
Schirmer, Andreas; Riesenberg, Sven

Working Paper — Digitized Version

Class-based control schemes for parameterized project
scheduling heuristics

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 471

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Schirmer, Andreas; Riesenberg, Sven (1998) : Class-based control
schemes for parameterized project scheduling heuristics, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 471, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147577

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147577
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 471

Class-Based Control Scheines

for

Parameterized Project Scheduling Heuristics

Schirmer, Riesenberg

April 1998

Please do not copy, publish or distribute without permission of Che authors.

Andreas Schirmer Sven Riesenberg b

a Institut für Betriebswirtschaftslehre, Lehrstuhl für Produktion und Logistik,
Christian-Albrechts-Universität zu Kiel, Wilhelm-Seelig-Platz I, D-24098 Kiel, Germany

k Institut für Informatik und Praktische Mathematik, Lehrstuhl für Systeme zur Informationsverarbeitung,
Christian-AIbrechts-Universität zu Kiel, Hermann-Rodewafd-Straße 3, D-24118 Kiel, Germany

* Phone, Fax+49-431-880-15 31
E-Mail schirmer@bwl.uni-kiel.de

http://www.wiso.uni-kiel.de/bwlinstitute/prod
ftp://www.wiso.uni-kiel.de/pub/operations-research

Contents

1. Introduction 1

2. Resource-Constrained Project Scheduling 2

3. Components of Priority Rule-Based Algorithms 3

3.1. Scheduling Schemes 4

3.2. Priority Rules 5

3.3. Biased Random Sampling Scheines 6

3.4. Control Schemes 8

3.5. Bounding Rules 9

4. Class-Based Control Methods 11

4.1. Experimental Design 12

4.2. Preparatory Results 13

4.3. Effect of Bounding 14

4.4. Algorithmic Design 16

5. Experimental Results 19

5.1. Effectiveness 19

5.2. Efficiency 20

5.3. Comparison With Adaptive Search 21

6. Summary 22

ii

Figures

Figure 1: Tractability of Instances as Demonstrated by Effectiveness of RAS 17

Figure 2: Effect of RF, RS - Deviations .18

Figure 3: Effectiveness of Algorithm CCS-SAR1 20

Tables

Table I: Priority Rules - Definition and Classification 6

Table 2: Effect of Priority Rules - Deviations (SSS) 13

Table 3: Effect of Priority Rules - Deviations (PSS) 14

Table 4: Effect of Random Sampling Schemes - Summary (Best Algorithms) 14

Table 5: Effect of Bounding on the Best Serial and Parallel FCS-Based Algorithms 15

Table 6: Effect of Bounding in the Study of Kolisch (1995, p. 126) 15

Table 7: Distribution of Notorious 52 Instances of J30 Set 15

Table 8: Effect of Bounding on 308 Instances of J30 Set 16

Table 9: Effect of Bounding on Notorious 52 Instances of J30 Set 16

Table 10: Effect of RF, RS -Deviations 18

Table 11; Algorithm CCS-SAR1 - Composition 19

Table 12: Algorithm CCS-SAR1 19

Table 13: Effectiveness of Algorithm CCS-SAR 1 20

Table 14: Efficiency of and Effect of Bounding Rules on Algorithm CCS-SAR1 21

Table 15: Algorithm CCS-SAR2 - Composition 21

Table 16: Comparison of ASP, CCS-SARI, and CCS-SAR2 22

Table 17: Comparison of Several Sampling Algorithms 22

1

Abstract: Most scheduling problems are notoriously intractable, so the majority of algorithms for
them are heuristic in nature. Priority rule-based methods still constitute the most important class of
these heuristics. Of these, in turn, parameterized biased random sampling methods have attracted par-
ticular interest, due to the fact that they outperform all other priority rule-based methods known. Yet,
even the 'best' such algorithms are unable to relate to the particularities of all possible instances of the
problem at hand: usually there will exist instances on which other, e.g. the second- or third-best, algo
rithms perform better. We maintain that asking for the one best algorithm for a given problem may in
fact be asking too much. The recently proposed concept of control schemes, which refers to algo-
rithmic schemes allowing to guide the proceeding of parameterized algorithms, opens up ways to re-
fine existing algorithms in this regard. By partitioning the set of all instances of a problem into
equivalence classes and identifying algorithmic components that are suited for the respective classes,
class-based control schemes constitute one way to achieve this goal. Using the resource-constrained
project scheduling problem as a vehicle, we describe how to devise such control schemes, making sys-
tematic use of different scheduling schemes as well as random sampling schemes and priority rules.
Results from extensive computational experimentation validate effectiveness and efficiency of our
approach.

Keywords: PROJECT SCHEDULING; PARAMETERIZED SAMPLING HEURISTICS; PRIOR
ITY RULES; CONTROL SCHEMES

"[S Jcheduling problems often exhibit unique characteristics which make them more arnenable to Solution with a
particular procedure. The advcintages ofanalyzing problem structure and then choosing a technique for solving

it can be significant." (Patterson 1976)

1. Introduction

Most combinatorial scheduling problems belong to the class of strongly NP-equivalent prob

lems (Garey, Johnson 1979) and thus are notoriously intractable: if one insists on algorithms

guaranteed to find an optimal Solution, the current State of the art has only exponential an-

swers to offer. It therefore comes as no surprise that the majority of scheduling algorithms

devised are heuristic in nature. Of these, priority rule-based methods - despite their age - still

constitute the most importantclass. Kolisch (1996b) offers several arguments for their popu-

larity. First, they are easily used and implemented. Actually, most commercial scheduling

Software relies on simple priority rules (De Wit, Herroelen 1990; Kolisch 1997). Second, they

are computationally inexpensive in terms of Computer time and memory required, which

makes them amenable even for large instances of computationally intractable problems. Third,

this very inexpensiveness allows to integrate them as fast "subroutines" into more complex

metaheuristic algorithms. Of these in turn, parameterized biased random sampling methods

have recently attracted particular interest, due to the fact that they currently outperform all

other priority rule-based methods known (Kolisch 1996b; Schirmer, Riesenberg 1997).

Different random sampling schemes have been proposed of which the regret-based scheme of

Drexl (1991) and the modified schemes of Schirmer (1997) are the best-performing ones cur

rently known.

Yet, even such algorithms are unable to relate to the particularities of all possible instances of

the problem at hand. Even if the proclamation of an algorithm as 'best' is based upon extensive

2

experimentation, such a recommendation nevertheless reflects the best average Performance

over all instances attempted. Still, there will usually exist instances on which other, e.g. the

second- or third-best, algorithms perform better than the 'on average1 best one. We maintain

that asking for the one best algorithm for a given problem may in fact be asking too much.

Some theoretical foundation of this view, even if pertaining to search algorithms only, has

been provided in terms of the so-called no-free-lunch theorem by Wolpert, Macready (1995).

The main thrust of the paper is that all search algorithms, if their construction meets certain

requirements, perform the same when considering all instances of a problem. The conse-

quence is that if some instances of a problem are better solved by an algorithm A, then some

of the remaining instances of the same problem must be solved better by an algorithm B. Al-

though the proof of the theorem makes certain idealizing assumptions, e.g. that points in the

Space searched are not revisited, which are not easily verified or met in most existing search

algorithms, a number of important consequences can be deduced, or at least conjectured, from

their theorem (cf. the discussion in Reeves 1997). It stands to reason that analysis of when and

why algorithms perform well on some, worse on other instances will receive more and wide-

spread attention.

The concept of control schemes, referring to algorithmic schemes which guide the proceeding

of parameterized algorithms, opens up ways to take into account such considerations by ap-

propriately refining existing algorithms. By partitioning the set of all instances of a problem

into equivalence classes and identifying algorithmic components that are suited for the respec-

tive classes, class-based control schemes constitute one way to achieve this goal. Using the

resource-constrained project scheduling problem (RCPSP) as a vehicle, we describe how to

devise such control schemes, making systematic use of different scheduling schemes as well

as random sampling schemes and priority rules.

