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Abstract: Most scheduling problems are notoriously intractable, so the majority of algorithms for 
them are heuristic in nature. Priority rule-based methods still constitute the most important class of 
these heuristics. Of these, in turn, parameterized biased random sampling methods have attracted par-
ticular interest, due to the fact that they outperform all other priority rule-based methods known. Yet, 
even the 'best' such algorithms are unable to relate to the particularities of all possible instances of the 
problem at hand: usually there will exist instances on which other, e.g. the second- or third-best, algo­
rithms perform better. We maintain that asking for the one best algorithm for a given problem may in 
fact be asking too much. The recently proposed concept of control schemes, which refers to algo-
rithmic schemes allowing to guide the proceeding of parameterized algorithms, opens up ways to re-
fine existing algorithms in this regard. By partitioning the set of all instances of a problem into 
equivalence classes and identifying algorithmic components that are suited for the respective classes, 
class-based control schemes constitute one way to achieve this goal. Using the resource-constrained 
project scheduling problem as a vehicle, we describe how to devise such control schemes, making sys-
tematic use of different scheduling schemes as well as random sampling schemes and priority rules. 
Results from extensive computational experimentation validate effectiveness and efficiency of our 
approach. 

Keywords: PROJECT SCHEDULING; PARAMETERIZED SAMPLING HEURISTICS; PRIOR­
ITY RULES; CONTROL SCHEMES 

"[S Jcheduling problems often exhibit unique characteristics which make them more arnenable to Solution with a 
particular procedure. The advcintages ofanalyzing problem structure and then choosing a technique for solving 

it can be significant." (Patterson 1976) 

1. Introduction 

Most combinatorial scheduling problems belong to the class of strongly NP-equivalent prob­

lems (Garey, Johnson 1979) and thus are notoriously intractable: if one insists on algorithms 

guaranteed to find an optimal Solution, the current State of the art has only exponential an-

swers to offer. It therefore comes as no surprise that the majority of scheduling algorithms 

devised are heuristic in nature. Of these, priority rule-based methods - despite their age - still 

constitute the most importantclass. Kolisch (1996b) offers several arguments for their popu-

larity. First, they are easily used and implemented. Actually, most commercial scheduling 

Software relies on simple priority rules (De Wit, Herroelen 1990; Kolisch 1997). Second, they 

are computationally inexpensive in terms of Computer time and memory required, which 

makes them amenable even for large instances of computationally intractable problems. Third, 

this very inexpensiveness allows to integrate them as fast "subroutines" into more complex 

metaheuristic algorithms. Of these in turn, parameterized biased random sampling methods 

have recently attracted particular interest, due to the fact that they currently outperform all 

other priority rule-based methods known (Kolisch 1996b; Schirmer, Riesenberg 1997). 

Different random sampling schemes have been proposed of which the regret-based scheme of 

Drexl (1991) and the modified schemes of Schirmer (1997) are the best-performing ones cur­

rently known. 

Yet, even such algorithms are unable to relate to the particularities of all possible instances of 

the problem at hand. Even if the proclamation of an algorithm as 'best' is based upon extensive 
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experimentation, such a recommendation nevertheless reflects the best average Performance 

over all instances attempted. Still, there will usually exist instances on which other, e.g. the 

second- or third-best, algorithms perform better than the 'on average1 best one. We maintain 

that asking for the one best algorithm for a given problem may in fact be asking too much. 

Some theoretical foundation of this view, even if pertaining to search algorithms only, has 

been provided in terms of the so-called no-free-lunch theorem by Wolpert, Macready (1995). 

The main thrust of the paper is that all search algorithms, if their construction meets certain 

requirements, perform the same when considering all instances of a problem. The conse-

quence is that if some instances of a problem are better solved by an algorithm A, then some 

of the remaining instances of the same problem must be solved better by an algorithm B. Al-

though the proof of the theorem makes certain idealizing assumptions, e.g. that points in the 

Space searched are not revisited, which are not easily verified or met in most existing search 

algorithms, a number of important consequences can be deduced, or at least conjectured, from 

their theorem (cf. the discussion in Reeves 1997). It stands to reason that analysis of when and 

why algorithms perform well on some, worse on other instances will receive more and wide-

spread attention. 

The concept of control schemes, referring to algorithmic schemes which guide the proceeding 

of parameterized algorithms, opens up ways to take into account such considerations by ap-

propriately refining existing algorithms. By partitioning the set of all instances of a problem 

into equivalence classes and identifying algorithmic components that are suited for the respec-

tive classes, class-based control schemes constitute one way to achieve this goal. Using the 

resource-constrained project scheduling problem (RCPSP) as a vehicle, we describe how to 

devise such control schemes, making systematic use of different scheduling schemes as well 

as random sampling schemes and priority rules. 

This contribution is in six sections. We briefly discuss the RCPSP in Section 2. The requisite 

algorithmic components, viz. scheduling schemes, priority rules, random sampling schemes, 

control schemes, and bounding rules are covered in Section 3. In Section 4 we address the 

question of how to set up class-based control schemes and graft them onto existing scheduling 

algorithms. Experimental results of the algorithms arising are presented in Section 5 before 

Section 6 concludes the paper with some summarizing remarks. 

2. Resource-Constrained Project Scheduling 

The RCPSP can be characterized as follows: The single project consists of a number J of ac-

tivities of known duration dj; all activities have to be executed to complete the project. There 

aie a number R of renewable resources, where the amount available per period is limited by a 

constant capacity Kr. Düring each period of its nonpreemptable execution an activity j uses kjr 

units of resources r. A partial Order Z, representing precedence relations between activities, 
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stipulates that some activities must be finished before others may be started. W.l.o.g. J, R, dj, 

Kr (kj,-) are assumed to be positive (nonnegative) integers. Let us also assume w.l.o.g. that the 

activities 1 and J are dummy activities, with durations and resource requirements of zero, and 

that activity I (J) is the unique first (last) activity w.r.t. Z. The goal is to find an assignment of 

periods to activities (a schedule) that Covers all activities, ensures for each renewable resource 

r that in each period the total usage of r by all activities performed in that period does not ex-

ceed the per-period availability of r, respects the partial order Z, and minimizes the total pro-

ject length. 

