
Kolisch, Rainer; Hartmann, Sönke

Working Paper — Digitized Version

Heuristic algorithms for solving the resource-constrained
project scheduling problem: Classification and
computational analysis

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 469

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kolisch, Rainer; Hartmann, Sönke (1998) : Heuristic algorithms for solving the
resource-constrained project scheduling problem: Classification and computational analysis,
Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 469,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147576

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147576
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 469

Heuristic Algorithms for Solving the
Resource-Constrained Project Scheduling Problem:

Classification and Computational Analysis

R. Kolisch and S. Hartmann

February 1998

Invited contribution to the
"Handbook on Recent Advances in Project Scheduling"

edited by J. Weglarz and to be published by Kluwer.

Dr. Rainer Kolisch and Sönke Hartmann

Lehrstuhl für Produktion und Logistik,
Institut für Betriebswirtschaftslehre,
Christian-AIbrechts-Universität zu Kiel,
Olshausenstr. 40, 24098 Kiel, Germany
email: kolisch@bwI.uni-kiel.de, hartmann@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod/koIisch.html

http://www.wiso.uni-kiel.de/bwlinstitute/Prod/hartmann.html
ftp://ftp.wiso.uni-kiel.de/pub/operations-research

mailto:kolisch@bwI.uni-kiel.de

1 Introduction

The resource constrained project scheduling problem (RCPSP) can be given as follows. A single
project consists of aset J = {0,1,..., TI, n+1} of activities which have to be processed. Fictitious
activities 0 and n -f 1 correspond to the "project start" and to the "project end", respectively.
The activities are interrelated by two kinds of constraints. First, precedence constraints force
activity j not to be started before all its immediate predecessor activities comprised in the set Vj
have been finished. Second, performing the activities requires resources with limited capacities.
We have K resource types, given by the set JC = {1,..., K}. While being processed, activity j
requires rj^ units of resource type k G JC during every period of its non-preemptable duration pj.
Resource type k has a limited capacity of Rf. at any point in time. The parameters pj, and
Rk are assumed to be deterministic; for the project start and end activities we have pj — 0 and
rj,k ~ 0 for all k € JC. The objective of the RCPSP is to find precedence and resource feasible
completion times for all activities such that the makespan of the project is minimized. Figure 1
gives an example of a project comprising n = 6 activities which have to be scheduled subject to
K = 1 renewable resource type with a capacity of 4 units. A feasible schedule with an optimal
makespan of 13 periods is represented in Figure 2.

3/2 2/4 1/3 K — 1; R\ = 4

P;/r„i

m

Figure 1: Project instance

Ri

4-

3-

2-

1-

1 1

4

i

3

i

4

i

6

"i i i

3

i n 1—
1 2 3 4 5 6 7 9 10 11 12 13 1

Figure 2: Example schedule

Let Fj denote the finish time of activity j. A vector of finish times (F\, Fz,..., Fn) is called
a schedule S. Let A(t) = {j € J \ Fj ~ pj < t < Fj} be the set of activities which are being
processed (active) at time instant t. We now can provide the conceptual decision model (1) - (4)
(cf. Christofideset al. [12]).

1

Min Fn+1

Fh < Fj-pj

£ Tj,k < Rk

j = 1,..7i-f 1; heVj

k e t > 0

(1)

(2)

(3)
;e-4(t)

F; > 0 j — 1 j ...} 72. 4* 1 (4)

The objective function (1) minimizes the finish time of the project end activity and thus the
makespan of the project. Constraints (2) enforce the precedence constraints between activities,
and constraints (3) limit for each resource type k and each time instant t that the resource demand
of the activities which are currently processed does not exceed the capacity. Finally, (4) define
the decision variables. (1) — (4) is a conceptual model since the sets A(t) are a function of the
decision variables. Hence, the model cannot be solved with mixed integer programming (MIP)
techniques. In order to solve the RCPSP with MlP-solvers such as CPLEX [6], one has to employ
the 0-1 problem formulation of Pritsker et al. [59].

The RCPSP is denoted in Chapter 1 of this book (cf. Herroelen et al. [29]) as m, 1/cpm/Cmax
where a number of activities which are precedence related by finish-start relationship with zero
time lags have to be scheduled on m renewable resource types such that the maximal completion
time of all activities Cmax is minimized.

It has been shown by Blazewicz et al. [7] that the RCPSP as a generalization of the classical
job shop scheduling problem belongs to the class of NV-h&vd optimization problems. Therefore,
heuristic Solution procedures are indispensable when solving large problem instances as they
usually appear in practica! cases. Since 1963 when Kelley [31] introduced a schedule generation
scheme, a large number of different heuristics algorithms have been suggested in the literature.

The great number of optimal approaches (for a survey cf. Kolisch and Padman [39]) are mainly
for generating benchmark solutions. Currently, the most competitive exact algorithms seem to
be the ones of Brucker et al. [10], Demeulemeester and Herroelen [18], Mingozzi et al. [48] and
Sprecher [65].

In what follows we will give an appraising survey of heuristic approaches for the RCPSP. We start
in Section 2 with schedule generation schemes which are essential to construct feasible schedules.
In Section 3 we show how these schemes are employed in priority rule based methods. Section
4 is devoted to metaheuristic algorithms such as simulated annealing, tabu search, and genetic
algorithms. Heuristics which do neither belong to the class of priority rule based methods nor to
metaheuristic approaches are treated in Section 5. In Section 6 we will report about a comparison
of priority rule based and metaheuristic heuristics for the RCPSP. We end with a summary and
an outlook on research opportunities in Section 7.

2 Schedule Generation Schemes

Schedule generation schemes (SGS) are the core of most heuristic Solution procedures for the
RCPSP. SGS start from Scratch and build a feasible schedule by stepwise extension of a partial
schedule. A partial schedule is a schedule where only a subset of the n + 2 activities have been
scheduled. There are two different SGS available. They can be distinguished w.r.t the incre-
mentation into activity- and time-incrementation. The so-called serial SGS performs activity-
incrementation and the so-called parallel SGS performs time-incrementation.

2

2.1 Serial Schedule Generation Seherne

We begin with a description of the serial SGS. It consists of g = 1 stages, in each of
which one activity is selected and scheduled at the earliest precedence- and resource-feasible
completion time. Associated with each stage g are two disjoint activity sets. The scheduled set
Sg comprises the activities which have been already scheduled, the eligible set Vg comprises all
activities which are eligible for scheduling. Note that the conjunction of $g and Vg does not
give the set of all activities J because, generally, there are so-called ineligible activities, i.e.
activities which have not been scheduled and can not be scheduled at stage g because not all of
their predecessors have been scheduled. Let Rk{t) = % - r^k be the remaining capacity
of resource type k at time instant t and let Tg — {Fj | j € <Sff} be the set of all finish times.
Let further be Vg = {j € J \ Sg\Vj C £5} the set of eligible activities. We can now give the
following description of the serial SGS.

Serial SGS

Initialization: Fo = 0, So = {0},
For g = 1 to n do

Calculate Dg, Tg, Rk(t) (k € JC; t € Tg)
Select one j 6 Vg

EFj — maXheVj {Fh} + Pj
Fj = min {t 6 [EFj - pj, LFj - pj] n Tg \ rj^ < Äfc(r), k 6 JC, r € [t, t + Pj[H Tg j + pj
Sg = $g-i u 0")

Fn+\ ~ HiaX/l€7?n+1

The initilization assigns the dummy source activity j — 0 a completion time of 0 and puts it into
the partial schedule. At the beginning of each step g, the decision set Dg, the set of finish times
Tg, and the remaining capacities Rk{t) at the finish times t € Tg are calculated. Afterwards, one
activity j is selected from the decision set. The finish time of j is calculated by first determining
the earliest precedence feasible finish time EFj and then calculating the earliest (precedence-
and) resource-feasible finish time Fj within [EFj, LFj]. LFj denotes the latest finish time as
calculated by backward recursion (cf. Elmaghraby [21]) from an upper bound of the project's
finish time T. Table 1 reports the serial SGS when generating the schedule given in Figure 2.