This contribution is in six sections. We briefly discuss the RCPSP in Section 2. The requisite

algorithmic components, viz. scheduling schemes, priority rules, random sampling schemes,

control schemes, and bounding rules are covered in Section 3. In Section 4 we address the

question of how to set up class-based control schemes and graft them onto existing scheduling

algorithms. Experimental results of the algorithms arising are presented in Section 5 before

Section 6 concludes the paper with some summarizing remarks.

2. Resource-Constrained Project Scheduling

The RCPSP can be characterized as follows: The single project consists of a number J of ac-

tivities of known duration dj; all activities have to be executed to complete the project. There

aie a number R of renewable resources, where the amount available per period is limited by a

constant capacity Kr. Düring each period of its nonpreemptable execution an activity j uses kjr

units of resources r. A partial Order Z, representing precedence relations between activities,

3

stipulates that some activities must be finished before others may be started. W.l.o.g. J, R, dj,

Kr (kj,-) are assumed to be positive (nonnegative) integers. Let us also assume w.l.o.g. that the

activities 1 and J are dummy activities, with durations and resource requirements of zero, and

that activity I (J) is the unique first (last) activity w.r.t. Z. The goal is to find an assignment of

periods to activities (a schedule) that Covers all activities, ensures for each renewable resource

r that in each period the total usage of r by all activities performed in that period does not ex-

ceed the per-period availability of r, respects the partial order Z, and minimizes the total pro-

ject length.

The problem is notoriously intractable. Its optimization variant is known to be strongly NP-

hard, even strongly NP-equivalent (Schirmer 1996). Indeed, assuming a deadline to be given

for the project completion even its feasibility variant is strongly NP-complete (Garey, Johnson

1975). Historically, the earliest exact algorithms have used techniques from zero-one pro-

gramming or dynamic programming. However, in more recent days virtually all approaches

were implicit enumeration methods. Also the most powerful exact methods today (Demeule-

meester, Herroelen 1997; Mingozzi et al. 1994; Brucker et al. 1996; Sprecher 1996) all belong

to this class of algorithms. Yet, owing to the complexity of the RCPSP, most algorithms

devised for it are heuristic in nature. From their wealth, construction methods (priority rule-

based algorithms, disjunctive arc methods), iterative improvement methods (local search, ge-

netic algorithms), and incomplete exact methods (truncated branch-and-bound) have been de-

veloped. Of these, the most effective ones currently available seem to be the tabu search

method of Baar et al. (1997), the genetic algorithm of Hartmann (1997), the increasing toler-

ance algorithm of Hartmann (1998), and the simulated annealing method of Bouleimen,

Lecocq (1998). No approximation algorithms are reported in the literature that we are aware

of. Detailed reviews of algorithms for the RCPSP, allowing also to trace the historical develop-

ment, can be found in the survey articles of Herroelen (1972), Davis (1973), Patterson (1984),

and Kolisch, Padman (1997).

3. Components of Priority Rule-Based Algorithms

Priority rule-based methods consist of at least two components, viz. one (or more) scheduling

schemes and one (or more) priority rules. A scheduling scheine determines how a schedule is

constructed, building feasiblefull schedules (which cover all activities) by augmenting partial

schedules (which cover only a proper subset of the activities) in a stage-wise manner. On each

stage, the scheme determines the set of all activities which are currently eligible for schedul

ing. In this, priority rules serve to resolve conflicts according to priorities where more than

one activity could be feasibly scheduled. Additional components which have been added suc-

cessfully to complement these two comprise random sampling schemes, control schemes, and

bounding rules. Since deterministic heuristics produce only one - often bad - Solution for an

4

instance, biased random sampling methods resolve conflicts according to probabilities pro

portional to some measure of attractiveness, here the priorities of the candidates. Since pro-

ceeding randomly, they may produce several solutions rather than only one as does a deter-

ministic algorithm; the best of these solutions (or one of the best if several were found) is then

taken as the result. Evidence gathered in several computational studies confirms that such

methods outperform traditional, deterministic approaches (Cooper 1976; Hart, Shogan 1987;

Laguna et al. 1994; Drexl, Grünewald 1993). Control schemes allow to influenae the way in

which parameterized algorithms, such as the sampling schemes to be discussed later, are in-

stantiated. Bounding rules, finally, by detecting situations in which a partial or füll schedule

cannot be improved, restrict the number of schedules to be evaluated and thus improve algo

rithmic efficiency.

3.1. Scheduling Schemes

Two variants of scheduling schemes are usually distinguished, viz. serial and parallel ones.

Serial scheduling methods (Kelley 1963) Start by numbering the candidates in such a way that

no one gets a lower number than any of its predecessors. A schedule is then built by consider-

ing the candidates in order and scheduling them one at a time for earliest possible execution

w.r.t. the constraints. In contrast, parallel scheduling methods (usually also ascribed to Kelley

1963 but actually introduced in an unpublished paper of Brooks in the same year, cf. the re-

marks in Bedworth, Bailey 1982; Kolisch 1995, p. 68) proceed by considering the periods of

the planning horizon in chronological order. In each period t, of those activities that may fea-

sibly commence in t as many as possible are scheduled one at a time for starting in t.

The serial scheduling scheme (SSS) divides the set of activities into three disjoint subsets or

states: scheduled, eligible, and ineligible (cp. Kurtulus, Narula 1985). An activity that is al-

ready in the partial schedule is scheduled. Else, an activity is called eligible if all its predeces

sors are scheduled, and ineligible otherwise. The scheme proceeds in N = J stages, indexed by

n. For notational purposes, we refer on stage n to the set of scheduled activities as Sn and to

the set of eligible activities as decision set Dn. Dn is determined dynamically from

Dn<~ (ji je SnAPj^Sn} (1 < n < N) (1)

On each stage, one activity j from Z)n is selected - using a priority rule if more than one activ

ity is eligible - and scheduled to begin at its earliest feasible start time. Then j is moved from

Dn to Sn, which in turn may render some ineligible activities eligible if now all their prede

cessors are scheduled. The scheme terminates on stage N when all activities are scheduled.

The SSS has been studied, among others, by Pascoe (1966), Müller-Merbach (1967), Cooper

(1976), Boctor (1990), Valls et al. (1992), and Kolisch (1996b). Note that the SSS searches

among the set of active schedules which always contains at least one optimal schedule for any

Rcpsp-instance considered.

5

The parallel scheduling scheme (PSS) proceeds in N < J stages, indexed by n. Each stage n is

associated with a schedule time tn. The scheme divides the set of activities into four disjoint

subsets or states: active, finished, eligible, and ineligible (cp. Kurtulus, Manila 1985). A

scheduled activity is active during its execution, afterwards it becomes finished. In contrast to

the serial scheme, an activity that is neither active nor finished is called eligible if it could be

scheduled w.r.t precedence and resource constraints, ineligible otherwise. Consequentially,

the partial schedule consists of all active and finished activities. We refer to the set of active

(finished, eligible) activities on stage n, i.e. in period tn + 1, as An (Fn, Dn). Another differ-

ence to the serial scheme is that each stage consists of two steps. First, the schedule time tn is

set to the minimum of the finish times of all activities in An_\ (Johnson 1967); then activities

with a finish time equal to tn are moved from An to Fn which in turn may make some for-

merly ineligible activities eligible, transferring them to Dn. This process is repeated until the

decision set is indeed nonempty. Second, one eligible activity is selected, using a priority rule

if more than one activity is eligible, scheduled to begin at the current schedule time, and

moved from Dn to An; this second Step is repeated as long as Dn is nonempty. The scheme

terminales when each activity is scheduled, i.e. is either active or finished. The PSS has been

examined by numerous authors, among these Pascoe (1966), Davis, Patterson (1975), Patter-

son (1973, 1976), Whitehouse, Brown (1979), Alvarez-Valdes, Tamarit (1989), Ulusoy,

Özdamar (1989), Boctor (1990), Valls et al. (1992), and Kolisch (1996b). Note that the PSS

searches among the non-delay schedules which do not necessarily contain any optimal Solu

tion of the RcPSP-instance considered (Kolisch 1996b). Formal descriptions of both schemes

can be found in Schirmer (1997).

