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A Model of Ranked Conjoint-Data and Implications for Evaluation 

Abstract 

This article examines basic features of ranked Conjoint-data, analyzes the 

adequacy of evaluation methods and proposes improvements for better utilizing 

the Information provided by ranked data. It is shown that commonly used 

goodness-of-fit measures provide inadequate proxy measures for assessing 

rank consistency and internal validity of estimates. In addition, commonly used 

evaluation methods, such as OLS and LINMAP, are shown to be based on 

arbitrary propositions which do not fulfill the requisite traits postulated by the 

model of ranked Conjoint-data. Resulting shortcomings on estimation outcomes 

are evaluated with means of Simulation analyses. New insights into the 

achievable estimation accuracy are gained and possibilities for improvement 

are shown. 
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1 Introduction 

Conjoint analysis is a decompositional method of marketing research which is 

widely used for retrieving consumer's Utility functions. It is based on the 

assumption that there are limits to the respondents' ability to articulate their 

utility function. In particular, it is assumed that respondents implicitly base their 

purchasing decisions on a metric, linear-additive utility function, but that they 

are not able to articulate it. Thus, conjoint analysis asks respondents for a 

holistic assessment of their preferences with regard to Stimuli, which describe 

products as combination of product characteristics (=variables) and their 

respective levels. Statistical tools are applied to detect the underlying metric 

Utilities of the Single variables (i.e. their part-worth values). 

With respect to articulation accuracy, it has traditionally been argued that 

reliable assessment of preferences can best be obtained in terms of rankings 

(Green, Rao, 1971, Green, Srinivasan, 1978). It is assumed that higher 

qualified evaluation tasks, e.g. Tatings, overtax respondents' capabilities and 

thus lead to inconsistent answers. Empirical comparisons have indeed failed to 

observe improved estimates when refined answering scales were used (e.g. 

Wittink et al., 1989, Kalish, Nelson, 1991, Steenkamp, Wittink, 1994). 

Nowadays, rating scales are more frequently employed. However, this seems to 

be less a consequence of methodological critique but more of practical 

considerations, such as the ease with which the method is used in telephone-

interviews, hybrid models and standardized Software packages. 

Conjoint analyses which are based on ranked data require a bi-directional 

transformation of scale: First, respondents implicitly assess the metric utility 

values of the Stimuli presented. This lays the basis for the articulated ranking. In 

a second Step, Statistical methods are applied to transform the ranking back 

into a combination of estimated metric part-worth values. Finally, goodness-of-

fit is measured on the individual level as the match between estimated and 

observed ranking. This analytical framework of ranked Conjoint-Data is 

visualized in figure 1. The arrows indicate the sequence of the above sketched 

steps being undertaken in a conjoint experiment. The shadowed areas indicate 

Information which remains hidden for the evaluator. 
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Traditional 
Estimation Methods/ 

Estimated Metrie 
Part-worth Value: 

Figure 1: Framework of Ranked Conjoint-Data (Evaluation steps) 

From this figure it can be seen that traditional estimation methods and their 

goodness-of-fit measures focus on the rank order data. This constitutes the 

basis for potential shortcomings for assessing the internal validity of individual-

level estimates: While the evaluator is interested in achieving estimation 

accuracy between estimated and true metric part-worth values, he is only able 

to measure the goodness-of-fit between observed and estimated ranking. Latter 

measure may serve as a Substitute of former one only if the scale 

transformation can be unambiguously reversed and if the estimation methods 

correctly reshape the transformation process of respondents, i.e. the model of 

ranked conjoint-data. Thus, the question of fit is of central importance for 

assessing both the adequacy of estimation methods and the Information 

content of goodness-of-fit measures. 

This paper provides a more complete view of the analytical framework and 

speeifies a model of ranked conjoint data. The loss of Information resulting from 

use of rank-order data is quantified. The fit of traditionally used evaluation 

methods is evaluated both in terms of meeting the model requirements and in 

its consequences on the estimation accuracy (Figure 1). This enables an in-
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depth analysis on the methodological adequacy and on the internal validity of 

commonly used estimation methods. 

There seems to be need for this model-based approach of assessing rank-

based conjoint techniques: On the one hand, evaluators can choose between 

various estimation techniques which base on different propositions, as they 

ränge from metric to choice interpretations (Chapman, Staelin, 1982) of rank 

data. On the other hand, the empirical problems of cross-validating their 

outcomes are various (Bateson et al., 1987) and yet there is no clear indication 

on the superiority of one estimation method. Hence, the model-based approach 

should help to find a reasonable and common basis for comparison. A critical 

investigation of commonly applied assumptions seems especially relevant, as 

research work has already quantified the loss of information, which results in 

rating scales from deviations from equal interval-sizes (Srinivasan, Basu, 1989). 

In this context, a model of ranked Conjoint data should help to further assess 

the possibilities and limitations of ranked-based Conjoint-application. 

In particular, several propositions are presented which characterize the model 

of ranked Conjoint-Data. They suggest that the bi-directional scale 

transformation causes problems in achieving accurate estimates. In addition, 

traditional estimation methods and their goodness-of-fit measures show to be 

not in füll concurrence with the model of ranked conjoint data. They neglect the 

underlying pattern of „true" metric Utilities and thus valuable information. 

Implications for evaluation are demonstrated by simulations, which enable a 

comparison of individual-level estimates with the otherwise unknown „true" 

metric part-worth values. Systematic and non-systematic shortcomings are 

distinguished to assess implications on aggregated level evaluations. A new 

heuristic evaluation procedure is presented which utilizes some of the additional 

information of the model of ranked Conjoint-Data. 

2 The basic features of ranked Conjoint-data 

Ranked Conjoint-data do not possess a metric anchorage since they contain 

only information on relative values. In addition, they are not error-free 
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translations of the true metric Utility values but are characterized by a stochastic 

error term. 

In order to allow for unambiguous calculation of rank inequalities, interval-scale 

properties are widely assumed. In the following sections, the accuracy of this 

assumption is tested. The ambiguities in relating preference functions to error-

free rankings and those to empirical rankings are subsequently analyzed. 

Finally, a stochastic model is developed to adequately model the error term. At 

each stage of analysis, propositions formulate the requisite traits of evaluation 

procedures. They specify a model of ranked Conjoint-data. 

2.1 Rank inequalities 

Ranked based conjoint analysis does not ask directly for stimuli's Utility, but 

obtains relative statements on the preferability of any stimulus against all 

others. The metric Stimuli Utilities remain ambiguous, since a metric anchorage 

is missing and rank neighbours provide only lower and upper bounds which by 

themselves are not fixed but depend on the location of consecutive ranks. 

This has an impact on part-worth estimates which are gained by comparing the 

preference values at different variable levels. If metric data were existent, 

estimating contrasts could be evaluated by subtracting average preference 

values (Box, Hunter, Hunter, 1978). The procedure does not work for ranked 

data, since these are in mathematical terms only a set of consecutive 

inequations. Instead, the ranking Information can be segregated into all 

possible combinations of pairwise comparisons. The resulting set of inequalities 

contains all Information which can utilized to determine part-worth estimates. A 

ranking of n Stimuli provides n(n-1)/2 inequalities. Most of them provide 

consistency checks, few determine the limits of the part-worth estimates. 

For example, assume a full-factorial design with three dichotomous variables 

A,B and C and 23=8 Stimuli and a fully consistent rank order according to an 

Utility function with part-worth values for each upper level +A=40, +B=35 and 

+C=25 Utility points. This would lead to an error-free rank order as following: 

R(-A,-B,-C)<R(-A,-B,C)<R(-A,B,-C)< R(A,-B,-C)< R(-A,B,C)<R(A,-B,C)<R(A,B,-C)<R(A,B,C) 
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Out of this rank order, a total of 28 pairwise comparisons can be gained, which 

contain following non-redundant inequalities (Teichert, 1994): 

• The preferred levels of each variable are assessed by comparisons of Stimuli 

pairs which differ only in the levei of a Single variable, as: 

R(-A,-B,-C)<R(-A,-B,C) =>-C< +C 

• The importance weights of each variable relative to another one are 

assessed by comparisons of Stimuli pairs which distinguish themselves in the 

levels of exactly two variables, as: R(-A,-B,C)<R(-A,B,-C) =>+C< +ß; 

R(-A,B,C)<R(A,-B,C) =>+B<+A 

• Finally, a variables' importance weight relative to combinations of the other 

variables are assessed by comparing the dosest Stimuli which distinguish 

themselves in all three variables: R(+A,-B,-C)< R(-A,B,C) => +c > +A-B 

In combination, the ranking provides the following information: 

(a) 0<+C<+B<+A and (b) A<B+C. These inequalities determine the part-

worth estimates and summarize all information which can be gained from the 

above rank order. Accordingly, the part-worth values for variables' upper levels, 

if normalized to 100 utility points, can vary within 

A e {35;49};5 e {26;48};C e {3;32}. The more variables and Stimuli are included, 

the more complex comparisons are possible. This limits the ambiguity of part-

worth estimates, but does not lead to Single point estimates. 