9 1 2 3 4 5 6
Vg {1,2}
j 2

{1,4}
4

{1,6}
1

{3,6}
6

{3}
3

{5}
5

Table 1: Example for serial SGS

The serial SGS generates always feasible schedules which are for the resource-unconstrained
scheduling problem (1), (2), and (4) optimal. Kolisch [37] has shown that the serial SGS generates
active schedules, that is schedules 5 = (Fi, F2,..., Fn) where none of the activities can be started
earlier without delaying some other activity. For scheduling problems with regulär Performance
measure (for a definition of the latter cf. to Sprecher et al. [66]) such as makespan minimization,

3

the optimal Solution will always be in the set of active schedules. The time complexity of the
serial SGS as given above is ö(n2 • K) (cf. Pinson et al. [57]).

Let jg denote the activity which is selected in iteration g. Then, an execution of the serial SGS
can be recorded by a list A = (j\ ,j2, • •., Jn] which prescribes that activity jg has been scheduled
in iteration g. Note, that this list is precedence feasible, i.e., we have Vjg C {ju ..., jg-i} (cf.
Hartmann [26]). The list for the above given example is A = (2,4,1,3,5,6]. Given a list A, we
can now give a special caae of the serial SGS, namely the serial SGS for activity lists.

Serial SGS for Activity Lists

Initialization: F0 = 0, So = {0} ,
For g — 1 to n do

Calculate Tg) Rk(t) (k € IC] t 6 Tg)
3 = 3 g
EFj = maxfcg^. {Fh} + pj

Fj = min {t e [EFj - pj, LFj - pj] n Tg | rj>k < Rk{r),k G /C, r € [t, t + Pj[n + pj
Sg = $g-1 u {i}

Fn+1 — rciax/le,pn^1

The serial SGS for activity lists plays an important role in classical machine scheduling where it
is referred to as list scheduling (cf. Kim [32] and Schütten [63]). Since the serial SGS for activity
lists is a special case of the serial SGS, it generates active schedules. Hence, there is always
a list A* for which list scheduling will generate an optimal schedule when a regulär measure of
Performance is considered.

2.2 Parallel Schedule Generation Seherne

The parallel scheduling scheme does time incrementation. For each iteration g there is a sched
ule time tg. Activities which have been scheduled up to g are either element of the com-
plete set Cg or of the active set Ag. The complete set comprises all activities which have
been completed up to £5, i.e., Cg = {j ^ J \ Fj < tg} and the active set comprises all activ
ities which are active at tg, i.e., Ag = A{tg) = {j e J \ Fj - Pj < t < Fj}. The eligible set
Vg comprises all activities which can be precedence- and resource-feasibiy started at tg, i.e.,

— {i e ^ \ (Cg U^lg) | Vj C Cg A rj.fc < Rk{tg) (k € IC)}. The remaining capacity at tg is

Rk{tg) = Rk- YljeAg rj,k- An algorithmic description of the parallel SGS can be given as follows:

Parallel SGS

Initialization: g = 0, tg = 0, A0 = {0} , CQ = {0}, Rk(Q) - Rk

While | Ag \jCg |< n do

(1) g := g + \
tg = min3eAg {Fj}
Calculate C3, Ag, Rk(tg), Vg

4

(2) While Va ^ 0 do

Select one j € Vg

Fj — ig 4- Pj
Calculate Rk{tg), *45, Vg

Fn+1 = niax/lgpn+1 {FX}

The initilization sets the schedule time to 0, assigns the project start activity to the active and the
complete set and sets the available capacity. Each iteration consists of two steps. (1) determines
the next schedule time tg, the associated activity sets Cg, Agt Vg and the available capacity
Rk{tg). (2) schedules a non-proper subset of the eligible activities to start at tg. Table 2 reports
the parallel SGS when generating the schedule given in Figure 2. Note that the parallel SGS might
have less than n stages but that there are exactly n selection decisions which have to be made.

3 1 2 3 3 4 5 6
tg 0 4 6 6 9 10 12
^g {1,2} {1,4} {1,6} {6} {} {3} {5}
3 2 4 1 6 3 5

Table 2: Example for parallel SGS

As the serial, so does the parallel SGS always generate feasible schedules which are optimal for the
resource-unconstrained case. It has been shown by Kolisch [37] that the parallel SGS constructs
non-delay schedules. A non-delay schedule is a schedule where, even if activity preemption is
allowed, none of the activities can be started earlier without delaying some other activity. The
set of non-delay schedules is a non-proper subset of the set of active schedules. It thus has,
on average, a smaller cardinality. But it has the severe drawback that it might not contain an
optimal schedule with a regulär Performance measure. E.g., in Kolisch [37] is is shown that out of
298 problem instances from the set j30sm (cf. Kolisch et al. [40]) only 175, i.e. 59.73 % have an
optimal Solution which is in the set of non-delay schedules. The time complexity of the parallel
SGS is 0(n2-K).

3 Priority Rule Based Heuristics

Priority rule based heuristics employ one or both of the SGS in order to construct one or more
schedules. The priority rule itself is used in order to select an activity from the decision set Vg.
We first give a survey of different priority rules. Thereafter we show how scheduling schemes and
priority rules can be combined in order to obtain different priority rule based heuristics.

3.1 Priority Rules

A priority rule is a mapping which assigns each activity j in the decision set Vg a value v(j) and
an objective stating whether the activity with the minimum or the maximum value is selected. In
case of ties, one or several tie breaking rules have to be employed. The easiest ways to resolve
ties is to choose the activity with the smallest activity label. There has been an overwhelming

5

Acronym Priority Rule Ref. v(j)
GRPW Greatest Rank Positional Weight [2] Pj + Eies, Pi
LPT Minimum Latest Finish Time [16] LFj
LST Minimum Latest Start Time [35] LFj - Pj
MSLK Minimum Slack [16] LFj - EFj
MTS Most Total Successors [2] \Sj\
RSM Resource Scheduling Method [64] max(ij)e>ip{0> t9 + Pi - (LFi - Pi)}
SPT Shortest Processing Time [2] Pj
WCS Worst Case Slack [36] LFi - Pj - {E(hj)}

Table 3: Priority Rules

amount of research on priority rules for the RCPSP; cf. Alvarez-Valdes and Tamarit [2], Boctor
[8], Cooper [13,14], Davies [15], Davis and Patterson [16], Elsayed [22], Kolisch [36, 37], Lawrence
[43], Özdamar and Ulusoy [52, 53, 71], Patterson [55, 56], Shaffer et al. [64], Thesen [69], Thomas
and Salhi [70], Valls et al. [73], and Whitehouse and Brown [74].

Priority rules can be classified according to different criteria. W.r.t. to the type of Informa
tion employed to calculate u(j), we can distinguish network, time, and resource based rules (cf.
Alvarez-Valdesand Tamarit [2] and Lawrence [43]} as well as lower and upper bound rules. Lower
bound rules calculate for each activity a lower bound of the objective function value, upper bound
rules calculate for each activity an upper bound of the objective function value. W.r.t. the amount
of information employed it can be distinguished in local or global rules. Local rules employ only
Information from the activity under consideration such as the processing time while global rules
make use of a wider ränge of information. A distinction into static and dynamic rules is made
w.r.t. the fact if the value u(j) remains constant or changes during the iterations of the SGS.
W.r.t. the SGS we can distinguish in rules which can be employed in the serial, the parallel or
both SGS. Table 3 gives an overview of some well known priority rules. The MTS rule employs
Sj, the set of all (direct and indirect) successors of activity j. The WCS and RSM rules employ
AV - {(i,j) €VgxVg \ i ^ j}, the set of all activity pairs (ij) which are in the decision set
Vg. Finally, the WCS rule uses the earliest precedence- and resource-feasible start time
of activity j if activity i is started at the schedule time tg. Note that the RSM rule selects the
activity with the Iowest priority value.

3.2 Proposed Methods

Priority rule based heuristics combine priority rules and schedule generation schemes in order to
construct a specific algorithm. If the heuristic generates a single schedule, it is called a single
pass method, if it generates more than one schedule, is is referred to as multi pass method.