3.2. Priority Rules

Priority rules allow to resolve conflicts between activities competing for the allocation of

scarce resources. In situations where the decision set contains more than one candidate, prior

ity values are calculated from measures which are related to properties of the activities, the

complete project, or the incumbent partial schedule (Cooper 1976). Formally, any priority rule
can be specified in terms of two components. One is a mapping v: Dn —> R>Q which accords a

numerical measure v(j) to each candidate in the decision set. The other is a dichotomical pa-

rameter extr e {max, min} which specifies which extremum of the priority values determines

the candidate to be selected. Ties can be broken arbitrarily, e.g. by smallest activity index (as

done in the sequel) or randomly. Then, any such (deterministic) selection of an activity j* (as

used in the formal descriptions in the Appendix) can be expressed as

j* <- min {j 6 £>n I v(j) = extr {v(j') | j' e £>n}} (2)

We briefly introduce several well-known priority rules. Let for each activity j (1 < j < J) de-

note Sj the set of all immediate successors w.r.t. / and EFSTj the - dynamically updated -

6

earliest feasible start time w.r.t. all constraints. Using this notation, the rules can be defined as

done in Table 1 where also a Classification in terms of several straightforward criteria is given;

the last criterion refers to whether the rule is applicable in both scheduling schemes or only in

the parallel one (Cooper 1976; Kolisch 1995, pp. 85-86). These rules were selected because

they have been found to be the best-performing ones in several studies (Davis, Patterson 1975;

Alvarez-Valdes, Tamarit 1989; Ulusoy, Özdamar 1989; Boctor 1990; Kolisch 1996a;

Schirmer 1997).

The measure WRUPj has been introduced by Ulusoy, Özdamar (1989). In our Implementa

tion, we used the setting wj =0.7 and W2 = 0.3 which the authors report as producing the best

results. Concerning the measures IRSMj and WCSj, APn denotes the set of all pairs of non-

identical activities i and j in the decision set whereas Ey denotes the earliest time to schedule

activity j if activity i is started at tn (for details cf. Kolisch 1996a).

Extremum Measure Definition Static vs.
Dynamic

Local vs.
Global

Serial vs.
Parallel

MIN SPTj «- dj S L S,P

MAX MTSj <- 1 {j'l j<j'} 1 S L S,P

MIN LSTj <- LFTj-dj S G S,P

MIN LFTj <- LFTj S L S,P

MIN SLKj <- LSTj - EFSTj D L S,P

MAX GRPWj dj + sieSjdi S L S,P

MAX WRUPj «- w j 15j | + W2 E, • ^jr^r S L S,P

MIN RSMj <- max{0, tn + dj - LSTJ | (i j)zAPn} D G P

MIN IRSMj <- max{0, Ejj - LSTj | (ij) e APn} D G P

MIN WCSj <— LSTj - max{E;j • l(ij)e^n) D G P

Table 1: Priority Rules - Definition and Classification

3.3. Biased Random Sampling Schemes

The idea of randomization in selecting between several alternative candidates is based on

measures of attractiveness which are mapped monotonically into selection probabilities. Thus,

a randomized method chooses among the available candidates according to probability values

which are biased to favour apparently attractive selections. In the framework considered here,

these measures are determined by priority rules. A biased random sampling scheme consists

7

of a mapping p: Dn —> [0,1] assigning a probability value p(j) to each candidate in the deci-

sion set. In essence, this mapping simply transforms the priority value of each candidate into a

probability value. Of course, all probabilities sum to unity. In order to formalize the (random-

ized) selection once the probabilities are calculated, let denote P(£>n) = (p(n(1p(7c(\ün I

))) the sequence of probability values of all candidates in a decision set Dn; w.l.o.g. we as-

sume P (Dn) to be ordered by ascending activity index. Also, let denote £ e [0,1] a random

number. Then, the activity j* to be selected is determined as

k
j* <r- min {j e Dn \ j = 7C(k) A £ < £p(7c(i)) } (3)

i=I

One of the two schemes that we use here is the regret-based biased random sampling (RBRS)

one presented in Drexl, Grünewald (1993). The regret value of a candidate j measures the

worst-case consequence that might possibly result from selecting another candidate. Let de

note V(Dn) the set of priority values of all candidates in a decision set Dn. Then, the regrets

are computed as

lv(j) - minV (Dn)

and modified by

v"Ö)^(V(j) + £)a QeDn) (5)

where ee R>ß and ae R>Q. Having determined these values, the selection probabilities are de-

rived from

P(i)<- (jEDn) (6)

j'GDn

e guarantees v"(j) to be nonzero; otherwise those candidates with priorities of zero could never

be selected, an undesirable consequence in the presence of scarce resources. a allows to di-

minish or enforce the differences between the modified priorities for a<] or a>l, respec-

tively. Note that for a -> 0 the selection process becomes pure random sampling, since all

candidates will share the same probability of being selected. On the other extreme, for a = <*>

the process behaves deterministic: since with increasing a the difference between the highest

and the second-highest modified priority increases, the probability of the highest-prioritized

candidate being selected converges to one.

The second scheme (MRBRS) we use is a modification of the RBRS, in that it computes re

grets from the original priorities according to (4) and modifies them according to (5). How-

iffextr = min
iffextr = max (iED„)(4)

8

ever, rather than using a constant value of £, £ is determined dynamically. Letting denote

V{Dn)+ the set of all positive transformed priorities of the candidates in Dn, i.e.

where 5 is a positive integer. Selection probabilities are again derived from (6). Thus, the

above actually defines a family MRBRS/5 of sampling schemes. This scheme has been found

to be particularly effective in conjunction with the SSS. For details cf. Schirmer (1997);

Schirmer, Riesenberg (1997).

3.4. Control Schemes

Parameterized algorithms possess (one or more) control parameters which allow to direct the

way in which they proceed. While these parameters are usually understood to be only numeri-

cal in nature, we adopt a broader view and include also the choice of certain algorithmic com

ponents in the concept. Thus, control parameters in the scheduling algorithms examined here

are the scheduling scheme (SS), the priority rule, and the random sampling scheme (RSS) em-

ployed, as well as the particular value of a and the iteration number Z used. Note that each

combination of scheduling scheme, rule, sampling scheme, and a-value defines one particular

scheduling algorithm. To algorithmic schemes which govern the instantiation of the control

parameters we refer as control schemes. Although this very name has, to the best of our

knowledge, not been used before, we maintain that some kind of control scheme is always

present whenever parameterized methods are used. We outline what we see as the most simple

- and most common - form of control scheme before we describe how this simple approach

can be refined.

Fixed control schemes (FCS) constitute the most simple class of control schemes. The attrib-

ute 'fixed' indicates that the way in which the control parameters are instantiated is prescribed

in advance and for all instances alike. As an example, consider a numerical control parameter

a e IN of an algorithm that is to be run for three iterations. Under a FCS, a could e.g. be in

stantiated by the same value thrice or by three different values, one in each iteration. Based

upon the results of previous experimentation, these precepts will reflect those control parame

ter instantiations which produced the best results on average over all test instances used. FCS

are e.g. used by Kolisch (1996b) and Böttcher et al. (1996).

V(Dn)+ <- {v'(j) | j e Dn A v'(j) > 0} (7)

£ can be derived from

(8)

9

Another approach is motivated by the Observation that, while being appealing to try and find

'the best algorithm' for a problem, for most computationally intractable problems there simply

exists no algorithm which performs best on all instances. Thus, as the prescriptions of FCS

apply to all instances alike, they are unable to take into account the specifics of particular in

stances. This Observation has already been made, among others, by Davis, Patterson (1975).