The inequalities convey an ambiguous relationship between ranked data and 

the underlying metric utility function. To resolve this ambiguity, it is necessary to 

recode the inequalities into a system of equations. This requires to formulate 

assumptions on the metric distribution patterns of observed ranks. Thus, it is 

commonly assumed that ranked data approximate an interval scale. 

2.2 Interval-scale properties 

The assumption of interval-scaled properties is widely applied but has never 

been thoroughly substantiated. The literature relies either on very rough criteria, 

such as correlation measures between rank ordered and interval-scaled data 

(e.g. Carmone et al., 1978; Wittink, Gattin, 1981), or refers to an early research 

-7-



work by (Dolberg (1977). Colberg's Simulation study showed that the „metric 

determinacy" 1 of ranked data increases with higher number of Stimuli. 

Accordingly, many researchers feit confident in assuming interval-scaled 

properties when utilizing extended designs with larger number of Stimuli (Green, 

Srinivasan, 1978, 1990). 

However, the findings of Colberg have limited generalizibility due to certain 

limitations of the study, such as the neglect of an error-term, the limited spread 

of analyzed Utility functions2 and the robustness of the measurement criterion 

itself3. In addition, Colberg observed contradictory findings in a few cases 

(Colberg, 1977, p. 52). The most severe shortcoming, however, is the fact that 

metric determinacy constitutes only an indirect proof of interval-scaled property. 

As will be shown below, there are other effects which can cause a high 

similarity between estimated and true part-worth values in error-free 

simulations. 

Ranked data approximate interval scale properties if the differences between 

neighbouring Stimuli either become very small or if they become uniform. The 

more Stimuli are included in a design with fixed endpoints, the higher the 

density of observations and the smaller their average Utility difference. 

However, this is of limited Information, since scaling of Utility functions is 

arbitrary. Thus, the design should select equally spaced Stimuli in order to 

indicate interval-scale properties. Orthogonal designs, however, balance the 

variable levels and not the differences of Stimuli Utilities. Coincidence of scales 

is not inherently guaranteed. Based on previous analysis (Teichert, 1994) , we 

expect systematic differences between three types of preference functions: 

• Homogeneous preference functions with similarly important variables. 

• Heterogeneous preference functions with variables of different importance 

weights. 

• Dominant preference functions, where preferences are dominated by a 

Single variable. 

A Simulation is performed to exemplify the interval scale properties. Two design 

types of differing complexity are compared: an orthogonal 25"2 main-effect 

design with 8 Stimuli and an extended 25"1 design with 16 Stimuli. 100 different 
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Utility functions are generated for each of type of preference function4. 

Normalization is applied which forces the sum of absolute part-worth values to 

100 Utility points. These Utility functions also serve as basis for consecutive 

analyses in the following sections. 

Table 1 provides a summary of Simulation outcomes. As expected, doubling of 

the number of Stimuli divides the average Utility difference between 

neighbouring Stimuli nearly in half. However, the coefficient of Variation, which 

relates the Standard deviation to the mean value of Utility differences, is 

differently affected at the types of preference function: 

(a) In case of homogeneous preference functions, the coefficient of Variation is 

increased by more than 50%, since the Standard deviation of Utility 

differences remains nearly constant (s=17.7 in the extended design versus 

s=19.6 in the main-effect design). Here, the extended design is likely to 

include nearly identical Stimuli, e.g. if two Stimuli are differentiated from one 

another only in terms of two adversary effects. Thus, homogeneous 

preference functions lead to deviations from interval scale properties in the 

extended design. 

(b) In contrast hereto, the coefficient of Variation remains stable for both the 

heterogeneous (1.09 versus 0.90) and dominant preference functions (1.21 

versus 0.99) This indicates that the extended design provides better interval-

scaled estimates. The Variation of Utility differences is reduced if more Stimuli 

are included, because there is a higher probability that combinations of 

smaller variables offset the influenae of a larger variable (Teichert, 1996). 

However, if the dominant variable accounts for more than 50% of total Utility, 

then the ranking appears to be inherently shaped by a lexicographic 

processing. Thus, a larger deviation from interval scale remains. 
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Table 1: Distribution of metric utility differences* between rank-pairs 

2" main-effect design extended 2*"' design 
Type of mean coefficient ] ränge of mean coefficient ränge of 

preference function difference of Variation J differences difference of Variation differences 

Homogeneous 21.0 0.93 ! 
i 53.1 11.6 1.53 58.3 

(19.6) (0.26) ] (17.6) (17.7) (0.28) (6.9) 

Heterogeneous 22.6 0.90 ' 55.5 12.2 1.09 45.8 
(20.4) (0.22) j (15.6) (13.1) (0.31) (10.2) 

Dominant 25.6 0.99 » 
i 70.2 12.9 1.21 56.9 

(25.3) (0.28) | 
' 

(21.8) (15.6) (0.37) (22.7) 

*) The data are normalized according to common practice of Conjoint-analysis: The worst possible stimuJus has an 
utility value of -100; the best possible of +100. 

The ränge of utility differences between rank-neighbouring Stimuli can be 

perceived as a more rigorous test for the interval-scale property. The ränge 

amounts up to 25% or more of the total utility interval (ranging from -100 to 

+100 utility points), which implies that a large proportion of the variance remains 

hidden within the ranking. Thus, the approximation of ranked data to an interval 

scale remains questionable. It can not simply be achieved by increasing the 

number of Stimuli. 

This leads us to: 

Proposition 1: Evaluation procedures should not blindfoldedly follow interval 

scale assumptions. 

2.3 Relationship between metric preference functions and rankinas 

Since ranked data may fail to approximate the interval scale, the inequalities 

provided by ranked data can not be unambiguously translated into a set of 

equations. For sets of inequalities, however, multiple solutions exist. This 

constitutes a well-known problem in Operations research (Stimson, 1969; 

Brockhoff, 1972) and it was even recognized by early scholars of conjoint 

analysis (Srinivasan, Shocker, 1973). Thus, different preference functions may 

well lead to the same ranking. 
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Since rankings build a set of consecutive inequalities (section 2.1), they provide 

lower and upper limits for variable estimates. Within these limits all solutions 

are equally feasible. Therefore, alternative preference functions form estimation 

intervals. An estimation interval conditional of other variable estimates given 

can be assessed by modifying the estimate for a Single independent variable so 

long as no rank reversal occurs. In order to obtain overall estimation intervals, 

one has to replicate this procedure for all possible combinations of the other 

variables. This, however, requires extensive simultaneous calculations. 

An easily applicable, heuristic procedure is proposed to approximate the size of 

the deterministic estimation intervals. First, the observed rank order is recoded 

into multiple sets of metric Utility values by adding stochastic terms to each rank 

while keeping the rank order unchanged. Subsequently, Standard OLS 

technique is used for estimating the Utility functions. The results are saved if a 

fit of observed and estimated ranking is achieved and if the estimated Utility 

function deviates by more than 10 Utility points from any of the solutions already 

found. 

Table 2 summarizes the findings of the Simulation example. It shows that the 

estimation intervals are surprisingly large. The estimation intervals of entire 

preference functions account on average for more than 90 Utility points in the 

main-effect or 35 in the extended design. Thus, the part-worth values of two 

alternative preference functions which lead to the same error-free ranking can 

deviate by up to this amount. This shows that the true preference functions can 

be quite different. In addition, a more detailed analysis shows that even the 

ranking of variable importance weights by itself can differ substantially. For 

example, an estimation interval may include solutions, in which two variables 

are either the least important or the most important ones (Teichert, 1997). 

Thus, a high degree of ambiguity in effect estimates has to be diagnosed. 

Looking at the individual variables, the largest estimation intervals are to be 

found for dominant variables. As expected (section 2.2), the Information 

provided by the ranking inequalities is insufficient to closely localize their true 

value. Finally, the least important variable seems to be especially affected: 

while the absolute value is lowest, the size of the estimation interval is still 

above average. With estimation intervals of more than 18 (10) Utility points it is 
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even likely to observe sign reversals for the least important variable which is 

unlikely to posses an importance weight of more than 10 Utility points. Thus it 

can be concluded that the relative accuracy of variable estimates deviates 

between variables with different importance weights. 

Table 2: Size of deterministic estimation inten/als 

Type of preference 
function 

20* main-effect design 

Total* most least 
important important 
variable variable 

extended 20"1 design 

Total* most least 
important important 
variable variable 

Homogeneous 90.7 17.4 17.8 38.0 7.7 10.1 
(19.8) (5.6) (4.9) (8.2) (1.5) (4.0) 

Heterogeneous 90.0 17.9 19.2 35.7 7.3 9.1 
(17.7) (6.1) (6.3) (7.4) (1.7) (3.5) 

Dominant 123.3 33.6 23.1 57.8 17.5 10.6 
(19,0) (5.7) (6.9) (8.1) (3.2) (2.7) 

*) The total estimation interval is calculated as the sum of the absolute sizes of the estimation intervals of the Single 
variables. 

In comparison between main-effect and extended designs, the size of the 

deterministic estimation interval is greatly reduced by increasing the number of 

Stimuli. There are two reasons for this: First, the average Utility difference of two 

rank neighbouring Stimuli becomes smaller and, accordingly, the limits for 

possible solutions. Second, the more Stimuli are used, the more inequalities 

determine the estimate. In case of error-free data, both effects narrow the size 

of the estimation interval and center it around the true mean. This explains 

Colberg's findings as outlined in section 2.2. 

