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A Model of Ranked Conjoint-Data and implications for Evaluation

Abstract

This article examines basic features of ranked Conjoint-data, analyzes the
adequacy of evaluation methods and proposes improvements for better utilizing
the information provided by ranked data. It is shown that commonly used
goodness-of-fit measures provide inadequate proxy measures for assessing
rank consistency and internal validity of estimates. In addition, commonly used
evaluation methods, such as OLS and LINMAP, are shown to be based on
arbitrary propositions which do not fulfill the requisite traits postulated by the
model of ranked Conjoint-data. Resulting shortcomings on estimation outcomes
are evaluated with means of simulation analyses. New insights into the
achievable estimation accuracy are gained and possibilities for improvement

are shown.
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1 Introduction

Conijoint analysis is a decompositional method of marketing research which is
widely used for retrieving consumer's utility functions. it is based on the
assumption that there are limits to the respondents” ability to articulate their
utility function. In particular, it is assumed that respondents implicitly base their
purchasing decisions on a metric, linear-additive utility function, but that they
are not able to articulate it. Thus, conjoint analysis asks respondents for a
holistic assessment of their preferences with regard to stimuli, which describe
products as combination of product characteristics (=variables) and their
respective levels. Statistical tools are applied to detect the underlying metric

utilities of the single variables (i.e. their part-worth values).

With respect to articulation accuracy, it has traditionally been argued that
reliable assessment of preferences can best be obtained in terms of rankings
(Green, Rao, 1971, Green, Srinivasan, 1978). It is assumed that higher
qualified evaluation tasks, e.g. ratings, overtax respondents’ capabilities and
thus lead to inconsistent answers. Empirical comparisons have indeed failed to
observe improved estimates when refined answering scales were used (e.g.
Wittink et al, 1989, Kalish, Nelson, 1991, Steenkamp, Wittink, 1994).
Nowadays, rating scales are more frequently employed. However, this seems to
be less a consequence of methodological critique but more of practical
considerations, such as the ease with which the method is used in telephone-
interviews, hybrid models and standardized software packages.

Conjoint analyses which are based on ranked data require a bi-directional
transformation of scale: First, respondents implicitly assess the metric utility
values of the stimuli presented. This lays the basis for the articulated ranking. In
a second step, statistical methods are applied to transform the ranking back
into a combination of estimated metric part-worth values. Finally, goodness-of-
fit is measured on the individual level as the match between estimated and
observed ranking. This analytical framework of ranked Conjoint-Data is
visualized in figure 1. The arrows indicate the sequence of the above sketched
steps being undertaken in a conjoint experiment. The shadowed areas indicate
information which remains hidden for the evaluator.
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Figure 1:  Framework of Ranked Conjoint-Data (Evaluation steps)

From this figure it can be seen that traditional estimation methods and their
goodness-of-fit measures focus on the rank order data. This constitutes the
basis for potential shortcomings for assessing the internal validity of individual-
level estimates: While the evaluator is interested in achieving estimation
accuracy between estimated and true metric part-worth values, he is only able
to measure the goodness-of-fit between observed and estimated ranking. Latter
measure may serve as a substitute of former one only if the scale
transformation can be unambiguously reversed and if the estimation methods
correctly reshape the transformation process of respondents, i.e. the model of
ranked conjoint-data. Thus, the question of fit is of central importance for
assessing both the adequacy of estimation methods and the information

content of goodness-of-fit measures.

This paper provides a more complete view of the analytical framework and
specifies a model of ranked conjoint data. The loss of information resulting from
use of rank-order data is quantified. The fit of traditionally used evaluation
methods is evaluated both in terms of meeting the model requirements and in
its consequences on the estimation accuracy (Figure 1). This enables an in-
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depth analysis on the methodological adequacy and on the internal validity of

commonly used estimation methods.

There seems to be need for this model-based approach of assessing rank-
based conjoint techniques: On the one hand, evaluators can choose between
various estimation techniques which base on different propositions, as they
range from metric to choice interpretations (Chapman, Staelin, 1982) of rank
data. On the other hand, the empirical problems of cross-validating their
outcomes are various (Bateson et al., 1987) and yet there is no clear indication
on the superiority of one estimation method. Hence, the model-based approach
should help to find a reasonable and common basis for comparison. A critical
investigation of commonly applied assumptions seems especially relevant, as
research work has already quantified the loss of information, which results in
rating scales from deviations from equal interval-sizes (Srinivasan, Basu, 1989).
In this context, a model of ranked Conjoint data should help to further assess
the possibilities and limitations of ranked-based Conjoint-application.