3.2.1 Single Pass Methods

The oldest heuristics are single pass methods which employ one SGS and one priority rule in order
to obtain one feasible schedule. Examples are the heuristics of Alvarez-Valdes and Tamarit [2],
Boctor [8], Cooper [13, 14], Davies [15], Davis and Patterson [16], Elsayed [22], Kolisch [36, 37],
Lawrence [43], Patterson [55, 56], Thesen [69], Valls et al. [73], and Whitehouse and Brown [74].

6

Recently, more elaborate priority rules have been proposed by Kolisch [36] as well as Özdamar
and Ulusoy [53, 72]. Kolisch [36] developed, amongst other priority rules, the so-called worst
case slack (WCS) rule for the parallel SGS which is given in Table 3. Özdamar and Ulusoy
[53, 72] introduced the local constraint based analysis (LCBA). LCBA employs the parallel SGS
and decides via feasibility checks and so-called essential conditions which activities have to be
selected and which activities have to be delayed at the schedule time.

3.2.2 Multi Pass Methods

There are many possibilities to combine SGS and priority rules to a multi pass method. The
most common ones are multi priority rule methods, forward-backward scheduling methods, and
sampling methods.

Multi priority rule methods employ the SGS several times. Each time a different priority
rule is used. Often, the rules are used in the order of descending Solution quality. Boctor [8]
employed 7 different rules in his experimental study. Instead of using m priority rules in order to
generate m schedules, a virtually unlimited number of schedules can be generated by using convex
combinations of I priority rules v{j) = £/=1 Wi • Vi(j) with > 0 for all i and wi = 1-
Examples of such approaches are given by Ulusoy and Özdamar [71] and Thomas and Salhi [70].
Ulusoy and Özdamar employed a convex combination of I — 2 rules in order to generate 10
different schedules.

Forward-backward scheduling methods employ an SGS in order to iteratively schedule the
project by alternating between forward and backward scheduling. Forward scheduling is as out-
lined in Section 2. Backward scheduling applies one of the SGS to the reversed precedence network
where the former end activity n + 1 has become the new start activity. The priority values are
usually obtained from the start or completion times of the lastly generated schedule. Forward-
backward scheduling methods have been proposed by, e.g., Li and Willis [46] and Özdamar and
Ulusoy [54, 53].

Sampling methods make generally use of one SGS and one priority rule. Different schedules
are obtained by biasing the selection of the priority rule through a random device. Instead of a
priority value v(j) a selection probability p(j) is computed. At selection decision g of the SGS,
p(j) is the probability that activity j from the decision set Vg will be selected. Dependent on how
the probabilities are computed, one can distinguish random sampling, biased random sampling,
and regret based biased random sampling [37]. Random sampling (RS) assigns each activity in
the decision set the same probability p(j) = l/[Dg\. Biased random sampling (BRS) employs the
priority values directly in order to obtain the selection probabilities. If the objective of the priority
rule is to select the activity with the highest priority value, then the probability is calculated to
p(j) = v(j)/ (Htez>0ü(O)* biased random sampling methods have been applied by Alvarez-
Valdes and Tamarit [1] and Cooper [13]. Schirmer and Riesenberg [62] propose a modification
called normalized biased random sampling (NBRS) which essentially ensures that the selection
probability of the activity with the smallest (highest) priority value is the same when seeking
for the activity with the highest (smallest) priority value. Regret based biased random sampling
(RBRS) uses the priority values indirectly via regret values. If the objective is again to select the
activity with the highest priority value, the regret value r(j) is the absolute difference between the
priority value v(j) of the activity under consideration and the worst priority value of all activities
in the decision set, i.e. r(j) = v(j) - min{v(i)}. Before calculating the selection probabilities
based on the regret values, the latter can be modißed by r'(j) = (r(j) + e)a (cf. Drexl [20]).

7

jeD, 1 2 3
v(j) 11 13 20
Random Sampling 0.33 0.33 0.33
Biased Random Sampling 0.25 0.30 0.45
Regret Based Biased Random Sampling 0.07 0.21 0.72

Table 4: Selection Probabilities p(j) for Different Sampling Methods

Adding the constant e > 0 to the regret value assures that the selection probability for each
activity in the decision set is greater than zero and thus every schedule of the population can be
generated. With the choice of the parameter a the amount of bias can be controlled. A high a
will cause no bias and thus deterministic activity selection while an a of zero will cause maximum
bias and hence random activity selection. Kolisch [35] found out that, in general, e = a = 1 will
provide good results. Drexl [20] uses e = min^rg ^(%)- Schirmer and Riesenberg [62] propose
a modified regret based biased random sampling (MRBRS) where € is determined dynamically.
Experimental comparisons performed by Kolisch [35] as well as Schirmer and Riesenberg [62]
revealed (modified) regret based biased random sampling as the best sampling approach. Table
4 gives examplary different selection probabilities for | Vg |= 3, e = 1, and a = 1.

A hybrid multi pass approach has been proposed by Kolisch and Drexl [38]. The heuristic ap-
plies the serial SGS with the LFT-priority rule and the parallel SGS with the WCS-priority rule
while employing deterministic and regret based sampling activity selection. The decision on the
specific method is based on an analysis of the problem at hand and the number of iterations
already performed. Partial schedules are discarded by the use of lower bounds. Schirmer and
Riesenberg [61] have extended this approach by employing both schedule generation schemes to-
gether with four different priority rules (MTS,LFT,LST,WCS) and two different sampling schemes
(MRBRS,RBRS).

Table 5 gives a survey of priority rule based heuristics for the RCPSP.

4 Metaheuristic Approaches

4.1 General Metaheuristic Strategies

Several metaheuristic strategies have been developed to solve hard optimization problems. The
following summary briefly describes those general aproaches that have been used to solve the
RCPSP.

4.1.1 Simulated Annealing

Simulated Annealing (SA), introduced by Kirkpatrick et al. [33], originates from the physical
annealing process in which a melted solid is cooled down to a low—energy state. Starting with
some initial Solution, a so-called neighbor Solution is generated by slightly perturbing the current
one. If this new Solution is better than the current one, it is accepted, and the search proceeds from
this new Solution. Otherwise, if it is worse, the new Solution is only accepted with a probability
that depends on the magnitude of the deterioration as well as on a parameter called temperature.

8

Author(s) SGS Priority Rule Sampling Passes
Alvarez-Valdes/Tamarit [2] par. several rules — single
Alvarez-Valdes/Tamarit [1] par. several rules BRS multi
Boctor [8] par./ser. several rules — multi
Cooper [13] ser. several rules BRS multi
Davis/Patterson [16] par. LFT and other — single
Kolisch [37] par./ser. several rules RBRS multi
Kolisch [36] par. WCS and other — single
Kolisch [35] par./ser. several rules RS, BRS, RBRS multi
Kolisch/Drexl [38] par./ser. LFT/WCS RBRS multi
Li/Willis [46] par. start & finish times — multi
Ozdamar/Ulusoy [54, 53] par. LCBA — multi
Özdamar/Ulusoy [52] par. LCBA — single
Shaffer et al. [64] par. RSM — single
Schirmer/Riesenberg [61] par./ser. several rules RBRS,MRBRS multi
Schirmer/Riesenberg [62] par./ser. several rules diff. sampling methods multi
Thomas/Salhi [70] par. convex combination — multi
Ulusoy/Özdamar [71] par. convex combination — multi

Table 5: Survey of priority rule based heuristics for the RCPSP

As the algorithm proceeds, this temperature is reduced in order to Iower the probability to accept
worse neighbors.

Clearly, SA can be viewed as an extension of a simple greedy procedura, sometimes called First
Fit Strategy (FFS), which immediately accepts a better neighbor Solution but rejects any deteri-
oration.

4.1.2 Tabu Seach

Tabu Search (TS), developed by Glover [23, 24], is essentially a steepest descent/mildest ascent
method. That is, it evaluates all solutions of the neighborhood and chooses the best one, from
which it proceeds further. This concept, however, bears the possibility of cycling, that is, one may
always move back to the same local Optimum one has just left. In order to avoid this problem, a
tabu list is set up as a form of memory for the search process. Usually, the tabu list is used to
forbid those neighborhood moves that might cancel the effect of recently performed moves and
might thus lead back to a recently visited Solution. Typically, such a tabu status is overrun if the
corresponding neighborhood move would lead to a new overall best Solution (aspiration criterion).