In sum, the interval scale properties of ranked data need to be questioned. 

However, we agree with Colberg's finding that extended designs provide - in 

case of error-free data - estimates which approximate those gained from 

interval-scaled data. As shown below, the differentiation between both effects is 

useful, because it contains valuable Information in the case of stochastic data. 

Proposition 2: Evaluation procedures should take ambiguity of effect estimates 

into account and thus should provide estimation intervals. 
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2.4 Relationship between error-free and empirical rankings 

Empirical rank data are not error-free translations of the true metric utility values 

but are characterized by a stochastic error term. Thus it is unlikely that the 

observed empirical rankings are identical with the „true", error-free rankings. 

The observed ranking however is the only information provided by respondents. 

Both the number and the location of rank reversals are unknown and are 

implicit within the estimation procedure. This constitutes a severe problem, 

because an observed ranking may be the result of different errors from different 

„true" rankings and thus from different underlying utility functions. 

For example, an observed faulty ranking of a „true" utility function may be 

identical with an error-free ranking of another (and thus „false") utility function. 

This point is elaborated through a Simulation of the two most-likely errors, i.e. 

the reversals between those ranks with most similar metric utility values5. Table 

3 shows the (non-representative) results of this assessment. It can be seen that 

the ability to detect even simple rank reversals is by no means guaranteed and 

that it varies largely. This can be explained by the (non)existence of redundant 

information: A rank reversal remains hidden, when it is the only inequality which 

provides the specific information. Reduced designs possess small degrees of 

freedom and thus next to no redundant information. Accordingly, the ability to 

detect rank reversals remains low even if more than one rank reversal occurs. 

In contrast, extended designs provide multiple redundant information. However, 

the larger their estimation intervals are (Table 2), the less able are they to 

locate Single rank reversals, since Single variable estimates can be realigned to 

a large extent without affecting the entire rank order. 
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Table 3: Ability to detect a rank reversal for different designs, types of 

preference function and error-components as measured by the % of 

observations which lead to a fully consistent ranking 

Type of Preference Function: 
25"2 main-effect design 

1 Reversal 2 Reversals 

extended 25*1 design 

1 Reversal 2 Reversals 

Homogeneous 

Heterogeneous 

Dominant 

80% 72% 

88% 77% 

92% 85% 

31% 14% 

20% 8% 

43% 17% 

Empirical data very often could have more than one rank reversal. Thus, 

inconsistencies are likely to remain unsolved. In fact, a Kendall's tau of 0.8 is 

often seen as sufficient to classify the observed rankings as internally valid, 

which corresponds to 3 identified reversals of rank pairs in the case of 8 Stimuli 

and 12 in the case of 16 Stimuli. The larger the unresolvable inconsistencies, 

the less determined the estimate becomes, because the location of reversals 

remains ambiguous. Identified rank reversals may in fact be correctly ordered 

rank pairs whereas as correctly identified rank pairs may constitute hidden rank 

reversals. Such a misleading Interpretation of observed rankings is more likely if 

the number of possible rank reversals increases. Thus, the number of possible 

„true" rankings and of underlying „true" utility functions are increased with larger 

number of Stimuli. 

In sum, it can be concluded that it is unlikely that all rank reversals are 

accurately identified. This will inevitably lead to defects of both the estimation 

procedure and of the applied goodness-of-fit measures when they rely on the fit 

between estimated and observed rankings. Based on the available information 

an incorrect utility function might be estimated and even a perfect fit might be 

falsely diagnosed. 

Proposition 3: Evaluation procedures should take the inability to detect rank 

reversals into account. Therefore, they should not utilize the fit between 

estimated and observed ranking as the only criterion for assessing estimation 

outcomes. 
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2.5 Stochastic model 

According to the basic idea of conjoint analysis, respondents should rank 

Stimuli using a holistic and comparative assessment of Stimuli Utilities in 

accordance with their „true" Utility function. Thus, it can be assumed that 

respondents assess Stimuli Utilities holistically with an error term centered 

around their true means and subsequently articulate their ranking in 

accordance to these judgments. This can be specified by adding a normal-

distributed error term to the metric Stimuli Utility values. Other distributional 

patterns may be thought of, however, the normal distribution is in line with a 

comparable model on rating scales (Srinivasan, Basu, 1989) and can base on 

the arguments elaborated therein. 

Figure 2 provides an Illustration of this error model, which has been intuitively 

used in many Simulation analyses of rank-order conjoint data (e.g. Carmone, 

Green, 1981, Wittink, Gattin, 1981, Umesh, Mishra, 1990, Darmon, Rouzies 

1991, 1994). It shows that the probability of observing a rank reversal can be 

assessed by calculating the integral of overlapping normal distributions. Given 

that the probability distributions of more than two neighbouring Stimuli are 

overlapping, a joint probability integral has to be calculated. This dependence 

of probabilities is a point of major difference between ranked conjoint data and 

rating data, in which the assessment of one stimulus would be independent of 

all others (Srinivasan, Basu, 1989). 

T 10% 

Figure 2: Probability distribution of metric Stimuli Utilities which constitute an 

observed ranking 
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Different assumptions about the decision making process and the error term 

are to be found in travel behavior research (Hensher, 1994): It is assumed that 

respondents rank the Stimuli from top to bottom by repeatedly choosing the 

most preferred stimulus. The chosen Stimuli is excluded and the choice 

procedure is repeated to the last. Based on this model, the „Luce and Suppes 

Ranking Choice Theorem" (Luce, Suppes, 1965) handles a ranking as a 

sequence of independent choice tasks. This justifies applying the estimation 

method of rank explosion (Chapman, Staelin, 1982), which decomposes ranked 

data into subsets of independent choices. In contrast, our model would lead to 

dependent choice tasks6, which would see the method of rank-explosion as 

falsely diagnosing increased error variance in lower ranks (see analogous 

empirical findings in: Ben-Akiva et al., 1992; Bradley, Daly, 1994). 

Comparing both models, the Luce and Suppes approach seems to be less 

adequate for describing respondents' behavior. It would require respondents to 

reassess subsets of the n Stimuli over and over again, leading to %*n(n+1)-1 

comparisons, while simultaneously forgetting about possible misperceptions in 

the former stages and neglecting already ranked Stimuli. This sees respondents 

as very persistent and extremely forgetful at the same time. In addition, 

respondents would neither be allowed to pre-sort the Stimuli nor to re-evaluate 

their ranking, despite the fact that both aspects are often encouraged in 

Interviewers' guidelines in order to enhance the reliability of answers (e.g. 

Schräder, 1990, Teichert, 1993). 

The normal distributed model better reflects the hypothesized process of 

respondents' assessments. In fact, Figure 2 can be viewed as an analogy to a 

desirable process of respondents' assessment. The location of stimuli's 

probability distributions may be seen as the outcome of presorting the Stimuli 

on a continuous line. The respondent now refines his judgment by comparing 

the Utilities of neighbouring Stimuli, considering the better and the worse 

alternatives. Each stimulus is given exactly one perceived utility value and 

Stimuli are ranked according to their resulting order on the x-axis. 
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Overall, the model of normal distributed Stimuli evaluations is in accordance to 

the basic idea of Conjoint-analysis. Thus, the further analysis will be based on 

this error model. This allows us to calculate probabilities to observe any 

possible ranking under the premise of a given metric preference function and a 

distributional assumption. Since an exact calculation would require extensive 

enumeration of overlapping Integrals from normal distributions, we recommend 

and apply an approximation shown in the appendix. 

Given a normal distributed error model, rank reversals are to be expected, 

when neighbouring ranks possess similar metric Utilities, and they are unlikely, 

when neighbouring ranks are highly different. Thus the probability of observing 

rank reversals depends not only on the error term but also on the distribution of 

metric Stimuli Utilities, which deviate between different experimental settings 

(section 2.2). The true ranking has the highest probability of occurrence, when 

the Stimuli are distributed equally, i.e. interval-scaled. This joint probability is cut 

in half, when one rank pair is nearly identical, and divided by four, when two 

rank pairs are similar. Thus the probability of observing the true ranking is 

highly sensitive to the number of minor Stimuli differences. To provide a sketch 

of this effect, probability values are calculated for the Utility functions of the 

Simulation example. Table 4 shows that there are high variations in the 

probability of observing the true ranking, which can be traced back to different 

causes: 

• The size of the error-term has a non-linear negative effect on the probability 

of observing the „true" ranking. The metric differences between neighbouring 

ranks build threshold-values: the ranking remains unchanged as long as the 

error term does not exceed the smallest Utility difference of a rank pair. 

• The probability of observing the „true" ranking diminishes with increased 

number of Stimuli. Since a larger number of Stimuli leads both to more rank 

pairs and to smaller Utility differences between rank neighbors, it is more 

likely to observe at least one rank reversal. 

• Lower probabilities are observed for the homogeneous type of preference 

function. Here, the probability of observing a rank reversal is higher despite 
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similar interval-scale properties, because this type possesses the highest 

ränge of differences (Table 1) and thus is likely to contain similar rank pairs. 

