
Drexl, Andreas; Kimms, Alf

Working Paper  —  Digitized Version

Minimizing total weighted completion times subject to
precedence constraints by dynamic programming

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 475

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Kimms, Alf (1998) : Minimizing total weighted completion
times subject to precedence constraints by dynamic programming, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 475, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147580

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147580
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Manuskripte 

aus den 

Instituten für Betriebswirtschaftslehre 

der Universität Kiel 



Manuskripte 

aus den 

Instituten für Betriebswirtschaftslehre 

der Universität Kiel 

No. 475 

Minimizing Total Weighted Completion Times 
Subject to Precedence Constraints 

i by Dynamic Programming 
I 
i 

A. Drexl and A. Kimms 

July 1998 

Andreas Drexl and Alf Kimms 
Lehrstuhl für Produktion und Logistik. Institut für Betriebswirtschaftslehre, Christian-
Albrechts-Universitat zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany 
email: Drexl@bwl.uni-kiel.de 

Kimms@bwl.uni-kiel.de 
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod 

ftp://ftp.wiso.uni-kiel.de/pub/operations-research 



Abstract 
In this paper we present a polynomial time dynamic programming algorithm for 

solving a scheduling problem with a (total) weighted completion time objective func-
tion where the weights are activity- and time-dependent. We Highlight application 
areas for this type of problem to underscore the relevance of it. A computational 
study proves that large instances with up to 120 activities can be solved. 

Keywords: Total weighted completion time objective, precedence constraints, dynamic 
programming 

1 Problem Definition 

We consider a set V = {0,1,..., n, n + 1} of activities which are to be scheduled without 
preemption, i.e., once an activity j e V is started, it runs pj 6 N0 time units without 
interruption. A feasible schedule must take precedence constraints E cVxV among the 
activities into account. A feasible schedule thus assigns completion times Cj € JVQ to all 
activities such that Cj > C,- +pj holds for all (i,j) E E. We assume that the activity-
on-node network G = (V, E) contains no cycles. We will subsequently use Vj = {z € 
V | (i,j) 6 E} to denote the set of immediate predecessors of activity j. Consequently, 

— VjU U Vi is the set of all predecessors of j. Without loss of generality, we assume 
ifzPj 

that the activities 0 and n -f- 1, respectively, are unique source and sink nodes in the 
network, and that the network contains no redundant arcs, i.e. i € Vj implies % £ U Vh-

htVj 
It is easy to compute earliest and latest finish times ECj and LCj, respectively, where 
ECQ = po and LCn+ \ = T, respectively, are used as starting points for forward and 
backward recursions, and T € N is a deadline for finishing the network. Of course, a 
feasible Solution for the scheduling problem exists, if and only if ECn+1 < T holds. 

The objective is to find a feasible schedule which minimizes the sum of weighted 
completion times where gjt € R for j € V and t G {ECj,..., LCj} are weights for 
finishing activity j at time t. In summary, we look for an Optimum Solution of a problem 
which can be couched formally as a binary program of the form 

71+1 LCj 
min ^2 Y, 9jtxjt (1) 

j=0 t=ECj 
subject to 

LCj 
E = i jey (2) 

t=ECj 
LCj LCi 

t-Xjt- S Pj (i,j) e E (3) 
t—ECj t=ECi 
xjt ^ {0,1} j € V]t £ {ECjy..., LCj} (4) 

where Xjt = 1 indicates that activity j is finished at time t (otherwise, Xjt equals zero). 
The remaining text is organized as follows: Section 2 describes some application areas 

to make clear that the problem just defined is indeed an important one. In Section 
3, a dynamic programming algorithm is presented which runs in polynomial time. An 
illustrative example is given in Section 4. Computational results are provided in Section 
5. Some final remarks in Section 6 finish the paper. 