The problem is notoriously intractable. Its optimization variant is known to be strongly NP-

hard, even strongly NP-equivalent (Schirmer 1996). Indeed, assuming a deadline to be given 

for the project completion even its feasibility variant is strongly NP-complete (Garey, Johnson 

1975). Historically, the earliest exact algorithms have used techniques from zero-one pro-

gramming or dynamic programming. However, in more recent days virtually all approaches 

were implicit enumeration methods. Also the most powerful exact methods today (Demeule-

meester, Herroelen 1997; Mingozzi et al. 1994; Brucker et al. 1996; Sprecher 1996) all belong 

to this class of algorithms. Yet, owing to the complexity of the RCPSP, most algorithms 

devised for it are heuristic in nature. From their wealth, construction methods (priority rule-

based algorithms, disjunctive arc methods), iterative improvement methods (local search, ge-

netic algorithms), and incomplete exact methods (truncated branch-and-bound) have been de-

veloped. Of these, the most effective ones currently available seem to be the tabu search 

method of Baar et al. (1997), the genetic algorithm of Hartmann (1997), the increasing toler-

ance algorithm of Hartmann (1998), and the simulated annealing method of Bouleimen, 

Lecocq (1998). No approximation algorithms are reported in the literature that we are aware 

of. Detailed reviews of algorithms for the RCPSP, allowing also to trace the historical develop-

ment, can be found in the survey articles of Herroelen (1972), Davis (1973), Patterson (1984), 

and Kolisch, Padman (1997). 

3. Components of Priority Rule-Based Algorithms 

Priority rule-based methods consist of at least two components, viz. one (or more) scheduling 

schemes and one (or more) priority rules. A scheduling scheine determines how a schedule is 

constructed, building feasiblefull schedules (which cover all activities) by augmenting partial 

schedules (which cover only a proper subset of the activities) in a stage-wise manner. On each 

stage, the scheme determines the set of all activities which are currently eligible for schedul­

ing. In this, priority rules serve to resolve conflicts according to priorities where more than 

one activity could be feasibly scheduled. Additional components which have been added suc-

cessfully to complement these two comprise random sampling schemes, control schemes, and 

bounding rules. Since deterministic heuristics produce only one - often bad - Solution for an 
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instance, biased random sampling methods resolve conflicts according to probabilities pro­

portional to some measure of attractiveness, here the priorities of the candidates. Since pro-

ceeding randomly, they may produce several solutions rather than only one as does a deter-

ministic algorithm; the best of these solutions (or one of the best if several were found) is then 

taken as the result. Evidence gathered in several computational studies confirms that such 

methods outperform traditional, deterministic approaches (Cooper 1976; Hart, Shogan 1987; 

Laguna et al. 1994; Drexl, Grünewald 1993). Control schemes allow to influenae the way in 

which parameterized algorithms, such as the sampling schemes to be discussed later, are in-

stantiated. Bounding rules, finally, by detecting situations in which a partial or füll schedule 

cannot be improved, restrict the number of schedules to be evaluated and thus improve algo­

rithmic efficiency. 

3.1. Scheduling Schemes 

Two variants of scheduling schemes are usually distinguished, viz. serial and parallel ones. 

Serial scheduling methods (Kelley 1963) Start by numbering the candidates in such a way that 

no one gets a lower number than any of its predecessors. A schedule is then built by consider-

ing the candidates in order and scheduling them one at a time for earliest possible execution 

w.r.t. the constraints. In contrast, parallel scheduling methods (usually also ascribed to Kelley 

1963 but actually introduced in an unpublished paper of Brooks in the same year, cf. the re-

marks in Bedworth, Bailey 1982; Kolisch 1995, p. 68) proceed by considering the periods of 

the planning horizon in chronological order. In each period t, of those activities that may fea-

sibly commence in t as many as possible are scheduled one at a time for starting in t. 

The serial scheduling scheme (SSS) divides the set of activities into three disjoint subsets or 

states: scheduled, eligible, and ineligible (cp. Kurtulus, Narula 1985). An activity that is al-

ready in the partial schedule is scheduled. Else, an activity is called eligible if all its predeces­

sors are scheduled, and ineligible otherwise. The scheme proceeds in N = J stages, indexed by 

n. For notational purposes, we refer on stage n to the set of scheduled activities as Sn and to 

the set of eligible activities as decision set Dn. Dn is determined dynamically from 

Dn<~ (ji je SnAPj^Sn} (1 < n < N) (1) 

On each stage, one activity j from Z)n is selected - using a priority rule if more than one activ­

ity is eligible - and scheduled to begin at its earliest feasible start time. Then j is moved from 

Dn to Sn, which in turn may render some ineligible activities eligible if now all their prede­

cessors are scheduled. The scheme terminates on stage N when all activities are scheduled. 

The SSS has been studied, among others, by Pascoe (1966), Müller-Merbach (1967), Cooper 

(1976), Boctor (1990), Valls et al. (1992), and Kolisch (1996b). Note that the SSS searches 

among the set of active schedules which always contains at least one optimal schedule for any 

Rcpsp-instance considered. 
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The parallel scheduling scheme (PSS) proceeds in N < J stages, indexed by n. Each stage n is 

associated with a schedule time tn. The scheme divides the set of activities into four disjoint 

subsets or states: active, finished, eligible, and ineligible (cp. Kurtulus, Manila 1985). A 

scheduled activity is active during its execution, afterwards it becomes finished. In contrast to 

the serial scheme, an activity that is neither active nor finished is called eligible if it could be 

scheduled w.r.t precedence and resource constraints, ineligible otherwise. Consequentially, 

the partial schedule consists of all active and finished activities. We refer to the set of active 

(finished, eligible) activities on stage n, i.e. in period tn + 1, as An (Fn, Dn). Another differ-

ence to the serial scheme is that each stage consists of two steps. First, the schedule time tn is 

set to the minimum of the finish times of all activities in An_\ (Johnson 1967); then activities 

with a finish time equal to tn are moved from An to Fn which in turn may make some for-

merly ineligible activities eligible, transferring them to Dn. This process is repeated until the 

decision set is indeed nonempty. Second, one eligible activity is selected, using a priority rule 

if more than one activity is eligible, scheduled to begin at the current schedule time, and 

moved from Dn to An; this second Step is repeated as long as Dn is nonempty. The scheme 

terminales when each activity is scheduled, i.e. is either active or finished. The PSS has been 

examined by numerous authors, among these Pascoe (1966), Davis, Patterson (1975), Patter-

son (1973, 1976), Whitehouse, Brown (1979), Alvarez-Valdes, Tamarit (1989), Ulusoy, 

Özdamar (1989), Boctor (1990), Valls et al. (1992), and Kolisch (1996b). Note that the PSS 

searches among the non-delay schedules which do not necessarily contain any optimal Solu­

tion of the RcPSP-instance considered (Kolisch 1996b). Formal descriptions of both schemes 

can be found in Schirmer (1997). 