• The high Standard deviation within the Single cells shows that the casewise 

distribution of metric Stimuli Utilities highly influences the probability of 

obtaining the „true" ranking. Thus individually different rank recoveries are to 

be expected even in identical experimental settings. 

Table 4: Probability of observing an error-free ranking (Standard deviation) 

Type of preference function 

25'2 main-effect design 
size of ND(0,a) error term 
a = 5 0=10 a = 20 

extended 25"1 design 
size of ND(0,a) error term 

CT = 5 a = 10 a = 20 

Homogeneous 43.2% 18.2% 3.5% 0.4% <0.1% <0.1% 
(20.7%) (10.1%) (1.9%) (0.6%) (<0.1%) (<0.1%) 

Heterogeneous 49.3% 22.0% 4.7% 3.8% 0.1% <0.1% 
(19.4%) (9.6%) (1.9%) (4.4%) (0.2%) (<0.1%) 

Dominant 47.8% 23.7% 6.3% 4.7% 0.2% <0.1% 
(22.7%) (12.3%) (2.8%) (5.9%) (0.3%) (<0.1%) 

TOTAL 46.7% 
(21.0%) 

21.3% 
(11.0%) 

4.8% 
(2.5%) 

2.9% 
(4.6%) 

0.1% 
(0.2%) 

<0.1% 
(<0.1%) 

In sum, both the probability of observing the true ranking and the number of 

rank reversals do not only depend on the size of the error term but also on the 

metric differences between neighbouring Stimuli. Thus, the ranked data do not 

contain all Information which could be utilized by the evaluator. The stochastic 

model and the pattern of possibly underlying metric Stimuli Utilities provide 

further Information. 

Proposition 4: Evaluation procedures should relate the ranking Information to 

the probable pattern of underlying metric Utilities. 

Based on this proposition, evaluation methods should not only aim at 

replicating the observed ranking, i.e. minimize the number of rank reversals. 

Since the observed ranking should be looked at as a sequence of equally 

normal-distributed comparisons of rank pairs, consideration should be given to 

the joint probability of observing both the estimated correct rank pairs and the 

rank reversals. 
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Alternative solutions should be valued accordingly. An estimate, which 

diagnoses rank reversals of similar Stimuli and correctly classifies highly 

different rank pairs, should be preferred to an estimate, which diagnoses a 

Cluster of similar Stimuli without a rank reversal. The latter estimate is 

questionable, since similar Stimuli are likely to result in some rank reversals, 

while there is a high probability of obtaining the combination of rank reversals 

and correctly classified rank pairs from the first Solution. 

In sum, evaluation procedures should apply a two-sided optimization procedure 

which maximizes the joint probability of observing the ranking: (a) observing the 

correct rankings and (b) observing the rank reversals. 

Proposition 5: Evaluation procedures should be based on the total probability of 

observing the actual ranking, that is the probability of observing the specific 

combination of rank reversals and correctly ordered rank pairs. 

3 Implications for evaluation 

The observed ranking constitutes the only information provided by respondents. 

Accordingly, estimation procedures and their goodness-of-fit measures are 

directed towards replicating the observed ranking through the estimated one. In 

the following section, it will be analyzed whether or not the methods hereby 

adequately reflect the propositions of the model of ranked Conjoint data. 

Since the .Luce and Suppes Ranking Choice Theorem" already showed to be 

not in concurrence with the stochastic model applied here (section 2.5), the 

choice-based evaluation techniques are excluded. Instead, the analyses focus 

on the metric ordinary least squares regression analysis (OLS), the most often 

used evaluation method (Wittink et al., 1994), which is based on a well-known 

robustness (e.g. Carmone et al., 1978, Gattin, Bliemel, 1978), and on the 

statisticaily more adequate, non-metric Linear Programming Approach LINMAP 

(Shocker, Srinivasan, 1977). These two methods represent the metric and the 

non-metric evaluation alternatives. The findings can be easily applied to 

variations of these estimation approaches. 
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Simulation analysis is applied to assess implications of revealed shortcomings 

on the validity of estimates. This allows us to benchmark estimation outcomes 

against otherwise unknown true metric utility functions. To be specific, (total) 

estimation accuracy is measured as the (sum of) deviation(s) of estimated 

variable part-worth values from their true metric part-worth values. Rindings are 

compared against commonly used validity proxy measures of goodness-of-fit. 

Subsequently, the influenae of stochastic pattern and of the methods on 

estimation Performance is analyzed. 

3.1 Adeauacv of goodness-of-fit measures 

Commonly used goodness-of-fit measures, as Kendalls T (Kendall, 1962) or 

Spearman's p, do not fulfill the propositions of the model of ranked Conjoint-

Data: They strictly rely on the ranking information (which is against proposition 

4) and disregard differences in the quality of observed rank reversals (which is 

against proposition 1). These procedures would be adequate if two rankings 

were compared in Isolation. However, since the estimated ranking is based on 

estimated metric utility values, the rank comparison implicitly applies a less 

sophisticated error model for the estimated metric utility values which is 

equivalent to an interval-scale assumption7. This causes goodness-of-fit 

measures to neglect valuable information. These measures do not differentiate 

between solutions which lead to identical rank recoveries (which is against 

proposition 3) but which possess different patterns of underlying metric Utilities 

(which is against proposition 5). Thus goodness-of-fit does not constitute an 

exact measure of ranking consistency, but a robust approximation of it. 

A more severe shortcoming stems from the basis of comparison: Goodness-of-

fit measures relate the observed to the estimated ranking and not the true 

ranking. Since rank reversals may remain hidden (proposition 2) and estimation 

procedures tend to nearly maximize the fit between observed and estimated 

rankings (see section 3.4), we expect goodness-of-fit measures to 

systematically overestimate the true consistency. Simulations are performed in 

order to assess this shortcoming. The findings (Table 5) show that the more 

rank reversals occur, the more the estimated fit8 overestimates the consistency 
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of the true ranking. Similar findings were found in a study of Stallmeier (1993) 

on graded paired comparisons and on rating data: Commonly used goodness-

of-fit measures consistently overestimate the true fit and sometimes led to 

measures twice as high. The fit between observed and estimated ranking can 

at best serve as an upper limit of the consistency of answers, but should not be 

regarded as an unambiguous indicator. Since all of these shortcomings are 

inherent in commonly used indices of validity and reliability, it is questionable 

whether they reflect the true State of nature correctly9. 

Corollary 1: Goodness-of-fit measures provide ambiguous Clues on the 

consistency of observed rankings. 

Table 5: „True" versus estimated goodness-of-fit using OLS regression: Mean 

Kendalls r (Standard deviation) 

Intervall classes for true goodness-of-fit (Kendalls T) 

T < .70 .70 < T <= .80 .80 < x <= .90 .90<T<= 1.0 
(n=66) (n=174) (n=329) (n=331) 

True goodness-of-fit 0.63 0.75 0.85 0.94 
(0.06) (0.03) (0.03) (0.03) 

Estimated goodness-
of-fit using OLS 0.76 0.84 0.92 0.95 

(0.09) (0.08) (0.06) (0.04) 
Mean difference b/w 
estimated and true fit 0.13 0.09 0.07 0.01 

Minimum difference -0.04 -0.03 -0.13 -0.18 
Maximum difference 0.50* 0.26 0.19 0.10 

*) In the extreme case, the true Kendalls ? equals 0.317, while the Kendalls t value based on the estimate equals 0.817 
and thus could even be considered as fulfilling minimum requirements in regard to consistency. 

3.2 Accuracy of estimated internal validity 

The goodness-of-fit is usually interpreted not only as a measure of 

respondents' consistency but also as an indicator for the internal validity of the 

derived estimate (Müller-Hagedorn et al., 1993). In this sense, goodness-of-fit is 

a two-fold proxy measure, since the objective of the estimation procedure is not 

to reshape the observed, stochastic ranking but to assess the metric Utility 
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function, which underlies the unknown error-free ranking. However, as Table 5 

shows, a reasonable fit between observed and estimated ranking may coincide 

with a bad fit between observed and error-free, true ranking. Thus, recovery of 

the observed ranking and recovery of the underlying utility function does not 

necessarily coincide. Accordingly, we expect goodness-of-fit measures to 

provide a distorted picture of the internal validity. 

The model of ranked Conjoint-data could cover more shortcomings of the 

goodness-of-fit as an indicator of internal validity. This stems from the dual 

nature of ranked data, in which rank reversals may contain valuable information 

for estimating the underlying metric utility function by revealing those rank pairs 

which are of similar utility (see section 2.5). Rank recovery can be achieved 

also by applying an estimation procedure which is not based on the model of 

ranked data. Recovery can be gained even from random data (e.g. Mullet, 

Karson, 1986; Weisenfeld, 1989). Finally, there exists a well known non-

comparability of goodness-of-fit measures across different experimental 

settings (Green, Wind, 1973; Umesh, Mishra, 1990). 

Our Simulation findings (Table 6) are in line with this. They show that there is no 

clear relationship between metric estimation accuracy and achieved rank 

recovery, measured by Kendalls t. A high number of rank inconsistencies 

decreases estimation accuracy under low-error conditions but enhances it 

under high-error conditions. This is because few reversals of highly different 

rank pairs are likely to cause a higher distortion of estimation outcomes than 

many of them, as stochastic misrankings are likely to offset each others 

influenae on estimation outcomes. 