1 



2 Application Areas 

We first note that the problem stated above is not a generalization of the well-known 
Single machine scheduling problem under a total weighted completion time objective (see, 
e.g., [1]), because activities may be processed in parallel Actually, the problem can be 
seen as an (n 4- 2) parallel machine scheduling problem, but the number of machines is 
not restrictive. However, there are important application areas where the above type of 
problem occurs. We give here two examples from the field of project scheduling (see, e.g., 
[2])-

2.1 Maximizing the Net Present Value 

The first example is project scheduling without resource constraints where the objective 
is to maximize the so-called net present value. This problem is almost exactly the one 
above, the only difference is that the weights gjt have a special structure. Note, every 
maximization problem can be transformed into a minimization problem by multiplying 
the objective function thru with -1. In this particular problem, a cash flow is associated 
with each activity. Once an activity j is completed, a real-valued amount of money Cj 
must be paid (cash outflow, Cj < 0) or is received (cash inflow, Cj > 0). Because having 
one dollar today is better than receiving one dollar in the future (the reverse is true 
for cash outflows), future payments are discounted to compute today's worth of future 
payments. Finance teils us how to do so, i.e. 

9jt = -Cj • exp(-a • t) (5) 

is the current value of a payment Cj at time t in the future, where a > 0 is a discounting 
factor (actually, a = In (1 + /?) with ß being an interest rate). Note, gjt is monotonically 
decreasing (increasing) in time, if cy is negative (non-negative). Thus, activities with a 
positive cash flow should be scheduled as early as feasible, while activities with a negative 
cash flow should be scheduled as late as possible. 

This net present value project scheduling problem is an important and established 
subject. It has been around for ab out thirty years now. Russell [11] was, to the best of 
our knowledge, the first author who dealt with this problem. He formulated a non-linear 
model and described an approximation method for it. Later on, Grinold [8] transformed 
this model into a linear one and presented an exact Solution procedure to solve the prob
lem. Elmaghraby and Herroelen [7] presented another (optimal) procedure, but Sepil [12] 
gave a counterexample to show that the algorithm may not find the optimal Solution. 
All these references assumed an activity-on-arc network. However, every activity-on-arc 
network can be converted into an activity-on-node network and vice versa (see, e.g., [6]), 
and hence these contributions are relevant in our context also. Recently, Demeulemeester 
et ah [5] have developed an exact algorithm for activity-on-node networks with a run-
time complexity of ü(n3). They report that their algorithm is on the average ab out 2.5 
times faster than Grinold's procedure. 

2 



2.2 Minimizing the Makespan of a Project Und er Resource Con-

straints 

Another application area for our problem is in the context of the resource constrained 
project scheduling problem PS \ prec \ Cmax (see [2]) where the objective is to minimize 
the makespan of the project network. In this problem, we have a set K of so-called 
renewable resources where Rf.t € N0 resource units are available for k G K in time period 
t. Processing an activity j requires 6 ^Vo units of each resource k in every period in 
which it is processed. Using the same symbols as before, the problem can mathematically 
be modelled as follows: 

T 
min 52 1' x{n+i)t (6) 

i=ECn+1 
subject to 
n+l min{t+pj-l,LCj} 
52 52 rjkXjT<Rkt kel<;t€ {1,...,T} (7) 
j—0 T=ma.x{t,ECj} 

and (2), (3), and (4) 

Often, it is essential to have good lower bounds which are used either to evaluate Solution 
procedures or to be used as part of Solution procedures, like for bounding in a branch-
and-bound method, for instance. For the latter case, it is crucial to be able to compute 
lower bounds fast. Christofides et al. [4] suggest to compute lower bounds by means of 
a Lagrangean relaxation of the resource constraints combined with subgradient optimiza-
tion. Let Akt € JRQ be the Lagrangean multipliers associated with restriction (7). The 
Lagrangean relaxation then looks as follows: 

