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Abstract 
We consider the problem of scheduling multiple, large-scale, make-to-order as

semblies under resource, assembly area, and part availability constraints. Such Prob
lems typically occur in the assembly of high volume, discrete make-to-order producta. 
Based on a list scheduling procedura which has been proposed in Kolisch [19] we in-
troduce three efficient heuristic Solution methods. Namely, a biased random sampling 
method and two tabu search-based large-step optimization methods. The two latter 
methods differ in the employed neighborhood. The Erst one uses a simple API-
neighborhood while the second one uses a more elaborated so-called 'critical neigh
borhood1 which makes use of problem insight. All three procedures are assessed on 
a systematically generated set of test instances. The results indicate that especially 
the large-step optimization method with the critical neighborhood gives very good 
results which are significant better than simple single-pass list scheduling procedures. 

1 Introduction 

In this paper we consider the problem of scheduling large-scale assemblies in a make-
to-order environment. A practica! application is a German Company which manufactures 
customized palletising systems for the chemical and food industry. The Company has 70 
employees, 20 of them working in the final assembly. In 1997, 100 palletising systems with 
an average revenue of 200,000 German Mark have been delivered to customers. The time 
between the confirmation of an order and the delivery to the customer is on average 20 
weeks and is made of order-specific construction, fabrication, and assembly. The major 
part of the fabrication is done by outside suppliers. Currently this causes long lead times of 
up to 12 weeks. The assembly of parts takes on average 3 weeks. A problem formulation 
and a simple single-pass heuristic for the problem have been proposed in Kolisch [19]. 
Here, we focus on advanced methods for solving this problem. 

The paper is organized as follows. In Section 2 we outline the problem and provide a 
mixed integer decision problem. Sections 3 and 4 introduce efficient methods for solving the 
assembly scheduling problem. First, we will show in Section 3 how feasible schedules can 
be constructed with a list scheduling heuristic. Section 4 is devoted to advanced Solution 
methods, namely biased random sampling and tabu search-based large-step optimization. 
An extensive computational study is performed in Section 5. 

2 Problem Description and Formulation 

2.1 Problem Description 

The problem of scheduling large-scale make-to-order assemblies can be depicted as fol
lows. A number of A > 0 customer specific end products have to be assembled and 
delivered at individual due dates. Product a € {1,.. •, A} has a due date of da > 0 and a 
penalty weight of wa > 0 for every period the product is delivered after the due date. The 
assembly of product a consists of a number of assembly Operations which are interrelated 
by technological precedence constraints. Without loss of generality, we assume for each Or
der a a. unique start Operation and a unique end Operation ea, S = {sa \ a = 1,... ,>4} 
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and E = {ea | a = 1,..., A} denote the set of start and end Operations of all Orders, 
respectively. A graphical representation of all Operations and their technological interre-
lations can be made with an integrated assembly graph. Here, the Orders are integrated 
into one network by a dummy start Operation which precedes all order start Operations 
and e dummy end Operation which succeeds all order end Operations. Figure 1 gives an 
integrated assembly network with A = 3 Orders. 

a = 1 2,2.0 

3,1.2 

a = 2 

a = 3 

21,2 

0A° XT>^ 3,2,0 

1,2,1 

\s)— 
2J_0 

—^9J 

^(To) 

V 3,2,1 2,3,0y 

\u)— -^12J 

0,0,0 Pj,Cj,qj min Pk,Ck,qk 

Figure 1: Integrated Assembly Graph 

With j = 0,..., J +1 we denote the Operations of the assembly network. The Operations 
0 and J + 1 are the dummy start and end Operation of the integrated assembly network, 
respectively. All Operations of one order are consecutively labelled, i.e. order a consists 
of the Operations sa,...,ea. Additionally, the labelling considers the topological order 
of Operations, i.e. h < j holds for each predecessor Operation h of Operation j. With 
J ~ {0,..., J -f 1} we denote the set of all assembly Operations; Vj and Vj denote the 
set of immediate and the set of all predecessors of Operation j, respectively. Between each 
Operation j and each of its immediate predecessors h 6 Vj we have an arc h —» j with 
weight = 0; between all order end Operations ea (a — 1,..., A) and the dummy sink 
J + 1 we introduce arcs with weight = dmax — da where o!max = max{c^a | a = 
1,..., A} denotes the maximal due date of all orders. 

The entire assembly of one order takes place on an assembly area, which is typically 
the shop floor. Since the shop floor area is limited, no more than C > 0 orders can be 
assembled at the same time. The assembly of an order a E {1,..., A] begins as soon as 
the start Operation sa of the order is started and it commences until the end operation 
ea is finished. Düring the entire time interval the order occupies the shop floor. Order 
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preemption, i.e. the removal of a partly assembled product from the assembly area, is not 
allowed because of high set up costs and the risk of damage. 

Each non-dummy assembly Operation j 6 J}is characterized by a triple (pj,Cj, %) 
with processing timepj > 0, capacity demand cj, and part demand <fj. 

There are R> 0 types of assembly resources such as mechanical assemblers, electrica! 
assemblers, and power tools. Resource type r E R} has a capacity of Cr,t > 0 
units at time instant t. The time varying capacity can be caused either from the demand 
side or from the supply side. On the demand side there might be Operations which have 
been started in the past and are still in process. Capacity is reserved until their planned 
finish times. On the supply side planned off-time of workers (vacation, fluctuation) and 
planned down-times of machines (inspection, repair) might reduce the available capacity. 
Each operation j requires CjtT > 0 units of resource type r while being processed. 