3.2. Priority Rules 

Priority rules allow to resolve conflicts between activities competing for the allocation of 

scarce resources. In situations where the decision set contains more than one candidate, prior­

ity values are calculated from measures which are related to properties of the activities, the 

complete project, or the incumbent partial schedule (Cooper 1976). Formally, any priority rule 
can be specified in terms of two components. One is a mapping v: Dn —> R>Q which accords a 

numerical measure v(j) to each candidate in the decision set. The other is a dichotomical pa-

rameter extr e {max, min} which specifies which extremum of the priority values determines 

the candidate to be selected. Ties can be broken arbitrarily, e.g. by smallest activity index (as 

done in the sequel) or randomly. Then, any such (deterministic) selection of an activity j* (as 

used in the formal descriptions in the Appendix) can be expressed as 

j* <- min {j 6 £>n I v(j) = extr {v(j') | j' e £>n}} (2) 

We briefly introduce several well-known priority rules. Let for each activity j (1 < j < J) de-

note Sj the set of all immediate successors w.r.t. / and EFSTj the - dynamically updated -
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earliest feasible start time w.r.t. all constraints. Using this notation, the rules can be defined as 

done in Table 1 where also a Classification in terms of several straightforward criteria is given; 

the last criterion refers to whether the rule is applicable in both scheduling schemes or only in 

the parallel one (Cooper 1976; Kolisch 1995, pp. 85-86). These rules were selected because 

they have been found to be the best-performing ones in several studies (Davis, Patterson 1975; 

Alvarez-Valdes, Tamarit 1989; Ulusoy, Özdamar 1989; Boctor 1990; Kolisch 1996a; 

Schirmer 1997). 

The measure WRUPj has been introduced by Ulusoy, Özdamar (1989). In our Implementa­

tion, we used the setting wj =0.7 and W2 = 0.3 which the authors report as producing the best 

results. Concerning the measures IRSMj and WCSj, APn denotes the set of all pairs of non-

identical activities i and j in the decision set whereas Ey denotes the earliest time to schedule 

activity j if activity i is started at tn (for details cf. Kolisch 1996a). 

Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

Serial vs. 
Parallel 

MIN SPTj «- dj S L S,P 

MAX MTSj <- 1 {j'l j<j'} 1 S L S,P 

MIN LSTj <- LFTj-dj S G S,P 

MIN LFTj <- LFTj S L S,P 

MIN SLKj <- LSTj - EFSTj D L S,P 

MAX GRPWj dj + sieSjdi S L S,P 

MAX WRUPj «- w j 15j | + W2 E, • ^jr^r S L S,P 

MIN RSMj <- max{0, tn + dj - LSTJ | (i j)zAPn} D G P 

MIN IRSMj <- max{0, Ejj - LSTj | (ij) e APn} D G P 

MIN WCSj <— LSTj - max{E;j • l(ij)e^n) D G P 

Table 1: Priority Rules - Definition and Classification 

3.3. Biased Random Sampling Schemes 

The idea of randomization in selecting between several alternative candidates is based on 

measures of attractiveness which are mapped monotonically into selection probabilities. Thus, 

a randomized method chooses among the available candidates according to probability values 

which are biased to favour apparently attractive selections. In the framework considered here, 

these measures are determined by priority rules. A biased random sampling scheme consists 
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of a mapping p: Dn —> [0,1] assigning a probability value p(j) to each candidate in the deci-

sion set. In essence, this mapping simply transforms the priority value of each candidate into a 

probability value. Of course, all probabilities sum to unity. In order to formalize the (random-

ized) selection once the probabilities are calculated, let denote P(£>n) = (p(n( 1p(7c( \ün I 

))) the sequence of probability values of all candidates in a decision set Dn; w.l.o.g. we as-

sume P (Dn) to be ordered by ascending activity index. Also, let denote £ e [0,1] a random 

number. Then, the activity j* to be selected is determined as 

k 
j* <r- min {j e Dn \ j = 7C(k) A £ < £p(7c(i)) } (3) 

i=I 

One of the two schemes that we use here is the regret-based biased random sampling (RBRS) 

one presented in Drexl, Grünewald (1993). The regret value of a candidate j measures the 

worst-case consequence that might possibly result from selecting another candidate. Let de­

note V(Dn) the set of priority values of all candidates in a decision set Dn. Then, the regrets 

are computed as 

lv(j) - minV (Dn) 

and modified by 

v"Ö)^(V(j) + £)a QeDn) (5) 

where ee R>ß and ae R>Q. Having determined these values, the selection probabilities are de-

rived from 

P(i)<- (jEDn) (6) 

j'GDn 

e guarantees v"(j) to be nonzero; otherwise those candidates with priorities of zero could never 

be selected, an undesirable consequence in the presence of scarce resources. a allows to di-

minish or enforce the differences between the modified priorities for a<] or a>l, respec-

tively. Note that for a -> 0 the selection process becomes pure random sampling, since all 

candidates will share the same probability of being selected. On the other extreme, for a = <*> 

the process behaves deterministic: since with increasing a the difference between the highest 

and the second-highest modified priority increases, the probability of the highest-prioritized 

candidate being selected converges to one. 

The second scheme (MRBRS) we use is a modification of the RBRS, in that it computes re­

grets from the original priorities according to (4) and modifies them according to (5). How-

iffextr = min 
iffextr = max (iED„)(4) 
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ever, rather than using a constant value of £, £ is determined dynamically. Letting denote 

V{Dn)+ the set of all positive transformed priorities of the candidates in Dn, i.e. 

where 5 is a positive integer. Selection probabilities are again derived from (6). Thus, the 

above actually defines a family MRBRS/5 of sampling schemes. This scheme has been found 

to be particularly effective in conjunction with the SSS. For details cf. Schirmer (1997); 

Schirmer, Riesenberg (1997). 