T T /n+l mm{t+pj-l,LCj} \ 
min t • Z(„+i), + 52 52 \kt (51 52 rikxjT - Rkt 1 (8) 

t=ECn+\ keK t= 1 \J=0 r=max{t,ECj} ) 

subject to 

(2), (3), aad (4) 

Christofides et al. solve this problem with a branch-and-bound procedure. We will now 
show that the model can be transformed into the form (1) thru (4) and can thus be solved 
with our polynomial time algorithm which is presented in the next section. With this in 
mind, we can derive the following: 

T T /n+l min{t+pj—l.LC,-} \ 
min 52 t • £(„+i)f + 52 52 Xkt 52 52 rjkxjr ~ Rkt 

t=ECn+1 k£K fc=l \j=0 r=max{t,£Cj} / 
T T n+imin{t+pj-l,LCj} T 

<=> min 52 t' X(n+i)t + 52 52 12 52 htrjkXjr - 52 52 XkAt 
t=ECn+1 k£K t=l j=0 r=max{t,ECj} k£Kt—l 

T T n+l mm{t+pj-l,LCj} T 
<=> min 52 z • + 52 52 52 52 52 

t—ECn+1 keK j—Q r=max{£,£Cj} k£K t= 1 

where gjkt = Xktrjk 

T T n+l mm{t+pj-l,LCj} T 
& min 52 1 • x(n+i)t + 52 52 52 - 52 52 

t=ECn+1 t=l j=0 r=m<Lx{t,ECj} keK t= 1 

3 



where gjt = £ 9jkt 
keK 

T n+1 LCj T 
O min t' x(n+i)t + *52 Iii 9jtXjt-

t=ECn+1 j=0t=£Cj keKt= 1 
t 

where ^ %T 
r=t-pj+l 

T 
Since is a constant for a given set of Multipliers Xku we can omit it for the 

keK t— 1 
purpose of optimization. Then, we define 

f gjt + t ifj =n + l /q\ 
\ Pj£ otherwise 

and get the objective function coefficients of the model (1) thru (4). 

3 Dynamic Programming 

The problem (1) thru (4) can be solved with dynamic programming. To make this clear, 
let Zj{t) denote the contribution of activity j and all its predecessors to the optimum 
objective function value when j is completed at time t. It can be computed using the 
following definition: 

W = 9jt + 9i7ci.(t) (10) 
t ePj 

In this definition, C*j(t) is the time at which activity i € Vj is finished best when activity 
j is completed at time t. Formally, C£(i) can recursively be computed as follows: 

(min {t-pjyLCi} 
arg min Z-(r) if i G Vj 

/ 1 min {t-Pj,LCh} \ (11) 
min Ql arg ZJJj) j otherwise 

The optimum objective function value is given by 

(12) 
T—C/ L/n+j 

and the Optimum schedule can be computed by evaluating 

for each activity i e F\{n + 1} where 

arg mm Z;+i(T) (14) 
T—c/L/n+l 

is the completion time of the sink activity n 4- 1 in the Optimum Solution. The run-time 
complexity is ö(n2Tmax{n,T}). 



4 An Example 

To illustrate the dynamic programming algorithm, we consider a small example with 
n — 1 activities. We make use of the example given in [5], i.e., the objective is to find 
a schedule which maximizes the net present value of cash flows. Figure 1 provides the 
relevant data. In addition to that, we use T = 20 and a — 0.01. From these data, we can 
derive the earliest and latest finish times as well as the values gjt according to definition 
(5). Table 1 summarizes this information. 

Running the dynamic programming algorithm, the forward recursion (starting with 
activity 0) yields the values Zj(t) given in Table 2. The optimum schedule can then easily 
be found in a back ward recursion (starting with activity 8). The optimum completion 
times are shown in Table 3 according to (13) and (14). The optimum objective function 
value is -39.53 according to (12), the maximum net present value therefore is 39.53. 