Therefore, a more refined class of schemes, to which we refer as class-based control schemes

(CCS), proceeds by instantiating the control parameters depending on some characteristics of

the instances attempted. Such schemes utilize a partition of the problems instances into

equivalence classes and prescribe the application of specific parameter instantiations for each

of the classes. Kolisch, Drexl (1996) propose a control scheme which selects the scheduling

scheme to be applied according to two quantities: the number of iterations to be performed

and the resource strength of the instance. Another example of a CCS is found in Kimms

(1997). Also these schemes are based upon extensive experimentation to develop sufficient

insight into the influence of the parameters on the algorithms' Performance.

The advantage of refining an algorithm from a fixed to a class-based control scheme is obvi-

ous since doing so cannot deteriorate algorithmic effectiveness but will improve it in most

cases. Additional attractiveness lies in the fact that this refinement may be easily accom-

plished by appropriately exploiting the results used to derive a FCS in the first place. One ca-

veat is in order, though. If the test bed used is relatively small, devising a CCS may result in

fine-tuning the algorithm to the specifics of only a few instances; Reeves (1997) graphically

refers to such algorithms as "horses for courses". For the sake of robustness, therefore, the test

instances upon which the experimentation relies should be as representative of the expressive

power of the corresponding problem as possible.

3.5. Bounding Rules

In order to improve the efficiency of heuristic scheduling algorithms, bounds can be employed

in two different ways, previously referred to as global or local bounds (Kolisch, Drexl 1996).

Local bounds allow to jettison a particular schedule currently under construction; their imple-

mentation depends on the scheduling scheme into which they are fit, so we term them serial

or parallel as appropriate. Global bounds can only be applied when a füll schedule has been

found; they formulate conditions under which a heuristic schedule is optimal and thus allow to

terminate the complete run for the instance at hand. Since their implementation is independent

of the respective scheduling scheme, we refer to them as general bounds.

We extend the above algorithms by incorporating several classical bounding rules (Stinson et

al. 1978; Kolisch 1995, pp. 120-127; Kolisch, Drexl 1996), viz. a precedence-based optimality

bound, two resource-based, and two time window ones, which latter may be seen as trans-

10

forming by means of tightening time windows the issue of improving upon a known Solution

into one of achieving feasibility of the solutions constructed.

General precedence-based lower bound (GPLB) This bound is based upon relaxing the re-

source constraints such that a lower bound on the project makespan is determined as the

Iength of a critical path in the project network. Let denote FTj the makespan of the schedule

just found. Whenever

FTj = EFTj (9)

the whole run can be terminated. In this case, the heuristically derived upper bound FTj on the

makespan equals the precedence-based lower bound EFTj such that the schedule is optimal. •

General resource-based lower bound (GRLB) This bound is based upon relaxing the

precedence constraints. Whenever

FTj = max{
J
2>jr-dj)/Kr

j=l
1 < r < R) (10)

holds, the entire run can be terminated. In this case the schedule is optimal because at least

one resource is loaded to füll capacity, thus further squeezing the makespan is impossible. •

Serial time window bound (STWB) The fundamental idea of this bound is to decrease the

latest finish times of all unscheduled activities whenever an iteration finds an improved Upper
bound on the makespan. Let denote FT j the makespan of the incumbent best Solution and

LSTj the latest start time of activity j. Whenever a feasible Solution with a shorter makespan
of FTj < FT J has been found, updated LST-values can be determined for all activities by

LST'j LSTj - FTj + FTj - 1 (l<j<J) (11)

Now, the current iteration can be terminated whenever a selected activity j* would have to

start outside its updated time window, i.e.

EFSTp > LST'j* (12)

the reason being that the incumbent partial schedule could not be completed to a füll schedule

with a makespan better than the best known one. By construction of the STWB, any feasible

schedule will be better than the previous one since its makespan will at most equal the
makespan of that one, less one. g

11

Parallel time window bound (PTWB) With T the initial upper bound on the makespan, the

current iteration can be terminated whenever

tn > min {LSTj |j £ 5^} - T + FT j - 1 (13)

holds1 after incrementing tn. In this case, as for the STWB, the current partial schedule could

not improve on the best known schedule. •

Parallel resource-based lower bound (PRLB) The current iteration can be terminated

whenever

tn + max { Jr Z(FTj-tn)+ Idj

UeAn j^n ,

/K, 1 <r<R} > FTj (14)

holds after incrementing tn as then, again, the current partial schedule could not improve on

the best known schedule. •

Another optimality bound is the so-called LB2 of Mingozzi et al. (1994), which by relaxing

the nonpreemption and certain precedence constraints identifies maximal sets of activities that

could be scheduled in parallel. However, the number of such sets may tum out exponential,

and only recently has LB2 become computable for practical purposes by means of column

generation (Brucker et al. 3996); due to the effort involved we have chosen not to include it

here.

4. Class-Based Control Methods

One may say that the design of CCS follows the same road as other methods - but in the oppo-

site direction. Normally, the design of an algorithm is done before any numerica] experiments

can be conducted. CCS-based algorithms, in contrast, require the designer to conduct numeri

ca] experiments before the control scheme can be put together. Although this view is some-

what incomplete, since the experimentation requires the algorithmic components to be in

place beforehand, it still serves to clarify the major difference to the usual proceeding.

In this section we outline the design and the results of our initial experimentation, focussing

on the Performance of the FCS-based algorithms defined by the algorithmic components de-

scribed above. Drawing on these results, we propose two CCS-based scheduling algorithms.

' Although the LST-values could also be decreased in a separate step, similar to (16), the above formula is
more efficient as it requires J-N subtractionsless.

12

4.]. Experimental Design

The Factors examined in our experiments are scheduling scheme (SS), random sampling

scheme (RSS), priority rule, control parameter a, and number of iterations Z. Specifying a set

of values for each factor describes over which levels it is varied during an experiment, while

one value for each factor determines a run of an experiment. One such run may consist of one

or several iterations per combination of algorithm and instance; for each such combination,

the outcome of a run is reported in terms of both effectiveness and efficiency. Effectiveness is

determined by considering the best schedule found for the instance in that run and measuring

its deviation from the Optimum as a percentage; efficiency captures the CPU-time required for

the run, measured in terms of seconds. Measurements were taken using an implementation in

Pascal, running on a Pentium 133 personal Computer with 24 MB RAM under MS DOS 6.0.

As a test bed, we used the KSD-instance set J30 generated with ProGen (Kolisch, Sprecher

1997). Each instance comprises four renewable resources and 30 non-dummy activities, hav-

ing a nonpreemptable duration of between one and ten periods and between one and three

successors and predecessors each. Systematically varied design parameters for these instances

are the network complexity (NC), the resource factor (RF), and the resource strength (RS). NC

is defined as the average number of non-redundant arcs per activity, RF determines the num

ber of resources that are requested by each activity, and RS expresses resource scarcity meas

ured between minimum and maximum demand. A more comprehensive characterization is

given in Kolisch et al. (1995). The respective parameter levels used are NC e {1.5, 1.8, 2.1},

RF e {0.25, 0.5, 0.75, 1.0}, and RS e {0.2, 0.5, 0.7, 1.0}. For each instance Cluster defined

by a combination of these parameters, J30 contains ten instances, for a total of 480 instances.

Of these, those 120 instances where RS = 1.0 are trivially solvable by the MPM-schedule. Of

the remaining sample, the exact algorithm of Demeulemeester, Herroelen (1992) found and

verified the optima for 308 instances within a time limit of 3600 seconds per instance, taking

on average 615.1 seconds per instance on a 386SX/15 PC; ten more instances were optimally

solved but not verified within the time limit. These 308 instances have also been considered in

several other studies (Mingozzi et al. 1994; Kolisch 1996a, b; Kolisch, Drexl 1996; Naphade

et al. 1997). The remaining 52 instances were only recently solved to optimality by a modified

reimplementation of the above exact algorithm (Demeulemeester, Herroelen 1997), which on

average improved the original solutions by 3.65 periods, requiring on average 29 seconds and

at most three hours per instance on a 486/25 PC. Embracing also these solutions, our work is

the first analysis of priority rule-based heuristics covering the füll ränge of instances com-

piised in J30. Thus, ceteris paribus our deviations from Optimum are 1 arger than reported

elsewhere since our study includes the 52 rather hard instances unsolved at the time of earlier
experimentation.

