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Abstract: Most scheduling problems are notoriously intractable, so the majority of algorithms for 
them are heuristic in nature. Priority rule-based methods still constitute the most important class of 
these heuristics. Of these, in turn, parameterized biased random sampling methods have attracted par-
ticular interest, due to the fact that they outperform all other priority rule-based methods known. Yet, 
even the 'best' such algorithms are unable to relate to the füll ränge of instances of a problem: usually 
there will exist instances on which other algorithms do better. We maintain that asking for the one best 
algorithm for a problem may be asking too much. The recently proposed concept of control schetnes, 
which refers to algorithmic schemes allowing to steer parameterized algorithms, opens up ways to re-
fine existing algorithms in this regard and improve their effectiveness considerably. We extend this 
approach by integrating heuristics and case-based reasoning (CBR), an approach that has been suc-
cessfully used in artificial intelligence applications. Using the resource-constrained project scheduling 
problem as a vehicle, we describe how to devise such a CBR system, systematically analyzing the ef-
fect of several criteria on algorithmic Performance. Extensive computational results validate the effi-
cacy of our approach and reveal a Performance similar or close to state-of-the-art heuristics. In addi-
tion, the analysis undertaken provides new insight into the behaviour of a wide class of scheduling 
heuristics. 

Keywords: PROJECT SCHEDULING; HEURISTICS; RANDOM SAMPLING; CASED-BASED 
REASONING 

1. Introduction 

Most combinatorial scheduling problems belong to the class of strongly NP-equivalent prob­

lems (Garey, Johnson 1979) for which the State of the art still has only exponential answers to 

offer when it comes to the question of exact algorithms. Hence, the majority of scheduling al­

gorithms known are heuristic in nature. Despite their age, priority rule-based methods are still 

the most important ones of these. Kolisch (1996b) gives several arguments for their popular-

ity. First, they are straightforward which makes them easy to implement; indeed, most com-

mercial scheduling programs rely on them (De Wit, Herroelen 1990; Kolisch 1997). Second, 

they are computationally inexpensive in terms of Computer time and memory required, mak-

ing them amenable even for large instances. Third, their very inexpensiveness allows to inte-

grate them as fast "subroutines" into more complex metaheuristic algorithms (S torer et al. 

1992; Bean 1994; Leon, Ramamoorthy 1995; Lee, Kim 1996; Özdamar 1996; Naphade et al. 

1997; Hartmann 1997). Of the priority rule-based heuristics, parameterized sampling methods 

have attracted particular interest, since they currently outperform all other priority rule-based 

methods known (Kolisch 1996b); parameterized here indicates that such algorithms possess 

(one or more) control parameters which allow to steer their processing. Recent work on the re­

source-constrained project scheduling problem (RCPSP) has shown that appropriately instan-

tiating these parameters can significantly improve algorithmic effectiveness (Kolisch, Drexl 

1996; Schirmer, Riesenberg 1998). Indeed, the adaptive search procedure of Kolisch» Drexl 

(1996) may be seen as a first step into this direction. 

The problem solving approach of case-based reasoning (CBR), which originated in the field of 

artificial intelligence, uses experience gleaned from past cases (here: instances) to solve new 

ones. Although this approach was not originally intended for mathematical problems, some 
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work has recently appeared on the application of CBR to Operations research (OR) problems. 

In this paper, we consider ways to integrate CBR and scheduling heuristics. Our primordial 

goal is to demonstrate the benefits of using CBR to select appropriate heuristics for different 

classes of problem instances. Although we will embark on parameterized sampling methods 

for the resource-constrained project scheduling problem (RCPSP) as our vehicle, the ideas dis-

cussed easily apply to other applications as well. In developing a CBR system for the RCPSP, 

we concentrate on the effect of several instance characteristics (resource factor, resource 

strength, instance size) as well as the number of iterations on the effectiveness of different al­

gorithms. We recapitulate relevant results from other studies and extend them by new experi-

mentation. Although some of these factors have been studied before (Kolisch, Drexl 1996; 

Schirmer, Riesenberg 1998), a thorough experimental analysis of all four factors has been 

lacking. In addition, we will analyze the algorithmic designs arising and discuss the implica-

tions for sampling methods for the RCPSP. Döing so will demonstrate that a problem can be 

systematically analyzed by charting the appropriateness of different methods for different 

classes of instances. Also, the insight gained in this process will lead to a substantial im-

provement of the most effective sampling method in the open literature, viz. the adaptive 

search procedure of Kolisch, Drexl (1996). We thus hope to contribute in two ways to the cur-

rent body of knowledge. First, for the practitioner we show a way to design more effective 

scheduling heuristics, without having to compromise efficiency. Second, for the researcher we 

provide deeper insight into the behaviour of sampling heuristics. 

The remainder of this paper is organized as follows. The RCPSP as well as the fundamentals of 

parameterized sampling methods for this problem are covered in Section 2. Section 3 de-

scribes how CBR can be applied to OR problems in general. Section 4 explicates the devel-

opment of a CBR system in more detail, using the RCPSP as example. From the insight gained 

therein, Section 5 extracts a number of implications which apply to all sampling methods for 

the RCPSP in general. Section 6 details computational results and provides a comparison with 

state-of-the-art heuristics for the RCPSP. A summary and conclusions are given in Section 7. 

2. Project Scheduling 

2.7. Problem Setting 

The resource-constrained project scheduling problem can be characterized as follows: The 

Single project consists of a number J of activities of known duration dj; all activities have to 

be executed to complete the project. There are a number R of renewable resources, where the 

amount available per period is limited by a constant capacity Kr. Düring each period of its 

nonpreemptable execution an activity j uses kjj- units of resources r. A partial order Z., repre-

senting precedence relations between activities, stipulates that some activities must be fin-
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ished before others may be started. W.l.o.g. J, R, dj, Kr (kjr) are assumed to be positive 

(nonnegative) integers. Let us also assume w.l.o.g. that the activities 1 and J are dummy ac­

tivities, with durations and resource requirements of zero, and that activity 1 (J) is the unique 

first (last) activity w.r.t. Z. The goal is to find an assignment of periods to activities (a sched­

ule) that covers all activities, ensures for each renewable resource r that in each period the to­

tal usage of r by all activities performed in that period does not exceed the per-period avail-

ability of r, respects the partial order Z, and minimizes the total project length. 

2.2. Priority Rule-Based Scheduling Methods 

Priority rule-based scheduling methods consist of at least two components. A scheduling 

scheme determines how a schedule is constructed by augmenting partial schedules in a stage-

wise manner. On each stage, the scheme determines the set of all activities which are currently 

eligible for scheduling. Usually a serial and a parallel variant are distinguished; for detailed 

algorithmic descriptions we refer the reader to Schirmer (1997). 

