of activities and the 
computation times (cf. the complexity statements given in Subsection 2.1). For each instance set 
and each heuristic, Computing 5000 schedules takes approximately 5 times longer than Computing 
1000. The latter Observation is reasoned by the fact that schedule construction requires far more 
computational effort than further components of the heuristics such as, e.g., the selection operator 
in a GA. 

3.3 Influenae of Further Problem Parameters 

In order to assess the influence of the problem parameters resource strength, resource factor, and 
network complexity we have performed for each tested heuristic a multi-variate linear regression 
analysis. We employed the average deviation from the optimal Solution given 5000 iterations for 
the benchmark set j30 as dependent variable and the three problem parameters as independent 
variables. Table 6 provides for each method the resulting #2-value, the constant (Const), and the 
coefficient for each problem parameter. A value of '05 indicates that the coefficient is not significant 
at the 5% level of confidence, while a star (*) indicates that the coefficient is significant at the 1% 
level of confidence. The resulting Ä2-values ränge between 0.14 and 0.38. This indicates that the 
three problem parameters do not explain much of the variance, and hence that the parameters do 
not allow to predict the Performance of a heuristic on a specific project instance. Nevertheless, 
some interesting observations can be made. 

All Const-values are significant at the 1% level of confidence. A low Const-value goes along 
with a good average heuristic Performance while a high Const-value indicates, on average, a poor 
Performance. The two best Const-values are obtained for the activity list based approaches of 
Bouleimen and Lecocq [5] and Hartmann [11] with the latter having a slightly better Const-value. 
The worst Const-value is due to random sampling with the parallel SGS. 

All significant NC coefRcients are negative, indicating that with increasing A^C-Ievel the average 
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Algorithm SGS Reference R? Const NC RS RF 
SÄ - activity list ser. Bouleimen, Lecocq [5] 0.14 0.74* 0 -0.99* 0.31* 
GA - activity list ser. Hartmann [11] 0.16 0.67* 0 -0.87* 0.64* 
TS - schedule scheme spec. Baar et al. [3] 0.17 1.44* -0.56* -1.02* 1.01* 
sampling - adaptive ser./par. Kolisch, Drexl [18] 0.28 1.26* 0 -1.83* 1.51* 
sampling - LFT ser. Kolisch [17] 0.30 1.71* -0.54* -1.98* 1.58* 
GA - random key ser. Hartmann [11] 0.30 1.49* -0.53* -1.72* 1.70* 
sampling - random ser. Kolisch [15] 0.38 3.01* -1.03* -3.29* 2.92* 
GA - priority rule ser. Hartmann [11] 0.28 3,93* -0.72 -4.02* 1.46* 
sampling - WCS par. Kolisch [16, 17] 0.16 4.31* 0 -2.96* -0.71 
sampling - LFT par. Kolisch [17] 0.16 4.22* 0 -2.98* -0.65 
sampling - random par. Kolisch [15] 0.20 5.17* -0.86 -3.68* 0 
GA - problem space ext. par. Leon, Ramamoorthy [24] 0.21 5.09* -0.75 -3.75* 0 

Table 6: Results of the multivariate regression — n = 30 

Performance of the heuristics increases. This confirms the findings of Kolisch et al. [22]. The 
explanation is that more precedence relations between activities lower the number of possible 
activity Äfequences and thus the size of the Solution space. The influence of the network complexity 
is rather low. The highest coefficient is obtained for random sampling with serial SGS. This is 
because the narrower the shape of the project network becomes, the smaller is the set of eligible 
activities and thus the risk of (randomly) selecting an activity which leads to a poor schedule. 

The RS coefficients are all highly significant and ränge between -0.87 (GA - activity list of 
Hartmann [11]) and -4.02 (GA - priority rule list of Hartmann [11]). The negative sign of the 
coefficients is reasoned by the fact that higher i25-levels assign more resource capacity to the 
Problems and hence make them easier. The coefficient indicates how sensitive the Performance of 
the heuristics is in terms of the resource scarceness of the problem. Again, the most insensitive 
heuristics are the activity list approaches of Hartmann [11] and Bouleimen and Lecocq [5]. 

The analysis of the RF coefficients has to be separated. All coefficients for the serial based 
SGS approaches are positive and highly significant, while the ones for the parallel SGS based 
approaches are either non significant or negative at the 5% level of confidence. That is, the 
Performance of serial SGS based heuristics is negatively affected by an increasing density of 
the resource demand array while the Performance of parallel SGS based heuristics are either 
slightly positive or not affected. This Observation has been originally made for X-pass heuristics 
in Kolisch [15]. An explanation is that for high resource density arrays the serial SGS is not 
capable of building 'compact schedules' where activities are put close to one another. Contrary, 
the parallel SGS, generating non-delay schedules, does inherently build 'compact schedules'. 