13

The factors examined here are scheduling scheme, random sampling scheme, priority rule, and

control parameter a. The number of iterations is fixed to 100. The outcome of each run is re-

ported in terms of both effectiveness and efficiency: effectiveness is determined by consider-

ing the best schedule found for the instance in that run and measuring its deviation from the

optimum as a percentage; efficiency captures the CPU-time required for the run, measured in

terms of seconds. Measurements were taken using an Implementation in Pascal, running on a

Pentium 133 PC with 24 MB RAM under MS DOS 6.0. A füll factorial design was used, in-

cluding also a number of additional priority rules and random sampling schemes; in total our

analysis is based upon the results of applying 502 different algorithms to the RCPSP (Schirmer,

Riesenberg 1997).

4.2. Preparatory Results

In order to expose the influence exerted by the different factors on the effectiveness and to

evaluate the different FCS-based algorithms induced, we detail the results accordingly. In Ta

ble 2, all such results pertaining to the SSS are summarized. To facilitate comparisons, we

also give the results of the deterministic versions of the priority rules.

RSS Alpha GRPW LFT LST SLK MTS SPT WRUP
RBRS I 3.76% 2.07% 2.07% 3.34% 2.34% 4.92% 3.42%

2 4.70% 2.02% 1.91% 3.71% 2.32% 7.42% 3.45%
3 5.47% 2.21% 2.08% 3.83% 2.40% 9.26% 3.60%

MRBRS/i 3.37% 2.21% 2.18% 3.15% 2.34% 4.47% 3.59%
2 3.90% 2.03% 2.00% 3.18% 2.31% 5.90% 4.47%
3 4.67% 2.10% 1.99% 3.38% 2.36% 7.50% 5.38%

MRB RS/10 1 4.24% 1.99% 1.95% 3.21% 2.31% 6.88% 4.45%
2 5.26% 2.19% 2.13% 3.69% 2.52% 10.66% 6.15%
3 6.34% 2.38% 2.17% 3.93% 2.84% 12.63% 7.63%

MRBRS/100 1 4,81% 2,17% 1.89% 3,57% 2,52% 9,74% 5,17%
2 5,87% 2,24% 2.13% 3,82% 2,64% 12,53% 6,73%
3 6,47% 2,46% 2.22% 4,00% 2,89% 13,48% 7,81%

Table 2: Effect of Priority Rules - Deviations (SSS)

Underlined are the respective row minima, reflecting the best priority rule for each combina-

tion of sampling scheme and a-value. It is evident that the particular choice of a bears no in

fluence on the suitability of different priority rules, thus the underlined entries essentially in-

dicate the best rules for each sampling scheme. For all sampling schemes considered here LST

is the bestperforming rule.

14

RSS Alpha GRPW IRSM LFT LST SLK MTS RSM SPT WCS WRUP

RBRS 1 3.48% 2.45% 2.40% 2.50% 2.50% 2.58% 2.50% 3.88% 2.36% 3.17%

2 4.24% 2.57% 2.61% 2.72% 2.72% 2.63% 2.65% 4.95% 2,56% 3.02%

3 5.18% 2.73% 2.87% 3.11% 3.11% 2.81% 2.90% 6.18% 2.81% 3.05%

MRBRS/1 1 3.19% 2.70% 2.64% 2.70% 2.70% 2.68% 2.75% 3.54% 2.57% 3.06%

2 3.49% 2.49% 2.46% 2.48% 2.48% 2.50% 2.49% 3.97% 2.43% 3.24%

3 3.94% 2.52% 2.46% 2.49% 2.49% 2.53% 2.55% 4.82% 2.37% 3.54%

MRB RS/10 1 3.69% 2.49% 2.55% 2.51% 2.51% 2.61% 2.53% 4.81% 2.42% 3.45%

2 5.01% 2.88% 2.83% 3.00% 3.00% 3.10% 2.95% 6.88% 2.78% 4.47%

3 6.02% 3.07% 3.16% 3.37% 3.37% 3.45% 3.22% 8.72% 2.99% 5.63%

Table 3: Effect of Priority Rules - Deviations (PSS)

The corresponding results for the PSS are comprised in Table 3 where the strictly dominated

MRBRS/100 is omitted. For all variants of the MRBRS as well as the RBRS with smaller cc-

values, WCS is the best choice.

A comparative view of the best algorithms for each SS and RSS is provided in Table 4, listing

the results obtained from employing the individually best rule and a-value, respectively. Avg

(SD, Max) denotes the average (Standard deviation, maximum) of the deviations from Opti

mum, % Opt the percentage of instances optimally solved. Also, the results for pure random

sampling (RAS) are shown. Computation times per 100 iterations over all instances ränge be

tween 0.51 and 0.6 seconds for the algorithms under the SSS and between 0.4 and 0.57 under

the PSS.

RSS SSS PSS
Avg SD Max %Opt Avg SD Max % Opt

DETERM 5.58% 6.26% 27.38% 38.61% 5.17% 5.07% 26.39% 26.67%
RAS 3.70% 4.40% 17.65% 44.72% 3.31% 3.41% 15.46% 33.89%
RBRS 1.97% 3.09% 16.13% 59.44% 2.36% 2.67% 13.64% 40.28%
MRBRS/1 1.99% 3.12% 14.44% 58.61% 2.37% 2.69% 13.64% 40.83%
MRBRS/10 1.95% 3.07% 13.89% 59.44% 2.42% 2.73% 13.64% 40.56%
MRBRS/100 1.89% 2.92% 11.90% 58.61% 2.71% 2.97% 17.78% 37.50%

Table 4: Effect of Random Sampling Schemes - Summary (Best Algorithms)

4.3. Effect of Bounding

In order to evaluate the effect of the individual bounding mies in detail, we solved all in

stances with several versions of the best serial and the best parallel FCS-based algorithm, viz.

applying no bound at all, each of the applicable bounds separately, and all bounds (except of

PRLB, cf. below) together. Additional experimentation demonstrated that the results shown in

Table 5 are representative for those of other FCS-based algorithms.

15

SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB _ all
CPU [s] 0.61 0.59 0.32 0.60 - 0.31
Reduction {%) - 3% 47% 2% - 48%

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB
CPU [s] 0.52 0.51 0.35 0.51 1.25 0.34
Reduction [%] - 2% 32% 2% -142% 34%

Table 5: Effect of Bounding on the Best Serial and Parallel FCS-Based Algorithms

The only other study addressing the Performance of bounding rules in conjunction with prior

ity rule-based scheduling algorithms is covered in Kolisch (1995, pp. 120-127) and Kolisch,

Drexl (3996); for comparational purposes the corresponding results are evaluated in Table 6.

SSS, RBRS, LST w/o Bounds GPLB STWB GRLB - all
CPU [s] 4.72 3.42 2.26 4.72 - 2.24
Reduction {%] - 28% 52% 0% - 53%

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all
CPU [s] 2.42 1.97 1.36 2.42 3.06 1.29
Reduction [%} - 19% 44% 0% -26% 47%

Table 6: Effect of Bounding in the Study of Kolisch (1995, p. 126)

Whereas the experimentation of Kolisch (1995) found no or even adverse effects of resource-

based bounds, i.e. no reduction of the computation times for the GRLB and an increase of

about 21% for the PRLB, the reader may recall that it included only 308 of the nontrivial 360

instances of the J30 set. We therefore conducted an additional analysis to find out in which

Clusters the notorious 52 instances are located. Table 7 reveals that they reside exclusively in

Clusters where resources are scarcely capacitated (low RS) and in great demand (high RF).