The serial scheduling scheme (SSS) divides the set of activities into three disjoint subsets or 

states: scheduled, eligible, and ineligible. An activity that is already in the partial schedule is 

scheduled. Otherwise, an activity is called eligible if all its predecessors are scheduled, and 

ineligible otherwise. The scheme proceeds in N = J stages, indexed by n. On stage n, we refer 

to the set of scheduled activities as Sn and to the set of eligible activities as decision set Dn. 

Let Pj (2 < j < J) the set of all immediate predecessors of activity j w.r.t. Z. Then Dn is de-

termined dynamically from 

*>n<-{jl j^nAPjc5n} (1 < n < N) (1) 

On each stage n, one activity j* from Dn is selected - using a priority rule if more than one ac­

tivity is eligible - and scheduled to begin at its earliest feasible start time EFSTj*. Then j is 

moved from Dn to Sn which may render some ineligible activities eligible if now all their 

predecessors are scheduled. The scheme terminates on stage N when all activities are sched­

uled. For a formal description let RK^n (1 < r < R; 1 < t < T; 1 < n < N) denote the remain-

ing capacity of resource r in period t on stage n and LSTj the latest Start time of activity j (1 < j 

< J). Then, using EPSTj* to denote the earliest precedence-feasible Start time of j*, i.e. 

EPSTj* <- max {FTj | jZj*} (2) 

EFSTj* can be computed from 

EFSTj* <- min {x | EPSTj*<x<LSTj* A kj*r < RKrtn (l<r<R; t+l<t<T+dj*)} (3) 

The parallel scheduling scheme (PSS) proceeds in N > J stages, indexed by n, each of which 

is associated with a schedule time tn. The scheme divides the set of activities into four disjoint 
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subsets or states: active, finished, eligible, and ineligible. A scheduled activity is active during 

its execution, afterwards it becomes finished. In contrast to the serial scheme, an activity that 

is neither active nor finished is called eligible if it could be scheduled w.r.t. precedence and 

resource constraints, ineligible otherwise. Consequentially, the partial schedule consists of all 

active and finished activities. We refer to the set of active (finished, eligible) activities on 

stage n, i.e. in period tn + 1, as An (Fn, Dn). On each stage, one of two things happens. Either 

one eligible activity is selected, using a priority rule if more than one activity is eligible, 

scheduled to begin at the current schedule time, and moved frorn Dn to An; this stage is re-

peated as long as Z)n is nonempty. Or, if the decision set Z)n is empty, the schedule time tn is 

incremented. This is done by setting tn to the minimum of the finish times of all activities in 

An_i, then activities with a finish time equal to tn are moved from An to Fn which in tum may 

make some formerly ineligible activities eligible, transferring them to Dn. This stage is re-

peated until the decision set is indeed nonempty. The scheme terminales when each activity is 

scheduled, i.e. is either active or finished. For a formal description of the PSS, let denote 

RKrn (1 < r < R; 1 < n < N) the remaining capacity of resource r at the schedule time tn. Dn is 

derived dynamically from 

Dn<~ (jl ^nu^nA/jCFnAkjr<RKrn(l<r<R)} (l<n<N) (4) 

Priority rules serve to resolve selection conflicts whenever the decision set contains more than 

one candidate. Formally, any priority rule can be cast in terms of a mapping which calculates a 

numerical measure or priority value for each candidate and a dichotomical parameter extre-

mum e {max, min} which specifies whether high or low priorities are to be favored. Ties can 

be broken arbitrarily, e.g. by smallest activity index (as done in the sequel) or randomly. We 

briefly introduce several well-known priority rules. Let for each activity j (1 < j < J) denote 

LFTj the latest finish time, calculated from an Upper bound T on the total project length, and 

EFSTj the - dynamically updated - earliest feasible Start time w.r.t. all constraints. Concerning 

the measures IRSMj and WCSj, APn denotes the set of all pairs of nonidentical activities i and 

j in the decision set; Ejj denotes the earliest time to schedule activity j if activity i is started at 

tn (for details cf. Kolisch 1996a). Then the rules can be defined as done in Table 1 where also 

a Classification in terms of several straightforward criteria (Cooper 1976; Kolisch 1995, pp. 

85-86) is given; the last criterion refers to whether the rule is applicable in both scheduling 

schemes or only in the parallel one. These rules were selected because they have been found 

to be the best-performing ones in several studies (Alvarez-Valdes, Tamarit 1989; Boctor 

1990; Kolisch 1996a; Schirmer, Riesenberg 1997). 



5 

Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

Serial vs. 
Parallel 

MAX MTSj <- 1 Li'1 Kill S L S,P 

MIN LSTj LFTj - dj S G S,p 

MIN LFTj <- LFTj S L S,p 

MIN RSMj max{0, tn + dj - LSTj | (i,j) e APn} D G p 

MIN IRSMj <- max{0, Ejj - LSTj | (i,j) e APn} D G p 

MIN WCSj <r- LSTj - max{Ejj 1 (ij) e APn} D G p 

Table 1: Priority Rules - Definition and Classification 

2.3. Parameterized Random Sampling Methods 

Deterministic heuristics return one sole Solution for an instance, even if applied several times; 

considering that this Solution may be arbitrariiy bad, determinism may be a major deficiency 

for heuristics. Hence, random sampling schemes resolve selection conflicts according to prob-

abilities which are proportional to priority values; in other words, the probabilities are biased 

by the priorities. Thus, in each scheduling step any eligible job may be chosen but those shar­

ing higher priorities will have a higher probability of being selected. Note also that then tie-

breaking rules become obsolete as ties cannot occur. Evidence gathered in several computa-

tional studies confirrns that such methods outperform traditional, deterministic approaches 

(Cooper 1976; Hart, Shogan 1987; Laguna et al. 1994; Drexl, Grünewald 1993; Schirmer 

1997). Many of the so-arising biased random sampling methods are parameterized, possess-

ing control parameters allowing to influence the way in which they proceed. 

In the sequel, we briefly introduce two such schemes which in recent studies have been found 

to be the most effective ones available (Kolisch, Drexl 1996; Schirmer, Riesenberg 1997). 

The regret-based biased random sampling scheme (RBRS) was introduced by Drexl (1991) 

and Drexl, Grünewald (1993). The regret value of a candidate j measures the worst-case con-

sequence that might arise from selecting another candidate. Let denote v(j) the priority of 

candidate j and V(Dn) the set of priority values of all candidates in a decision set Dn. Then, 

the regrets are computed as 

fmaxV(Dn)-v(j) iffextr = min 

^-Ll_miL(Z)n)iffextr = max 

and modified by 

(iE Dn) (6) 
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where ee and ae R>Q. Having determined these values, the selection probabilities are de-

rived from 

QeDn) (7) 

e guarantees v"(j) to be nonzero; otherwise those candidates with priorities of zero could never 

be selected, an undesirable consequence in the presence of scarce resources. a allows to di-

minish or enforce the differences between the modified priorities for a<l or a>l, respec-

tively. Note that for a -» 0 the selection process becomes pure random sampling, since all 

candidates will share the same probability of being selected. On the other extreme, for a —» 00 

the process behaves deterministic: since with increasing a the difference between the highest 

and the second-highest modified priority increases, the probability of the highest-prioritized 

candidate being selected converges to one. 