It is obvious that TS extends the simple steepest descent search, often called Best Fit Strategy
(BFS), which scans the neighborhood and then accepts the best neighbor Solution, until none of
the neighbors improves the current objective function value.

4.1.3 Genetic Algorithms

Genetic Algorithms (GA), inspired by the process of biological evolution, have been introduced
by Holland [30]. In contrast to the local search strategies above, a GA simultaneously considers
a set or population of solutions instead of only one. Having generated an initial population, new
solutions are produced by mating two existing ones (crossover) and/or by altering an existing

9

one (mutation). After producing new solutions, the Attest solutions "survive" and make up the
next generation while the others are deleted. The fitness value measures the quality of a Solution,
usually based on the objective function value of the optimization problem to be solved.

4.2 Representations

Once a metaheuristic strategy has been chosen to attack a given optimization problem, one has to
select a suitable representation for solutions. Usually, metaheuristic approaches for the RCPSP
rather operate on representations of schedules than on schedules themselves. Then an appropriate
decoding procedure must be selected to transform the representation into a schedule. Finally,
Operators are needed to produce new solutions w.r.t. the selected representation. A unary operator
constructs a new Solution from an existing one, that is, it makes up the neighborhood move in
local search procedure such as SA and TS as well as the mutation in a GA. A binary Operator
constructs a new Solution from two existing ones, as done by crossover in a GA.

This subsection summarizes five representations reported in the literature that have been used
within metaheuristic approaches to solve the RCPSP. For each representation, we give the related
decoding procedures and Operators. In order to keep the description short, we will restrict the
definition of binary Operators to the one-point crossover type for the different representations.
Roughly speaking, the one-point crossover splits two existing solutions and takes one part from
the first and one part from the second Solution in order to form a new one. Other general crossover
types that are well known from the GA literature (such as two-point and uniform crossover) can
be easily obtained from extending the one-point definitions given here, see e.g. Hartmann [25].

4.2.1 Activity List Representation

In the activity list representation, a precedence feasible activity list

— O'l i 32) • • • i jn\

is given, in which each activity must have a higher index than each of its predecessors. As shown
in Section 2, the serial SGS can be used as a decoding procedure to obtain a schedule from an
activity list. Note, however, that the parallel scheme can not be applied without modification. As
is easily verified, the serial SGS transforms example activity list

= <2,4,6,1,3,5]

for the project of Figure 1 into the schedule of Figure 2. The initial Solution(s) can be generated
by randomly selecting an activity from the decision set in each Step of the SGS. To obtain better
Solution quality, one can also use a priority rule or priority rule based sampling scheme for
choosing an eligible activity. In either case, recording the activities in the order of their selection
results in a (precedence feasible) activity list.

Several unary Operators have been proposed for the activity list representation, see e.g. Deila
Croce [IT]. The so-called pairwise interchange is defined as swapping two activities jq and js,
q,s e {1,..., n} with q ^ s, if the resulting activity list is precedence feasible. As a special case,
the adjacent pairwise interchange swaps two activities jq and j9+1, q 6 {I,..., n - 1}, that are
adjacent in A but not precedence related. Considering again the example project of Figure 1, we
could apply the adjacent pairwise interchange for q = 3 to \E as given above and obtain

A^ = <2,4,1,6,3,5].

10

Furthermore, the simple shift operator selects some activity jq and inserts it immediately after
some other activity j8i if the precedence constraints are not violated. In our example, shifting
activity 6 immediately after activity 3 in XE results in neighbor activity list

\N' = <2,4,1,3,6,5].

More sophisticated shift operators have been proposed by Baar et al. [3] for the RCPSP. They
make use of the schedule 5(A) that is represented by the current activity list A. The operators
are based on the notion of a critical arc which is defined as a pair of successively scheduled
activities that is, Fi + pj = Fj in S(A). The underlying idea is that at least one critical
arc must become non-critical to improve the current schedule. Hence, Baar et al. define three
shift operators that may cancel a critical arc. They extend the simple shift by allowing more than
one activity to be shifted. Without giving the formal definitions here, we illustrate such a shift
operator on the critical arc (4,1) in the schedule S{XE) shown in Figure 2: Shifting activity 4 and
its successor activity 6 immediately after activity 1 leads to neighbor activity list

\N" = (2,1,4,6,3,5].

As a binary operator, i.e. as crossover for a GA, Hartmann [25] used the following technique: Given
two "parent" activity Iists, a "mother" XM = (ji*, • - >,3n \ and a "father" XF = (j[,...,

the "child" activity list Xc = (jf,..., is defined as follows: After drawing a random integer
q with 1 < q < n, the positions i — 1,..., q are taken from the "mother" XM by setting jf := j&.
The activity list of positions i = q 4- 1,. • -, n is taken from the "father" XF. However, the jobs
that have already been taken from the mother may not be considered again. We obtain jf :=
j[where k is the lowest index such that jF f {yf,.. j}. Choosing q = 3, this definition is
illustrated for our project example by

A" = <1,3,2,5,4,6],
= (2,4,6,1,3,5],

= (1,3,2,4,6,5].

As shown by Hartmann [25], the "child" activity list Ac resulting from two precedence feasible
"parent" activity lists XM and XF is also precedence feasible.

4.2.2 Random Key Representation

Several researchers employed a representation which makes use of an array

P — (f*l j ^2i • • • j ^n)

that assigns a (typically real-valued) number Tj to each activity j. Following Bean [4], we will
call such an encoding random key representation. It is similar to the priority value representation
of Lee and Kim [44] and Cho and Kim [11] and the problem-space based representation of Storer
et al. [68], Leon and Ramamoorthy [45], and Naphade et al. [49], such that we will discuss these
three approaches in a unified framework here.

For an initial Solution, the random keys are usually chosen randomly (see e.g. Lee and Kim [44])
or computed by some priority rule (see e.g. Leon and Ramamoorthy [45]).

11

Both the parallel and the serial SGS can be used to derive a schedule from p\ On each stage g,
we can select activity j with the highest random key rj = max{r, | i € Vg} from the decision
set Vg (clearly, if initialized with e.g. the latest finish time, one would select the activity with
the minimum random key). In other words, the random keys play the role of priority values.
Considering again our example project, we obtain the schedule of Figure 2 from applying either
the parallel or the serial SGS to

pE = (0.58,0.64,0.31,0.87,0.09,0.34).

An alternative approach is proposed by Naphade et al. [49]. Here, the random keys are used to
perturb activity slacks which serve as priority values.

While both the parallel and the serial SGS as decoding procedures guarantee that only feasible
schedules are found, only the serial one ensures the existence of at least one optimal schedule
in the Solution space, as discussed in Section 2. In order to overcome the drawback of possible
exclusion of all optimal solutions by the parallel SGS, several researchers (see Cho and Kim [11],
Naphade et al. [49], and Leon and Ramamoorthy [45]) introduced different modifications of the
parallel SGS as decoding procedures for the random key representation. These essentially allow
to delay a schedulable activity such that the search is not restricted to non-delay schedules.

As a unary Operator, any pairwise interchange of rj and rt- can be employed, including the adjacent
pairwise interchange of rj and j. Considering a pairwise interchange with j = 2 and i = 4, an
example neighbor of pE is

pN = (0.58,0.87,0.31, 0.64,0.09,0.34).

In an approach for the job shop problem, Storer et al. [68] proposed the so-called problem-space
based neighborhood which randomly reselects r"®1" € [rfd — e • rfd, rfd 4- e • rfd] from a uniform
distribution, where e is a real-valued constant. For this neighborhood definition with e = 0.1 an
example neighbor of pE is given by

pN' = (0.59,0.62,0.34,0.89,0.09,0.33).