1 1 

-100 

j Pi 

c i 

0 0 2 4 6 6 7 2 8 0 

0 -150 200 30 0 

3 7 4 1 5 1 

50 50 -25 

Figure 1: The Network of the Example 

5 Computational Results 

To lest the dynamic programming algorithm, we have implemented it in GNU C. A 
Pentium II Computer with 266 MHz running a LINUX operating system was used as a 
platform. 

To give this computational study a better meaning than just evaluating the run-
time of a polynomial time algorithm, we decided to solve instances from a particular 
application area. As mentioned above, the procedure in [5] is a much more efficient 
procedura to solve the special case of maximizing the net present value of a project. 
Hence, we reimplemented the ideas of Christofides et al. [4] heading for lower bounds 
for the problem PS | prec \ Cmax, using our dynamic programming algorithm instead of 
branch-and-bound this time. That is to say that given the multipliers Xkt the dynamic 
programming algorithm solves the instance. Then, the multipliers are updated using 
subgradient optimization and the whole procedure starts again. Initially, we use A*t = 0. 

5 



j = 0 j = 1 7—2 j = 3 j = 4 j = 5 j = 6 j = 7 j = £ 

0.00 — — — — — — — — 
0.00 99.00 — — — — — — — 
0.00 98.02 — — — — — — — 
0.00 97.04 — — — — — — — 
0.00 96.08 144.12 — — — — — — 
0.00 95.12 142.68 — — — — — — 
0.00 94.18 141.26 — — — — — — 
0.00 93.24 139.86 -46.62 —— — — — 
0.00 92.31 138.47 -46.16 -46.16 — — — — 
— 91.39 137.09 -45.70 -45.70 22.85 — — — 
— 90.48 135.73 -45.24 -45.24 22.62 -180.97 — — 
— 89.58 134.38 -44.79 -44.79 22.40 -179.17 — — 
— 88.69 133.04 -44.35 -44.35 22.17 -177.38 -26.61 0.00 
— — — -43.90 -43.90 21.95 -175.62 -26.34 0.00 
— — — -43.47 -43.47 21.73 -173.87 -26.08 0.00 
— — — -43.04 -43.04 21.52 -172.14 -25.82 0.00 
— — — -42.61 -42.61 21.30 -170.43 -25.56 0.00 
— — — — -42.18 21.09 -168.73 -25.31 0.00 
— — — — — 20.88 -167.05 -25.06 0.00 
— — — — — —— -24.81 0.00 
— — — — — —— -24.56 0.00 

Table 1: The Weights gjt of the Example 

The Lagrangean Multipliers Akt are updated due to 

At, = (15) 

.&S4"' 

where UB* is the best known upper bound and LB* is the best known lower bound of 
an instance (initially, LB is the critical path based lower bound). Note, LB* requires 
updating while iterating. The value two is assigned to <5, initially, and <5" is reduced to its 
half whenever the best known lower bound has not been improved after five iterations. For 
the schedule just determined, Akt denotes the gap between how many units of resource 
k are requested and how many are available (Rkt) in period t where a positive value Akt 
indicates excessive use of the resource. The iterative procedure is terminated after 100 
iterations. The resulting LB* value can be strengthened a bit by rounding it to \LB*]. 

As a test-bed, we uäed the instances provided in the project scheduling problem library 
PSPLTB [9]. This library also contains the best known upper bound UB* for each instance 
which is not only used in the subgradient optimization, but also as a value for T in our 
studies. Currently, the library makes four different sizes of instances available. First, 
there are instances with n = 30 activities, but all of these were solved optimally before, 
so there is no need for Computing lower bounds for these. Second, there are instances 
with n = 60 and n = 90 activities, respectively. We attacked these with our code, but we 

6 



t 3=0 3 = 1 3 = 2 j = 3 II j = 5 j = 6 j = 7 CO II 

0 0.00 
1 0.00 99.00 — — 
2 0.00 98.02 
3 0.00 97.04 
4 0.00 96.08 144.12 
5 0.00 95.12 142.68 
6 0.00 94.18 141.26 
7 0.00 93.24 139.86 -46.62 — — — 