An alteration of the RBRS leads to the modified regret-based biased random sampling scheme 

(MRBRS). It computes regrets from the original priorities according to (5) and modifies them 

according to (6); yet, rather than using a constant value, e is determined dynamically from the 

candidates' modified priorities. Let denote V(Dn)+ the set of all positive transformed priority 

values of the candidates in Dn, i.e. 

where 5 is a positive integer. Selection probabilities are again derived from (7). Thus, the 

above actually defines a family MRBRS/8 of sampling schemes (Schirmer 1997). 

2.4. Control Schemes 

Parameterized algorithms possess (one or more) control parameters which allow to direct the 

way in which they proceed. While such parameters may be only numerical in nature, we adopt 

a broader view and include also the choice of algorithmic components. Thus, control parame­

ters in the scheduling algorithms examined here include the scheduling scheme, priority rule, 

and random sampling scheme employed. To algorithms which govern the instantiation of the 

control parameters we refer as control schemes. Two classes of control schemes will be of 

concern in the sequel. 

nön)+*-{v'(j)l je DnAv'(j)>0} (8) 

Then £ is calculated from 

e <_ JminV(Ai)+/5 iff(3je£>„) V'G')> 0 (9) 
1 otherwise 
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Fixed control schemes (FCS) constitute the most simple class of control schemes. The attrib-

ute 'fixed' indicates that the way in which the control parameters are instantiated is prescribed 

in advance and for all instances alike. In particular, any control scheme which simply applies 

one and the same algorithm over all instances falls in this class of control schemes. Based 

upon the results of some previous experimentation, these precepts will reflect those control 

Parameter values which produced the best results on average over all test instances used. FCS 

are e.g. used by Kolisch, Drexl (1996) and Böttcher et al. (1996) to instantiate the bias pa-

rameter a in the RBRS. 

Another approach is motivated by the Observation that for most computationally intractable 

problems there simply exists no algorithm which performs best on all instances. Thus, as the 

prescriptions of FCS apply to all instances alike, they are unable to take into account the spe-

cifics of particular instances; this Observation has e.g. been made by Davis, Patterson (1975). 

Therefore a more refined class of schemes, to which we refer as class-based control schemes 

(CCS), proceeds by instantiating the control parameters depending on some characteristics of 

the instances attempted. Such schemes utilize a partition of the problems' instances into 

equivalence classes and prescribe the application of specific parameter instantiations for each 

of the classes. The adaptive search procedure of Kolisch, Drexl (1996) is built around a CCS 

which selects a scheduling scheme and a priority rule according to two quantities: the number 

of iterations to be performed and the resource strength of the instance. Schirmer, Riesenberg 

(1998) rely on resource factor and resource strength to determine scheduling scheme, sam­

pling scheme, and priority rule; we will review these studies in more detail later. Also class-

based control schemes require extensive experimentation to develop sufficient insight into the 

influence of the parameters on the algorithms' Performance. 

The advantage gained by refining a fixed to a class-based control scheme is obvious; doing so 

cannot deteriorate algorithmic effectiveness but will improve it in most cases. Additional at-

tractiveness lies in the fact that this refinement may be easily accomplished by appropriately 

exploiting the results used to derive a FCS in the first place (for details cf. Schirmer, Riesen­

berg 1998). Two caveats are in order, though. Combinatorially speaking, all random sampling 

schemes currently used in scheduling heuristics are implemented as "sampling with replace-

ment" which has a high result variability, especially for small samples. Therefore, the actual 

count of times a specific candidate is selected may well differ substantially from the corre-

sponding expected value (Reeves 1997). This effect may be compounded if the set of test in­

stances employed is relatively small. Failing to address this effect may produce what Reeves 

(1997) graphically calls "horses for courses", i.e. control schemes fine-tuned to the specifics of 

a non-representative experimental design. For the sake of robustness, therefore, the test in­

stances should be as representative of the expressive power of the problem as possible, as well 

in quality as in quantity. Also, selecting a specific algorithm A to achieve minimal gains in 

terms of effectiveness, while another algorithm B consistently dominates on all adjacent in-
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stance classes should be avoided; most likely, the good Performance of algorithm A would be 

due to the above sampling error. 

3. Integrating Case-Based Reasoning and Operations Research 

After reviewing the basic ideas of CBR, we discuss why CBR should be applied to OR prob­

lems and and how to go about it. In particular, we sketch the general design of such a system. 

3.1. Fundamental Ideas 

Analogical or case-based reasoning (CBR) uses - or even reuses - experience gleaned from 

past cases to solve new ones. Fast cases, along with their solutions, are stored in a data base or 

library, forming an extensional representation of the experience available. Now, CBR starts by 

identifying relevant past cases. If one of these cases is sufficiently similar to the one at hand, 

the Solution stored with the most similar of these is used. Otherwise, the case may either be 

solved by from-the-scratch reasoning, or by modifying the solutions of the most similar cases 

(Pomerol 1997). The inclusion of such newly acquired cases provides a learning mechanism 

that allows to extend and refine past experience. The CBR approach originated in the field of 

artificial intelligence, to better represent human problem solving. Since people mostly reason 

on whole cases rather than on isolated facts (Pomerol 1997), it is hoped that CBR systems will 

facilitate insight into how humans arrive at solutions and will also facilitate interactive Solu­

tion processes (Kraay, Harker 1996). An additional, more tangible motivation is provided by 

the fact that there are applications where it is easier or faster to modify past solutions than to 

develop new ones from the Scratch. More detailed introductions to the subject matter are given 

by Schank (1982) and Kolodner et al. (1985). 

3.2. Applicability and Motivation 

Although the CBR approach was originally used to tackle ill-structured problems which ex-

pose little structure to be exploited when solving them, recently some authors have begun to 

apply CBR to OR problems. Kraay, Harker (1996) develop a CBR approach for what they call 

repetitive combinatorial optimization problems, i.e. problems where closely related instances 

are to be solved on a regulär basis. Applications may be found e.g. in production environ-

ments where planning is done with a rolling horizon. With increasing size and complexity of 

the instances and with rising frequency of having to solve these it becomes more advanta-

geous to modify existing solutions for similar instances, rather than running time-consuming 

Solution procedures time and again. 

Considering that combinatorial optimization problems are usually well structured, that they 

often do not have to be solved recurrently, and that for many of them an abundance of algo-
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rithms exists, they seem to pose an unsuitable domain for CBR. But another, more natural ap­

proach to applying CBR in this domain evolves when the goal of deriving good solutions is 

replaced by the goal of selecting methods able to compute good solutions; recall that given an 

instance any algorithm solving it can be seen as encoding one of its solutions. Applications 

following this road are presented by Grolimund, Ganascia (1997), who use CBR to control Op­

erator selection in tabu search algorithms for several problems, and by Kimms (1997), who 

demonstrates the selection of appropriate algorithms for lotsizing and scheduling. When em-

ployed in this manner, the CBR-specific notions case and Solution translate into the terminol-

ogy of OR as problem instance and Solution method. 