There are 7 > 0 types of A-parts which have been fabricated or procured specifically 
for the planned orders. Delayed A-parts will disrupt or delay the assembly and hence 
need special management attention (cf . Vaart et al. [30] and Nof et al. [26]). For each 
part type i € {1the quantity on hand is n^0 > 0. Additionally, the number of 
parts which will become available at time instant t is n^t ^ 0. The cumulated number 
of parts which will become available until time instant t is N{tt = Er=oni,r- The amount 
and timing of incoming parts are known from vendor contracts and production schedules 
of in-house part fabrication. Operation j requires % > 0 units of part type i. Before an 
assembly operation can be initiated, all required parts must be kitted. As noted by Nof 
et al. [26], kitting plays a central role in assembly. 

The objective of the assembly scheduling problem is to place orders on assembly areas, 
to assign parts to Operations, and to schedule Operations subject to precedence and resource 
constraints such that the sum of the weighted tardiness of the orders is minimized. Note 
that in contrast to, e.g., Agrawal et al. [2], Chen and Wilhelm [6], and Faaland and Schmitt 
[10] we do not consider any earliness costs. This is due to the short-term character of our 
problem where holding costs of parts and availability costs of resource levels have already 
been determined. 

Figure 1 and Table 1 give an example with A = 3 orders, «7 = 12 Operations, R — 1 
resource type, and 7 = 1 part type. The capacity of the single resource type is C\>t = 4 
for each time instant t. The quantity on hand for part type 1 is ni?0 = 2. Furthermore, 
2 part units will become available at time instants 3, 6, and 9, respectively, i.e. n-1,3 — 
fti.e = "1,9 = 2. The capacity of the shop floor is C = 2. 

2.2 Problem Formulation 

We assume that events, i.e. the delivery of parts and the change of available capacity, 
occur at discrete multiples of a Standard period length, e.g., a shift or half shift, and that 
the processing times of the Operations are discrete multiples of the Standard period length. 
In this case, all operation start times will also be discrete multiples of the Standard period 
length. We employ two types of decision variables. First, the binary decision variable 
Xj>t = 1, if operation j is started at time instant tt and 0, otherwise (cf. Pritsker et al. 
[27]). That is, Xj;0 = 1 denotes that operation j starts at time instant t = 0, ends at 
time instant i = pj and is processed during periods i = 1,... ,pj. In order to lower the 
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a da tVa 3 Pj 
1 8 2 2 2 2 1 

3 3 1 2 
4 3 3 1 
5 2 2 

2 6 3 7 2 1 2 
8 1 2 1 
9 2 1 
10 3 2 

3 7 4 11 3 2 1 
12 2 3 

Table 1: Order and Operation Data 

number of variables we calculate ESj, earliest Operation start times, and LSj, latest 
Operation start times, by classical network-based forward and backward recursion (cf, 
Elmaghraby [9]). Forward recursion starts with ESQ = 0 while backward recursion starts 
from LSj+i = T where T denotes the latest time for all orders to be finished. Note that 
to assure feasibility, in gener al, we have to set T > dma,x. The second decision variable 
is Ta > 0, the time span order a is tardy. The short-term assembly scheduling problem 
(STASP) can now be modelled as follows (cf. Kolisch [19]). 

Min Z = ^ waTa 
a=l 

S.t. 

LS, 

^2 ^ 
t=ESj 

LS, 
(t + Ph) xhit - txi:t < 

t=ESh 

J t 
^2 Cj,rxj,T 5 
j— 1 r=max{0,t-pj)+l} 

A 1 
\Xsair ^ea,max{0,T-pe^} j ^ O 

a=1r=0 

t J 

T=0j=\ 

(1) 

(j = 

(j = J\ h € Vj) 

{r = 1,..., R-, t = 0,... ,T) 

(< = o,...,n 

(i = 1,..., /; t = 0,... ,T) 

(2) 

(3) 

(4) 

(5) 

(6) 
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65.. 
T. + Pea)xea>t ~Ta < da (a = 1,...,A) (?) 

t=ESea 

Xj,t £ {0, 1} (i = t = £^,...,£5^) (8) 

^>0 (<z — 1,..., ̂ 4) (9) 

The objective function (1) minimizes the sum of the weighted tardiness. (2) forces each 
operation to be processed. (3) stipulates the technological precedence constraints between 
Operations. (4) guarantees that the capacity of each type of assembly resource is respected 
at every time instant. Note that at time instant t, capacity is required by all Operations 
which do start or are in process in t but not by Operations which finish in t. (5) ensures 
for every time instant the spatial capacity constraints imposed by the limited availability 
of the assembly area. (6) models the constraints imposed by the fact that for each part 
type i and each time instant t the sum of assembled units has to be less equal the sum of 
the parts which have become available until t. (7) links the continuous tardiness variable 
with the binary start variables of the order sink. Finally, (8) and (9) define the binary 
and the continuous decision variables, respectively. Note, that one can model the STASP 
with the xjit variables solely. But employing the Ta variables makes the objective function 
more handy. 

It is shown in Kolisch [19] that the STASP is an AfV-haid optimization problem. Hence, 
heuristic algorithms are required when solving large industrial problem instances. 

Similar problems as the STASP appear in the assembly of machine tools (cf. Drexl and 
Kolisch [8]), ships (cf. Lee et al. [22]), and plants (cf. Moder et al. [25]). A review of 
the assembly scheduling and the multi-project scheduling Iiterature provided in Kolisch 
[19] reveals that none of the papers presented so far simultaneously considers multiple 
assembly orders under spatial, resource, and part availability constraints. 

3 Solution Procedures — List Scheduling 

A very populär approach to solve scheduling problems is list scheduling (cf. Schütten [29]) 
which works as follows: First, the Operations of the scheduling problem are sequentially 
ordered in a list. Second, in the order given by the list, the Operations are scheduled at their 
earliest feasible start times. Kolisch [19] has devised a list scheduling algorithm especially 
suited for the STASP. Since it is an integral part of the advanced Solution methods which 
will be discussed in Section 4 we have to revise it in the next section. We will first show 
how a list can be transformed into a schedule. Afterwards we turn to the generation of 
so-called feasible lists, i.e. lists which will bring forth a feasible schedule. An elaborated 
example can be found in Kolisch [19]. 