8 0.00 92.31 138.47 -46.16 47.08 — — — — 

9 — 91.39 137.09 -45.70 46.15 69.93 — — — 

10 — 90.48 135.73 -45.24 45.23 68.77 59.23 — — 

11 — 89.58 134.38 -44.79 44.31 67.62 58.64 — — 

12 — 88.69 133.04 -44.35 43.41 66.49 58.06 -37.07 -37.07 
13 — — — -43.90 42.51 65.36 57.48 -37.17 -37.17 
14 — — — -43.47 42,95 64.25 56.91 -37.26 -37.26 
15 — — — -43.04 43.38 64.03 56.34 -37.36 -37.36 
16 — — — -42.61 43.81 63.82 55.78 -37.45 -37.45 
17 — — — — 44.24 63.61 55.23 -37.98 -37.98 
18 63.40 54.68 -38.50 -38.50 
19 -39.02 -39.02 
20 -39.53 -39.53 

Table 2; The Zlj(t) Values of the Example 

j 0 1 2 3 4 5 6 7 8 
Cj 0 12 12 7 13 18 18 20 20 

Table 3: The Optimum Completion Times of the Example 

were not able to improve the best known Jower bounds due to [3]. However, it should be 
noted here that the code in [3] is restricted to instances where the resource availability is 
not time-dependent (i.e., Rk\ = ... = Rur for all every resource k) while our algorithm 
handles the general case as well. Anyhow, we turned to study the instances with n = 120 
activities. For these large size instances, no (good) lower bounds are available yet. The 
code in [3] is not able to solve them as reported to us in a private communication. 

The set of instances with n = 120 activities consists of 600 cases. They were system-
atically generated using the instance generator ProGen [10] using three different values 
of the so-called network complexity NC 6 {1.5,1.8,2.1}, four different values of the so-
called resource factor RF 6 {0.25,0.5,0.75,1.0}, and five different values of the so-called 
resource strength RS 6 {0.1,0.2,0.3,0.4,0.5}. The network complexity reflects the aver-
age number of immediate successors of an activity. The resource factor is a measure of the 
average number of resources requested per job. And, the resource strength describes the 
scarceness of the resource capacities. These parameters are known to have a big impact 

7 



on the hardness of a project instance. For each of the 3-4-5 — 60 parameter combinations, 
10 instances are available which gives the total of 600 instances. 

When solving the instances, it turned out that instances with RS = 0.1 require exces-
sive run-time and cannot be solved within reasonable time, say less than an hour. For 
the remaining 480 instances, the ideas of Christofides et al. (who used instances with 25 
activities in their original study and restricted the number of iterations to 50) can be 
applied. 

The first Observation we made is that some instances in the test-bed have a best known 
upper bound which equals the critical path based lower bound ECn+\. In other words, 
these instances have already been solved optimally and need no further consideration. 
Table 4 shows how many instances for each parameter combination have already been 
solved optimally. 

NC — 1.5 RS = 0.2 

CO ö
 II ö
 II GS 

RS = 0.5 
RF = 0.25 0 8 7 10 
RF = 0.5 0 0 8 10 
RF = 0.75 0 0 2 10 
RF = 1.0 0 0 3 7 

NC = 1.8 
RF = 0.25 0 5 7 7 
RF = 0.5 0 3 5 8 
RF = 0.75 0 0 1 6 
RF — 1.0 0 0 2 7 

NC = 2.1 
RF — 0.25 1 2 5 9 
RF = 0.5 0 0 2 8 
RF = 0.75 0 0 1 6 
RF — 1.0 0 0 0 3 

Table 4: The Number of Instances with Known Optimal Solution 

For the remaining instances, we computed lower bounds as described above. The 
average run-time (in CPU seconds) for solving one instance is given in Table 5. Note, 
these figures were yielded on the basis of 100 iterations per instance. That is, our dynamic 
Programming algorithm was called a hundred times per instance. The most important 
Observation is that run-time increases if the resource strength decreases. This is because 
a low RS value indicates that it is unlikely to find a feasible Solution with a makespan 
close to the length of the critical path due to resource restrictions. Actually, the best 
known Upper bound UB* of an instance with a low RS value is far away from ECn+i-
This in turn means that the intervals [ECj, LCj] are large which is the cause for a long 
run-time. 