In particular, several propositions are presented which characterize the model
of ranked Conjoint-Data. They suggest that the bi-directional scale
transformation causes problems in achieving accurate estimates. In addition,
traditional estimation methods and their goodness-of-fit measures show to be
not in full concurrence with the model of ranked conjoint data. They neglect the
underlying pattern of ,true“ metric utilities and thus valuable information.
Implications for evaluation are demonstrated by simulations, which enable a
comparison of individual-level estimates with the otherwise unknown ,true*
metric part-worth values. Systematic and non-systematic shortcomings are
distinguished to assess implications on aggregated level evaluations. A new
heuristic evaluation procedure is presented which utilizes some of the additional
information of the model of ranked Conjoint-Data.

2 The basic features of ranked Conjoint-data

Ranked Conjoint-data do not possess a metric anchorage since they contain
only information on relative values. In addition, they are not error-free
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translations of the true metric utility values but are characterized by a stochastic

error term.

In order to allow for unambiguous calculation of rank inequalities, interval-scale
properties are widely assumed. In the following sections, the accuracy of this
assumption is tested. The ambiguities in relating preference functions to error-
free rankings and those to empirical rankings are subsequently analyzed.
Finally, a stochastic model is developed to adequately model the error term. At
each stage of analysis, propositions formulate the requisite traits of evaluation
procedures. They specify a model of ranked Conjoint-data.

2.1 Rank inequalities

Ranked based conjoint analysis does not ask directly for stimuli's utility, but
obtains relative statements on the preferability of any stimulus against all
others. The metric stimuli utilities remain ambiguous, since a metric anchorage
is missing and rank neighbours provide only lower and upper bounds which by
themselves are not fixed but depend on the location of consecutive ranks.

This has an impact on part-worth estimates which are gained by comparing the
preference values at different variable levels. If metric data were existent,
estimating contrasts could be evaluated by subtracting average preference
values (Box, Hunter, Hunter, 1978). The procedure does not work for ranked
data, since these are in mathematical terms only a set of consecutive
inequations. Instead, the ranking information can be segregated into all
possible combinations of pairwise comparisons. The resulting set of inequalities
contains all information which can utilized to determine part-worth estimates. A
ranking of n stimuli provides n(n-1)/2 inequalites. Most of them provide
consistency checks, few determine the limits of the part-worth estimates.

For example, assume a full-factorial design with three dichotomous variables
A,B and C and 2%=8 stimuli and a fully consistent rank order according to an
utility function with part-worth values for each upper level +A=40, +B=35 and
+C=25 utility points. This would lead to an error-free rank order as following:

R(-A,-B,-C)<R(-A,-B,C)<R(-A,B,-C)< R(A,-B.-C)< R(-A,B,C)<R(4,-B,C)<R(4,B,-C)<R(4,B,C)
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Out of this rank order, a total of 28 pairwise comparisons can be gained, which

contain following non-redundant inequalities (Teichert, 1994):

o The preferred levels of each variable are assessed by comparisons of stimuli
pairs which differ only in the level of a single variable, as:
R(-A,-B-C)<R(-A4,-B,C) =-C < +C
e The importance weights of each variable relative to another one are
assessed by comparisons of stimuli pairs which distinguish themselves in the

levels of exactly two variables, as: R(-A,-B,C)<R(-A,B,-C) = +C < +B;
R(-A,B,C)<R(4,-B,C) = +B < +4

« Finally, a variables’ importance weight relative to combinations of the other
variables are assessed by comparing the closest stimuli which distinguish
themselves in all three variables: R(+A,-B,-C)< R(-A,B,C) = +C > +A-B

In combination, the ranking provides the following information:
(@) 0<+C<+B<+4 and (b) A<B+C. These inequalities determine the part-
worth estimates and summarize all information which can be gained from the
above rank order. Accordingly, the part-worth values for variables” upper levels,
if normalized to 100 utiity  points, can vary  within

A €{35;49}; B €{26;48};C < {3;32} . The more variables and stimuli are included,

the more complex comparisons are possible. This limits the ambiguity of part-
worth estimates, but does not lead to single point estimates.

The inequalities convey an ambiguous relationship between ranked data and
the underlying metric utility function. To resolve this ambiguity, it is necessary to
recode the inequalities into a system of equations. This requires to formulate
assumptions on the metric distribution patterns of observed ranks. Thus, it is
commonly assumed that ranked data approximate an interval scale.

2.2 Interval-scale properties

The assumption of interval-scaled properties is widely applied but has never
been thoroughly substantiated. The literature relies either on very rough criteria,
such as correlation measures between rank ordered and interval-scaled data
(e.g. Carmone et al., 1978; Wittink, Cattin, 1981), or refers to an early research
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work by Colberg (1977). Colberg’s simulation study showed that the ,metric

“ 1 of ranked data increases with higher number of stimuli.

determinacy
Accordingly, many researchers felt confident in assuming interval-scaled
properties when utilizing extended designs with larger number of stimuli (Green,

Srinivasan, 1978, 1990).