Even if goodness-of-fit measures are used only to identify outliers they deliver 

information of questionable quality. For example, a cut-off-level of Kendalls T = 

0.8 divides the simulated ND(0,20) extended design subsample into 112 

rejected observations with an average deviation of 22.1 utility points and 188 

accepted observations with average deviation of 25.8 utility points between 

estimated and „true" utility function. 

In sum, the concept of measuring internal validity by the proxy goodness-of-fit 

has to be questioned. It can neither validate the applied utility model nor can it 
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provide a safe-guard against unreliable answers. Furthermore, methodological 

studies which base their evaluations on improved goodness-of-fit measures 

may provide misleading conclusions, since maximizing goodness-of-fit does not 

necessarily concur with achieving superior estimation accuracy. 

Corollary 2: Ranking consistency is an inadequate proxy of internal validity. 

Table 6: Comparison of Goodness-of-fit measures under different error terms 

Mean values (n=300) 
(Standard deviation) 

Preference function 

2™ main-effect design 

size of ND(0,a) error term 

cr = 0 0 = 5 CT=10 0 = 20 

extended 23"1 design 

size of ND(0,a) error term 

<7 = 0 0 = 5 0=10 a = 20 
Kendalls x 

True 1.00 
(0.00) 

0.93 
(0.07) 

0.90 
(0.08) 

0.80 
(0.13) 

1.00 
(0,00) 

0.91 
(0.06) 

0.86 
(0.07) 

0.76 
(0.09) 

OLS 0.99 
(0.02) 

0.98 
(0.03) 

0.97 
(0.05) 

0.94 
(0.07) 

0.99 
(0.01) 

0.92 
(0.05) 

0.89 
(0.06) 

0.81 
(0.07) 

LINMAP 1.00 
(0.00) 

0.98 
(0.03) 

0.97 
(0.05) 

0.94 
(0.07) 

0.99 
(0.01) 

0.94 
(0.04) 

0.90 
(0.05) 

0.84 
(0.06) 

Total deviation DEV* 
OLS 23.2 

(9.6) 
23.9 
(9.8) 

24.9 
(10.2) 

31.9 
(13.3) 

25.5 
(9.4) 

22.9 
(8.8) 

22.1 
(8.4) 

24.4 
(9.0) 

LINMAP 26.8 
(15.0) 

27.5 
(13.4) 

29.6 
(13.6) 

36.2 
(15.4) 

22.0 
(9.8) 

19.0 
(10.1) 

17.6 
(9.1) 

21.6 
(9.8) 

Korrelation between 
Kendalls x and DEV 

OLS n.a. 0.03 -0.01 -0.05 n.a. -0.21 -0.17 0.17 

LINMAP n.a. 0.12 0.00 -0.03 n.a. -0.20 -0.18 0.16 

*) The total deviation measures metric estimation accuracy and is caiculated as the sum of the absolute deviations of 
the metric variables' part-worth estimates from their true values. 

3.3 Influenae of response aualitv 

The Simulation results listed in Table 6 show that the three error-levels ND(0,5), 

ND(0,10) and ND(0,20) possess realistic dimensions: Comparing the resulting 
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estimated goodness-of-fit measures with cut-off levels applied in real-life 

conjoint applications (e.g. Mullet, Karson, 1986; Sattler, 1994), the upper error 

level seems to simulate a sample with bad consistency, the medium error level 

a reasonable one and the lower error level one with high consistency. However, 

even a medium error level of ND(0,10) leads to confidence intervals of metric 

Stimuli Utilities which can highly exceed the differences between rank pairs10. 

This indicates a high noise in empirical Conjoint-data and suggests a high 

influence of the error term on estimation accuracy. 

In contrast it can be seen from Table 6 that the accuracy of preference function 

estimates remains nearly stable across different error levels. An error term of 

up to 10 points exerts only minor influence on the quality of estimation 

outcomes11. The higher number of rank reversals, documented by lower 

Kendalls x values, do not affect average estimation accuracy. More 

interestingly, even the variations in estimation accuracy stays nearly stable. 

This shows that not only aggregated but also individual estimates possess 

similar quality at different error-levels. The evaluator should thus not be overly 

concerned about the consistency of the observed ranking. 

The estimation accuracy of the extended design even improves slightly when 

adding an error term (Table 6). This is because minor rank reversals provide 

information by revealing those rank pairs which are of similar utility. This, 

however, requires rank reversals to be detected and interpreted as such. 

Accordingly, the information of the error component can be used better in 

extended designs, because rank reversals are more likely to remain hidden 

within the main-effect design (see section 2.4). Similarly, LINMAP is better able 

to utilize the stochastic information, since it does not force observed rankings 

into interval-scaled differences (see section 3.4). 

Corollary 3: Estimation accuracy is insensitive to the size of the ND error term 

and thus to variations in the quality of responses. 

Even in case of error-free conditions, the estimated preference functions 

deviate visibly from the true ones, with the sum of part-worth estimates lying off 

from their true values by an average above 20 points. These limitations in 
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estimation accuracy can be attributed to inherent shortcomings of ranked data 

and of the applied estimation procedures. 

Furthermore, the estimation accuracy gained from the extended design does 

not deviate largely from the one gained from the main-effect design. This 

indicates that the estimation procedures do not utilize the information provided 

by the ranking in an efficient manner. Otherwise, a significantly increased 

estimation accuracy would be expected in case of applying the extended 

design, since this design delivers twice as much information and accordingly 

cuts the size of the estimation interval nearly in half (Table 2). The controversial 

findings point at shortcomings of the estimation procedures. 

3.4 Adeauacv of estimation methods 

Traditional estimation procedures deliver only point estimates. They do not 

contain information on the size of the estimation interval (which is against 

proposition 2). The estimation procedures which are based on different 

propositions about the basic principles of ranked data use different search 

algorithms and, thus, lead to divergent estimates. Thereby, neither estimation 

techniques fulfills all of the required traits postulated by the model of conjoint 

data. 

The metric estimation technique OLS assumes use of interval-scaled ranked 

data (which is against proposition 1). The observed ranks are simply interpreted 

as metric numbers. An unique Solution is achieved by minimizing the squared 

sum of deviations between estimated and observed metric values. Thus, each 

rank reversal is valued as equally important (which is against proposition 4), 

and a rank reversal encountering a skipped rank is valued as more important 

than the sum of two reversals of neighboured ranks. In minimizing the sum of 

squared errors, information from both rank reversals as well as from correctly 

ordered rank pairs determines estimation outcomes (proposition 5). In this 

regard, the OLS algorithm departs from a mere replication of the observed 

ranking (proposition 3) but may falsely diagnose rank reversals even in error-

free conditions (see Table 6). 
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LINMAP does not State assumptions on the scale properties of the ranked data 

(proposition 1). It uses the method of linear optimization to minimize the sum of 

metric corrections which have to be added to force the estimated error-free 

Stimuli values into the observed rank order. LINMAP will provide an estimate 

with no rank reversals, as long as there is such a Solution, since in this case the 

necessary metric corrections are zero and, thus, minimized. Accordingly, it is 

likely that rank reversals are falsely resolved (which is against proposition 3). 

However, even in error-free conditions a perfect fit is not necessarily achieved, 

since ties are neglected (Albers, 1984). Under error-free conditions, LINMAP 

leads (in 192 out of 300 cases) to an estimate which falsely identifies ties in the 

extended design (Table 6). 

In minimizing the metric distance of any rank reversal, LINMAP utilizes the 

information content from different distances between rank pairs (proposition 4). 

However, the distance between two correctly classified Stimuli is not analyzed 

(which is against proposition 5). Thus the algorithm ceases as soon as it finds 

one of the possible solutions. The location of this Solution within the estimation 

interval is arbitrary (which is against proposition 2) and depends on the initial 

values given by the algorithm12. 

The comparison between OLS and LINMAP reveals strength and weaknesses 

of both methods, which requires a differentiated assessment of their relative 

Performance: OLS wrongly bases on the interval-scale proposition, but correctly 

bases its evaluation on the entire ranking, i.e. it considers the patterns of metric 

differences between all rank pairs simultaneously. From this basic differences 

between both estimation procedures we can derive suppositions on their 

relative Performance. 

The interval-scale assumption causes OLS to overvalue the information 

provided from closely neighbouring ranks. Furthermore, the squared term 

causes skipping of ranks to exert a high impact on estimation outcomes. Highly 

distorted estimates are thus to be expected, if closely neighbored rank pairs 

cause skipped ranks. Accordingly, the propositions of OLS seem to be best 

-26-



satisfied in case of small designs and small error terms, because a skipping of 

closely neighbored ranks is less likely to occur under these conditions. 