3.4. Control Schemes 

Parameterized algorithms possess (one or more) control parameters which allow to direct the 

way in which they proceed. While these parameters are usually understood to be only numeri-

cal in nature, we adopt a broader view and include also the choice of certain algorithmic com­

ponents in the concept. Thus, control parameters in the scheduling algorithms examined here 

are the scheduling scheme (SS), the priority rule, and the random sampling scheme (RSS) em-

ployed, as well as the particular value of a and the iteration number Z used. Note that each 

combination of scheduling scheme, rule, sampling scheme, and a-value defines one particular 

scheduling algorithm. To algorithmic schemes which govern the instantiation of the control 

parameters we refer as control schemes. Although this very name has, to the best of our 

knowledge, not been used before, we maintain that some kind of control scheme is always 

present whenever parameterized methods are used. We outline what we see as the most simple 

- and most common - form of control scheme before we describe how this simple approach 

can be refined. 

Fixed control schemes (FCS) constitute the most simple class of control schemes. The attrib-

ute 'fixed' indicates that the way in which the control parameters are instantiated is prescribed 

in advance and for all instances alike. As an example, consider a numerical control parameter 

a e IN of an algorithm that is to be run for three iterations. Under a FCS, a could e.g. be in­

stantiated by the same value thrice or by three different values, one in each iteration. Based 

upon the results of previous experimentation, these precepts will reflect those control parame­

ter instantiations which produced the best results on average over all test instances used. FCS 

are e.g. used by Kolisch (1996b) and Böttcher et al. (1996). 

V(Dn)+ <- {v'(j) | j e Dn A v'(j) > 0} (7) 

£ can be derived from 

(8) 
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Another approach is motivated by the Observation that, while being appealing to try and find 

'the best algorithm' for a problem, for most computationally intractable problems there simply 

exists no algorithm which performs best on all instances. Thus, as the prescriptions of FCS 

apply to all instances alike, they are unable to take into account the specifics of particular in­

stances. This Observation has already been made, among others, by Davis, Patterson (1975). 

Therefore, a more refined class of schemes, to which we refer as class-based control schemes 

(CCS), proceeds by instantiating the control parameters depending on some characteristics of 

the instances attempted. Such schemes utilize a partition of the problems instances into 

equivalence classes and prescribe the application of specific parameter instantiations for each 

of the classes. Kolisch, Drexl (1996) propose a control scheme which selects the scheduling 

scheme to be applied according to two quantities: the number of iterations to be performed 

and the resource strength of the instance. Another example of a CCS is found in Kimms 

(1997). Also these schemes are based upon extensive experimentation to develop sufficient 

insight into the influence of the parameters on the algorithms' Performance. 

The advantage of refining an algorithm from a fixed to a class-based control scheme is obvi-

ous since doing so cannot deteriorate algorithmic effectiveness but will improve it in most 

cases. Additional attractiveness lies in the fact that this refinement may be easily accom-

plished by appropriately exploiting the results used to derive a FCS in the first place. One ca-

veat is in order, though. If the test bed used is relatively small, devising a CCS may result in 

fine-tuning the algorithm to the specifics of only a few instances; Reeves (1997) graphically 

refers to such algorithms as "horses for courses". For the sake of robustness, therefore, the test 

instances upon which the experimentation relies should be as representative of the expressive 

power of the corresponding problem as possible. 

3.5. Bounding Rules 

In order to improve the efficiency of heuristic scheduling algorithms, bounds can be employed 

in two different ways, previously referred to as global or local bounds (Kolisch, Drexl 1996). 

Local bounds allow to jettison a particular schedule currently under construction; their imple-

mentation depends on the scheduling scheme into which they are fit, so we term them serial 

or parallel as appropriate. Global bounds can only be applied when a füll schedule has been 

found; they formulate conditions under which a heuristic schedule is optimal and thus allow to 

terminate the complete run for the instance at hand. Since their implementation is independent 

of the respective scheduling scheme, we refer to them as general bounds. 

We extend the above algorithms by incorporating several classical bounding rules (Stinson et 

al. 1978; Kolisch 1995, pp. 120-127; Kolisch, Drexl 1996), viz. a precedence-based optimality 

bound, two resource-based, and two time window ones, which latter may be seen as trans-
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forming by means of tightening time windows the issue of improving upon a known Solution 

into one of achieving feasibility of the solutions constructed. 

General precedence-based lower bound (GPLB) This bound is based upon relaxing the re-

source constraints such that a lower bound on the project makespan is determined as the 

Iength of a critical path in the project network. Let denote FTj the makespan of the schedule 

just found. Whenever 

FTj = EFTj (9) 

the whole run can be terminated. In this case, the heuristically derived upper bound FTj on the 

makespan equals the precedence-based lower bound EFTj such that the schedule is optimal. • 

General resource-based lower bound (GRLB) This bound is based upon relaxing the 

precedence constraints. Whenever 

FTj = max{ 
J 
2>jr-dj)/Kr 

j=l 
1 < r < R) (10) 

holds, the entire run can be terminated. In this case the schedule is optimal because at least 

one resource is loaded to füll capacity, thus further squeezing the makespan is impossible. • 

Serial time window bound (STWB) The fundamental idea of this bound is to decrease the 

latest finish times of all unscheduled activities whenever an iteration finds an improved Upper 
bound on the makespan. Let denote FT j the makespan of the incumbent best Solution and 

LSTj the latest start time of activity j. Whenever a feasible Solution with a shorter makespan 
of FTj < FT J has been found, updated LST-values can be determined for all activities by 

LST'j LSTj - FTj + FTj - 1 (l<j<J) (11) 

Now, the current iteration can be terminated whenever a selected activity j* would have to 

start outside its updated time window, i.e. 

EFSTp > LST'j* (12) 

the reason being that the incumbent partial schedule could not be completed to a füll schedule 

with a makespan better than the best known one. By construction of the STWB, any feasible 

schedule will be better than the previous one since its makespan will at most equal the 
makespan of that one, less one. g 
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Parallel time window bound (PTWB) With T the initial upper bound on the makespan, the 

current iteration can be terminated whenever 

tn > min {LSTj |j £ 5^} - T + FT j - 1 (13) 

holds1 after incrementing tn. In this case, as for the STWB, the current partial schedule could 

not improve on the best known schedule. • 

Parallel resource-based lower bound (PRLB) The current iteration can be terminated 

whenever 

tn + max { Jr Z(FTj-tn)+ Idj 

UeAn j^n , 

/K, 1 <r<R} > FTj (14) 

holds after incrementing tn as then, again, the current partial schedule could not improve on 

the best known schedule. • 

Another optimality bound is the so-called LB2 of Mingozzi et al. (1994), which by relaxing 

the nonpreemption and certain precedence constraints identifies maximal sets of activities that 

could be scheduled in parallel. However, the number of such sets may tum out exponential, 

and only recently has LB2 become computable for practical purposes by means of column 

generation (Brucker et al. 3996); due to the effort involved we have chosen not to include it 

here. 