The motivation to use CBR to identify suited algorithms arises from the recognition that w.r.t. 

their solvability not all instances are created equal. From a theoretical point of view, well-be-

haved (polynomially solvable) special cases of otherwise intractable (strongly NP-hard) prob­

lems exist. From a practica! Standpoint, one algorithm may perform better on some instances 

of a problem, a second algorithm on others. We will demonstrate later that this insight indeed 

applies to the RCPSP. When facing such problems, it would be worthwhile to know which al­

gorithm produces good solutions for a given instance, rather than having to resort to try nu-

merous possible methods. Therefore, we suggest to employ CBR systems as control schemes. 

Since we define control parameters as general as to encompass the selection of any algo­

rithmic component, the appropriate selection of an algorithm translates to the appropriate in-

stantiation of the control parameters. In this role, a CBR system extends the CCS approach in 

two directions: First, in addition to the instance characteristics used by CCS, other criteria can 

be called upon to devise control schemes. Second, the presence of a learning capability allows 

also to validate and refine already stored control schemes. Note that thus the recommendation 

to apply a particular algorithm cannot be fixed in advance but is generated dynamically for 

each instance tackled (cf. Table 2). Both these features will be shown to pave the way towards 

more flexible and thus more suited algorithms. 

Control Scheme Fixed in Advance Fixed for all Instances 
FCS yes yes 
CCS yes no 
CBR no no 

Table 2: Control Schemes - Classification 

3.3. Implementation 

Several ingredients are required for the Implementation of a CBR system for the purpose out-

lined. We will cover these in the sequel. 
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3.3.1. Case Library Initialization 

One ingredient is the case library itself, which in principle could consist of a number of in­

stances, each along with a reference to an appropriate algorithm. The decision for a particular 

algorithm will usually reflect which algorithm proved the most effective on average over all 

instances. Other criteria are conceivable, though; more complex criteria may include e.g. 

measures of efficiency, robustness, or reliability of algorithms (Crowder et al 1980; Badiru 

1988; Jackson et al. 1991). We follow this practice, choosing the algorithm most effective on 

average, and of these the most efficient one in case of ties. 

Rather than to störe each instance exhaustively, we propose to divide the instances into 

equivalence classes, relying on characteristics which influence whether a particular instance is 

harder or easier to solve. As these characteristics represent problem-specific knowledge, they 

have to be identified either from theoretical insight (cf. e.g. Kolisch 1996b; Nübel, Schwindt 

1997 for the field of project scheduling) or from preliminary experiments. For the RCPSP, two 

characteristic parameters widely used are the resource factor (RF) and the resource strength 

(RS): RF determines the number of resources that are requested by each activity, and RS ex-

presses the scarcity of the resources present (Kolisch et al 1995). Although these are not the 

only such characteristics, we will demonstrate later that they allow to gauge instance tractabil-

ity to a large extent. Note that such characteristics should be easily computable for any given 

instance. Now, instead of each previously solved instance merely one vector per class needs to 

be memorized, each component the value of one such parameter. Such a compact encoding 

minimizes the requirements for storage space as well as the computation times needed to 

identify relevant cases. 

Establishing the initial case library in a systematic way involves the generation of a represen-

tative set of test instances. This can be done by taking several possible values for each charac­

teristic parameter and constructing a number of instances for each of the induced combina-

tions; for the RCPSP we will describe instance sets obtained in this way later. To each of these 

instances all those available algorithms are applied which are considered likely to produce 

good results; note that this implies that algorithms which are already known to be unsuitable 

need not be applied. The initial partition is then defined by letting the borderline between ad-

jacent classes run through the midpoints between the tested values. If we assume e.g. a prob­

lem that is characterized by only one parameter from [0, 1], then the values 0.3, 0.5, and 0.7 

would induce the intervals [0, 0.4], (0.4, 0.6], and (0.6, 1], so each of the three corresponding 

equivalence classes would consist of all instances whose parameter values lie in the same in-

terval. Döing so essentially lays an n-dimensional grid with n the number of factors distin-

guished over the parameter space, where each equivalence class is represented by an n-di­

mensional hypercube around the point defined by its parameter values. 
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Let us emphasize that while such an - explicitly or implicitly - füll factorial design may seem 

excessive in terms of experimental effort, it is not overly so. First, recall that sampling meth­

ods are among the fastest scheduling heuristics available, bettered only by their deterministic 

counterparts. With current Computers, sampling methods run several hundred iterations in 

fractions of seconds such that Computing the initial experiments may be done in several hours. 

Second, while this effort might seem particular to devising CBR systems, the same experi-

mentation is involved in the traditional approach of identifying an FCS-based algorithm well-

suited for a problem, viz. running several alternative algorithms on an instance set and rec-

ommending as best for the problem that algorithm with the highest average effectiveness over 

all instances. 

3.3.2. Case Selection 

A second ingredient is an algorithmic means to identify relevant cases, i.e. similar instances, 

once a new instance comes up. Here, recognizing the applicable case merely requires to iden­

tify the matching interval for each parameter, and thus the appropriate equivalence class. More 

complex pattern recognition methods which do not rely upon the above interval structure are 

discussed in Kimms (1997). 

3.3.3. Case Library Updating 

A third ingredient, which may be referred to as a Iearning component, decides how to validate 

and when to update the case Iibrary. Clearly such features have the potential to enhance the 

quality of the recommendations given and are therefore a sensible part of any CBR system 

(Kolodner 1983). In its most simple form, this may prescribe, whenever a new case has been 

processed, the storing of the case and whatever Solution is adopted for it. However, using 

equivalence classes, we do not differentiate between instances of the same class, so Updates 

are not mandated by formal reasons; notice that Updates would be required if the instances 

were memorized in an extensional manner. We therefore propose two more evolved ap-

proaches. The first one stipulates an update whenever a new case differs from those in the Ii­

brary by more than a specified degree; this could be measured in terms of the distances from 

the incumbent interval midpoints, taking e.g. the average or the maximum value over all 

matching intervals. To such an instance, all seemingly worthwhile algorithms should be ap­

plied, as done for the initial setup of the Iibrary. If the results favour another than the currently 

prescribed algorithm, a refinement of the interval structure is in place. This allows, so to 

speak, to chart the boundaries between the classes more precisely. Another approach would be 

to apply promising algorithms to each newly acquired instance, including those instances 

which are not covered by the first approach. For these instances, the approach would be used 

ex post, the intention being to verify that the recommendation given by the CBR system was 

indeed fitting. In this way, a Validation of the knowledge base can be achieved on a system 

Ioad permitting basis. 
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4. Case-Based Reasoning for Project Scheduling 

In this section, we apply the general ideas just outlined to project scheduling and develop the 

design of a CBR system selecting parameterized random sampling methods for the RCPSP. We 

describe the initial setup of the case library, drawing upon the results from extensive computa-

tional experimentation, and discuss details of the case selection. As we confine ourseives to 

the initial library setup, we do not elaborate on case library updating; if such a feature is to be 

added, any of the approaches just outlined can be used. 