The average quality of the lower bound is given in Tables 6 and 7, respectively. The 
former provides the gap between the best known upper bound and the lower bound 
measured as 

<»> 

8 



NC = 1.5 RS — 0.2 RS = 0.3 RS = 0.4 LO Ö
 II 

RF = 0.25 48.66 37.02 40.26 — 
RF = 0.5 96.32 58.62 42.22 — 
RF = 0.75 139.44 75.30 52.52 — 
RF = 1.0 145.64 90.27 59.71 43.38 

NC = 1.8 
RF = 0.25 54.20 45.97 43.40 32.44 
RF = 0.5 116.64 63.97 34.15 34.70 
RF = 0.75 140.25 93.81 51.25 37.65 
RF = 1.0 204.34 108.43 67.40 34.58 

NC = 2.1 
RF = 0.25 67.32 52.50 34.49 39.35 
RF = 0.5 133.54 73.71 48.21 47.22 
RF = 0.75 215.71 107.31 67.34 43.67 
RF = 1.0 257.74 131.15 78.04 47.09 

Table 5: The Average Run-Time per Tnstance (100 Tterations) 

while the latter one shows the improvement of the critical path based lower bound defined 

100 - - (17) 
•ß^n+l 

The results indicate that for instances with a low resource strength Lagrangean relaxation 
pays off in terms of the improved lower bounds. The results also indicate that a low 
resource strength makes instances hard to solve especially when combined with a high 
resource factor. 

6 Conclusion 

We have introduced a scheduling problem with a total weighted completion time objec
tive where feasible solutions must take precedence constraints among the activities into 
account. 

The problem was motivated by pointed to two applications in the field of project 
scheduling. The first application was project scheduling for maximizing the net present 
value of a project in the presence of unlimited resource availability. It was shown that 
this is a special case of the just introduced problem. The second application occurs in 
resource-constrained project scheduling where the objective is to minimize the makespan. 
It was shown that lower bounds, derived from a Lagrangean relaxation of the resource 
constraints, can be computed by employing the presented approach. This is remarkable, 
because existing literature proposed a branch-and-bound procedure to solve the problem. 

Since it is well-known that many machine scheduling problems, such as job shop, 
flow shop, and open shop scheduling, are special cases of the resource constrained project 
scheduling problem, the presented method is of interest in these areas, too. 

The Solution procedure presented here, is a dynamic programming algorithm which 
solves the problem in ö(n2T max{??<, T}) time. A computational study revealed that large 

9 



NC = 1.5 RS = 0.2 £
 

II o
 

CO
 

RS — 0.4 
ö
 II 3
 

RF = 0.25 10.40 2.41 5.06 — 

RF = 0.5 20.98 10.30 6.06 — 
RF = 0.75 27.28 14.18 8.66 — 
RF = 1.0 26.99 16.58 10.90 4.22 

NC = 1.8 
RF = 0.25 9.07 2.31 3.69 2.39 
RF = 0.5 20.09 9.88 5.61 3.98 
RF = 0.75 22.14 15.71 7.75 3.29 
RF = 1.0 27.23 15.37 11.12 3.85 

NC = 2.1 
RF = 0.25 9.44 5.09 3.39 1.72 
RF = 0.5 20.36 12.11 6.54 3.94 
RF = 0.75 26.03 14.67 9.42 3.87 
RF = 1.0 27.18 17.59 10.53 7.28 