The random key representation allows the application of the Standard one-point crossover as binary
operator: Given a random integer g with 1 < q < n, a new random key array p° = (rf,.. ., r£)
is derived by taking the first q random keys from a "mother" array pM = (r{^,..., r£*) and the
remaining ones from a "father" array pF = (rf,..., rE). We obtain rf = for t = 1,..., g and
T? = rf for i = q l,..n. An example for q = 3 is

pM = (0.58,0.64,0.31,0.87,0.09,0.34),

pF = (0.12,0.43,0.99,0.65,0.19,0.22),

pc = (0.58,0.64,0.31,0.65,0.19,0.22).

4.2.3 Priority Rule Representation

The priority rule representation, used by e.g. Dorndorf and Pesch [19] for the job shop problem
and adapted by Hartmann [25] to the RCPSP, is based on a list of priority rules

JT — (iTi, 7T2, . . . , 7Tn] ,

12

where each 7rt- is a priority rule. As decoding procedures, both the parallel and the serial SGS
can be used by selecting the i-th activity to be scheduled according to priority rule nFor our
example project, the schedule of Figure 2 can be obtained from e.g.

nB = (LST, GRPW, MTS, LST, MSLK, LFT].

The commonly used unary operator randomly selects a new priority rule for some m. For the
example priority list nE as given above, a possible neighbor is

7TN = (MTS, GRPW, MTS, LST, MSLK, LFT].

The binary operator, i.e. the one-point crossover, follows again the Standard definition. Given a
random integer q with 1 < q < n, a new priority rule list nc is derived by taking the first q
priority rules from a "mother" list 7TM and the remaining ones from a "father" list nF. Consider
as an example q = 3 and

TrM = (LST, GRPW, MTS, LST, MSLK, LFT],

TTF = (LFT, GRPW, MSLK, SPT, LFT, GRPW],

7TC = (LST, GRPW, MTS, SPT, LFT, GRPW].

4.2.4 Shift Vector Representation

The shift vector representation has been proposed by Sampson and Weiss [60] for the RCPSP. A
Solution is represented by a shift vector

<7 = (fl j 0*2) • • • ») j

where is a nonnegative integer. As a decoding procedure, an extension of the classical forward
recursion (cf. Elmaghraby [21]) is used, in which the start time Sj of an activity j is calculated as
the maximum of the finish times of its predecessors plus the shift <jj of activity j, that is, 5o = 0
and Sj = max{Sh + Pk | h 6 Vj} + o-j for j ~ 1,... f n + 1. The following shift vector for our
example project leads to the schedule of Figure 2:

<JE = (6,0,1,0,0,0)

As this decoding procedure does not consider the resource constraints, a schedule derived from
a shift vector may be infeasible. This is illustrated by the following shift vector which forces
activities 1 and 4 to be simultaneously in process, thus exceeding the resource capacity by 2
units:

a1 = (4,0, 1,0, 0, 0)

Consequently, the objective function is extended by penalizing the violation of the resource con
straints.

The neighborhood of a shift vector er is given by those vectors that differ from a in exactly one
Position and do not lead to a project makespan that exceeds some given Upper bound. An example
neighbor for shift vector aE above is

aN= (6,0,1,0,1,0).

13

4.2.5 Schedule Scheme Representation

The schedule scheme representation has been introduced by Brucker et al. [10] for a branch-and-
bound algorithm for the RCPSP. In what follows we give a brief and rather informal description.
A schedule scheme (C, D, N, F) consists of four disjoint relations. (i, j) € C implies that activity i
must be finished before activity j can be started (conjunctions). (i, j) € D implies that activities i
and j may not overlap (disjunctions). (i,j) € N implies that activities i and j must be processed
in parallel in at least one period (parallelity relations). For activities i and j with (i, j) € F there
are no restrictions (flexibility relations). A schedule scheme represents those (not necessarily
feasible) schedules in which the related relations are maintained. As a decoding procedure, Baar
et al. [3] develop a heuristic that constructs a feasible schedule in which all relations of C and D
and a "large" number of parallelity relations N are satisfied.

Baar et al. [3] introduce a neighborhood definition which basically consists of moves that transform
flexibility relations into parallelity relations and parallelity relations into flexibility relations. The
neighborhood size is reduced by a critical path calculation and impact estimations for the moves.

We do not discuss this representation and its neighborhood definition in more detail here, referring
the reader to Chapter ? (cf. Brucker et al. []).

4.3 Proposed Methods

In this subsection, we briefly describe the metaheuristic approaches which are documented for the
RCPSP. The references are listed in alphabetical order. We have, however, restricted the list to
those papers that consider the RCPSP, while papers that cover its extensions (such as the multi-
mode RCPSP) are not included. A summarizing overview is given in Table 6. For each reference,
we denote the employed metaheuristic strategies together with the underlying representation, the
method employed to generate initial solutions, the SGS, and the used operator. In case of a GA,
we only mention the crossover operator.

Baar et al. [3] develop two TS algorithms. The first one is based on the activity list representation
in accordance with the serial SGS. The neighborhood is defined by three kinds of critical path
based moves. Their second TS approach employs the schedule scheme representation with the
related decoding procedure and neighborhood definition. Both TS algorithms use dynamic tabu
lists as well as priority based start heuristics.

Bouleimen and Lecocq [9] propose an SA procedure based on the activity list representation
together with the serial SGS. For neighborhood moves, the shift operator is used.

Cho and Kim [11] modify the SA algorithm of Lee and Kim [44] (see below) by extending the
random key representation in order to allow the delay of schedulable activities within an adapted
parallel SGS.

Hartmann [25] proposes a GA based on the activity list representation and compares it to GAs
which make use of the random key and priority rule representations, respectively. All three
approaches employ the serial SGS as well as two-point crossover Operators related to the respective
representation. In the activity list based GA, the regret based biased random sampling method
with the serial SGS and the LFT-rule (see Section 3) is used to determine the initial generation.

Kohlmorgen et al. [34] develop a GA which employs the random key representation with Standard
two-point crossover. They test their approach on a massively parallel Computer.

Lee and Kim [44] propose an SA algorithm, a TS procedure and a GA. These three approaches

14

Paper Metah. Repres. Initial Sol. SGS Operator
Baar et al. [3] TS activity list prio. rule serial crit. path shifts

TS sched. scheme prio. rule relat. heur. related moves
Bouleimen, hecocq [9] SA activity list prio. rule serial shift
Cho, Kim [11] SA random key random mod. par. pairw. int.
Hartmann [25] GA activity list prio. rule serial two-point er.

GA random key random serial two-point er.
GA prio. rule random serial two-point er.

Kohlmorgen et al. [34] GA random key prio. rule serial two-point er.
Lee, Kim [44] SA random key random par. pairw, int.

TS random key random par. pairw, int.
GA random key random par. one-point er.

Leon, Ramamoorthy [45] FFS random key prio. rule mod. par. problem-space
BFS random key prio. rule mod. par. problem-space
GA random key prio. rule mod. par. one-point er.

Naphade et al. [49] BFS random key prio. rule mod. par. problem-space
Pinson et al. [57] TS activity list prio. rule serial adj. pairw. int.

TS activity list prio. rule serial pairw, int.
TS activity list prio. rule serial shift

Sampson, Weiss [60] SA-var. shift vector null-vector ext. recurs. related move

Table 6: Survey of metaheuristic strategies for the RCPSP

are based on the random key representation with the parallel SGS as decoding procedure. While
SA and TS make use of a restricted Version of the pairwise interchange move, the GA employs
the Standard one-point crossover.

Leon and Ramamoorthy [45] test an FFS and a BFS approach as well as a GA. They employ the
problem-space based Version of the random key representation. The random keys are initialized
with values computed by a priority rule. A modified variantof the parallel SGS serves as decoding
procedure. The unary operator is defined by the problem-space based neighborhood, and the
binary one is the Standard one-point crossover.

Naphade et al. [49] use the BFS concept with the problem-space based variant of the random
key representation. The random keys are initialized with the latest finish times of the activities
and then modified according to the problem-space based neighborhood. As decoding procedure,
they employ a modified parallel SGS, where the random keys are used to calculate slack based
priority values.

Pinson et al. [57] suggest several variants of a TS approach based on the activity list represent
ation, the serial SGS, and a priority rule procedure for Computing a start Solution. The variants
differ in the neighborhood definitions, using the adjacent pairwise interchange, the (general) pair
wise interchange, and the shift move, respectively.