4. 1. Case Library Initialization 

4.1.1. Test Instances 

The factors examined in the experiments conducted for the library setup are sampling algo­

rithm, specified in more detail by scheduling scheme, random sampling scheme, and priority 

rule used, number of iterations, and instance size. We should emphasize that the control pa­

rameters a and 5 are held constant throughout; in preliminary tests the values a = 1 and 8=10 

gave the best results for the algorithms discussed here, and these are the values used. We thus 

omit them from any algorithmic descriptions. 

Specifying a set of values for each factor describes over which levels it is varied during an ex-

periment, while one value for each factor determines a run of an experiment. For each in­

stance and algorithm, the outcome of each run can be assessed in terms of effectiveness and 

efficiency. Effectiveness is measured as the percentage deviation of the best schedule found 

for the instance in that run from a reference Solution. Efficiency captures the CPU-time re-

quired for the run, measured in terms of seconds. 

As a test bed, we used the instance sets J30, J60, and J120 generated by the generator ProGen 

(Kolisch et al. 1995). Each instance is made up of 30, 60, or 120 non-dummy activities, hav-

ing a nonpreemptable duration of between one and ten periods and requiring one or several of 

four renewable resources present. The number of successors and predecessors w.r.t. the prece-

dence order varies between one and three for each activity. Systematically varied characteris­

tics for these instances are the resource factor (RF) and the resource strength (RS), explained 

above, as well as the network complexity (NC), defined as the average number of non-redun-

dant arcs per activity. A more comprehensive characterization is given in Kolisch et al. 

(1998). The respective parameter levels used are shown in Table 3. 
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Parameter Levels for J30 and J60 Levels for J120 

NC 1.5 1.8 2.1 1.5 1.8 2.1 

RF 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 

RS 0.2 0.5 0.7 1.0 0.1 0.2 0.3 0.4 0.5 

Table 3: Instance Sets - Varied Instance Characteristics 

For each Cluster defined by a combination of these parameters, each instance set contains ten 

instances, for a total of 480 instances for J30 and J60, and 600 for J120. Note that of J30 and 

J60, those 120 instances where RS = 1.0 are trivially solvable by the earliest start time sched­

ule. 

For the most part, our experimentation used a füll factorial design on the above factors. Sev­

eral experiments of limited scope that were conducted in addition will be covered in the sub-

sequent text, where appropriate. 

4.7.2. Effect of Instance Characteristics 

Merely precedence-constrained instances of the RCPSP, i.e. those where RS = 1.0, can be opti-

mally solved in linear time, so only the presence of scarce resources induces the strong NP-

equivalence of the problem. This insight is easily illustrated by disaggregating the effective­

ness of pure random sampling (RAS) over RF and RS, as shown in Figure 1 (where we use 

RAS under the SSS; the picture is essentially the same for the PSS). (The height of the surface 

represents the average deviation from optimum. The differently shaded stripes reflect different 

levels of the surface, measured in terms of 1% increments.) Figure 1 indeed demonstrates that 

less capacitated instances are more tractable than instances with rather scarce resources. It 

thus seems straightforward that, even if focussing on non-trivial instances only, certain algo­

rithms should perform better on some instances than others. 

RS 

Figure 1: Tractability of Instances as Demonstrated by Effectiveness ofRAS 
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Using a subset of J30 and allotting 100 iterations to each algorithm, Kolisch, Drexl (1996) 

found the priority rules LST and WCS to perform best under the SSS and the PSS, respec-

tively. Also, they found the relative effectiveness of the algorithms SSS, RBRS, LST and PSS, 

RBRS, WCS to depend on the RF of the instance attempted: SSS, RBRS, LST outperforms its 

counterpart on instances where RF < 0.75 while PSS, RBRS, WCS fares better if RF > 0.75. 

In a more recent study (Schirmer, Riesenberg 1998), encompassing the whole 360 non-trivial 

instances, 502 FCS-based algorithms were analysed separately on all 36 Clusters. As already 

reported by De Reyck, Hermelen (1996), the network complexity has no significant bearing 

on algorithmic effectiveness, yet both RF and RS turned out to affect the effectiveness of al­

gorithms, Figure 2 exhibits the respective results of the best serial and parallel algorithms in 

that study, viz. SSS, MRBRS/10, LST and PSS, RBRS, WCS, disaggregated over RF and RS. 

The above hypothesis is supported, as indeed different algorithms produce better results on 

different instance Clusters. 

Figure 2: Effect ofRF, RS - Deviations 

SSS, MRBRS/10, LST PSS, RBRS, WCS 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 0.43% 0.00% 0.00% 3,00% 1,36% 
0.50 £7&% 0.66% 0.08% 3.44% 2A2% 1.91& 
0.75 6.07% 1 7 OS 0.39% 3.70% 1.32% 
1.00 0.74% 4.91% 2.67% 

Table 4: Effect ofRF, RS - Deviations 

The corresponding numerical results are detailed in Table 4, revealing a clear cut dividing line 

between those instance Clusters on which the best serial FCS-based algorithm dominates and 
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those on which the parallel does (dominated areas are put in shading); for ease of presentation 

we will refer to the former as serial and to the latter as parallel Clusters. Thus, the recommen-

dation is straightforward to combine these two algorithms by selecting the better of both for 

each Cluster defined by RF and RS (cf. Table 5 below, marked J30, Z < 400). 

4.1.3. Effect of Sample Size 

Since this composite algorithm is based upon the results from running several FCS-based al­

gorithms for a sample size of Z = 100 iterations each, naturally the question arises whether the 

sample size has any measurable impact on the effectiveness of these algorithms relative to 

each other. If so, the case library of a CBR system would have to include entries for different 

iteration numbers in order to adjust for these effects. Indeed it is shown in Schirmer (1997) 

that the ranking of priority rules may change with the number of iterations. In Figure 3, we 

summarize the results of an experiment in which all priority rules were employed with the 

MRBRS/10 under both scheduling schemes, running them for up to 500 iterations on the set 

J30. The results are representative of those for the RBRS and other MRBRS-variants. 

4.5% 1 

4,0% 

3,5% 

3.0* 

2,5% -

,0% 4 

LFT 
LST 
MTS 

Iterations Iterations 

(SSS) (PSS) 

Figure 3: Effect of Iterations and Priority Rules - Deviations 

-+-IRSM 
-»-LFT 

LST 
-- MTS 
-*-RSM 
-"-WCS 

Although the ranking of the rules remains the same under the SSS over all iteration numbers, 

it changes under the PSS: the rule WCS emerges as the best one for all iteration numbers 

smaller than 400 whereas for larger iteration numbers the rule LFT is the best one; for 400 it­

erations, both rules perform identicaily. Note that using PSS, LFT instead of PSS, WCS for 
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1 arger samples has the additional benefit of being faster, since on average the latter combina-

tion requires about 25% more computation time (Schirmer 1997). Also, the dividing line be­

tween the "serial" and the "parallel" Clusters moves with increasing iteration numbers; so the 

best composition is also affected by the size of the sample taken. 