Finally, we focus on the effect of the resource strength (RS) and the resource factor (RF). Tables 
7 and 8 display the average deviations from the optimal makespan after 5000 iterations for each 
Parameter setting of the j30 set, respectively. For all procedures, the average deviation decreases 
monotonically with increasing resource strength, i.e., with declining resource availability, con-
firming the results obtained from the multivariate regression. For RS = 1, the problems are 
resource-unconstrained, allowing each heuristic to find an optimal Solution. Observe also that the 
GA of Hartmann [11] yields better results than the SA procedure of Bouleimen and Lecocq [5] 
on the (hard) instances with a low RS value while the latter performs better on the moderately 
resource-constrained problems. Analyzing the Performance of the heuristics w.r.t. the resource 
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RS 
Algorithm SGS Reference 0.25 0.50 0-75 1.00 
SA - activity list ser. Bouleimen, Lecocq [5] 0.81 0.09 0.00 0.00 
GA - activity list ser. Hartmann [11] 0.68 0.24 0.04 0.00 
TS - schedule scheme spec. Baar et al. [3] 0.78 0.66 0.31 0.00 
sampling - adaptive ser./par. Kolisch, Drexl [18] 1.51 0.37 1.19 0.00 
sampling - LFT ser. Kolisch [17] 1.60 0.41 0.10 0.00 
GA - random key ser. Hartmann [11] 1.31 0.76 0.15 0.00 
sampling - random ser. Kolisch [15] 2.58 1.15 0.26 0.00 
GA - priority rule ser. Hartmann [11] 3.18 1.11 0.18 0.00 
sampling - WCS par. Kolisch [16, 17] 2.52 1.28 1.29 0.00 
sampling - LFT par. Kolisch [17] 2.53 1.31 1.29 0.00 
sampling - random par. Kolisch [15] 2.98 1.62 1.31 0.00 
GA - problem space ext. par. Leon, Ramamoorthy [24] 3.08 1.85 1.42 0.00 

Table 7: Average deviations from optimal Solution w.r.t. resource strength — n = 30 

RF 
Algorithm SGS Reference 0.25 0.50 0.75 1.00 
SA - activity list ser. Bouleimen, Lecocq [5] 0.12 0.09 0.40 0.28 
GA - activity list ser. Hartmann [11] 0.02 0.11 0.37 0.47 
TS - schedule scheme spec. Baar et al. [3] 0.03 0.30 0.67 0.75 
sampling - adaptive ser./par. Kolisch, Drexl [18] 0.00 0.18 0.83 1.04 
sampling - LFT ser. Kolisch [17] 0.00 0.18 0.83 1.10 
GA - random key ser. Hartmann [11] 0.01 0.13 0.89 1.18 
sampling - random ser. Kolisch [15] 0.01 0.38 1.54 2.06 
GA - priority rule ser. Hartmann [11] 0.26 1.33 1.45 1.43 
sampling - WCS par. Kolisch [16, 17] 1.44 1.60 1.00 1.04 
sampling - LFT par. Kolisch [17] 1.44 1.59 1.01 1.09 
sampling - random par. Kolisch [15] 1.44 1.63 1.21 1.63 
GA - problem space ext. par. Leon, Ramamoorthy [24] 1.44 1.79 1.40 1.71 

Table 8: Average deviations from optimal Solution w.r.t. resource factor — n = 30 

factor, we can see that for a low RF value, procedures based on the serial SGS perform much 
better than those based on the parallel one. Again, this is in line with the multivariate regression 
results. 

4 Summary and Guidance for Future Research 

Based on our findings we can give the following recommendations towards the development of 
further improvements for project scheduling heuristics. 

The most successful approaches in our numerical evaluation are metaheuristics, namely the sim­
ulated annealing procedure of Bouleimen and Lecocq [5] and the genetic algorithm of Hartmann 
[11]. Nevertheless, priority rule based sampling methods are indispensable to construct initial 
solutions for metaheuristics. Hence, research in both directions — sampling and metaheuristics 
— will remain a promising field of research in the future. 
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Among the metaheuristics, the procedures which make use of the activity list representation 
performed best. The underlying metaheuristic strategy does not seem to be as influential as the 
representation; a genetic algorithm and a simulated annealing approach share the top ranks in 
our analysis. This indicates that the development of new representations may be more interesting 
than the incorporation of existing representations into other metaheuristic strategies. 

As already mentioned, the best heuristics in our computational analysis are metaheuristics based 
on the activity list representation and the serial SGS. The experiences with sampling methods 
show that the parallel SGS outperforms the serial one on the larger problems. Thus, the question 
arises if it would pay to develop a variant of the parallel SGS for activity lists. Possibly, this 
might lead to improved metaheuristics for very large problems. 

Adaptive sampling methods may outperform simple sampling approaches. The key to success, 
however, is an appropriate partitioning of the Solution space in terms of problem parameters, such 
as number of activities, resource factor, and resource strength. Equally important is the consider­
ation of all possibly relevant parameter settings when designing an adaptive method. One should 
keep in mind, however, that the proposed adaptive sampling procedures, once adapted to the test 
instances by their designer, are fixed and incapable of learning from previously evaluated sched­
ules. This makes them inferior to metaheuristics which have the inherent property of learning, 
i.e., self-adaptation. 
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