4. Class-Based Control Methods 

One may say that the design of CCS follows the same road as other methods - but in the oppo-

site direction. Normally, the design of an algorithm is done before any numerica] experiments 

can be conducted. CCS-based algorithms, in contrast, require the designer to conduct numeri­

ca] experiments before the control scheme can be put together. Although this view is some-

what incomplete, since the experimentation requires the algorithmic components to be in 

place beforehand, it still serves to clarify the major difference to the usual proceeding. 

In this section we outline the design and the results of our initial experimentation, focussing 

on the Performance of the FCS-based algorithms defined by the algorithmic components de-

scribed above. Drawing on these results, we propose two CCS-based scheduling algorithms. 

' Although the LST-values could also be decreased in a separate step, similar to (16), the above formula is 
more efficient as it requires J-N subtractionsless. 
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4. ]. Experimental Design 

The Factors examined in our experiments are scheduling scheme (SS), random sampling 

scheme (RSS), priority rule, control parameter a, and number of iterations Z. Specifying a set 

of values for each factor describes over which levels it is varied during an experiment, while 

one value for each factor determines a run of an experiment. One such run may consist of one 

or several iterations per combination of algorithm and instance; for each such combination, 

the outcome of a run is reported in terms of both effectiveness and efficiency. Effectiveness is 

determined by considering the best schedule found for the instance in that run and measuring 

its deviation from the Optimum as a percentage; efficiency captures the CPU-time required for 

the run, measured in terms of seconds. Measurements were taken using an implementation in 

Pascal, running on a Pentium 133 personal Computer with 24 MB RAM under MS DOS 6.0. 

As a test bed, we used the KSD-instance set J30 generated with ProGen (Kolisch, Sprecher 

1997). Each instance comprises four renewable resources and 30 non-dummy activities, hav-

ing a nonpreemptable duration of between one and ten periods and between one and three 

successors and predecessors each. Systematically varied design parameters for these instances 

are the network complexity (NC), the resource factor (RF), and the resource strength (RS). NC 

is defined as the average number of non-redundant arcs per activity, RF determines the num­

ber of resources that are requested by each activity, and RS expresses resource scarcity meas­

ured between minimum and maximum demand. A more comprehensive characterization is 

given in Kolisch et al. (1995). The respective parameter levels used are NC e {1.5, 1.8, 2.1}, 

RF e {0.25, 0.5, 0.75, 1.0}, and RS e {0.2, 0.5, 0.7, 1.0}. For each instance Cluster defined 

by a combination of these parameters, J30 contains ten instances, for a total of 480 instances. 

Of these, those 120 instances where RS = 1.0 are trivially solvable by the MPM-schedule. Of 

the remaining sample, the exact algorithm of Demeulemeester, Herroelen (1992) found and 

verified the optima for 308 instances within a time limit of 3600 seconds per instance, taking 

on average 615.1 seconds per instance on a 386SX/15 PC; ten more instances were optimally 

solved but not verified within the time limit. These 308 instances have also been considered in 

several other studies (Mingozzi et al. 1994; Kolisch 1996a, b; Kolisch, Drexl 1996; Naphade 

et al. 1997). The remaining 52 instances were only recently solved to optimality by a modified 

reimplementation of the above exact algorithm (Demeulemeester, Herroelen 1997), which on 

average improved the original solutions by 3.65 periods, requiring on average 29 seconds and 

at most three hours per instance on a 486/25 PC. Embracing also these solutions, our work is 

the first analysis of priority rule-based heuristics covering the füll ränge of instances com-

piised in J30. Thus, ceteris paribus our deviations from Optimum are 1 arger than reported 

elsewhere since our study includes the 52 rather hard instances unsolved at the time of earlier 
experimentation. 
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The factors examined here are scheduling scheme, random sampling scheme, priority rule, and 

control parameter a. The number of iterations is fixed to 100. The outcome of each run is re-

ported in terms of both effectiveness and efficiency: effectiveness is determined by consider-

ing the best schedule found for the instance in that run and measuring its deviation from the 

optimum as a percentage; efficiency captures the CPU-time required for the run, measured in 

terms of seconds. Measurements were taken using an Implementation in Pascal, running on a 

Pentium 133 PC with 24 MB RAM under MS DOS 6.0. A füll factorial design was used, in-

cluding also a number of additional priority rules and random sampling schemes; in total our 

analysis is based upon the results of applying 502 different algorithms to the RCPSP (Schirmer, 

Riesenberg 1997). 

4.2. Preparatory Results 

In order to expose the influence exerted by the different factors on the effectiveness and to 

evaluate the different FCS-based algorithms induced, we detail the results accordingly. In Ta­

ble 2, all such results pertaining to the SSS are summarized. To facilitate comparisons, we 

also give the results of the deterministic versions of the priority rules. 

RSS Alpha GRPW LFT LST SLK MTS SPT WRUP 
RBRS I 3.76% 2.07% 2.07% 3.34% 2.34% 4.92% 3.42% 

2 4.70% 2.02% 1.91% 3.71% 2.32% 7.42% 3.45% 
3 5.47% 2.21% 2.08% 3.83% 2.40% 9.26% 3.60% 

MRBRS/i 3.37% 2.21% 2.18% 3.15% 2.34% 4.47% 3.59% 
2 3.90% 2.03% 2.00% 3.18% 2.31% 5.90% 4.47% 
3 4.67% 2.10% 1.99% 3.38% 2.36% 7.50% 5.38% 

MRB RS/10 1 4.24% 1.99% 1.95% 3.21% 2.31% 6.88% 4.45% 
2 5.26% 2.19% 2.13% 3.69% 2.52% 10.66% 6.15% 
3 6.34% 2.38% 2.17% 3.93% 2.84% 12.63% 7.63% 

MRBRS/100 1 4,81% 2,17% 1.89% 3,57% 2,52% 9,74% 5,17% 
2 5,87% 2,24% 2.13% 3,82% 2,64% 12,53% 6,73% 
3 6,47% 2,46% 2.22% 4,00% 2,89% 13,48% 7,81% 

Table 2: Effect of Priority Rules - Deviations (SSS) 

Underlined are the respective row minima, reflecting the best priority rule for each combina-

tion of sampling scheme and a-value. It is evident that the particular choice of a bears no in­

fluence on the suitability of different priority rules, thus the underlined entries essentially in-

dicate the best rules for each sampling scheme. For all sampling schemes considered here LST 

is the bestperforming rule. 