3.1 Schedule Generation 

Let 7r = (jt'i j j2f..., jj\ be a list of the J non-dummy Operations belonging to STASP. jg is 
the operation at position g and 7r(j) is the list position of operation j. Let us assume for 
now that we have such a list TT and want to transform it into a feasible schedule S(n). A 
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feasible schedule gives a start time Sj for each operation j = 1,..., J such that precedence 
relations, part availability, assembly resource, and spatial resource constraints are obeyed. 
In order to schedule the g-th operation on the list, we need to know the material availability 
Ni,t(g)> the assembly capacity Cr,t{g)-> and the spatial resource capacity Ct(g) after the first 
g — 1 Operations have been scheduled. This can be calculated with the following recursions 
for g = 2,..., J: 

For all i = 1,..., / and t = 0,..., T we first initialize iVi)t(l) = N^t and set 

ÄUf) = -1) - f ^ 

afterwards. 
Similar, for the capacity of assembly resources we set CV(f(l) = Cr,( for r = 1,..., R, i = 

0,..., T and update the available capacity 

(%,,W = -1) - { »^ ̂ '""' ^ ^ (H) 
{ 0 , eise 

for r = 1,..., R and t = 0,..., T. 
Finally, for the capacity of spatial resources, we set Ct(l) = G for t = 0,..., T. Up-

dating can for each t = 0,..,, T be done by 

aw-ft(,-i)+{",T} <»> 

where S and S denote the set of start and end Operations as introduced in Section 2.1. 
Now, assume that all list predecessors ji,..., of operation j = jg have been sched

uled and we want to start j as early as possible. If we only take into account precedence 
constraints (PC) we obtain Sfc, the precedence-constrained start time. 

S^c = max +Ph + t™1"} (13) 

With respect to the part availability (PA) we get S?A, the part availability-constrained 
start time. 

S?A = mjn {* I Ni,r{g) > qj,i for al] i = 1,r = t,T} (14) 

Considering only the assembly capacity (AC) and the dynamic earliest start time ESj, 
we have Sfc, the assembly resource-constrained start time. 

Sfc(ESj)~ min | Cr|T(p) > for all r = 1,..., R\ r ~ t,..., t -f pj — l| (15) 
t=ESj ' 

Taking only the spatial capacity (SC) into account, we have for order start Operations 
SfC) the spatial-constrained start time. 

I C((g) >l} (16) 

We now can proceed to the schedule generation algorithm. 
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Schedule Generation 

Initialization: So = 0. 
For g = 1 to J do 

(1) Calculate Nitt(g), and Ct(g) 

(2) Take the next job from the list: j = jg 

(3) Determine the dynamic earliest start time ES'- of j w.r.t. precedence, 
part availability, and spatial constraints: 
If j 6 S then ESj = max {S/a, Sj^, Sfc], eise ES'- - max {Sfa, Sj^} 

(4) Determine the earliest resource feasible start time of j which is > ESy. 
S3=Sf{ES'3). 

Step (1) Updates the part availability and the resource availability of assembly and spatial 
resources according to (10), (11), and (12). After Step (2) has selected the next operation 
from the list, its dynamic earliest start time w.r.t. precedence constraints, part availability 
constraints, and spatial constraints is calculated in Step (3). Note, that for non-start 
Operations no spatial constraints have to be taken into account. Step (4) determines the 
earliest resource feasible start time within the time window \ES'^..., LSj^. Note, that 
So, the start time of the dummy source of the integrated assembly graph, is initialized 
although it does not belong to the schedule because this start timeis required in Steps (1) 
and (3). 

Applying the schedule generation algorithm to the problem instance given in Section 
2.1 while using the list 7r = (11,12,1,2,3,4,5,6,7,8,9,10] we obtain the schedule S = 
(0,0,3,6, 9,9,9,11,12,14,0,3) with an objective function value of Z — 39. This schedule 
is given as Gantt-chart in Figure 2. Note that only Operations with non-zero processing 
times are depicted. 

Order 1 

Order 2 

Order 3 

7 CO
 

9 10 

11 12 

I 1 1—i—i—i—i—i 1—i—i 1—i—i—i—i J i 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Figure 2: Initial Solution 

It has been shown in Kolisch [19] that the schedule generation algorithm generates 
feasible schedules which are active in the case of C > A and which might be non-active 
for C < A. 
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3.2 List Generation 

We now turn to the problem of generating a list TT — {jhjz, - • •, jj]- In order to transform 
a list TT into a feasible schedule S = (S1}..., Sj), two properties corresponding with 
constraints (3) and (5) have to be met. The first property corresponds to the precedence 
constraints in (3). It requires that the list position of an Operation j must be greater than 
the list position of each of its predecessors (cf., e.g., Hartmann [16]) 

Vjg £ (.9 = 1,..., J). (17) 

The second property concerns the spatial resource constraints given in (5). Consider 
the available spatial capacity given in (12). Whenever an order start operation sa (a = 
1,...,A) is scheduled, the available spatial capacity is reduced by 1 from the start of 
that operation to the end of the planning horizon. Scheduling an order end operation ea 

(a = 1,..., Ä) adds 1 capacity unit from the finish time of the operation to the end of 
the planning horizon. Hence, starting with an available capacity of C at iteration 1 of 
the schedule generation algorithm, no more than G order sources can be on list positions 
1 without an order sink in-between. Let C(g) = denote the set of 
Operations which have been assigned to list positions 1,... ,g. C(g), the spatial capacity 
available at the #-th position of the list, is 