LINMAP, on contrary, can be expected to underperform under the above 

mentioned conditions. In cases of relatively small numbers of rank reversals, 

LINMAP provides less determined solutions because it does not fully utilize the 

Information of correctly ordered rank pairs. This leads to an arbitrary choice of 

any Solution within the larger estimation intervals of smaller designs (section 

2.3). Furthermore, LINMAP is likely to resemble suboptimal solutions which 

avoid rank reversals but Cluster similar Stimuli against more realistic solutions, 

which encounter rank reversals of similar Stimuli and correctly classified Stimuli 

of larger metric differences. 

In order to assess the implications of these shortcomings on estimation 

Performance, our Simulation findings are split by type of preference function. 

This allows us to localize the origin of the (non-representative) Performance 

differences of the estimation methods found in the aggregated analysis (Table 

6). Since similar patterns could be found for all error levels, Table 7 

summarizes only the findings of the deterministic case for ease of reference 

(see section 2.3). These results and further detailed analyses show that the 

relative estimation accuracies of OLS and LINMAP behave as expected: 

a) The accuracy of the OLS-estimate turns out to depend highly on the 

adequacy of the interval-scale assumption. A correlation analysis between 

estimation accuracy and coefficient of Variation of rank pairs' Utility 

differences reveals a correlation coefficient of r=0.49 for OLS across all 600 

deterministic observations. There is no such correlation if LINMAP is used 

(r=0.04), because LINMAP does not rely on the interval-scale assumption. 

Correspondingly, Table 7 shows that OLS is less able to utilize the 

Information provided by additional observations, if interval-scale properties 

are not improved. Accordingiy, the accuracy of the OLS-estimate on average 

even deteriorates in extended designs, if the observations stem from 

homogenous preference functions, because interval-scale properties are not 

achieved (section 2.2). 
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b) The accuracy of the LINMAP-estimate is strongly affected by the size of the 

estimation interval (see section 4 for description of the calculus) with a 

correlation coefficient of r=0.55 across all deterministic observations. In 

contrast, the OLS-algorithm tends to center its estimate within the estimation 

interval, which leads to less dependency of estimation accuracy on the size 

of the estimation interval (r=0.33). As observed in other Simulation studies 

(Darmon, Rouzies, 1991, 1994), the LINMAP estimate underperforms in 

case of main-effect designs which possess especially large estimation 

intervals. It improves in extended designs the more the size of the estimation 

interval is reduced, and thus most in case of dominant preference functions 

(Table 2). 

Table 7: Estimation accuracy of estimation methods in the deterministic model: 

Mean deviation from true part-worth values (Standard deviation) 

Type of preference function 

main-effect design 

Total* most Least 
imp. var. imp. var. 

extended 20"1 design 

Total most least 
imp. var. imp. var. 

OLS 
Homogeneous 21.3 

(8.0) 
-0.1 

(4.4) 
-1.2 

(5.1) 
29.8 
(6.4) 

10.2 
(2.5) 

-10.5 
(2.4) 

Heterogeneous 19.0 
(7.1) 

0.9 
(5.0) 

-0.4 
(5.0) 

18.6 
(8.0) 

6.0 
(3.6) 

-6.0 
(3.3) 

Dominant 29.2 
(10.0) 

-8.4 
(6.3) 

0.0 
(3.4) 

27.0 
(9.6) 

-10.3 
(7.9) 

-2.9 
(2.9) 

LINMAP 
Homogeneous 22.3 

(10.0) 
-1.9 

(4.9) 
1.1 

(5.3) 
23.5 
(6.3) 

7.7 
(2.6) 

-8.2 
(2.4) 

Heterogeneous 19.2 
(9.0) 

-1.9 
(5.4) 

0.9 
(4.4) 

14.3 
(6.7) 

3.5 
(3.4) 

-4.0 
(3.3) 

Dominant 38.9 
(15.8) 

-15.5 
(8.4) 

3.3 
(5.4) 

28.2 
(10.1) 

-9.5 
(8.3) 

-3.5 
(2.8) 

*) The total deviation measures metric estimation accuracy and is calculated as the sum of the absolute deviations of 
the metric variables' part-worth estimates from their true values. 

In sum, the revealed shortcomings of traditional estimation methods showed to 

exert a higher influence on the accuracy of estimated preference functions than 
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either the design applied or the quality of answers being obtained. The relative 

estimation Performance can thus be related to failures in fulfilling the requisite 

traits of the model of ranked Conjoint-data. This hints towards the existence of 

systematic shortcomings of traditional estimation procedures. 

Corollary 4: Estimation accuracy can be strongly influenced by shortcomings of 

estimation procedures. 

3.5 Accuracy of estimated part-worth values 

Given that estimated part-worth values deviate from the true ones as outlined 

above, it is of interest whether there is some systematic blas in the estimates. 

Hence, Table 7 contains Information on the least and the most important 

variables. Individual-Ievel estimates are on average unbiased given that the 

mean estimate does not deviates from the mean true value. Shortcomings may 

then distort individual-level analyses, but do not affect aggregated outcomes. 

This, however, does not hold true for all variables in the experimental conditions 

applied. First of all, the dominant variable is strongly underestimated regardless 

of design applied or estimation method chosen. This is not surprising, as the 

experimental design assumes a compensatory Utility function and as it is not 

designed to provide Information on the extent of dominance. The robustness of 

conjoint-experiments against violations of the linear-additive, compensatory 

preference function thus has its limitations. It is unlikely that the influenae of a 

dominant variable is accurately estimated. 

The least important variable is underestimated, if the extended design is 

applied. Since there are analogous findings to this in other studies, it seems 

that the less important variables are systematically underestimated (Darmon, 

Rouzies, 1991, 1994; Teichert, 1996). This should cause us to reconsider the 

origin of estimation differences to self-explicated data, which typically put more 

emphasis on less important variables (e.g.: Schoemaker, Waid, 1982). It may 

well be the case, that the empirically observed differences do not only stem 

from psychological effects of the evaluation task, but that they are also caused 

by inherent methodological properties of decompositional ranked data 
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Simultaneously, the most important variables tend to be overestimated. In 

combination with the underestimation of less important variables, conjoint 

estimates tend to augment the differences in variable importance weights. This 

effect is most strongly observed in case of homogeneous preference functions. 

Here, the ränge of OLS-estimated variable importance weights exceeds those 

of the simulated „true" preference functions by 152% (LINMAP: 116%) in case 

of the extended design. While the extent of this bias is based on the chosen 

experimental conditions13, similar findings are documented for narrow 

preference function ranges in a Simulation study of Darmon, Rouzies (1989)14. 

Thus, respondents which put equal weight on each variable can hardly be 

revealed. Conjoint-estimates are likely to identify distinct preference functions 

even if respondents are indifferent between variables. 

Finally, differences between individual preference functions show to be 

overestimated as well. A comparison of the differences of individual Utility 

functions provides evidence for this systematic bias: In case of the extended 

design, the differences of the simulated „true" homogenous preference 

functions are only half as high as their estimated values15. Such patterns may 

cause distortion of aggregated analyses, e.g. clustering techniques may identify 

market segments which do not exist. 

The revealed distortions relate to the experimental conditions applied and do 

not necessarily constitute generalizable patterns. Different experimental 

conditions may lead to different distortions. However, for the conditions chosen 

it could be shown that the distortions of individual estimates do not level out on 

average but lead to systematic differences. Thus, the findings lead us to: 

Corollary 5: Shortcomings of estimation procedures can cause systematic 

differences between true and estimated utility function. 

3.6 Summarv of findings 

Table 8 provides a summary of the findings on the adequacy of traditional 

evaluation methods with the model of ranked Conjoint-data. From this it can be 

seen that LINMAP and OLS possess in many aspects complementary strengths 
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and weaknesses. Accordingly, the analyses revealed a changing superiority. 

OLS showed to perform better in case of smaller designs and smaller error 

term; while LINMAP outperformed OLS in case of larger designs and larger 

error terms. 

By and large, these traditional evaluation methods fail to meet most of the 

requisite traits postulated before. Thus the theoretical basis of the evaluation 

methods possesses major shortcomings, if the proposed model of ranked 

Conjoint-data holds true. 

Table 8: Adequacy of traditional evaluation methods with ranking model 

Propositions of ranking model for 

evaluation procedure: 

OLS-technique LINMAP goodness-of-fit 

measures 

(1) Do not rely on interval scale NO YES NO 

(2) Consider ambiguity of estimates NO NO NO 

(3) Consider missing ability to detect 

rank reversals 

(not explicitly) NO (NO) 

(4) Utilize Information of undertying 

metric pattern 

(not in füll concurrence 

to error model) 

NO 

(5) Base evaluation on entire ranking (YES, but based 

on interval scale) 

NO NO 

Simulation analyses showed two major areas of resulting shortcomings which in 

combination question the adequacy of traditional evaluation outcomes: First, 

goodness-of fit measures are likely to fail in serving as a quality measure, since 

they neither constitute an adequate proxy of internal validity (corollary 2) nor do 

they even provide unambiguous Clues on the consistency of observed rankings 

(corollary 1). Second, the estimation accuracy of traditional estimation methods 

is highly questionable. It does not depend as much on the size of the error term 

(corollary 3) but results from shortcomings of the estimation procedures 

(corollary 4), which even may cause systematic biases (corollary 5). In 

combination, the evaluator is confronted with a high degree of inherent 
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uncertainty about the determinacy of estimates gained from ranked-based 

Conjoint analysis. 