Table 6: The Average Deviation from the Upper Bound 

NC =1.5 RS = 0.2 RS = 0.3 RS = 0.4 RS = 0.5 
RF — 0.25 1.73 0.00 0.00 — 
RF = 0.5 9.65 0.69 0.00 — 
RF — 0.75 19.37 3.87 0.39 — 
RF = 1.0 23.75 10.46 4.98 0.00 

NC = 1.8 
RF = 0.25 1.62 0.00 0.00 0.44 
RF = 0.5 11.94 1.43 2.25 0.00 
RF = 0.75 15.71 6.19 1.84 0.00 
RF = 1.0 27.08 10.48 4.19 0.00 

NC = 2.1 
RF = 0.25 2.37 0.53 0.39 0.00 
RF = 0.5 11.52 3.67 1.25 1.06 
RF = 0.75 21.00 7.19 3.22 0.00 
RF = 1.0 26.66 14.08 4.79 1.99 

Table 7: The Average Improvement of the Critical Path Based Lower Bound 

10 



instances with n = 120 activities can be solved. Thus, if the intervals [ECj.LCj] are not 
too large, the presented algorithm can be used as a submodule in the context of project 
scheduling in order to compute lower bounds for large instances. As a final remark it 
should be noted here that it is easy to extend the ideas to cases where minimal finish-
start time lags, release times for the activities, and deadlines for the activities are given, 
too. Future work should be devoted to investigate further extensions. 

References 

[1] BRUCKER, P., (1998), Scheduling Algorithms, Berlin, Springer, 2nd edition 

[2] BRUCKER, P., DREXL, A., MÖHRING, R.., NEUMANN, K., PESCH, E., (1998), 
Resource-Constrained Project Scheduling: Notation, Classification, Models, and 
Methods, European Journal of Operational Research, to appear 

[3] BRUCKER, P., KNUST, S., (1998), A Linear Programming and Constraint 
Propagation-Based Lower Bound for the RCPSP, Working Paper, University of 
Osnabrück 

[4] CHRISTOFIDES, N., ALVAREZ-VALDES, R., TAMARIT, J.M., (1987), Project 
Scheduling with Resource Constraints: A Brauch and Bound Approach, European 
Journal of Operational Research, Vol. 29, pp. 262-273 

[5] DEMEULEMEESTER, E.L., HERROELEN, W.S., VAN DOMMELEN, P., (1995), An 
Optimal Recursive Search Procedure for the Deterministic Unconstrained Max-
NPV Project Scheduling Problem, Working Paper, University of Leuven 

[6] ELMAGHRABY, S.E., (1995), Activity Nets: A Guided Tour Through Some Recent 
Developments, European Journal of Operational Research, Vol. 82, pp. 383-408 

[7] ELMAGHRABY, S.E., HERROELEN, W.S., (1990), The Scheduling of Activities 
to Maximize the Net Present Value of Projects, European Journal of Operational 
Research, Vol. 49, pp. 35-49 

[8] GRINOLD, B.C., (1972), The Payment Scheduling Problem, Naval Research Logis-
tics, Vol. 19, pp. 123-136 

[9] KOLISCH, R., SPRECHER, A., (1997), PSPLIB — A Project Scheduling Problem 
Library, European Journal of Operational Research, Vol. 96, pp. 205-216 

[10] KOLISCH, R.., SPRECHER, A., DREXL, A., (1995), Characterization and Gen
eration of a General Class of Resource-Constrained Project Scheduling Problems, 
Management Science, Vol. 41, pp. 1693-1703 

[11] RÜSSEL, A.H., (1970), Cash Flows in Networks, Management Science, Vol. 16, pp. 
357-373 

[12] SEPIL, C., (1994), Comment on Elmaghraby and Herroelen's "The Scheduling of 
Activities to Maximize the Net Present Value of Projects", European Journal of 
Operational Research, Vol. 73, pp. 185-187 

11 