G(g) = C- | £{g - 1) n 5 | + | £(g - 1) 0 E | . (18) 

Now, C{g) > 0 has to hold for each list position g — 1,..., J. 
Let further A(g) be the set of all available Operations which can be put at list posi

tion g, A(g) is the union of two disjoint sets of Operations. As(g), available start (5) 
Operations of orders, As{g) = {j E S | j $ C(g — 1)} and ^(g), available non-start (TV) 
Operations, AN(g) = {j E J \ S | j C(g — 1), Vj C C(g — 1)}. Both, start and non-
start Operations respect the precedence constraint property (17). The former because they 
do not have any (non-dummy) predecessors, the latter by definition. Denoting with v(j) 
a priority value associated with operation j, we can give the list generation algorithm as 
follows: 

List Generation 

Initialization: £(0) = 0. 
For g = 1 to J do 

(1) Update C(g), AN(g), and As(g) 

(2) If C(g) > 1 then A(g) = As(g) U AN(g) eise A(g) = AN(g) 

(3) Choose jg E A(g) with v(jg) = mmi€A{g) v(i) 

(4) Update £(g) 

The Initialization assigns the set of operation which are in the list to be empty. Step (1) 
Updates the spatial capacity and the set of start and non-start Operations, respectively. 
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Step (2) defines the set of available Operations. If there is spatial capacity, i.e. C(g) > 1, 
then the set comprises start and non-start Operations, otherwise, i.e. C(g) - 0, the set 
comprises non-start Operations only. In Step (3) we select one operation j from the set 
of available Operations with smallest priority value v(j). Finally, Step (4) Updates the 
set of Operations assigned to list positions. Applying the list generation algorithm to the 
problem instance introduced in Section 2.1 while employing the priority values given in 
Table 2 we obtain the list 7r = (11,12,1,2,3,4,5,6,7,8,9,10]. 

3 1 2 3 4 5 6 7 8 9 10 11 12 
v3 3 4 5 6 7 8 9 10 11 12 1 2 

Table 2: Priority Values 

4 Solution Procedures — Advanced Methods 

Building upon the list scheduling algorithm given in the last section, we can now turn our 
attention to more advanced Solution methodologies, namely biased random sampling and 
two different tabu search procedures. All of them employ the fact that each Solution can 
be represented by a feasible list n. Hence, we will consider from now on only lists. The 
mapping into a schedule is then straightforward as given in Section 3.1. 

4.1 Biased Random Sampling 

Biased random sampling methods have been mainly used to solve resource-constrained 
project scheduling problems (cf. Kolisch [17]) and job shop scheduling problems (cf. Baker 
[4]). A recent survey of biased random sampling methods for the resource-constrained 
project scheduling problem is given in Kolisch and Hartmann [20]. New biased random 
sampling approaches are developed in Schirmer and Riesenberg [28]. Feo et al. [11] 
have introduced a. similar Solution method called Greedy Randomized Adaptive Search 
Procedure (GRASP) which has been used to solve, amongst other optimization problems, 
different type of scheduling problems including the scheduling of printed wiring board 
assembly (cf. Feo et al. [12]). 

The general idea of biased random sampling is to employ a schedule generation scheme 
7i times in a probabilistic way in order to construct at most n different schedules. More 
precisely, biased random sampling for the STASP works as follows. We use n times 
the list generation algorithm in order to generate n lists. At iteration k = 1,... ,71, the 
objective function value Z(S(7T^)) associated with list 7r& is compared with the incumbent 
best objective function value Z. Whenever an improved objective function value has 
been obtained, the corresponding list is saved as incumbent best Solution. The generation 
of different lists is achieved by employing a slightly modified list generation algorithm. 
Instead of selecting at Step (3) the available operation with minimum priority value, we 
select the operation probabilistically. The selection probability of operation j £ •A(g) 
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is calculated as follows. First, we determine for each operation in the available set the 
regret value r(j) which is the absolute difFerence between the priority value v(j) of the 
operation under consideration and the worst priority value of all Operations in the decision 
set, i.e. r(j) = maxie^(5) u(t) - v(j). Afterwards, we calculate the probability p(j) = 
r'{j)/ (Eie^(s) r'(0)- The modified regret value r'(j) = r(j) + 1 assures two things. First, 
the denominator cannot be zero and hence for each operation j the selection probability 
p(j) is always defined. Second, each operation j in the available set A(g) has a selection 
probability of p(j) > 0. Hence, each list w can be generated and the search space includes 
the optimal Solution. 

4.2 Tabu Search Based Large-Step Optimization 

In what follows we will introduce two different tabu search procedures. Both are embedded 
in a large-step optimization method. Large-step optimization methods have been first 
introduced by Martin et al. [24]; an application of this method to the job shop scheduling 
problem is given by Lourengo [23]. The general idea is as follows. One starts with an initial 
Solution and tries to improve this Solution by employing a local search algorithm. From 
the obtained local optimal Solution it is then proceeded by a large-step to a new Solution 
which again is the starting point for a new local search. That is, the large-step method 
visits only local optimal solutions which reduces the Solution space. The application of 
large steps secures that the method does not get trapped in local optimal solutions. There 
are three elements of a large-step optimization algorithm which have to be detailed: i) the 
representation of a Solution, ii) a specification of 'large steps \ and iii) the specification of 
the local search procedure. We will sketch out these elements before detailing them below. 

Solution Representation As Solution representation we employ the list of assembly 
Operations 7t. From n we can additionally derive the Information of the order sequence 
A. A = (ai,...,a^] gives the sequence orders are placed on the assembly area. E.g., in 
Figure 2 we have the order sequence A = (3,1,2]. The order sequence A can be directly 
obtained from the Operations sequence 7r because whenever we have ir(sh) < TT(SP), then 
\(h) < A(p) holds. 