4 Possibilities for improvement 

As a main shortcoming, traditional estimation procedures do not adequately 

reflect ambiguity of effect estimates. They deliver only point estimates, which 

are not strictly derived from the model of ranked Conjoint-data but based on 

arbitrary assumptions. However, in order to justify choosing any of the possible 

solutions, it is necessary that this one possesses superior qualities over the 

others. Hence, in the following section it will be analyzed whether or not a 

superior estimate can be gained based on the Information available from the 

ranking. 

In order to extract the entire Information available from ranked Conjoint-data, 

one has to reconsider its very basic nature: One knows neither the true Utility 

function nor the true, error-free ranking, but rather observes a stochastic 

ranking. The best-fitting point estimate is thus the one which leads to the 

observed ranking with the highest probability under a given error term. A 

prerequisite for gaining a best-fitting point estimate is that the estimated Utility 

functions lead to the observed ranking with significantly different probabilities 

and, vice versa: It is necessary that an estimated preference function leads to a 

particular ranking with a higher probability than to any other ranking. 

As shown before (section 2.3), the ranked data provide estimation intervals. In 

the absense of an error term, the alternative solutions are all equaily possible, 

as long as they meet the requirements of the ranking. Thus it is impossible to 

derive a best-fitting point estimate for error-free data. The same holds true for 

stochastic data, if the error model is unknown. 

Under a given error model and size of the error term it becomes possible to 

calculate the probability that an estimate leads to the observed ranking. Hence 

a two-stage procedure can be applied: First, a stochastic estimation interval can 

be evaluated. Subsequently the probability of obtaining the observed ranking 

can be calculated for each possible Solution using the approximation method 
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described in the appendix. However, a sketch on methodological properties of 

stochastic rankings questions the utility of this approach: 

a) It is only possible to derive a best-fitting point estimate once the size of the 

error term is known. It is unlikely that one and the same Solution fits best 

under various sizes of the error term. This is due to the non-linear influence 

of the error-term. Only if one of the solutions leads to perfect interval-scaled 

differences between rank pairs, then this one may prove to be the overall 

best Solution. 

b) Preference functions may lead to a variety of possibly observed rankings 

with nearly equally high probability: According to the error model, out of all 

possibly observed rankings the deterministic estimate always has the highest 

probability of being observed16. Thus, its probability can serve as an upper 

limit to other probabilities and its inverse serves as an estimate of the 

minimum number of possibly observed rankings. Going back to the example 

of Table 4, we expect to observe, on average, more than 200 different 

rankings with less than 0.1% probability each in the extended design, given 

an medium-level error term. Thus, the probability of observing one specific 

rank order approaches zero both with increasing number of Stimuli and with 

increasing size of the error term. In this case, the probability distributions can 

not provide clues on the superiority of alternate solutions. Point estimates 

may remain arbitrary. 

Since it is unlikely to identify a best-fitting estimate, the center of gravity of each 

variables' estimation interval can be considered as an alternative, robust point 

estimate. In this case, the middle of variables' estimation intervals serves as 

point estimates for the specific variable. This conservative approach is common 

practice in Operations research (Davidson, Suppes, 1957). It limits the 

consequences of potentially wrong estimates, because the maximum possible 

estimation error is minimized. 

In order to assess the benefits ofthis procedure, stochastic estimation intervals 

are evaluated analogous to the proposed heuristic method (see section 2.3)17. 

Table 9 lists the estimation intervals found under the various error levels. From 

this it can be seen that the size of the estimation intervals is influenced only 
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slightly by the quality of answers obtained. While the random effect narrows the 

estimation interval of main-effect designs slightly, it widens the estimation 

interval in extended designs. Overall, the findings show (section 3.3) that the 

stochastic pattern does not highly influence the achievable estimation accuracy. 

This was expected. Accordingly, the consequences of estimation ambiguity on 

point estimates (section 3.6) hold true for Conjoint-analyses, independent of the 

quality of answers obtained. 

Table 9: Limits of stochastic estimation intervals 

Mean total estimation 
interval* 
(Standard deviation) 

Preference function 

2°"' main-effect design 

size of ND(0,CT) error term 

o = 0 0 = 5 c = 10 a = 20 

extended 2™ design 

size of ND(O.CT) error term 

a = 0 G = 5 a=10 a = 20 

OLS 
Homogeneous 90.7 87.4 78.1 100.2 38.0 47.7 46.2 51.4 

(19.8) (29.1) (27.3) (31.3) (8.2) (11.4) (15.8) (16.1) 

Heterogeneous 90.0 93.7 101.8 104.1 35.8 47.4 46.7 53.0 
(17.7) (21.1) (21.4) (33.0) (7.4) (11.5) (13.9) (16.0) 

Dominant 123.3 115.8 88.7 120.0 5 7.8 53.9 61.3 69.1 
(19.0) (27.0) (19.0) (27.4) (8.1) (18.2) (19.6) (22.2) 

*) The total estimation interval is calculated as the sum of the sizes of the estimation intervals of the Single variables. 

Further results show that the estimates in the center of the estimation intervals 

provide only limited improvements (Table 10). They deliver superior results in 

the main-effect design but fall to outperform LINMAP in the extended design. 

Furthermore, they do not lead to smaller variations in the accuracy of individual 

estimates. This failure can partly be explained by the simplified procedure 

applied for determining the estimation interval18. However, it also indicates that 

any point estimate within the estimation interval remains arbitrarily. 
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Table 10: Performance of center of gravity 

Mean deviation from 
true part-worth values 
(Standard deviation) 

Preference function 

2*' main-effect design 

size of ND(0,CT) error term 

er = 0 <j = 5 CT = 10 er = 20 

extended 2°"' design 

size of ND(O.G) error term 

CT = 0 CT = 5 CT = 10 CT = 20 

Total deviation* DEV 

Relative Performance** 
.compared with OLS 
.compared with LINMAP 

19.8 21.6 23.3 315 
(9.4) (10.1) (9.8) (12.6) 

+15% +10% +6% +1% 
+26% +21% +21% +13% 

18.2 19.6 20.0 24.5 
(9.0) (8.7) (8.4) (9.1) 

+29% +14% +10% +0% 
+17% -3% -14% -13% 

") The total deviation measures metric estimation accuracy and is calculated as the sum of the absolute deviations of 
the metric variables' part-worth estimates from their true values. 
**) Relative Performance is measured as percentage of decrease of mean deviation from true importance weights. 
Negative numbers indicate larger deviations of estimates than those gained from the traditional estimation methods. 

In sum, the above outlined analyses started with the ambitious objective of 

finding a Solution which leads with highest probability to the observed ranking. 

Following this, the possibility of evaluating a conservative estimate which 

minimizes the risk of misled judgment were analyzed. Even this approach, 

however, provided only a limited information gain compared over traditional 

point estimates. Thus there remains a high degree of ambiguity in point 

estimates gained from ranked Conjoint-data. 

5 Conclusions 

The model of ranked Conjoint-data and Simulation findings indicate limitations 

of ranked Conjoint-data for gaining accurate utility-function estimates. As a very 

simple, but often overlooked rule one should recall that information which is not 

provided in the ranking can not be regained by sophisticated Statistical 

procedures. 

While above analyses focused on individuat-level estimates, it is unlikely that 

improvements of estimation accuracy can be gained by applying existing 

aggregation methods. This is because the superiority of individual-level 

estimates has repeatedly been documented in empirical conjoint applications 

(e.g.: Moore, 1980, Green, Srinivasan, 1990, Krieger et al., 1996). However, 
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there are some other possibilities for improving common practice which attract 

further attention. 

Goodness-of-fit measures as Kendalls T or Spearman's p are inadequate 

proxies for assessing estimation accuracy. Improved measures should reflect 

the dual nature of Conjoint-data. They should not only rely on the ranking itself, 

but should encompass the underlying metric Stimuli Utilities as well. Validity 

measures based on the normal distributed error model should constitute a more 

rigid test of model validity than commonly used measures. The applicability of 

such an approach has still to be proven, since rankings are sequences of 

overlapping normal distributions and thus lead to infinitely small combined 

probabilities. However, looking at Single probabilities would discard valuable 

Information on joint probability. Thus, it has to be evaluated whether meaningful 

cut-off-levels can be found. 

Traditional estimation techniques as OLS or LINMAP are neither superior as 

they do not fulfill the requisite traits of the model of ranked Conjoint-data. 

A simple heuristic method of deriving point estimates on average outperforms 

the traditional estimation methods. This clearly indicates possibilities for 

improving estimate accuracy, if an estimation method could be developed 

which better fulfill the proposition of the model of ranked-Conjoint data. As an 

alternative, it is worthwhile to refine the heuristic procedure of calculating the 

center of estimation interval. 

In addition, it seems feasible to use Information above and beyond simple 

point-estimates. However, probabilistic Information are likely to overtax the 

Information processing capabilities of practitioners. They offset the advantages 

of the Conjoint method against self-explicated models, which lie especially in its 

striking appeal of easiness and understandability. Thus, at least a lower and an 

upper estimation bound should be documented in individual-level analyses. 