We extend these results by a similar experiment, taking measurernents after 1000 and 5000 it-

erations. This experiment serves several purposes. First, it enables us to check whether the al­

gorithms SSS, MRBRS/10, LST and PSS, RBRS, LFT remain the most effective ones on the 

serial and parallel Clusters, respectively, when the sample size is increased markedly. Second, 

it allows to verify whether the dividing line between serial and parallel Clusters remains unaf-

fected by the size of the sample taken. An additional benefit is that it allows to compare the 

effectiveness of sampling methods with that of more complex metaheuristic algorithms which 

usually are taking much 1 arger samples. We will come back to this last issue later. Without re-

producing the numerical results here, the outcome can be summarized as follows. LFT contin-

ues to dominate WCS on the parallel Clusters, except for Z = 5000 where WCS regains a 

slight advantage - less than 0.03% - on J30 and J60. Due to the higher efficiency of LFT, we 

chose to disregard this result. SSS, MRBRS/10, LST and PSS, RBRS, LFT are still the most 

effective algorithms on the serial and parallel Clusters, respectively. Yet, a more interesting 

finding is that the dividing line between serial and parallel Clusters indeed varies with differ­

ent sample sizes. As an example, consider the instance set J30: Whereas for 100 iterations 15 

Clusters are better solved by the best parallel algorithm, this number reduces to 9 Clusters for 

Iarger samples. Hence, for samples sizes above 400 a modified algorithm is recommended (cf. 

Table 5 below, marked J30, Z > 400). 

From these results one might assume that for samples smaller than 100 even more Clusters are 

solved better by a parallel algorithm. In order to check this, we conducted another experiment 

with the same algorithms, taking measurernents after 10, 40, and 70 iterations for each in­

stance set. It turns out for J30 that some minor changes occur when only 10 iterations are per-

formed, adding the Clusters with RF > 0.75 and RS = 0.7 to the parallel ones; for sample sizes 

between 10 and 100 as well as for the other instance sets, the picture remains the same as for 

100 iterations. If we regard any iteration number of 10 or below as unreasonable, due to the 

random error immanent to sampling (Hancock 1994), we can conclude that even for very 

small samples the best serial algorithm remains the better choice for the easier instances, i.e. 

those with small RF and large RS. 

4.1.4. Effect of Instance Size 

A related question is whether also the size of the attempted instances influences the best com­

position of CCS-based algorithms, i.e. the position of the dividing line between serial and 

parallel Clusters. Note that, although several problem parameters contribute to the size of 

Repsp-instances as formalized in complexity theory, we will here consider only the number of 
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activities to be scheduled. To assess the impact of the instance size, we extend the above ex-

periments to the Iarger sets J60 and J120. The best control schemes found are again reported 

in Table 5 (marked J60 and J120). The results show that increasing the number of activities 

may indeed produce a similar, if less pronounced effect as decreasing the number of iterations 

performed. As an example, compare the best algorithms on J30 and J60 for a sample size of 

500 iterations: Here the increase in the number of activities reduces the number of Clusters on 

which the best serial algorithm performs better from 27 to 21. Another interesting finding is 

that, although the effectiveness of the rules LFT and WCS under the PSS is always rather 

close, WCS performs better only on J30 and only for samples of 400 iterations or less; on the 

1 arger instance sets, LFT consistently outperforms WCS for all sample sizes tested. 

In the earlier literature on priority rule-based scheduling methods, the conjecture was widely 

accepted that the best rules on smaller instances would also be the best ones on Iarger in­

stances (Davis, Patterson 1975; Badiru 1988; Alvarez-Valdes, Tamarit 1989). On the basis of 

our results, this conjecture, which is probably due to the unavailability of Computers fast 

enough to allow large scale experimentation, has to be refuted, at least in its generality. 

4.2. Case Selection 

As a basis for case selection, we may summarize the outcome of our experiments, i.e. our in­

itial knowledge base, in terms of algorithmic recommendations for the RCPSP. These are de-

picted in Table 5 where for each instance class the most effective, and in case of ties the most 

efficient, sampling algorithm identified is specified. 

J30, Z<400 RS J30, Z>400 RS 
RF 0.2 0.5 0.7 RF 0.2 0.5 0.7 

0.25 SSS, LST 0.25 SSS, LST 

0.50 0.50 

0.75 0.75 

1.00 PSS, WCS 1.00 PSS, LFT 

J60 RS 
RF 0.2 0.5 0.7 

0.25 SSS, LST 

0.50 

0.75 

1.00 PSS, LFT 
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J120 RS 
RF 0.1 0.2 0.3 0.4 0.5 

0.25 SSS, LST 

0.50 

0.75 

1.00 PSS, LFT 

Table 5: Algorithm CBR-SAR - Composition 

Following the ideas outlined before, we partition the instance space using the midpoints be­

tween the tested values of J, Z, RF, and RS. Case selection under this initial knowledge base 

can then be managed by the algorithm listed in the Appendix (Table 11). 

5. Implications for Sampling Methods 

It is known from theoretical analysis that the space AS of active solutions, which is sampled 

by the SSS, always contains at least one optimum whereas the space NDS of non-delay sched-

ules, which is sampled by the PSS, may contain no optimal Solution at all (Kolisch 1996). The 

above experimental results for the case Iibrary initialization allow to complement these theo­

retical results by several interesting conclusions which provide deeper insight into the behav-

iour of both scheduling schemes. 

Detailing the results over the instance Clusters revealed the number of parallel ones, i.e. those 

Clusters on which the PSS is more effective than the SSS, to be the 1 arger, the Iarger the in­

stances attempted and the smaller the samples taken are (Table 5). Both effects can be traced 

back to the same cause. As the PSS searches a smaller space than the SSS - NDS is a subspace 

of AS (Sprecher et al. 1995) - it will tend to find better schedules than the SSS in the first it­

erations. In this sense, the PSS could be said to search in a more focussed way. This advantage 

wears off in later iterations, and thus for larger samples, since then the SSS can more fully 

search its Solution space which contains better, even optimal solutions. In other words, the 

smaller the portion of an instance's Solution space is that will be searched in an experiment, 

the more beneficial it is to employ the PSS. In much the same way, large instances mean that 

their Solution space is too large to be searched exhaustively in only a few iterations; again the 

PSS has a competitive advantage that is the greater, the larger the instance attempted is. 

Further, the PSS works better on hard instances and the SSS on easy ones. Here, the reason is 

more involved, it arises from an interesting relationship between RF and RS on one side and 

the size of certain Solution subspaces on the other. Given an instance of the RCPSP, the space 

FS of feasible solutions will become smaller when additional constraints are adjoined (such as 

by increasing RF) or existing ones are tightened (such as by decreasing RS). This would seem 
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to contradict the insight that the PSS outperforms the SSS on 1 arger Solution spaces only. 