Local Search Procedure The local search method performs a tabu search on the 
Operations sequence 7r where the order sequence A is fixed. E.g., in Figure 3 the Solution 
space for order sequence Aß is B. The dotted arrow b —» b' shows the path from the initial 
Solution b to the local optimal Solution bf. 

Large Steps The large steps perform a tabu search on the order sequence A. In Figure 3 
the solid arrow b' —¥ c shows the large step from the local optimal Solution bf within the 
Solution space B defined by order sequence XB to the new Solution c within Solution space 
C defined by the new order sequence Ac-
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Figure 3: Large-Step Optimization 

4.2.1 Principles of Tabu Search 

Tabu search (TS) has been originally developed by Glover [14,15]. It is essentially a steep-
est descent/mildest ascent method. That is, it evaluates all solutions of the neighborhood 
and chooses the best one, from which it proceeds further. This concept, however, bears 
the possibility of cycling, that is, one may always move back to the same local Optimum 
one has just left. In order to avoid this problem, a tabu list is set up as a form of memory 
for the search process. Usually, the tabu list is employed to forbid those neighborhood 
moves that might cancel the effect of lately performed moves and might thus lead back to 
a recently visited Solution. Typically, such a tabu status is overrun if the corresponding 
neighborhood move would lead to a new overall best Solution (aspiration criterion). It is 
obvious that TS extends the simple steepest descent search, often called best fit strategy, 
which scans the neighborhood and then accepts the best neighbor Solution, until none of 
the neighbors improves the current objective function value. 

Key issues in the design of tabu search procedura are the selection of a suitable Solution 
representation, the definition of a neighborhood, and the definition of a tabu list. 

4.2.2 Local Search of Operation Sequences 

We will now detail the tabu search procedure for finding local optimal operation sequences. 
We use two different neighborhoods, a simple adjacent pairwise neighborhood and a, more 
elaborated so-called 'critical neighborhood'. 

API-Neighborhood The first neighborhood is an adjacent pairwise interchange (API) 
neighborhood (cf., e.g., Deila Groce [7]). A neighbor of sequence 7r is each precedence 
feasible sequence Tr' with A' = A, j'h — jh+\ and j'h+l = jh for one /i = 1,.— 1. A 
precedence feasible list 7r' is only derived, if operation jh is no predecessor of operation 
jk+i, i.e. jh £ Vjh+l. Figure 4 illustrates the API-neighborhood. The new neighbor TT' is 
derived by the move M(jh+i,jh) where operation jh+i is shifted in front of operation jh-
The backward move M(jh,jh+1) is set tabu. 
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i\ ... h JA+I ... 3J 

... & JA+I ... i'j 

Figure 4: API-Neighborhood 

Critical Neighborhood The drawback of the API-neighborhood is the fact that it 
does not employ any knowledge which is given in the schedule S(TT) associated with the 
incumbent list TT. In contrast, the so-called 'critical neighborhood' exploits problem spe
cific knowledge given in the incumbent schedule S(ir). The general idea is to find for an 
operation j a set of blocking Operations Bj which hampers j from being started one period 
earlier. A similar idea for the resource-constrained project scheduling problem has been 
proposed by Baar et al. [3]. The neighbor of 7r w.r.t. j is obtained by shifting j (and all its 
predecessors) in front of the operation h E Bj which has the smallest list position. More 
detailed, the neighborhood is as follows. For operation j we define ES?Ay the earliest 
feasible start time of operation j w.r.t. part availability. 

ES?A = min t | Vi € {1,...,/} : Niit > qjti + 
htf3 

(19) 

An operation j is considered to be Ieft shiftable, if Sj > max{S?c,ESfA} holds. S?° 
is the earliest precedence feasible start time as defined in (13). A left shiftable operation 
does neither start at its precedence nor part availability-based earliest start time. Hence, 
there must be a set of Operations containing at least one operation which prevents j from 
starting earlier than Sj. 

Denoting with Cr,Sj-I and Nits3~\ the available assembly capacity and the material 
availability w.r.t. the current schedule, we can define the capacity shortage cfr and the 
part availability shortage qf{, respectively, which hampers operation j from being started 
at Sj — 1. 

Cf,r = maX {°> C3,r ~ Cr,S,-l } (20) 

= max{0,<?,•,• - Ni,Sj-i} (21) 

The set of resource and part types for which there is a capacity or part availability 
shortage for operation j at Sj — 1 is defined as set of critical resources lZCj and critical 
parts rj, respectively. 

%) = {r|l<r<A,c^>0} (22) 

2? = {i I 1 < i < I,q£i > 0} (23) 
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The set of resource critical Operations Cf contains all Operations which are causing 
some, not necessary all, capacity shortage at Sj — 1. 

Cf = {h e $ I h & Vi and < ""(i) and Sh < Sj < Sh + ph and 3 r e H) : cKr > o} 

(24) 
The set of part critical Operations Cj contains all Operations which are causing some, 

not necessarily all, part availability shortage at Sj - 1. 

Cj = G J | h £ Vj and 7r(h) < n(j) and Sh < Sj and 3 i G Xc- : q^i > oj (25) 

The set of critical Operations Cj — Cj U Cf is a set of Operations where each operation 
is causing some, not necessary all, capacity or part shortage at Sj — t. 

Let a blocking set Bj be a mimimal subset of the critical Operations Cj for which the 
following holds: 

Vr 6 11] : £ cAir > c% and Vi G X] : £ qk)t > q* (26) 
h <=Bj heß3 

'Minimal' means that a blocking set must not contain any other subset for which condition 
(26) holds. In particular a blocking set does not contain any other blocking set as a subset. 