The stochastic Information provided by the estimation intervals should be of 

larger use in aggregated analyses than for the individual analyses studied here. 

For example, a probabilistic clustering could be applied to gain improved 

estimates for consumer segments. Furthermore, aggregated estimates, which 

regard the individual observations as replications, could utilize distribution 
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patterns of observed rankings as valuable information. They should 

simultaneously assess a shared utility function and an overall level of the error-

term. A best estimate could then be defined as the Solution, which leads to a 

distribution of possible rankings which fits best with the distribution of observed 

rankings. 

Footnotes 

1 Colberg (1977) defines metric determinacy as the coefficient of determination (i.e. the 

correlation coefficient) between „true", i.e. given, and estimated part-worth values of a utility 

function. 

2 Utility function are generated using an averaging mechanism of random part-worth values. 

Since each design is tested with only 40 different utility functions, there is only a slight chance 

that heterogeneous or dominant utility functions are enclosed in the simulations. 

3 The coefficient of determination indicates a good fit between estimated and true utility values 

even in those case where the estimated values possess little explanatory power: Assumed a 

preference function contains three dichotomous variables and consists of following true 

variable weights: 40%, 33%, 27%. Then an estimated preference function with equal variable 

weights (33,3%) delivers a coefficient of determination equals 0.975. Colberg observes for 

this type of preference function slightly lower coefficients of determination (0.9715 for 4 

Stimuli and of 0.9664 for 8 Stimuli) in his simulations. This implies that the estimates derived 

from Conjoint-simulation contained less accurate information than those build on the simple 

assumption of equal importance. 

4 Preference functions were generated as following: Three basic pattern were defined with the 

following importance weights of the five variables: Dominant preference function: 60%, 10%, 

10%, 10%, 10%; homogeneous preference function: all variables equal 20%; heterogeneous 

preference function: 30%, 25%, 20%, 15%, 10%. From these basic pattern 3*100 different 

utility functions were generated by modifying each variable by two random terms as follows: 

(a) addition of an incremental term of +/- 10% and (b) random change of sign of the 

corrected importance weights to specify the direction of part-worth values. 

5 The 3*100 error-free rank Orders of the Simulation example in section 2.1 serve as basis. 

They are corrected by the two most-likely errors, i.e. the reversals between those rank pairs 

with most similar metric utility values. Then a heuristic assessment of whether the error is 
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vistbfe or whether the faulty observations constitute a different, fully consistent ranking is 

performed: Analogeous to section 2.2, the observed rank order is recoded into multiple sets 

of metric Utility values and evaluated by Standard OLS technique. If at least one of 500 

simulations provides an estimate with perfect fit, the Observation is marked as one which 

constitutes a fully consistent ranking. 

6 Given that we observe in the example described in Figure 2 a reversal of ranks 5 and 6, then 

stimulus 5 is likely to be highly overvalued. This would lead to a significant increase of the 

probability of subsequently observing a reversal between Stimuli 5 and 7. 

7 Kenäaü's Tau is an ordinal measure which counts the number of rank reversals and sets 

them in relation to the total number of rank pairs. This implicitly assumes that each rank 

reversal is equally severe. In this regard, there is congruence with the metric measure 

Spearman's Rho, which calculates the metric correlation between observed and estimated 

ranking. Both procedures disregard differences in the quality of rank reversals, which is 

equivalent with an implicit interval-scale assumption of ranks. 

8 The estimated fit is calcuiated based on individual OLS-estimates. Since OLS does not 

maximize the fit of observed and estimated ranking, this comparison provides a lower bound 

for the estimated fit. Higher values are likely to be obtained by LINMAP. See section 3.4 for 

detailed explanations and Table 6 as example. 

9 Shortcomings of the goodness-of-fit measures are especially expected in calculating the 

predictive validity of small hold-out samples, which possess few ranking Information. 

10 A ND(0,10) error term implies that Stimuli are evaluated with 95%-confidence intervals of 

around +/- 20 Utility points around their true means. An interval of size 40 Utility points is 

equivalent to 20% of the entire normalized Utility interval (ranging from -100 to +100 utility 

points). In contrast, a rank pair accounts on average for 1/15 of the entire utility interval, thus 

rank neighbored Stimuli deviate on average by only 13,3 utility points. 

11 The analyses indicate that the error term of 20 points can be regarded as a cut-off level. 

Such an error is likely to cause not only minor rank reversals but also skipped ranks. This 

leads to a high ambiguity of estimates which rely on few rank pairs, i.e. main-effect design. 

The extended design is less affected, because different rank reversals are more likely to 

offset each others influence on estimation outcomes. 

12 Srinivasan and Shocker (1973) recognize that alternate optima may exist for their linear 

Programming technique LINMAP and that they could be enumerated. However, there is no 

evidence for any application of such a procedure. 

13 The ränge of the simulated „true" preference functions (see footnote 4) amounts on average 

13.7 utility points in case of homogeneous preference functions (23.3 for the heterogeneous 

and 58.8 for the dominant preference functions). The average bias of the estimated 
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preference function ränge can be recafculated from Table 7 by subtracting the mean 

deviation (of estimated from true part-worth values) of the least important variable from the 

mean deviation of the most important variable. In case of the homogeneous preference 

functions, the OLS-estimate overestimates the variable ränge by on average 20.7 utility 

points (= -(-10.5)+10.2), which comes to 152% of the average preference function ränge. 

Adverse effects are shown in a second study (Darmon, Rouzfes, 1994). Unfortunately, the 

authors do not comment on the revealed differences. Furthermore, their variable definitions 

are not consistent to the presented results (the ränge recovery index contains the factor 100 

in the denominator, whereas the numbers indicate that it is used in the nominator), thus it is 

unfortunately impossible to reconstruct their findings. 

The differences of individual preference functions are measured by the average Standard 

deviation of importance weights across all variables. In case of homogeneous preference 

functions and extended design, the „true" deviation amount on average 5.3 utility points, 

whereas the preference functions as estimated with OLS deviate by 11.8 utility points and 

those estimated with LINMAP by 10.2 utility points. 

Based on the normal distributed error term, each Stimuli is valued most likely with its true 

value. The Symmetrie distribution also causes joint probabilities to be highest in the middle. 

Slight modifications are necessary in order to account for rank inconsistencies of stochastic 

data: Instead of requiring a perfect rank recovery of the solutions within the estimation 

interval, they only ought to exceed a benchmark value of goodness-of-fit, which here has 

been chosen to be the fit which would be obtained if using OLS-regression. 

In order to limit the necessary Computer time for simulations, the applied algorithm either 

stopped if 500 solutions were found or if 1000 trials were unsuccessful in finding another 

Solution. This procedura, which required substantial calculation time with Standard Software, 

turned out to be insufficient to ensure a füll approximation of the estimation interval. The true 

utility function was on average enciosed only in two-third of all estimation intervals. 



Appendix: Modeling ranking probabilities 

Based on the model of a normal distributed error term centered around the 

error-free metric Stimuli Utilities, it is possible to calculate probabilities to 

observe any rank order under a given preference function and fixed size of the 

error term. This, however, requires extensive calculations of overlapping 

probability Integrals. Thus we apply an approximation by dividing the ränge of 

possible utility values into equal intervals of size 2*5 and mean value z. 

First, the expected metric utility value MV(i) are calculated as the error-free 

sum of the part-worth values of all Stimuli i. Hereby, the Stimuli are sorted by 

increasing preference with MV(i) < MV(J) and, correspondingly, rank R(i) < 

R(j) (lower ranks are defined as less preferred) for any i < j. Given a ND(0, a) 

error term, the initial unconditional probabilities of observing a stochastic utility 

value MV(i) either within an interval centered around z or lower than that are 

calculated as following: 

z-S 
p(MV(i) <Lz-5) = \NV{MV(i\a) 

and p(z-S < MV(J) £z + S) = p(MV{i) <z + S)~p(MV(i) <z-S) 

The Joint probability of observing a rank order R is calculated using an iterative 

procedure: Beginning with the least preferred stimulus of the error-free rank 

order R, the probability of observing its ranking position (given all previous 

ones) as postulated by the rank order R is approximated by the product of all 

pairwise comparisons of any rank pair R(i), R(j) with j>i: 

p(i / R) = 17 PÜ'j) 
y®/+1 

2 
with: pQ,j) = ^p(z-S<AfV(i)<z + S)*(l-p(MVU)^z + S)) nR(i) < R(j) 

: p(i,j) = 2>(z-< MV(i) <z + S)*p(MV(j) <z-S) nR(i)>R(j) 
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Subsequently, the probability distributions of the remaining Stimuli are 

recalculated based on this information. This leads to new, conditional 

probabilities which build the basis for the next Iteration step: 

p{ MV(i) <z + 5) = p{ MV(j) < z + 6) * (1 — p( MV(i) < z + S)) nÄ(i') < R(j) 

p(MV(i)<z + S) = p(MV{j)<z + S)* p(MV(i)<z + 5) nR(i)>R(j) 

This procedure is repeated from the least preferred to the most preferred 

stimulus of the error-free rank order R . Finally, the probability of observing the 

entire rank order R is calculated as the product of observing each of the n 

Stimuli in accordance to its position within the rank order R. 

/»! 
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