RS
RF 0.2 0.5 0.7

0.25 0 0 0
0.50 2 0 0
0.75 23 0 0
1.00 22 4 1

Table 7: Distribution of Notorious 52 Instances of J30 Set

Due to this distribution, one is led to conjecture that the resource-based bounds would work

better on the notorious instances. In order to check this, we divided the analysis between the

308 instances used in his study and the 52 instances additionally included in our work in Table

16

9. However, it turns out that excluding them from the instances attempted hardly changes the

effect of the bounding rules. To summarize, our results for STWB and PTWB as well as those

including all bounds (except of PRLB) are in line with those reported by Kolisch while the

GRLB works slightly better. Somewhat confounding is the poor Performance that we found

for the GPLB when compared to the excellent Performance that Kolisch observed; a result we

were unable to reproduce.

SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB - all
CPU [s] 0.60 0.58 0.29 0.59 - 0.28
Reduction [%] - 3% 52% 2% - 54%

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB
CPU [s] 0.49 0.48 0.31 0.48 1.24 0.30
Reduction [%] - 2% 37% 2% -152% 39%

Table 8: Effect of Bounding on 308 Instances ofJ30 Set

SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB - all
CPU [s] 0.65 0.64 0.53 0.64 - 0.52
Reduction [%] - 2% 18% 2% - 21%

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB
CPU [sj 0.67 0.65 0.61 0.65 1.32 0.58
Reduction [%] - 2% 9% 2% -98% 14%

Table 9: Effect of Bounding on Notorious 52 Instances of J30 Set

4.4. Algorithmic Design

Since RePSP-instances that are merely precedence-constrained can be optimally solved in lin

ear time, only the capacity limitations of resources induce the strong NP-equivalence of the

RCPSP (Schirmer 1996). It is easy to provide a visualization of this theoretical result by disag-

gregating the results of RAS over RF and RS. This is done in Figure 1, the results of which

were derived under the serial version of RAS; the picture remains essentially the same under

the parallel one. (The height of the surface represents the average deviation from Optimum.

The differently shaded stripes reflect different levels of the surface, measured in terms of \%

increments.) Figure 1 indeed demonstrates that less capacitated instances are more tractable

than instances with rather scarce resources. Considering the limited amount of Information

taken into account by priority rules, it seems unreasonable to hope for only one particular rule

to outperform all its companions on all problem instances. As we aim at minimizing the pro-

ject makespan, it is thus straightforward that certain algorithms should perform better on the

former instances while other ones should do so on the latter ones.

17

Figure 1: Tractability of Instances as Demonstrated by Effectiveness ofRAS

More precisely, we hypothesized that algorithms using precedence-based, and thus objective

function-oriented, rules work better on instances where resources are Iess scarce, i.e. RS is

large, and in little demand, i.e. RF is small, and that algorithms using resource-based rules

work better on the remaining instances. This hypothesis easily extends from priority rules to

other algorithmic components. Kolisch, Drexl (1996) e.g. have demonstrated that the mutual

dominance of the serial and the parallel scheduling scheme depends on the resource factor RF

of the instance attempted, i.e. that the SSS outperforms its counterpart on instances where RF

< 0.75 while the PSS fares better if RF > 0.75.

Accordingly, we analysed all of the FCS-based algorithms separately on all 36 relevant Clus

ters of the J30 instance set; recall that we disregard the trivially solvable 120 instances. As al-

ready reported by De Reyck, Herroelen (1996), the network complexity has no significant

bearing on algorithmic effectiveness; yet both RF and RS do affect the effectiveness of algo

rithms. Figure 2 exhibits the respective results of the best serial and parallel FCS-based algo

rithms, viz. SSS, MRBRS/10, LST and PSS, RBRS, WCS, disaggregated over RF and RS.

Note that from now on, we use a = 1 which gave the best results for all algorithms discussed

here. Clearly, the above hypothesis is supported, as indeed a resource-based algorithm is most

effective on instances where resource demand is high compared to resource availability

whereas a precedence-based one is most effective on instances where resource scarcity is not a

major concern.

18

(SSS, MRBRS/10, LST) (PSS, RBRS, WCS)

Figure 2: Effect ofRF, RS - Deviations

SSS, MRBRS/10, LST PSS, RBRS, WCS
RS RS

RF 0.2 0.5 0.7 0.2 0.5 0.7
0.25 0.43% 0.00% 0.00% 3>m% 1 V,', j.42%
0.50 3.78% 0.66% 0.08% 3.44% 2.12% L9\%
0.75 6,07% 1/70% 0.39% 3.70% 1.32% 1.51%
1.00 6.74% 2 w i ; 0.74% 4.91% 2.67%

Table 10: Effect of RF, RS - Deviations

For the sake of devising a CCS-based algorithm, the corresponding numerical results are de-

tailed in Table 10, revealing a clear cut dividing line between those instance Clusters on which

the best serial FCS-based algorithm dominates and those on which the parallel does

(dominated areas are put in shading). Consequently, we propose to combine these two algo

rithms to a CCS-based scheduling algorithm (CCS-SAR1), as shown in Table 11, by selecting

the better of both for each Cluster defined by RF and RS.

19

RF 0.2
RS
0.5 0.7

0.25 SSS,
MRBRS/10, LST

SSS,
MRBRS/10, LST

SSS,
MRBRS/10, LST

0.50 PSS,
RBRS, WCS

SSS,
MRBRS/10, LST

SSS,
MRBRS/10, LST

0.75 PSS,
RBRS, WCS

PSS,
RBRS, WCS

SSS,
MRBRS/10, LST

1.00 PSS,
RBRS, WCS

PSS,
RBRS, WCS

SSS,
MRBRS/10, LST

Table 11: Algorithm CCS-SAR1 - Composition

Using the midpoints between the design parameter values to delineate the dividing line be

tween the Clusters, a formal description of the algorithm CCS-SAR 1 can be given as in Table

12.

Initialization

calculate RF
calculate RS

Execution

if (RF < 0.375
or (0.375 < RF < 0.625 and RS > 0.35)
or RS >0.6)

for z <— 1 to Z
call SSS(MRBRS/10, LST, tx = 1)

eise
for z ^— 1 to Z

call PSS(RBRS, WCS, a = 1)
endif

Table 12: Algorithm CCS-SAR 1

Due to the encouraging effect of bounding on the efficiency of these algorithms, all of the

above bounding rules (except of PRLB) were plugged into the algorithm.

5. Experimental Results

5.1. Effectiveness

Figure 3 demonstrates the effectiveness of CCS-SAR1. As is evident from the more flat ter-

rain depicted, using a CCS markedly improves on even the best FCS scheme known for the

20

problem considered here. The numerical results, provided in Table 13, translate to an average

deviation over Optimum of 1.53% over all instances attempted. This number compares favor-

ably with the value of 1.89% for the best FCS-based algorithm.

Figure 3: Effectiveness of Algorithm CCS-SAR1

RS
RF 0.2 0.5 0.7
0.25 0.43% 0.00% 0.00%
0.50 3.44% 0.66% 0.08%
0.75 3.70% 1.32% 0.39%
1.00 4.91% 2.67% 0.74%

Table 13: Effectiveness of Algorithm CCS-SAR1

5.2. Efficiency

In order to evaluate in more detail the ability of the above bounding rules to improve effi

ciency, we solved each instance with two versions of the algorithm, employing either none or

all of the applicable bounds (except of PRLB). Applicability here refers to the fact that all lo

cal, i.e. serial or parallel, bounds were used on certain instance Clusters only, as the algorithm

applies either a serial or a parallel algorithm to each Cluster. Along with the computation times

per 100 iterations with bounding rules incorporated, Table 14 shows the effect of bounding in

terms of the average reduction of computation times, measured as percentage of the time re-

quired without bounding. Also, these numbers indicate the percentage of unnecessary sched

ules the bounding saves us either from completing in case of a serial or parallel bound or from

generating in case of a general bound.