Depending on the set of critical Operations, there is more than one blocking set. E.g., 
consider the left shiftable operation 4 within the schedule given in Figure 2 (cf. also Table 
3). Associated with operation 4 are the set of critical Operations C4 = {3,11} and the two 
blocking sets B\ = {3} and B\ — {11}, respectively. We determine for each left shiftable 
operation j exactly one blocking set. Thereby we are seeking for the blocking set with 
lowest cardinality. Starting with cardinality 1 we are looking for a blocking set with only 
a single operation h 6 Cj. In case of more than one possible operation /t, we select the 
operation with the latest start time 6%, in case of ties we choose the operation with the 
highest list position 1r(h). Is there no blocking set with cardinality one, we search for a 
blocking set with cardinality two. We start with the Operation h 6 Cy, with latest start 
time (highest list position) and search for asecond operation g ^ h^g € Cj with latest start 
time (highest list position). Table 3 gives the blocking sets which have been determined 
for the schedule given in Figure 2. 

A list 7r' where in the corresponding schedule S' operation j shall start earlier than Sj 
has to put operation j at a list position which is smaller than the list positions 7r^ of 
all Operations h in a blocking set Bj. 

The corresponding move M(j,h) is to shift j and all its predecessors which are at 
list positions between TT(/I) + 1 and 7r(j) — 1 between operation , the immediate 
list predecessor of h, and h itself. Figure 5 illustrates the move M(ji,jb) with jf being 
predecessor of j?:. Table 4 provides the four moves associated with the blocking sets of 
Table 3 and the corresponding neighbor lists with their objective function values. 

For all Operations k which have been in list 7r in front of j and are in list n' behind 
i, i.e. 7r(k) < 7r(j) and 7r'(j) < 7r'(k) , we set the move M(k,j) tabu. That is, k is not 
allowed to be shifted in front of j. Table 4 shows the moves and the associated tabu moves 
for the example. A move leads always to a precedence feasible list but the new list might 
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jh jd 31 jh ji 
1 

i i 

31 ji 3b jd jh 

Figure 5: Critical Neighborhood 

not be feasible w.r.t. the spatial capacity. Spatial infeasible lists are discarded. In order 
to obey the order sequence A we set for all order pairs a and b the move M(s&,sa) tabu if 
A(a) < A(b) holds. 

3 1 2 3 4 5 6 7 8 9 10 11 12 
ct - - 0 0 - 0 l _ _ _ _ 

- - 2 1 — 1 0 — — — — 
Cj - - {2,11} {3,11} - - {2,3,4,11} {5,7} - - - -
Bj - - {2,H} {3} - {3} {7} " " " " 
Move - - M(3,ll) M(4,3) - - M(7,3) M(8,7) _ _ _ _ 

Table 3: Blocking Sets 

Figure 2 gives the schedule of the list TT = (11,12,1,2,3,4, 5,6, 7,8, 9,10] with objective 
function value Z(S(7r)) = 39 and Figure 6 gives the schedule of the best neighbor 7r' = 
(11,12,1,2,4,3,5,6,7,8,9,10] with objective function value Z{S{n')) = 30. 

Move TT Z Tabu 
(11,12,1,2,3,4,5,6,7, 8,9,10] 39 

M(3,ll) (1,3,11,12,2,4,5,6,7, 8,9,10] 47 M(2,3), Af(ll,3), M(12,3) 
M(4,3) (11,12,1,2,4,3,5,6,7, 8,9,10] 30 M(3,4) 
M(7,3) (11,12,1,2,6,7,3,4,5, 8,9,10] 48 M(3,7), M(4,7), M(5,7) 
M(8,7) (11,12,1,2,3,4,5,6,8, 7,9,10] 33 M(7,8) 

Table 4: Moves 

4.2.3 Large-Step Optimization of Order Sequences 

We have employed the same large-step method for the API-neighborhood and the critical 
neighborhood. The method can be given as follows. 

Let for the incumbent local optimal Solution a* be the order with the highest objective 
function contribution which is not on the first position of the order sequence. The new 
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Figure 6: Solution after Move M(4, 3) 

order sequence is obtained by moving a* to the first position of the sequence, i.e. a[ — a*. 
Any order sequence which has been evaluated is set tabu for the rest of the procedure. 

Let tis illustrate this large step with the help of the example which has been employed 
for the critical neighborhood. Consider the Solution given in Figure 6. The order with 
the highest objective value contribution is a = 2 with w2 • T2 — 3 • 8 = 24. We are 
now changing the order sequence A = (3,1,2] to the new order sequence A' = (2,3,1] 
by moving order 2 to the first list position. A Solution for the new order sequence is 
obtained by first constructing a feasible operation sequence which is then mapped into a 
schedule. The construction of the operation list is straight forward. In the order given 
by A' we sequence the Operations of each order by ascending operation number, i.e. ir = 
(sai,..., eai,..., saA,..., eaJ. This way we obtain for the order sequence A' = (2,3,1] the 
operation sequence 7r = (6,7,8,9,10,11,12,1,2,3,4,5]. Theassociated schedule with an 
objective function value of Z = 50 is pictured in Figure 7. 

After the large step has been performed, the local search of operation sequences starts 
anew. Employing the critical neighborhood search, we have the possible moves M(2,12), 
M(8S 7), M(ll,7), and M(12,10). The move which leads to a Solution with smallest ob
jective function value is M(ll, 7). The new operation sequence is 7r = (6,11, 7, 8,9,10,12,1, 
2,3,4,5]. Applying the schedule generation algorithm this sequence is mapped into the 
schedule given in Figure 8 with an optimal objective function value of 18. 