However, both schemes do not sample FS exhaustively but, by excluding numerous schedules 

from the generation process, search substantially smaller subspaces of FS. And the spaces 

NDS of non-delay and AS of active schedules which are searched by the PSS and the SSS, re-

spectively (Kolisch 1996), become 1 arger for harder instances. Both schemes can be said to try 

and schedule activities as long as this is resource-feasible. So, some activities that could be 

scheduled to run in parallel if only precedence constraints were to be considered have to be 

relegated to later start times when they compete for the allocation of scarce resources. Assume 

now an instance where RF = 0 or RS = 1 such that all activities can be run in parallel, then 

NDS and AS comprise only one Solution each. After increasing resource scarcity to a point 

where two activities must be processed sequentially, both spaces comprise two schedules, 

each delaying one of the activities. In this way, tightening resource scarcity is putting more 

solutions in the spaces sampled by the scheduling schemes. Therefore, for any fixed sample 

size, the searched portion of the Solution space is smaller for hard instances and 1 arger for easy 

ones, such that the more focussed PSS can outrank the SSS on the former. 

6. Computational Results 

In order to demonstrate the validity of our approach, we provide effectiveness and efficiency 

results derived on the test instances employed. In addition, we compare our approach to a 

number of state-of-the-art heuristics for the RCPSP. 

6.1, Effectiveness 

For the sake of brevity, we detail the results for 500 iterations only; the results for the other 

sample sizes can be obtained from the author upon request. As reference solutions for the in­

stances in J30 we use the respective optima as published in the project scheduling problem li­

brary PSPLIB (Kolisch, Sprecher 1997). Since not all optima are available for J60 and J120, 

the best heuristic solutions found in the study of Kolisch, Hartmann (1998) are used. To facili-

tate comparisons, we also employ the precedence-based lower bound, i.e. the length of the 

critical path, for each instance, providing a datum that is easily reproduced to make results 

comparable. The results for the different instance sets are summarized in Table 6, where De­

viation Opt (BF, LB) Stands for the deviation from optimum (best Solution found, precedence-

based lower bound). For convenience, we have added the dividing line between serial and 

parallel Clusters. 



20 

J30 Deviation Opt 
RS 

RF 0.2 0.5 0.7 
0.25 0.14% 0.00% 0.00% 
0.50 2.43% 0.24% 0.08% 
0.75 2.81% 0.85% 0.17% 
1.00 3.57% 1.67% 0.55% 

J60 Deviation BF Deviation LB 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 1.30% 0.13% 0.00% 10.63% 1.89% 1.53% 
0.50 5.46% 1.34% 0.00% 38.61% 2.19% 0.17% 
0.75 6.31% 2.04% 0.04% 57.97% 3.46% 0.09% 
1.00 5.40% 2.62% 0.05% 78.97% 5.91% 0.00% 

JJ20 Deviation BF Deviation LB 
RS RS 

RF 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 
0.25 3.55% 5.36% 1.82% 0.59% 0.19% 31.28% 20.38% 4.29% 2.19% 0.50% 
0.50 6.69% 4.84% 5.06% 4.38% 1.85% 97.97% 48.44% 20.04% 9.53% 2.76% 
0.75 5.33% 3.26% 3.89% 4.47% 3.19% 144.20% 65.45% 29.58% 15.35% 4.35% 
1.00 4.07% 2.40% 2.58% 3.16% 2.65% 170.23% 78.19% 37.86% 18.18% 6.04% 

Table 6: Effectiveness of Algorithm CBR-SAR 

6.2. Efficiency 

To control for the effect of different priority rules (which are documented in Schirmer, Rie­

senberg 1997), in Table 7 the results are shown for the rule LFT under both the SSS and the 

PSS, run for 500 iterations. Measurernents were taken using an implementation in Pascal and 

run on a Pentium D/266 personal Computer with 32 MB RAM under Windows 95. The results 

are representative for those of other algorithms. 

J30 SSS, LFT PSS, LFT 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 1.31 1.29 1.28 1.04 0.98 1.00 
0.50 1.38 1.31 1.28 1.14 1.06 1.01 
0.75 1.43 1.33 1.30 1.24 1.11 J.07 
1.00 1.46 1.32 1.30 1.30 1.17 1.07 
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360 SSS, LFT PSS, LFT 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 3.86 3.63 3.46 3.14 2.97 2.91 
0.50 3.69 3.56 3.45 3.39 3.09 2.96 
0.75 3.83 3.58 3.48 3.73 3.27 3.06 
1.00 5.02 4.12 4.08 4.10 3.45 3.14 

J120 SSS, LFT PSS, LFT 
RS RS 

RF 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 
0.25 13.51 12.52 11.88 11.21 10.74 13.32 12.40 11.87 11.35 11.14 
0.50 13.64 11.33 12.05 10.79 11.70 11.86 11.36 10.55 12.72 12.06 
0.75 12.98 12.59 13.65 10.68 10.95 13.84 12.48 13.80 11.21 10.00 
1.00 14.87 16.33 14.24 11.43 10.41 13.88 13.78 13.41 12.55 10.59 

Table 7: Efficiency of Algorithm CBR-SAR 

In general, the PSS is more efficient than the SSS, a fact that has already been noted by Kolis­

ch (1995, p. 106). Clearly, computation times increase with increasing RF and decreasing RS. 

While the influence of RF can be easily explained for both scheduling schemes alike since 

more resources need to be taken into account when RF increases, the influence of RS calls for 

two explanations. Under the PSS, the decision set is built anew whenever a new schedule time 

has been determined, which in turn happens when all elements of the previous decision set 

have been scheduled. With decreasing RS, resource capacities become scarcer such that less 

activities can be processed in parallel, the decision sets become smaller and thus need to be 

rebuilt more often. Under the SSS, scarcer resources mean that the earliest feasible Start times 

of some activities are later ones, so more candidate Start times (which are traversed in 

chronological order) have to be checked for resource feasibility. 

63. Comparison With Other Algorithms 

In order to further demonstrate the efficacy of the CBR approach, we compare its effective­

ness to that of several other algorithms for the RCPSP. These comprise several simple FCS-

based scheduling heuristics, which all are based upon using one priority rule each. We have 

choosen the two best serial and parallel algorithms known. We complement these with several 

recent metaheuristics; results for these are gleaned from the comparative study of Kolisch, 

Hartmann (1998). Note that, although the results cited there encompass all 480 instances of 

J30 and J60, we exclude the trivial 120 instances with RS = 1.0. Note also that for the tabu 

search algorithm of Baar et al (1997) no results on J120 are available, as this instance set 

made excessive demands on Computer resources. 