14 

RSS Alpha GRPW IRSM LFT LST SLK MTS RSM SPT WCS WRUP 

RBRS 1 3.48% 2.45% 2.40% 2.50% 2.50% 2.58% 2.50% 3.88% 2.36% 3.17% 

2 4.24% 2.57% 2.61% 2.72% 2.72% 2.63% 2.65% 4.95% 2,56% 3.02% 

3 5.18% 2.73% 2.87% 3.11% 3.11% 2.81% 2.90% 6.18% 2.81% 3.05% 

MRBRS/1 1 3.19% 2.70% 2.64% 2.70% 2.70% 2.68% 2.75% 3.54% 2.57% 3.06% 

2 3.49% 2.49% 2.46% 2.48% 2.48% 2.50% 2.49% 3.97% 2.43% 3.24% 

3 3.94% 2.52% 2.46% 2.49% 2.49% 2.53% 2.55% 4.82% 2.37% 3.54% 

MRB RS/10 1 3.69% 2.49% 2.55% 2.51% 2.51% 2.61% 2.53% 4.81% 2.42% 3.45% 

2 5.01% 2.88% 2.83% 3.00% 3.00% 3.10% 2.95% 6.88% 2.78% 4.47% 

3 6.02% 3.07% 3.16% 3.37% 3.37% 3.45% 3.22% 8.72% 2.99% 5.63% 

Table 3: Effect of Priority Rules - Deviations (PSS) 

The corresponding results for the PSS are comprised in Table 3 where the strictly dominated 

MRBRS/100 is omitted. For all variants of the MRBRS as well as the RBRS with smaller cc-

values, WCS is the best choice. 

A comparative view of the best algorithms for each SS and RSS is provided in Table 4, listing 

the results obtained from employing the individually best rule and a-value, respectively. Avg 

(SD, Max) denotes the average (Standard deviation, maximum) of the deviations from Opti­

mum, % Opt the percentage of instances optimally solved. Also, the results for pure random 

sampling (RAS) are shown. Computation times per 100 iterations over all instances ränge be­

tween 0.51 and 0.6 seconds for the algorithms under the SSS and between 0.4 and 0.57 under 

the PSS. 

RSS SSS PSS 
Avg SD Max %Opt Avg SD Max % Opt 

DETERM 5.58% 6.26% 27.38% 38.61% 5.17% 5.07% 26.39% 26.67% 
RAS 3.70% 4.40% 17.65% 44.72% 3.31% 3.41% 15.46% 33.89% 
RBRS 1.97% 3.09% 16.13% 59.44% 2.36% 2.67% 13.64% 40.28% 
MRBRS/1 1.99% 3.12% 14.44% 58.61% 2.37% 2.69% 13.64% 40.83% 
MRBRS/10 1.95% 3.07% 13.89% 59.44% 2.42% 2.73% 13.64% 40.56% 
MRBRS/100 1.89% 2.92% 11.90% 58.61% 2.71% 2.97% 17.78% 37.50% 

Table 4: Effect of Random Sampling Schemes - Summary (Best Algorithms) 

4.3. Effect of Bounding 

In order to evaluate the effect of the individual bounding mies in detail, we solved all in­

stances with several versions of the best serial and the best parallel FCS-based algorithm, viz. 

applying no bound at all, each of the applicable bounds separately, and all bounds (except of 

PRLB, cf. below) together. Additional experimentation demonstrated that the results shown in 

Table 5 are representative for those of other FCS-based algorithms. 
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SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB _ all 
CPU [s] 0.61 0.59 0.32 0.60 - 0.31 
Reduction {%) - 3% 47% 2% - 48% 

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB 
CPU [s] 0.52 0.51 0.35 0.51 1.25 0.34 
Reduction [%] - 2% 32% 2% -142% 34% 

Table 5: Effect of Bounding on the Best Serial and Parallel FCS-Based Algorithms 

The only other study addressing the Performance of bounding rules in conjunction with prior­

ity rule-based scheduling algorithms is covered in Kolisch (1995, pp. 120-127) and Kolisch, 

Drexl (3996); for comparational purposes the corresponding results are evaluated in Table 6. 

SSS, RBRS, LST w/o Bounds GPLB STWB GRLB - all 
CPU [s] 4.72 3.42 2.26 4.72 - 2.24 
Reduction {%] - 28% 52% 0% - 53% 

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all 
CPU [s] 2.42 1.97 1.36 2.42 3.06 1.29 
Reduction [%} - 19% 44% 0% -26% 47% 

Table 6: Effect of Bounding in the Study of Kolisch (1995, p. 126) 

Whereas the experimentation of Kolisch (1995) found no or even adverse effects of resource-

based bounds, i.e. no reduction of the computation times for the GRLB and an increase of 

about 21% for the PRLB, the reader may recall that it included only 308 of the nontrivial 360 

instances of the J30 set. We therefore conducted an additional analysis to find out in which 

Clusters the notorious 52 instances are located. Table 7 reveals that they reside exclusively in 

Clusters where resources are scarcely capacitated (low RS) and in great demand (high RF). 

RS 
RF 0.2 0.5 0.7 

0.25 0 0 0 
0.50 2 0 0 
0.75 23 0 0 
1.00 22 4 1 

Table 7: Distribution of Notorious 52 Instances of J30 Set 

Due to this distribution, one is led to conjecture that the resource-based bounds would work 

better on the notorious instances. In order to check this, we divided the analysis between the 

308 instances used in his study and the 52 instances additionally included in our work in Table 
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9. However, it turns out that excluding them from the instances attempted hardly changes the 

effect of the bounding rules. To summarize, our results for STWB and PTWB as well as those 

including all bounds (except of PRLB) are in line with those reported by Kolisch while the 

GRLB works slightly better. Somewhat confounding is the poor Performance that we found 

for the GPLB when compared to the excellent Performance that Kolisch observed; a result we 

were unable to reproduce. 

SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB - all 
CPU [s] 0.60 0.58 0.29 0.59 - 0.28 
Reduction [%] - 3% 52% 2% - 54% 

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB 
CPU [s] 0.49 0.48 0.31 0.48 1.24 0.30 
Reduction [%] - 2% 37% 2% -152% 39% 

Table 8: Effect of Bounding on 308 Instances ofJ30 Set 

SSS, MRBRS/10, LST w/o Bounds GPLB STWB GRLB - all 
CPU [s] 0.65 0.64 0.53 0.64 - 0.52 
Reduction [%] - 2% 18% 2% - 21% 

PSS, RBRS, WCS w/o Bounds GPLB PTWB GRLB PRLB all w/o PRLB 
CPU [sj 0.67 0.65 0.61 0.65 1.32 0.58 
Reduction [%] - 2% 9% 2% -98% 14% 

Table 9: Effect of Bounding on Notorious 52 Instances of J30 Set 

4.4. Algorithmic Design 

Since RePSP-instances that are merely precedence-constrained can be optimally solved in lin­

ear time, only the capacity limitations of resources induce the strong NP-equivalence of the 

RCPSP (Schirmer 1996). It is easy to provide a visualization of this theoretical result by disag-

gregating the results of RAS over RF and RS. This is done in Figure 1, the results of which 

were derived under the serial version of RAS; the picture remains essentially the same under 

the parallel one. (The height of the surface represents the average deviation from Optimum. 

The differently shaded stripes reflect different levels of the surface, measured in terms of \% 

increments.) Figure 1 indeed demonstrates that less capacitated instances are more tractable 

than instances with rather scarce resources. Considering the limited amount of Information 

taken into account by priority rules, it seems unreasonable to hope for only one particular rule 

to outperform all its companions on all problem instances. As we aim at minimizing the pro-

ject makespan, it is thus straightforward that certain algorithms should perform better on the 

former instances while other ones should do so on the latter ones. 
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Figure 1: Tractability of Instances as Demonstrated by Effectiveness ofRAS 

More precisely, we hypothesized that algorithms using precedence-based, and thus objective 

function-oriented, rules work better on instances where resources are Iess scarce, i.e. RS is 

large, and in little demand, i.e. RF is small, and that algorithms using resource-based rules 

work better on the remaining instances. This hypothesis easily extends from priority rules to 

other algorithmic components. Kolisch, Drexl (1996) e.g. have demonstrated that the mutual 

dominance of the serial and the parallel scheduling scheme depends on the resource factor RF 

of the instance attempted, i.e. that the SSS outperforms its counterpart on instances where RF 

< 0.75 while the PSS fares better if RF > 0.75. 

Accordingly, we analysed all of the FCS-based algorithms separately on all 36 relevant Clus­

ters of the J30 instance set; recall that we disregard the trivially solvable 120 instances. As al-

ready reported by De Reyck, Herroelen (1996), the network complexity has no significant 

bearing on algorithmic effectiveness; yet both RF and RS do affect the effectiveness of algo­

rithms. Figure 2 exhibits the respective results of the best serial and parallel FCS-based algo­

rithms, viz. SSS, MRBRS/10, LST and PSS, RBRS, WCS, disaggregated over RF and RS. 

Note that from now on, we use a = 1 which gave the best results for all algorithms discussed 

here. Clearly, the above hypothesis is supported, as indeed a resource-based algorithm is most 

effective on instances where resource demand is high compared to resource availability 

whereas a precedence-based one is most effective on instances where resource scarcity is not a 

major concern. 
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(SSS, MRBRS/10, LST) (PSS, RBRS, WCS) 

Figure 2: Effect ofRF, RS - Deviations 

SSS, MRBRS/10, LST PSS, RBRS, WCS 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 0.43% 0.00% 0.00% 3>m% 1 V,', j.42% 
0.50 3.78% 0.66% 0.08% 3.44% 2.12% L9\% 
0.75 6,07% 1/70% 0.39% 3.70% 1.32% 1.51% 
1.00 6.74% 2 w i ; 0.74% 4.91% 2.67% 

Table 10: Effect of RF, RS - Deviations 

For the sake of devising a CCS-based algorithm, the corresponding numerical results are de-

tailed in Table 10, revealing a clear cut dividing line between those instance Clusters on which 

the best serial FCS-based algorithm dominates and those on which the parallel does 

(dominated areas are put in shading). Consequently, we propose to combine these two algo­

rithms to a CCS-based scheduling algorithm (CCS-SAR1), as shown in Table 11, by selecting 

the better of both for each Cluster defined by RF and RS. 
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RF 0.2 
RS 
0.5 0.7 

0.25 SSS, 
MRBRS/10, LST 

SSS, 
MRBRS/10, LST 

SSS, 
MRBRS/10, LST 

0.50 PSS, 
RBRS, WCS 

SSS, 
MRBRS/10, LST 

SSS, 
MRBRS/10, LST 

0.75 PSS, 
RBRS, WCS 

PSS, 
RBRS, WCS 

SSS, 
MRBRS/10, LST 

1.00 PSS, 
RBRS, WCS 

PSS, 
RBRS, WCS 

SSS, 
MRBRS/10, LST 

Table 11: Algorithm CCS-SAR1 - Composition 

Using the midpoints between the design parameter values to delineate the dividing line be­

tween the Clusters, a formal description of the algorithm CCS-SAR 1 can be given as in Table 

12. 

Initialization 

calculate RF 
calculate RS 

Execution 

if ( RF < 0.375 
or ( 0.375 < RF < 0.625 and RS > 0.35 ) 
or RS >0.6) 

for z <— 1 to Z 
call SSS(MRBRS/10, LST, tx = 1) 

eise 
for z ^— 1 to Z 

call PSS(RBRS, WCS, a = 1) 
endif 

Table 12: Algorithm CCS-SAR 1 

Due to the encouraging effect of bounding on the efficiency of these algorithms, all of the 

above bounding rules (except of PRLB) were plugged into the algorithm. 

5. Experimental Results 

5.1. Effectiveness 

Figure 3 demonstrates the effectiveness of CCS-SAR1. As is evident from the more flat ter-

rain depicted, using a CCS markedly improves on even the best FCS scheme known for the 
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problem considered here. The numerical results, provided in Table 13, translate to an average 

deviation over Optimum of 1.53% over all instances attempted. This number compares favor-

ably with the value of 1.89% for the best FCS-based algorithm. 