5 Experimental Evaluation 

5.1 Test Instances 

For evaluation purposes, a set of 270 problem instances was generated with a parameter 
controlled instance generator for assembly type problems which builds upon ProGen (cf. 
Kolisch et al. [21]). The instance set can be divided w.r.t. the size into small and large 
instances. A füll factorial experimental design with three independent problem parameters 
was employed for both sets. Each of the independent problem parameters corresponds with 
one of the 'hard' constraints (4), (5), and (6) of STASP, respectively. All other parameters 
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Figure 8: Optimal Solution 

were randomly drawn from the given intervals. 
For the small test instances, there is A = 3, Ja £ [3,5], R = 1, RF = 1, I = 1, 

PF = 0.7, and ra £ [0,5]. Ja denotes the count of Operations belonging to an order, RF 
denotes the resource factor of all Operations. It measures the density of constraint type 
(4) (cf. Kolisch et al. [21]). Correspondingly, PF denotes the part factor which measures 
the density of constraint type (6). RF = 1 and PF = 0.7 express the fact that for all 
non-dummy Operations there is c7> > 0 and for 7 out of 10 non-dummy Operations we 
have qjtr > 0. The following parameters were randomly drawn from the specified intervals: 
Po ^ [1,3], Cjir £ [1,3], iva £ [1,5], qjti £ [1,2]. The due date da was calculated as follows: 
da = ra -j- ESea with ra, the release date of order a. 

The following parameter values were set differently for the large test instances: A = 10, 
Ja £ [5,10], Ä = 2, / = 2, and ra £ [0,20]. 

The three independent problem parameters are the assembly resource strength, the 
spatial resource strength, and the part strength. The assembly resource strength (RSA) 
measures the scarcity of the assembly resource capacity given in (4). For RSÄ = 0, the 
capacity for each resource type r = 1,..., R equals the minimum capacity needed when no 
two Operations are processed in parallel. For RSÄ = 1, the capacity for each resource type 
r suffices to realize, w.r.t. constraint (4), the schedule S = (ESi,..., ESj). RS was set 
to 0.1, 0.3, and 0.5 for the small instances and to 0.1, 0.2, and 0.3 for the large instances, 
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respectively. The spatial resource strength (RSs) measures the available capacity of the 
assembly area. For RSs = 0 there is just one assemble area available, while for RSs = 1, 
there is enough capacity to assemble all orders in parallel. RSs was set to 0.1. 0.5, and 
1.0 for the small instances and to 0.3, 0.5, and 1.0 for the large instances, respectively. 
The part strength (PS) measures the timing, parts are made available for assembly. For 
PS = 1, each part type is made available such that, w.r.t. constraint (6), the schedule 
S = (ES\,... , ESj) can be realized while for PS = 0, Operations cannot be started earlier 
than given in the schedule S = (LS\,..., LSj). Latest start times LSj are calculated by 
backward recursion from the Upper bound T = For the small instances, PS 
was set to 0.7, 0.8, and 0.9, while for the large instances, it was set to 0.8, 0.9, and 1, 
respectively. Additionally, some variance was added to the part arrival times by using the 
part variability (PV). For PV = 0 there is no Variation and parts arrive as calculated 
by the part strength. For PV = 1 and PS = 0.5 part arrival is randomly drawn out of 
the interval defined by the earliest and latest start times of the part requesting Operations. 
PV was set to 0.3 for the small instances and to 0.4 for the large instances, respectively. 
Realizing a füll factorial design with 5 replications for each combination of the independent 
parameter levels, 5 • 33 = 135 instances were generated for the small and the large instance 
set, respectively. 

5.2 Results 

5.2.1 Parameter Adjustments 

Within the experimental investigation we have applied the following four methods: Ran
dom sampling, biased random sampling based on the weighted earliest due date priority 
rule (WEDD), large-step optimization with the API-neighborhood, and large-step optim
ization with the critical neighborhood. 

Random Sampling Random sampling is as detailed in Section 4.1. In Step (3) of each 
list generation run the selection probability for each available operation is set equal, i.e. 
p(j) = 1/| A(g) |. We use random sampling as a benchmark. 

Biased Random Sampling In Kolisch [17, 18] it has been experimentally shown that 
the Performance of biased random sampling methods relies significantly on the quality of 
the employed priority rule. When used with the best deterministic priority rules, biased 
random sampling will also show the best results. Hence, we employed for biased random 
sampling the weighted earliest due date (WEDD) rule which is the best performing priority 
rule for solving the STASP (cf. Kolisch [19]). The calculation of the deterministic priority 
value v(j) for WEDD is simply by dividing the due date of the order associated with 
Operation j by the weight of the order associated with j. If we denote with a(j) the order 
a operation j belongs to, the priority value v(j) is as follows: v(j) — da(j)/wa(jy 

Large—Step Optimization with API—Neighborhood The length of the tabu list has 
been set according to preliminary experiments to 20. The local search for a given order 
list is stopped whenever 20 consecutive moves have not given an improved Solution. Each 
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visited order list is set tabu until the entire Solution procedure commences. The aspiration 
level has been used. The number of evaluated operation lists is set to a maximum of 5000. 

Large-Step Optimization with Critical Neighborhood For the critical neighbor
hood we set the length of the tabu list to 30, the entire number of evaluated solutions is 
set to a maximum of 5000. The aspiration level has been used. The local search for a 
given order list A is stopped whenever % the incumbent best objective function value 
associated with order list A, exceeds after Her accepted operation lists the so far best 
objective function value Z by at least e %, i.e. (^Z% — Z^j /Z • 100 > e %. According to 
preliminary computational results we have chosen e = 0 and Her = 5. That is, for a given 
order sequence A, the tabu search of operation sequences is stopped after 5 iterations if 
one has not found a Solution which is as least as good as the so far best found objective 
function value Z. 