For metaheuristics the definition of an iteration may substantially differ from the one used in 

sampling or other simple heuristics. For genetic algorithms, e.g., one iteration may involve the 
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construction or modification of a whole generation of individuals, possibly comprising dozens 

or even hundreds of solutions, whereas in less involved heuristics one iteration is understood 

to construct one Solution at most. To keep the ensuing comparisons impartial, all results are 

related to the best Solution found after having generated and evaluated 1,000 and 5,000 (not 

necessarily different) solutions. The results are juxtaposed in Tables 8-10. 

Deviation Opt 
Solutions 

Algorithm Reference Type 1000 5000 
Simulated annealing Bouleimen, Lecocq (1998) Metaheuristic 0.51% 0.31% 
Genetic algorithm Hartmann (1997) Metaheuristic 0.72% 0.33% 
CBR - Sampling 0.87% 0.59% 
Tabu search Baar et al. (1997) Metaheuristic 1.15% 0.59% 
Adaptive search Kolisch, Drexl (1996) Sampling 0.99% 0.69% 
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) Sampling 1.09% 0.73% 
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) Sampling 1.11% 0.75% 
PSS, RBRS, WCS Kolisch (1996a) Sampling 1.89% 1.70% 
PSS, RBRS, LFT Kolisch (1996b) Sampling 1.86% 1.71% 
Genetic algorithm Leon, Ramamoorthy (1995) Metaheuristic 2.77% 2.12% 

Table 8: Comparison of Several Algorithms (J30) 

Deviation BF Deviation LB 
Solutions Solutions 

Algorithm Reference Type 1000 5000 }000 5000 
Genetic algorithm Hartmann (1997) Metaheuristic 1.32% 0.60% 16.64% 15.80% 
Simulated annealing Bouleimen, Lecocq (1998) Metaheuristic 1.56% 0.65% 17.00% 15.87% 
CBR - Sampling 1.61% 1.25% 17.26% 16.78% 
Adaptive search Kolisch, Drexl (1996) Sampling 2.13% 1.68% 18.01% 17.41% 
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) Sampling 2.46% 1.95% 18.55% 17.87% 
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) Sampling 2.53% 2.03% 18.64% 17.96% 
Tabu search Baar et al. (1997) Metaheuristic 2.39% 2.05% 18.40% 17.97% 
PSS, RBRS, WCS Kolisch (1996a) Sampling 2.50% 2.06% 18.20% 17.60% 
PSS, RBRS, LFT Kolisch (1996b) Sampling 2.45% 2.09% 18.12% 17.65% 
Genetic algorithm Leon, Ramamoorthy (1995) Metaheuristic 3.31% 2.43% 19.11% 17.99% 

Table 9: Comparison of Several Algorithms (J60) 
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Deviation BF Deviation LB 
Solutions Solutions 

Algorithm Reference Type 1000 5000 1000 5000 
Genetic algorithm Hartmann (1997) Metaheuristic 2.59 0.89 39.37 36.74 
Simulated annealing Bouleimen, Lecocq (1998) Metaheuristic 5.73 1.86 42.81 37.68 
CBR - Sampling 3.10 2.27 39.85 38.70 
PSS, RBRS, LFT Kolisch (1996b) Sampling 3.19 2.47 39.91 38.90 
PSS, RBRS, WCS Kolisch (1996a) Sampling 3.28 2.57 40.04 39.05 
Adaptive search Kolisch, Drexl (1996) Sampling 3.95 3.33 41.37 40.45 
Genetic algorithm Leon, Ramamoorthy (1995) Metaheuristic 5.33 3.76 42.91 40.69 
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) Sampling 4.81 4.08 42.77 41.71 
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) Sampling 4.85 4.08 42.92 41.79 

Table 10: Comparison of Several Algorithms (J120) 

7. Summary and Conclusions 

In this paper, we proposed ways to integrate CBR and algorithms for OR problems, our inten-

tion being to demonstrate the benefits of selecting algorithms according to several influential 

criteria. Although we focussed on sampling methods for the RCPSP, the ideas discussed are 

easily transferred to other applications. Along the way, we have analyzed the influence of sev­

eral instance characteristics (resource factor, resource strength, instance size) as well as the 

number of iterations on the effectiveness of a broad ränge of sampling algorithms. This re-

vealed some previously unknown effects and allowed to substantially improve the most effec­

tive sampling method in the open literature, viz. the adaptive search approach of Kolisch, 

Drexl (1996). Also, it extends the class-based approach of Schirmer, Riesenberg (1998) to 

1 arger instance classes. A comparison with state-of-the-art heuristics for the RCPSP corrobo-

rated the effectiveness of our approach. We thus hope to contribute in two ways to the current 

body of knowledge. First, for the practitioner by showing how to design more effective algo­

rithms without compromising efficiency. Second, for the researcher by providing deeper in­

sight into the behaviour of sampling heuristics. 

One interesting direction for future research is to analyze effectiveness and efficiency of meta-

heuristic algorithms in a more detailed manner, as done here for sampling methods. A con-

ceivable outcome might be to also integrate such algorithms into a CBR system. Such a sys­

tem could employ an effective metaheuristic to tackle the hardest instances on which the ef­

fectiveness of sampling leaves to be desired, and apply - more efficient and still highly effec­

tive - sampling methods to easier instances. Another promising idea is to refine the scheduling 

schemes that are currently incorporated in many metaheuristics, drawing on the implications 

outlined. Notice that both of the currently best metaheuristic algorithms for the RCPSP (Hart­

mann 1997; Bouleimen, Lecocq 1998) utilize such methods to generate schedules. We there-
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fore augur that further improving these methods will pave the way also for further improve-

ments in the best known metaheuristics. 
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Appendix 

Using the midpoints between the tested values of the instance characteristics to define the re-

quired partition, a formal description of the algorithm CBR-SAR defined in Table 5 can be 

given as in Table 31; we omit the pseudo-code for some subroutines which are obvious to 

complete from those given. 

Initialization 

determine J 
determine Z 
calculate RF 
calculate RS 

Execution 

if (J<45) 
if (Z < 400 ) 

call CBR_J30_Z<400 
eise 

call CBR_J30_Z>400 
eise if ( J < 90 ) 

call CBR.J60 
eise 

call CBR_J120 
endif 
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Subroutine CBR_J30JZ<400 

if ((RF< 0.375) 
or ( 0.375 < RF < 0.625 and RS > 0.35 ) 
or (RS > 0.6 )) 

for z <— 1 to Z 
call SSS(MRBRS/10, LST, a= 1) 

eise 
for z <- 1 to Z 

call PSS(RBRS, WCS,oc = 1) 
endif 

Subroutine CBR_J120 

if (( RS < 0.25 ) 
or ( 0.375 < RF and 0.25 < RS < 0.45 ) 
or ( 0.625 < RF and 0.45 < RS < 0.55 )) 

for z <— 1 to Z 
call PSS(RBRS, LFT, <x = 1) 

eise 
for z 4- 1 to Z 

call SSS(MRBRS/10, LST, a = 1) • 

Table II: Algorithm CBR-SAR 
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