Sampson and Weiss [60] suggest a local search procedure which can be viewed as a variant of
TA. Their approach is based on the shift vector representation and the related neighborhood
definition.

15

5 Other Heuristics

5.1 Truncated Branch and Bound Methods

Pollack-Johnson [58] uses a so-called depth-first, jumptracking branch and bound search of a
partial Solution tree. The algorithm is essentially a parallel scheduling heuristic. Instead of
scheduling the activity with the highest priority value it branches on certain occasions such that
one branch has the activity with the highest priority value and the other branch has the activity
with the second highest priority value, which is scheduled next. Note, due to use of the parallel
SGS optimal Solution might be excluded from the search Space.

Sprecher [65] employs his depth-first search branch and bound procedure as a heuristic by im-
posing a time timit. The enumeration process is guided by the so-called precedence tree which
essentially branches on the activities in the decision set of the serial SGS. Via backtracking, all
precedence feasible activity lists are (implicitly) enumerated. In order to obtain good solutions
early in the search process (and thus within the time limit), priority rules are applied to select
the most promising activity from the decision set for branching first.

5.2 Disjunctive Are Based Methods

The basic idea of the disjunctive-arc-based approaches is to extend the precedence relations (the
set of conjunctive arcs) by adding additional arcs (the disjunctive arcs) such that the minimal
forbidden sets, i.e. sets of technologically independent activities which cannot be scheduled sim-
ultaneously due to resource constraints, are destroyed and thus the earliest finish schedule is
feasible with respect to (precedence and) resource constraints.

Shaffer et al. [64] restrict the scope, within their "resource scheduling method", to those forbidden
sets for which all activities in the earliest finish schedule are processed at the same time. The
disjunctive arc which produces the smallest increase in the earliest finish time of the unique sink
is introduced and the earliest finish schedule is recalculated. The algorithm terminates as soon as
a (precedence- and) resource-feasible earliest finish schedule is found. Note that this approach
can be transformed into a single-pass priority rule method based on the parallel SGS, cf. Tables
3 and 5.

Alvarez-Valdes and Tamarit [2] propose four different ways of destroying the minimal forbidden
sets. The best results were achieved by applying the following strategy: Beginning with the
minimal forbidden sets of lowest cardinality, one set is arbitrarily chosen and destroyed by adding
the disjunctive arc for which the earliest finish time of the unique dummy sink is minimal.

Bell and Han [5] present a two-phase algorithm for this problem. The first phase is very similar
to the approach of Shaffer et al. However, phase 2 tries to improve the feasible Solution obtained
by phase one as follows: after removing redundant arcs, each disjunctive arc that is part of the
critical path(s) is temporarily cancelled and the phase 1 procedure is applied again.

5.3 Further Approaches

Integer programming based heuristics have been used by Oguz and Bala [51]. The method employs
the integer programming formulation originally proposed by Pritsker et al. [59]. The planning
horizon is divided in T periods of equal length and the processing times pj have to be given as
discrete multiples of one period. The binary decision variable is Xjit — 1 if activity j is finished

16

at the end of period t.

Mausser and Lawrence [47] use block structures to improve the makespan of projects. They start
by generating a feasible Solution with a parallel scheduling scheme. Following this, they identify
blocks which represent contiguous time spans that completely contain all activities processed
within it. Each such block can be considered independent of the other blocks. The method
essentially reschedules individual blocks in order to shorten the overall project length.

6 Computational Analysis

6.1 Test Design

This section reports on a computational comparison of several of the heuristics summarized above.
As test instances we have employed the Standard sets j30, j60, and j 120 for the RCPSP which
have been generated using ProGen (cf. Kolisch et al. [42]). The sets j30 and j60 consist of 480
projects with n = 30 and n = 60 activities, respectively. The set j 120 consists of 600 projects,
each with n = 120 activities. Details of these problem instances are given in Chapter ? of this
book (cf. Kolisch et al. [40]).

Each algorithm was tested by its author(s) using the original Implementation. This allowed the
authors to adjust the parameters in order to obtain good results. As a consequence, however,
the tests were performed on different Computer architectures and operating systems. Therefore,
we could not impose a bound on the computation time to provide a basis for the comparison.
Instead, we have chosen to limit the number of generated and evaluated schedules to 1000 and
5000, respectively. This decision is based on the assumption that the effort needed for generating
one schedule is similar in the tested heuristics. With the exception of the schedule scheme rep
resentation based TS approach of Baar et al. [3] all algorithms considered for our investigation
make use of an SGS as described in Section 2. Hence, we found this assumption justified.

6.2 Results

Tables 7-11 display the results of the computational comparison. The heuristics are sorted accord-
ing to descending Performance with respect to 5000 iterations. Table 7 summarizes the percentage
deviations from the optimal makespan for the instance set j30. As for the other two instance sets
some of the optimal solutions are not known, we measured for these sets the average percentage
deviation from an upper and a lower bound, respectively. The upper bound was set to the Iowest
makespan found by any of the tested heuristics while the lower bound was selected to be the
critical path based lower bound (cf. Stinson et al. [67]). We employed the lower bound in order
to allow researchers to compare their results with the ones obtained in this study. All lower and
upper bounds can be obtained from the authors upon request. For the j60 set, the percentage
deviations from the Upper and lower bounds are reported in Tables 8 and 10, respectively. Note,
that the schedule scheme based TS heuristic of Baar et al. [3] was additionally run by allowing 2
trials where each trial was terminated after no improved Solution was found after 250 iterations.
This way, the deviation from the Upper bound was lowered to 1.14 %. Finally, Tables 9 and 11
provide the respective deviations for the j 120 set.

The heuristics that performed best in our study are the SA of Bouleimen and Lecocq [9] and the
GA of Hartmann [25]. While the procedure of Bouleimen and Lecocq performs best on the j30
set, the approach of Hartmann dominates on the instance sets with larger projects.

17

Iterations

Algorithm SGS Reference 1000 5000

SA - activity list serial Bouleimen, Lecocq [9] 0.38 0.23
GA - activity list serial Hartmann [25] 0.54 0.25
TS - schedule scheme special heuristic Baar et al. [3] 0.86 0.44
sampling - adaptive serial/parallel Kolisch, Drexl [38] 0.74 0.52
sampling - LFT serial Kolisch [37] 0.83 0.53
sampling - adaptive serial/parallel Schirmer, Riesenberg [61] 0.71 0.59
sampling - WCS parallel Kolisch [36] 1.40 1.28
sampling - LFT parallel Kolisch [37] 1.40 1.29
GA - random key mod. parallel Leon, Ramamoorthy [45] 2.08 1.59

Table 7: Average deviations from optimal Solution — J = 30

Iterations
Algorithm SGS Reference 1000 5000
GA - activity list serial Hartmann [25] 0.99 0.45
SA - activity list serial Bouleimen, Lecocq [9] 1.17 0.49
sampling - adaptive serial/parallel Schirmer, Riesenberg [61] 1.26 0.97
sampling - adaptive serial/parallel Kolisch, Drexl [38] 1.60 1.26
TS - schedule scheme special heuristic Baar et al. [3] 1.79 1.54
sampling - LFT serial Kolisch [37] 1.88 1.55
sampling - LFT parallel Kolisch [37] 1.83 1.56
sampling - WCS parallel Kolisch [36] 1.88 1.56
GA - random key mod. parallel Leon, Ramamoorthy [45] 2.48 1.82

Table 8: Average deviations from best Solution — J = 60

Iterations
Algorithm SGS Reference 1000 5000
GA - activity list serial Hartmann [25] 2.59 0.89
SA - activity list serial Bouleimen, Lecocq [9] 5.73 1.86
sampling - LFT parallel Kolisch [37] 2.92 2.32
sampling - WCS parallel Kolisch [36] 2.94 2.34
sampling - adaptive serial/parallel Schirmer, Riesenberg [61] 3.28 2.55
sampling - adaptive serial/parallel Kolisch, Drexl [38] 3.95 3.33
GA - random key mod. parallel Leon, Ramamoorthy [45] 5.33 3.76
sampling - LFT serial Kolisch [37] 4.78 4.10