5.2.2 Computational Results 

Table 5 reports the average deviation for random sampling (RS), biased random sampling 
(BRS), large-step optimization with the API-neighborhood (API-LSO), and large-step 
optimization with the critical neighborhood (CN-LSO) from the lower and the upper 
bound of the objective function value, respectively. Additionally, the average number of 
evaluated solutions are given. A distinction is made w.r.t. the problem size for all data. 
The bounds have been obtained as follows. For the lower bound we solved for each small 
instance the MlP-model (1) - (9) and for each large instance the LP-relaxation of (1) -
(9) with CPLEX (cf. Bixby and Boyd [5]). Modelling was done with AMPL (cf. Fourer 
et al. [13]). Note that for the small instances the term 'lower bound' coincides with the 
Optimum. The upper bounds were calculated for each instance by taking the best objective 
function value derived with the 4 heuristics RS, BRS, API-LSO, and CN-LSO. Note that 
the upper bounds employed in Kolisch [19] are different than the ones employed here; on 
average they are larger than the upper bounds obtained in this study. 

The sampling heuristics give better results for the small problem instances whereas the 
large-step optimization methods show superior results for the large problems. Note, that 
the superior results of the sampling heuristics on the small instances is solely caused by the 
far greater number of visited solutions. Based on the large instances there is clea.r order of 
Performance of the four methods: CN-LSO performs best, followed by API-LSO and then 
BRS. RS gives the poorest results. The number of visited solutions is much smaller for the 
LSO-methods. The critical neighborhood-based large-step optimization method clearly 
outperforms the API-based one. As it is the case for solving many hard optimization 
problems, we see that using problem insight pays in terms of the goodness of the obtained 
solutions. Using the iter/t-stopping criterion pays for the critical neighborhood-based 
large-step optimization. The number of visited solutions is significantly smaller than for 
API-LSO. 

Table 6 reports the effect of the independent problem parameters on the average devi
ation and the number of visited solutions of the four methods. The value in parenthesis 
gives the level of confidence when testing with the nonparametric Kruskal-Wallis test 
whether the problem parameter under consideration has a significant influence. 
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avg. dev. lb avg. dev. ub visited solutions 
Method small large small large small large 
CN-LSO 1.43 43.63 1.43 3.80 86 2411 
API-LSO 2.18 49.40 2.18 7.81 264 3832 
BRS 0.10 65.98 0.10 19.42 5000 5000 
RS 0.00 87.15 0.00 32.32 5000 5000 

Table 5: Average Deviation and Number of Visited Solutions 

The effect of the assembly resource strength RSÄ on the average percentage deviation 
from the lower bound of all three heuristics is significant at the 0% level of confidence. The 
Solution quality of all three Solution procedures deteriorates when the ßS^-level is lowered, 
i.e. capacity becomes scarce. The critical neighborhood-based large-step optimization 
method is the only heuristic which shows a significant decrease of the number of visited 
solutions when capacity becomes abundant. 

Both sampling methods show a significant decrease in the average deviation from the 
lower bound when the spatial resource strength is increased, i.e. the shop floor capacity 
becomes abundant. The explanation is that a 1 arger spatial capacity allows to process more 
orders in parallel which, in turn, increases the number of available Operations at Step (3) of 
the list generation algorithm. This lowers the selection probability of the Operations which 
would lead to the best schedule. The two LSO-methods show for increasing Ä5*5-values 
also a decreasing but no significant decrease in the Solution quality; the number of visited 
schedules decreases significantly and sharply when RSs = 1.0, i.e. the spatial resource 
constraints are not binding any more. 

A low level of the part strength, i.e. a Iate delivery of parts, gives way to better results 
for all four heuristics. But the extent of the effect is different. For both sampling methods 
there is a significant influenae while the infiuence on the LSO-methods is not significant. 

6 Summary and Conclusions 

We have considered the problem of scheduling multiple, large-scale, make-to-order as-
semblies under resource, assembly area, and part availability constraints. Based on a 
list scheduling procedure proposed in the literature we introduced three efficient heuristic 
Solution methods, namely, biased random sampling, API-based large-step optimization, 
and critical neighborhood-based large-step optimization. We assessed all three methods 
on a systematically generated set of test instances. Especially the critical neighborhood-
based large-step optimization heuristic shows favourably results. On the large instances 
it generates significantly better solutions than the other methods while, at the same time, 
it requires less visited solutions. Hence, this method should be employed in Leitstand— 
Systems (cf., e.g,, Adelsberger and Kanet [1] and Drexl and Kolisch [8]) for the short-term 
scheduling of make-to-order assemblies. 

Acknowledgement. We thank Andreas Drexl for his continuous support and the Deutsche 
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RS BRS API-LSO CN--LSO 
Parameter Level % # % # % # % # 

0.1 114.91 5000 87.98 5000 66.33 3827 58.98 2914 
RSA 0.2 78.34 5000 58.83 5000 44.75 3849 39.68 2184 

0.3 68.20 5000 51.11 5000 37.10 3821 32.22 2133 
(0.00) (1.00) (0.00) (1.00) (0.00) (0.71) (0.00) (0.01) 

0.3 59.62 5000 48.96 5000 48.65 5000 42.15 2822 
RSs 0.5 77.40 5000 57.59 5000 48.07 5000 41.86 3155 

1.0 124.43 5000 91.38 5000 51.46 1449 46.87 1255 
(0.00) (1.00) (0.00) (1.00) (0.49) (0.00) (0.32) (0.00) 

0.8 65.02 5000 48.16 5000 33.83 3839 29.66 2584 
PS 0.9 79.89 5000 60.23 5000 43.24 3839 37.99 2151 

1.0 116.54 5000 89.54 5000 71.12 3819 63.23 2498 
(0.00) (1.00) (0.00) (1.00) (0.00) (0.14) (0.00) (0.54) 

Table 6: Effect of the Problem Parameters — Average Deviation from the Lower Bound 
and Number of Visited Solutions for the Large Instances 
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