Figure 3: Effectiveness of Algorithm CCS-SAR1 

RS 
RF 0.2 0.5 0.7 
0.25 0.43% 0.00% 0.00% 
0.50 3.44% 0.66% 0.08% 
0.75 3.70% 1.32% 0.39% 
1.00 4.91% 2.67% 0.74% 

Table 13: Effectiveness of Algorithm CCS-SAR1 

5.2. Efficiency 

In order to evaluate in more detail the ability of the above bounding rules to improve effi­

ciency, we solved each instance with two versions of the algorithm, employing either none or 

all of the applicable bounds (except of PRLB). Applicability here refers to the fact that all lo­

cal, i.e. serial or parallel, bounds were used on certain instance Clusters only, as the algorithm 

applies either a serial or a parallel algorithm to each Cluster. Along with the computation times 

per 100 iterations with bounding rules incorporated, Table 14 shows the effect of bounding in 

terms of the average reduction of computation times, measured as percentage of the time re-

quired without bounding. Also, these numbers indicate the percentage of unnecessary sched­

ules the bounding saves us either from completing in case of a serial or parallel bound or from 

generating in case of a general bound. 
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Efficiency Effect of Bounding 
RS RS 

RF 0.2 0.5 0.7 0.2 0.5 0.7 
0.25 0.30 0.31 0.19 50% 48% 68% 
0.50 0.45 0.31 0.19 11% 49% 68% 
0.75 0.53 0.28 0.18 12% 49% 70% 
1.00 0.59 0.40 0.13 16% 34% 79% 

Table 14: Efficiency ofand Effect of Bounding Rules on Algorithm CCS-SARI 

5.3. Comparison With Adaptive Search 

In order to further demonstrate the effectiveness of our approach, we compare it with the 

adaptive search procedure (ASP) of Kolisch, Drexl (1996). This procedure is currently the 

best priority rule-based sampling method available for the RCPSP. Since the authors employed 

only the 308 instances optimally solved at that time, we exclude the remaining 52 nontrivial 

instances from consideration to keep the comparison on fair grounds. 

Kolisch, Drexl cite results for 100 and 500 iterations. While CCS-SAR1 is based upon the re­

sults from running several FCS-based algorithms for 100 iterations, it is shown in Schirmer 

(1997) that under the PSS the ranking of priority rules changes with changing iteration num­

bers, albeit under the SSS the ranking remained the same over all iteration numbers. In par-

ticular, under the PSS the rule WCS emerges as the best rule for all iteration numbers smaller 

than 400; for 1 arger samples, the rule LFT fares better, for 400 iterations, both rules perform 

identically. Also, the dividing line between the "serial" and the "parallel" Clusters moves with 

increasing iteration numbers. Following the same steps as demonstrated above, we therefore 

devised another control scheme for sample sizes 1 arger than 400, defining an algorithm CCS-

SAR2 as shown in Table 15. 

RS 
RF 0.2 0.5 0.7 

0.25 
SSS, 

MRBRS/10, LST 
SSS, 

MRBRS/10, LST 
SSS, 

MRBRS/10, LST 

0.50 
SSS, 

MRBRS/10, LST 
SSS, 

MRBRS/10, LST 
SSS, 

MRBRS/10, LST 

0.75 
PSS, 

RBRS, LFT 
SSS, 

MRBRS/10, LST 
SSS, 

MRBRS/10, LST 

1.00 
PSS, 

RBRS, LFT 
PSS, 

RBRS, LFT 
SSS, 

MRBRS/10, LST 

Table 15: Algorithm CCS-SAR2 - Composition 



22 

The comparison between the algorithms is given in Table 16 where the average, Standard de-

viation, and maximum of the deviations from Optimum are listed, along with the percentage of 

instances solved to optimality. For the sake of completeness, also the corresponding results 

from considering all 360 nontrivial instances are provided in Table 16. 

100 Iterations 500 Iterations 
ASP CCS-SAR1 ASP CCS-SAR2 

Instances 308 308 360 308 308 360 

Avg 1.22% 1.05% 1.53% 0.71% 0.67% 1.04% 

SD 2.11% 1.85% 2.30% 1.47% 1.44% 1.83% 
Max 11.84% 11.11% 11.11% 6.90% 7.89% 10.31% 
%Opt 66.23% 67.86% 59.17% 76.62% 65.56% 67.22% 

Table 16: Comparison ofASP, CCS-SAR1, and CCS-SAR2 

Clearly, the ASP is dominated by suitably devised CCS-based algorithms. Note that the FCS-

based algorithms described above are the best FCS-based ones available and that the ASP is 

the best CCS-based algorithm known so far. Therefore, as our CCS-based approach outper-

forms both, by transitivity it also dominates the other sampling methods currently available. In 

order to verify that this relationship extends to higher iteration numbers as well, we have 

applied several sampling algorithms to all 360 nontrivial instances; the corresponding average 

deviations are compiled in Table 17. 

Algorithm Reference Iterations 
1000 5000 

CCS - 0.87% 0.59% 
Adaptive search Kolisch, Drexl (1996) 0.99% 0.69% 
SSS, MRBRS/10, LST Schirmer, Riesenberg (1997) 1.09% 0.73% 
SSS, MRBRS/10, LFT Schirmer, Riesenberg (1997) 1.11% 0.75% 
PSS, RBRS, WCS Kolisch (1996a) 1.89% 1.70% 
PSS, RBRS, LFT Kolisch (1996b) 1.86% 1.71% 

Table 17: Comparison of Several Sampling Algorithms 

6. Summary 

In this contribution, we have studied the application of CCS, using the RCPSP as a vehicle. In 

an extensive computational study, the first to encompass the complete J30 instance set, we 

have analyzed the best priority rule-based algorithms known for the problem and, drawing 

upon these results, complemented them by tailored control schemes. The computational re-
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sults validate effectiveness and efficiency of our approach. On some instance Clusters, the ef­

fectiveness of sampling can be improved by up to 2.37% over the best FCS-based algorithm, 

which amounts to a relative improvement of 39%. Döing so results in a total average devia-

tion, calculated over all instances, of 1.53% after 100 iterations. 

Although our findings were derived on test instances of the RCPSP, they do have significance 

beyond the realm of project scheduling since similar FCS-based algorithms have been applied 

to other problems such as lotsizing and scheduling (Drexl, Haase 1996; Kimms 1996) or staff 

scheduling (Salewski et al. 1997). Our results also bear upon other than mere priority rule-

based methods since these form building blocks of other (more effective, albeit less efficient, 

due to the problem's complexity) heuristics: Three of the currently best metaheuristic algo­

rithms for the RCPSP (Hartmann 1997, 1998; Bouleimen, Lecocq 1998) all utilize such meth­

ods to generate schedules. We therefore augur that further improving these methods will pave 

the way also for further improvements in the best known metaheuristics. 
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