21

Efficiency Effect of Bounding
RS RS

RF 0.2 0.5 0.7 0.2 0.5 0.7
0.25 0.30 0.31 0.19 50% 48% 68%
0.50 0.45 0.31 0.19 11% 49% 68%
0.75 0.53 0.28 0.18 12% 49% 70%
1.00 0.59 0.40 0.13 16% 34% 79%

Table 14: Efficiency ofand Effect of Bounding Rules on Algorithm CCS-SARI

5.3. Comparison With Adaptive Search

In order to further demonstrate the effectiveness of our approach, we compare it with the

adaptive search procedure (ASP) of Kolisch, Drexl (1996). This procedure is currently the

best priority rule-based sampling method available for the RCPSP. Since the authors employed

only the 308 instances optimally solved at that time, we exclude the remaining 52 nontrivial

instances from consideration to keep the comparison on fair grounds.

Kolisch, Drexl cite results for 100 and 500 iterations. While CCS-SAR1 is based upon the re

sults from running several FCS-based algorithms for 100 iterations, it is shown in Schirmer

(1997) that under the PSS the ranking of priority rules changes with changing iteration num

bers, albeit under the SSS the ranking remained the same over all iteration numbers. In par-

ticular, under the PSS the rule WCS emerges as the best rule for all iteration numbers smaller

than 400; for 1 arger samples, the rule LFT fares better, for 400 iterations, both rules perform

identically. Also, the dividing line between the "serial" and the "parallel" Clusters moves with

increasing iteration numbers. Following the same steps as demonstrated above, we therefore

devised another control scheme for sample sizes 1 arger than 400, defining an algorithm CCS-

SAR2 as shown in Table 15.

RS
RF 0.2 0.5 0.7

0.25
SSS,

MRBRS/10, LST
SSS,

MRBRS/10, LST
SSS,

MRBRS/10, LST

0.50
SSS,

MRBRS/10, LST
SSS,

MRBRS/10, LST
SSS,

MRBRS/10, LST

0.75
PSS,

RBRS, LFT
SSS,

MRBRS/10, LST
SSS,

MRBRS/10, LST

1.00
PSS,

RBRS, LFT
PSS,

RBRS, LFT
SSS,

MRBRS/10, LST

Table 15: Algorithm CCS-SAR2 - Composition

22

The comparison between the algorithms is given in Table 16 where the average, Standard de-

viation, and maximum of the deviations from Optimum are listed, along with the percentage of

instances solved to optimality. For the sake of completeness, also the corresponding results

from considering all 360 nontrivial instances are provided in Table 16.

100 Iterations 500 Iterations
ASP CCS-SAR1 ASP CCS-SAR2

Instances 308 308 360 308 308 360

Avg 1.22% 1.05% 1.53% 0.71% 0.67% 1.04%

SD 2.11% 1.85% 2.30% 1.47% 1.44% 1.83%
Max 11.84% 11.11% 11.11% 6.90% 7.89% 10.31%
%Opt 66.23% 67.86% 59.17% 76.62% 65.56% 67.22%

Table 16: Comparison ofASP, CCS-SAR1, and CCS-SAR2

Clearly, the ASP is dominated by suitably devised CCS-based algorithms. Note that the FCS-

based algorithms described above are the best FCS-based ones available and that the ASP is

the best CCS-based algorithm known so far. Therefore, as our CCS-based approach outper-

forms both, by transitivity it also dominates the other sampling methods currently available. In

order to verify that this relationship extends to higher iteration numbers as well, we have

applied several sampling algorithms to all 360 nontrivial instances; the corresponding average

deviations are compiled in Table 17.

Algorithm Reference Iterations
1000 5000

CCS - 0.87% 0.59%
Adaptive search Kolisch, Drexl (1996) 0.99% 0.69%
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) 1.09% 0.73%
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) 1.11% 0.75%
PSS, RBRS, WCS Kolisch (1996a) 1.89% 1.70%
PSS, RBRS, LFT Kolisch (1996b) 1.86% 1.71%

Table 17: Comparison of Several Sampling Algorithms

6. Summary

In this contribution, we have studied the application of CCS, using the RCPSP as a vehicle. In

an extensive computational study, the first to encompass the complete J30 instance set, we

have analyzed the best priority rule-based algorithms known for the problem and, drawing

upon these results, complemented them by tailored control schemes. The computational re-

23

sults validate effectiveness and efficiency of our approach. On some instance Clusters, the ef

fectiveness of sampling can be improved by up to 2.37% over the best FCS-based algorithm,

which amounts to a relative improvement of 39%. Döing so results in a total average devia-

tion, calculated over all instances, of 1.53% after 100 iterations.

Although our findings were derived on test instances of the RCPSP, they do have significance

beyond the realm of project scheduling since similar FCS-based algorithms have been applied

to other problems such as lotsizing and scheduling (Drexl, Haase 1996; Kimms 1996) or staff

scheduling (Salewski et al. 1997). Our results also bear upon other than mere priority rule-

based methods since these form building blocks of other (more effective, albeit less efficient,

due to the problem's complexity) heuristics: Three of the currently best metaheuristic algo

rithms for the RCPSP (Hartmann 1997, 1998; Bouleimen, Lecocq 1998) all utilize such meth

ods to generate schedules. We therefore augur that further improving these methods will pave

the way also for further improvements in the best known metaheuristics.

Acknowledgements

Parts of this work were conducted while the first author held a teaching position at the Institut

für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel; we are

most grateful for the Support, in particular of Peter Kandzia, that made this work possible. We

also wish to thank Andreas Drexl for his constructive comments on an earlier version of this

paper. Partial funding was granted by the Deutsche Forschungsgemeinschaft (German Na

tional Science Foundation) under Grant Dr 170/4-1.

References

ALVAREZ-VALDES, R. AND J.M. TAMARIT (1989), "Heuristic algorithms for resource-constrained project schedul
ing: A review and an empirical analysis", in: Advances in project scheduling, R. Slowinski and J. Weglarz
(eds.), Elsevier, Amsterdam, pp. 113-134.

BAAR, T., P. BRUCKER, AND S. KNUST (1997), "Tabu search algorithms for the resource-constrained project
scheduling problem", Technical Report, University of Osnabrück.

BEDWORTH, D.D., IE. BAILEY (1982), Integrated production control systems - Management, analysis, design,
Wiley, New York.

BOCTOR, F.F. (1990), "Some efficient multi-heuristic procedures for resource-constrained project scheduling",
European Journal of Operational Research 49, pp. 3-13.

BÖTTCHER, J., A. DREXL, R. KOLISCH, AND F. SALEWSKI (1996), "Project scheduling under partially renewable
resource constraints", Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 398.

BOULEIMEN, K. AND H. LECOCQ (1998), "A new efficient simulated annealing algorithm for the resource-con-
strained project scheduling problem", Technical Report, Service de Robotique et Automatisation, Univer
site de Liege, France.

24

BRUCKER, P., A. SCHOO, AND O. THIEUE (1996), "A branch & bound algorithm for the resource-constrained
project scheduling problem", Technical Report 178, Osnabrücker Schriften zur Mathematik, University of
Osnabrück, to appear in European Journal of Operational Research.

COOPER, D.F. (1976), "Heuristics for scheduling resource-constrained projects: An experimental investigation",
Management Science 22, pp. 1186-1194.

DAVIS, E.W. (1973), "Project scheduling under resource constraints - Historical review and categorization of
procedures", AIIE Transactions 5, pp. 297-313.

DAVIS, E.W. AND J.H. PATTERSON (1975), "A comparison of heuristic and Optimum solutions in resource-con-
strained project scheduling", Management Science 21, pp. 944-955.