Table 9: Average deviations from best Solution — J = 120

18

Iterations
Algorithm SGS Reference 1000 5000
GA - activity list serial Hartmann [25] 12.68 11.89
SA - activity list serial Bouleimen, Lecocq [9] 12.75 11.90
sampling - adaptive serial/parallel Schirmer, Riesenberg [61] 13.02 12.62
sampling - adaptive serial/parallel Kolisch, Drexl [38] 13.51 13.06
sampling - WCS parallel Kolisch [36] 13.66 13.21
sampling - LFT parallel Kolisch [37] 13.59 13.23
TS - schedule scheme special heuristic Baar et al. [3] 13.80 13.48
GA - random key mod. parallel Leon, Ramamoorthy [45] 14.33 13.49
sampling - LFT serial Kolisch [37] 13.96 13.53

Table 10: Average deviations from critical path based lower bound — J = 60

Iterations
Algorithm SGS Reference 1000 5000
GA - activity list serial Hartmann [25] 39.37 36.74
SA - activity list serial Bouleimen, Lecocq [9] 42.81 37.68
sampling - LFT parallel Kolisch [37] 39.60 38.75
sampling - WCS parallel Kolisch [36] 39.65 38.77
sampling - adaptive serial/parallel Schirmer, Riesenberg [61] 40.08 39.08
sampling - adaptive serial/parallel Kolisch, Drexl [38] 41.37 40.45
GA - random key mod. parallel Leon, Ramamoorthy [45] 42.91 40.69
sampling - LFT serial Kolisch [37] 42.84 41.84

Table 11: Average deviations from critical path based lower bound — J — 120

19

Generally, the results show that the best metaheuristic strategies outperform the best priority
rule based sampling approaches. Increasing the number of schedules allowed to be computed fur
ther increases the superiority of the metaheuristics. This is mainly because sampling procedures
generate each schedule anew without considering any information given by already visited solu
tions while metaheuristic algorithms typically exploit the knowledge gained from the previously
evaluated schedule(s).

A comparison of the results obtained from the metaheuristics shows that the choice of the un-
derlying representation is crucial. The two best procedures make use of different metaheuristic
paradigms while they both employ the activity list representation. The use of one metaheuristic
paradigm itself does not necessarily lead to consistently good solutions. This can be seen by
the results of the two GA's of Hartmann [25] and Leon and Ramamoorthy [45]. The activity list
based GA excells the problem Space based GA.

Analyzing the priority rule based sampling procedures, we observe a strong influence of the SGS
when used together with the LFT rule. While the serial SGS leads to better results on the j30
instance set, the parallel one is superior on the j60 and j 120 instance sets, respectively. The two
rules WCS and LFT give almost identical results when employed within the parallel SGS. The
adaptive sampling strategies do not consistently dominate the simple sampling procedures. Com-
pared to each other, we observe that the adaptive sampling approach of Schirmer and Riesenberg
[61] outperforms the one of Kolisch and Drexl [38] on the j60 and j 120 instance sets while the
latter yields better results on the j30 set.

We finally remark that the metaheuristic algorithms which make use of the activity list repres
entation can be assumed to be the fastest approaches. This is due to the fact that the underlying
serial SGS for activity lists (cf. Section 2) does not compute the eligible set or select an activity
on the basis of priority values.

7 Outlook on Research Opportunities

Our computational results indicate that the best heuristics currently available are metaheuristic
strategies which make use of activity lists. Further investigations which are currently under way
(cf. Hartmann [27]) indicate that the exploitation of problem-specific knowledge is crucial when
designing good metaheuristic strategies. This fact is well known from other classical scheduling
Problems such as the job shop problem (cf. Nowicki and Smutnicki [50]). Further investigations
(cf. Hartmann and Kolisch [28]) are headed towards a deeper insight of the functioning of different
heuristics subject to different problem characteristics as given in Kolisch et al. [40, 42] and Kolisch
and Sprecher [41].

Although priority rule based methods do not give the best results, they are important for several
reasons. First, they are indispensable when solving large problem instances in a short amount of
time. Second, good priority rule based methods are needed to determine the initial solution(s)
for metaheuristic procedures. Hence, further efforts in this area are still justified.

Summarizing, recent years have brought a considerable progress in designing more efficient heur
istics for the RCPSP, and we believe that this will remain a fruitful field of research in the future.
In addition to the development of even better heuristics, extending the current approaches to more
general project scheduling probiems are of special interest.

Acknowledgement. We are indebted to Tonius Baar, Peter Brucker, and Sigrid Knust (Uni-
versity of Osnabrück), Kamel Bouleimen and Henri Lecocq (University of Liege), Jorge Leon

20

and Balakrishnan Ramamoorthy (Texas A&M University) as well as Andreas Schirmer and Sven
Riesenberg (University of Kiel) for their help in this research. Furthermore, we would like to
thank Andreas Drexl for his continuous support.

References

[1] R. Alvarez-Valdes and J.M. Tamarit. Algoritmos heuristicos deterministas y aleatorios en
secuenciacon de proyectos con recursos limitados. Qüestiiö, 13:173-191, 1989.

[2] R. Alvarez-Valdes and J.M. Tamarit. Heuristic algorithms for resource-constrained project
scheduling: A review and an empirical analysis. In R. Slowiriski and J. W§glarz, editors,
Advances in project scheduling, pages 113-134. Elsevier, Amsterdam, 1996.

[3] T. Baar, P. Brucker, and S. Knust. Tabu-search algorithms for the resource-constrained
project scheduling problem. Technical report, Osnabrücker Schriften zur Mathematik,
Fachbereich Mathematik/Informatik, Osnabrück.

[4] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing, 6(2):154-160, 1994.

[5] C.E. Bell and J. Han. A new heuristic Solution method in resource-constrained project
scheduling. Naval Research Logistics, 38:315-331, 1991.

[6] N. Bixby and E. Boyed. Using the CPLEX callable library. CPLEX Optimization Inc.,
Houston, 1996.

[7] J. Btazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to resource con
straints: Classification and complexity. Discrete Applied Mathematics, 5:11-24, 1983.

[8] F.F. Boctor. Some efficient multi-heuristic procedures for resource-constrained project
scheduling. European Journal of Operational Research, 49:3-13, 1990.

[9] K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem. Technical report, Service de Robotique et Automat-
isation, Universite de Liege, 1998.

[10] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch k bound algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research, forth-
coming.

[11] J.-H. Cho and Y.-D. Kim. A simulated annealing algorithm for resource constrained project
scheduling problems. Journal of the Operational Research Society, 48:735-744, 1997.

[12] N. Christofides, R. Alvarez-Valdes, and J.M. Tamarit. Project scheduling with resource
constraints: A branch and bound approach. European Journal of Operational Research,
29:262-273, 1987.

[13] D.F. Cooper. Heuristics for scheduling resource-constrained projects: An experimental in-
vestigation. Management Science, 22(11): 1186-1194, 1976.

[14] D.F. Cooper. A noteon serial and parallel heuristics for resource-constrained project schedul
ing. Foundations of Control Engineering, 2(4): 131—133, 1977.

21

15] E.M. Davies. An experimental investigation of resource allocation in mulitactivity projects.
Operational Research Quarterly, 24:587-591,1973.

16] E.W. Davis and J.H. Patterson. A comparison of heuristic and Optimum solutions in resource-
constrained project scheduling. Management Science, 21:944-955, 1975.

17] F. Deila Croce. Generalized pairwise interchanges and machine scheduling. European Journal
of Operational Research, 83:310-319, 1995.

18] E. Demeulemeester and W. Herroelen. New benchmark results for the resource-constrained
project scheduling problem. Management Science, 43(11):1485-1492, 1997.

19] U. Dorndorf and E. Pesch. Evolution based learning in a job shop scheduling environment.
Computers & Operations Research, 22(l):25-40, 1995.

20] A. Drexl. Scheduling of project networks by job assignment. Management Science,
37(12):1590-1602, 1991.

21] S.E. Elmaghraby. Activity networks: Project planning and control by network models. Wiley,
New York, 1977.

22] E.A. Elsayed. Algorithms for project scheduling with resource constraints. International
Journal of Production Research, 20(1) :95—103, 1982.

23] F. Glover. Tabu search - Part I. ORSA Journal on Computing, 1:190-206, 1989.

24] F. Glover. Tabu search - Part II. ORSA Journal on Computing, 2:4-32, 1989.

25] S. Hartmann. A competitive genetic algorithm for resource-constrained project schedul
ing. Technical Report 451, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, 1997.

26] S. Hartmann. Project scheduling with multiple modes: A genetic algorithm. Technical Report
435, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, 1997.

27] S. Hartmann. Acceptance criteria in local search heuristics with an application to project
scheduling. Technical report, forthcoming.

28] S. Hartmann and R. Kolisch. An experimental investigation of state-of-the-art heuristics for
the resource-constrained project scheduling problem. Technical report, forthcoming.

29] W. Herroelen, E. Demeulemeester, and B. De Reyck. A Classification scheme for project
scheduling. In J. Weglarz, editor, Handbook on recent advances in project scheduling, pages
1-26. Kluwer, 1998.

30] H.J. Holland. Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor, 1975.

31] J.E. Kelley. The critical-path method: Resources planning and scheduling. In J.F. Muth and
G.L. Thompson, editors, Industrial scheduling, pages 347-365. Prentice-Hall, New Jersey,
1963.

32] Y.-D. Kim. A backward approach in list scheduling algorithms for multi-machine tardiness
Problems. Computers & Operations Research, 22(3):307—319, 1995.

22

[33] S. Kirkpatrick, C. D. Gelatt jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, 1983.

[34] U. Kohlmorgen, H. Schmeck, and K. Haase. Experiences with fine-grained parallel genetic
algorithms. Annais of Operations Research, forthcoming.

[35] R. Kolisch. Project scheduling under resource constraints — Efficient heuristics for several
problem classes. Physica, Heidelberg, 1995.

[36] R. Kolisch. Efficient priority rules for the resource-constrained project scheduling problem.
Journal of Operations Management, 14(3);179-1925 1996.

[37] R. Kolisch. Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation. European Journal of Operational Research, 90:320-333, 1996.

[38] R. Kolisch and A. Drexl. Adaptive search for solving hard project scheduling problems.
Naval Research Logistics, 43:23-40, 1996.

[39] R. Kolisch and R. Päd man. An integrated survey of project scheduling. Technical Report
463, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, 1997.

[40] R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark instances for project scheduling
Problems. In J. Weglarz, editor, Handbook on recent advances in project schedulin, pages
??-?? Kluwer, Amsterdam.

[41] R. Kolisch and A. Sprecher. PSPLIB — a project scheduling problem Iibrary. European
Journal of Operational Research, 96:205-216, 1996.

[42] R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general class of
resource-constrained project scheduling problems. Management Science, 41(10):1693-1703,
1995.

[43] S.R. Lawrence. Resource constrained project scheduling - A computational comparison of
heuristic scheduling techniques. Technical report, Graduate School of Industrial Administra
tion, Carnegie-Mellon University, Pittsburgh, 1985.

[44] J.-K. Lee and Y.-D. Kim. Search heuristics for resource constrained project scheduling.
Journal of the Operational Research Society, 47:678-689, 1996.

[45] V.J. Leon and B. Ramamoorthy. Strength and adaptability of problem-space based neigh-
borhoods for resource-constrained scheduling. OR Spektrum, 17(2/3):173-182, 1995.

[46] R.K.-Y. Li and J. Willis. An iterative scheduling technique for resource-constrained project
scheduling. European Journal of Operational Research, 56:370-379, 1992.

[47] H.E. Mausser and S.R. Lawrence. Exploiting block structureto improve resource-constrained
project schedules. Technical report, University of Colorado, Graduate School of Business
Administration, 1995.

[48] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Management
Science, forthcoming.

23

[49] K.S. Naphade, S.D. Wu, and R.H. Storer. Problem space search algorithms for resource-
constrained project scheduling. Annais of Operations Research, 70:307-326, 1997.

[50] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797-813, 1996.

[51] O. Oguz and H. Bala. A comparative study of computational procedures for the resource
constrained project scheduling problem. European Journal of Operational Research, 72:406-
416, 1994.

[52] L. Özdamar and G. Ulusoy. A local constraint based analysis approach to project scheduling
under general resource constraints. European Journal of Operational Research, 79:287-298,
1994.

[53] L. Özdamar and G. Ulusoy. An iterative local constraint based analysis for solving the
resource constrained project scheduling problem. Journal of Operations Management,
14(3): 193—208, 1996.

[54] L. Özdamar and G. Ulusoy. A note on an iterative forward/backward scheduling technique
with reference to a procedure by Li and Willis. European Journal of Operational Research,
89:400-407, 1996.

[55] J.H. Patterson. Alternate methods of project scheduing with limited resources. Naval Re
search Logistics Quarterly} 20:767-784, 1973.

[56] J.H. Patterson. Project scheduling: Theeffects of problem structureon heuristic Performance.
Naval Research Logistics Quarterly, 20:95-123, 1976.

[57] E. Pinson, C. Prins, and F. Rullier. Using tabu search for solving the resource-constrained
project scheduling problem. In Proceedings of the 4- International Workshop on Project
Management and Scheduling, pages 102-106, Leuven, 1994.

[58] B. Pollack-Johnson. Hybrid structures and improving forecasting and scheduling in project
management. Journal of Operations Management, 12:101-117, 1995.

[59] A.A.B. Pritsker, L.J. Watters, and P.M. Wolfe. Multiproject scheduling with limited re
sources: A zero-one programming approach. Management Science, 16:93-107, 1969.

[60] S.E. Sampson and E.N. Weiss. Local search techniques for the generalized resource con
strained project scheduling problem. Naval Research Logistics, 40:665-675, 1993.

[61] A. Schirmer and S. Riesenberg. Case—based reasoning and parameterized random sampling
for project scheduling. Technical report, forthcoming.

[62] A. Schirmer and S. Riesenberg. Parameterized heuristics for project scheduling — Biased
random sampling methods. Technical Report 456, Manuskripte aus den Instituten für Be
triebswirtschaftslehre der Universität Kiel, 1997.

[63] J.M.J. Schütten. List scheduling revisited. Operations Research Letters, 18:167-170, 1996.

[64] L.R. Shaffer, J.B. Ritter, and W.L. Meyer. The critical-path method. McGraw Hill, New
York,1965.

24

[65] A. Sprecher. Solving the RCPSP efficiently at modest memory requirements. Technical
Report 425, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel,
1996.

[66] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active, active, and non-delay schedules for the
resource-constrained project scheduling problem. European Journal of Operational Research,
80:94-102, 1995.

[67] J.P. Stinson, E.W. Davis, and B.M. Khumawala. Multiple resource-constrained scheduling
using branch and bound. AHE Transactions, 10:252-259,1978.

[68] R.H. Storer, S.D. Wu, and R. Vaccari. New search spaces for sequencing problems with
application to job shop scheduling. Management Science, 38(10):1495-1509,1992.

[69] A. Thesen. Heuristic scheduling of activities under resource and precedence restrictions.
Management Science, 23(4) =412-422, 1976.

[70] P.R. Thomas and S. Salhi. An investigation into the relationship of heuristic Performance with
network-resource characteristics. Journal of the Operational Research Society, 48(l):34-43,
1997.

[71] G. Ulusoy and L. Özdamar. Heuristic Performance and network/resource characteristics
in resource-constrained project scheduling. Journal of the Operational Research Society,
40 (12) :1145—1152, 1989.

[72] G. Ulusoy and L. Özdamar. A constraint-based perspective in resource constrained project
scheduling. International Journal of Production Research, 32(3):693-705, 1994.

[73] V. Valls, M.A. Perez, and M.S. Quintanilla. Heuristic Performance in large resource-
constrained projects. Technical Report 92-2, Departament D'Estadistica I Invecigacio Op
erati va, Universität de Valencia, 1992.

[74] G.E. Whitehouse and J.R. Brown. GENRES: An extension of Brooks algorithm for project
scheduling with resource constraints. Computers & Industrial Engineering, 3:261-268, 1979.

25