DE REYCK, B. AND W.S. HERROELEN (1996), "On the use of the complexity index as a measure of network
complexity in activity networks", European Journal of Operational Research 91, pp. 347-366.

DE Wir, J. AND W.S. HERROELEN (1990), "An evaluation of microcomputer-based Software packages for project
management", European Journal of Operational Research 49, pp. 102-139.

DEMEULEMEESTER, E. AND W.S. HERROELEN (1992), "A branch-and-bound procedure for the multiple resource-
constrained project scheduling problem", Management Science 38, pp. 1803-1818.

DEMEULEMEESTER, E. AND W.S. HERROELEN (1997), "New benchmark results for the resource-constrained pro
ject scheduling problem", Management Science 43, pp. 1485-1492.

DREXL, A. (1991), "Scheduling of project networks by job assignment", Management Science 37, pp. 1590-
1602.

DREXL, A. AND J. GRÜNEWALD (1993), "Nonpreemptive multi-mode resource-constrained project scheduling",
IIE Transactions 25(5), pp. 74-81.

DREXL, A. AND K. HAASE (1996), "Sequential-analysis based randomized-regret-methods for lot-sizing and
scheduling", Journal of the Operational Research Society 47, pp. 251-265.

GAREY, M R. AND D.S. JOHNSON (1975), "Complexity results for multiprocessor scheduling under resource
constraints", SIAM Journal on Computing 4, pp. 397-411.

GAREY, M.R. AND D.S. JOHNSON (1979), Computers and intractability - A guide to the theory of NP-complete-
ness, W.H. Freeman, San Francisco, CA.

HART, J.P. AND A.W. SHOGAN (1987), "Semi-greedy heuristics: An empirical study", Operations Research Let
ters 6, pp. 107-114.

HARTMANN, S. (1997), "A competitive genetic algorithm for resource-constrained scheduling", Manuskripte aus
den Instituten für Betriebswirtschaftslehre der Universität Kiel 451, to appear in Naval Research Logistics.

HARTMANN, S. (1998), 1 Acceptance criteria in local search heuristics with an application to project scheduling",
Research Report, Universität Kiel, Germany.

HERROELEN, W.S. (1972), "Resource-constrained project scheduling - The state of the artM, Operational Research
Quarterly 23, pp. 261-275.

JOHNSON, T.J.R. (1967), An algorithm for the resource-constrained project scheduling problem, unpublished
Ph.D. thesis, Massachusetts Institute of Technology.

KELLEY, J E. (1963), The critical-path method: Resources planning and scheduling", in: Industrial scheduling,
Muth, J.F. and G.L. Thompson (eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 347-365.

KlMMS, A. (1996), Competitive methods for multi-Ievel lot sizing and scheduling: Tabu search and randomized
regrets", International Journal of Production Research 34, pp. 2279-2298.

25

KIMMS, A. (1997), "Fallbasiertes Schließen auf Methoden zur Produktionsplanung", Manuskripte aus den Institu
ten für Betriebswirtschaftslehre der Universität Kiel 433 (in German).

KOLISCH, R. (1995), Project scheduling under resource constraints - Efficient heuristics for several problem
classes, Physica, Heidelberg.

KOLISCH, R. (1996a), "Efficient priority rules for the resource-constrained project scheduling problem", Journal
of Operations Management 14, pp. 179-192.

KOLISCH, R. (1996b), "Serial and parallel resource-constrained project scheduling methods revisited: Theory and
computation", European Journal of Operational Research 90, pp. 320-333.

KOLISCH, R. (1997), "Resource allocation capabilities of commercial project management packages", Research
Report, Universität Kiel, Germany.

KOLISCH, R. AND A. DREXL (1996), "Adaptive search for solving hard project scheduling problems", Naval Re
search Logistics 43, pp. 23-40.

KOLISCH, R. AND R. PADMAN (1997), "An integrated survey of project scheduling - models, algorithms, Prob
lems, and applications", Research Report, Universität Kiel, Germany.

KOLISCH, R. AND A. SPRECHER (1997), "PSPLIB - A project scheduling problem library", European Journal of
Operational Research 96, pp. 205-216.

KOLISCH, R., A. SPRECHER, AND A. DREXL (1995), "Characterization and generation of a general class of re
source-constrained project scheduling problems", Management Science 41, pp. 1693-1703.

KURTULUS, I.S. AND S C. NARULA (1985), "Multi-project scheduling: Analysis of project Performance", IIE
Transactions 17(1), pp. 58-66.

LAGUNA, M., T.A. FEO AND H.C. ELROD (1994), "A greedy randomized adaptive search procedure for the two-
partition problem", Operations Research 42, pp. 677-687.

MINGOZZI, A., V. MANIEZZO, S. RICCIARDELLI, ANDL. BIANCO (1994), "An exact algorithm for project schedul
ing with resource constraints based on a new mathematical formulation", Research Report 32, Universita da
Bologna, Italy, to appear in Management Science.

MÜLLER-MERBACH, H. (1967), "Ein Verfahren zur Planung des optimalen Betriebsmitteleinsatzes bei der Ter
minierung von Großprojekten", Zeitschrift für wirtschaftliche Fertigung 62, pp. 83-88, 135-140 (in Ger
man).

NAPHADE, K S., S.D. Wu, AND R.H. STORER (1997), "Problem Space search algorithms for resource-constrained
project scheduling ", Annais of Operations Research 70, pp. 307-326.

PASCOE, T.L. (1966), "Allocation of resources - CPM", Revue Frangaise de Recherche Operationelle 38, pp. 31-
38.

PATTERSON, J.H. (1973), "Alternate methods of project scheduling with limited resources", Naval Research Lo
gistics 20, pp. 767-784.

PATTERSON, J.H. (1976), "Project scheduling: The effects of problem structure on heuristic procedures", Naval
Research Logistics 23, pp. 95-123.

PATTERSON, J.H. (1984), "A comparison of exact approaches for solving the multiple constrained resource, pro
ject scheduling problem", Management Science 30, pp. 854-867.

REEVES, C R. (1997), "Genetic algorithms for the Operations researcher", INFORMS Journal on Computing 9,
pp. 231-250.

26

SALEWSKI, F., A. SCHIRMER, AND A. DREXL (1997), "Project scheduling under resource and mode identity con
straints: Model, complexity, methods, and application", European Journal of Operational Research 102, pp.
88-110.

SCHIRMER, A. (1996), "New insights on the complexity of resource-constrained project scheduling - A case of
single-mode scheduling", Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel
390.

SCHIRMER, A. (1997), "Advanced biased random sampling in serial and parallel scheduling", Research Report,
Universität Kiel.

SCHIRMER, A., S. RIESENBERG (1997), "Parameterized heuristics for project scheduling - Biased random sam
pling methods", Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456.

SPRECHER, A. (1996), "Solving the RCPSP efficiently at modest memory requirements", Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel 425.

STINSON, J.P., E.W. DAVIS, AND B.M. KHUMAWALA (1978), "Multiple resource-constrained scheduling using
branch and bound", AHE Transactions 10, pp. 252-259.

ULUSOY, G. AND L. ÖZDAMAR (1989), "Heuristic Performance and network/resource characteristics in resource-
constrained project scheduling", Journal of the Operational Research Society 40, pp. 1145-1 152.

VALLS, V., M.A. PEREZ, AND M.S. QUINTANILLA (1992), "Heuristic Performance in large resource-constrained
projects", Working Paper, Departament D'Estadistica I Investigacio Operativa, Universität de Valencia,
Spain.

WHITEHOUSE, G.E. AND J.R. BROWN (1979), "GENRES: An extension of Brookes algorithm for project schedul
ing with resource constraints", Computers and Industrial Engineering 3, pp. 261-268.

WOLPERT, D.H. AND W.G. MACREADY (1995), "No Free Lunch Theorem for Search", Technical Report SFI-TR-
95-02-010, Santa Fe Institute, Santa Fe, NM.