However, the findings of Colberg have limited generalizibility due to certain
limitations of the study, such as the neglect of an error-term, the limited spread
of analyzed utility functions? and the robustness of the measurement criterion
itself’. In addition, Colberg observed contradictory findings in a few cases
(Colberg, 1977, p. 52). The most severe shortcoming, however, is the fact that
metric determinacy constitutes only an indirect proof of interval-scaled property.
As will be shown below, there are other effects which can cause a high
similarity between estimated and true part-worth values in error-free

simulations.

Ranked data approximate interval scale properties if the differences between
neighbouring stimuli either become very small or if they become uniform. The
more stimuli are included in a design with fixed endpoints, the higher the
density of observations and the smaller their average utility difference.
However, this is of limited information, since scaling of utility functions is
arbitrary. Thus, the design should select equally spaced stimuli in order to
indicate interval-scale properties. Orthogonal designs, however, balance the
variable levels and not the differences of stimuli utilities. Coincidence of scales
is not inherently guaranteed. Based on previous analysis (Teichert, 1994) , we
expect systematic differences between three types of preference functions:

» Homogeneous preference functions with similarly important variables.

» Heterogeneous preference functions with variables of different importance

weights.

e Dominant preference functions, where preferences are dominated by a

single variable.

A simulation is performed to exemplify the interval scale properties. Two design
types of differing complexity are compared: an orthogonal 2°? main-effect
design with 8 stimuli and an extended 2> design with 16 stimuli. 100 different
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utility functions are generated for each of type of preference function®.
Normalization is applied which forces the sum of absolute part-worth values to
100 utility points. These utility functions also serve as basis for consecutive

analyses in the following sections.

Table 1 provides a summary of simulation outcomes. As expected, doubling of
the number of stimuli divides the average utility difference between
neighbouring stimuli nearly in half. However, the coefficient of variation, which
relates the standard deviation to the mean value of utility differences, is
differently affected at the types of preference function:

(a) In case of homogeneous preference functions, the coefficient of variation is
increased by more than 50%, since the standard deviation of utility
differences remains nearly constant (s=17.7 in the extended design versus
s=19.6 in the main-effect design). Here, the extended design is likely to
include nearly identical stimuli, e.g. if two stimuli are differentiated from one
another only in terms of two adversary effects. Thus, homogeneous
preference functions lead to deviations from interval scale properties in the
extended design.

(b) In contrast hereto, the coefficient of variation remains stable for both the
heterogeneous (1.09 versus 0.90) and dominant preference functions (1.21
versus 0.99) This indicates that the extended design provides better interval-
scaled estimates. The variation of utility differences is reduced if more stimuli
are included, because there is a higher probability that combinations of
smaller variables offset the influence of a larger variable (Teichert, 1996).
However, if the dominant variable accounts for more than 50% of total utility,
then the ranking appears to be inherently shaped by a lexicographic
processing. Thus, a larger deviation from interval scale remains.



Table 1: Distribution of metric utility differences* between rank-pairs

2”* main-effect design extended 27 design
Type of mean  coefficient | range of mean  coefficient | range of
preference function | difference of variation ,' differences | difference of variation ,' differences

i ¥
Homogeneous 21.0 0.93 i 53.1 11.6 1.63 E 58.3
(19.6) (0.26) : (17.6) (17.7) (0.28) : (6.9)
|
Heterogeneous 22.6 0.90 : 55.5 12.2 1.09 E 458
(20.4) (0.22) ; (15.6) (13.1) (0.31) : (10.2)
] I
Dominant 25.6 0.99 ! 702 12.9 1.214 : 56.9
(25.3) (0.28) }l (21.8) (15.6) (0.37) ; (22.7)

*) The data are normalized according to common practice of Conjoint-analysis: The worst possible stimulus has an
utility value of -100; the best possible of +100.

The range of utility differences between rank-neighbouring stimuli can be
perceived as a more rigorous test for the interval-scale property. The range
amounts up to 25% or more of the total utility interval (ranging from -100 to
+100 utility points), which implies that a large proportion of the variance remains
hidden within the ranking. Thus, the approximation of ranked data to an interval
scale remains questionable. It can not simply be achieved by increasing the

number of stimuli.

This leads us to:

Proposition 1: Evaluation procedures should not blindfoldedly follow interval

scale assumptions.

2.3 Relationship between metric preference functions and rankings

Since ranked data may fail to approximate the interval scale, the inequalities
provided by ranked data can not be unambiguously translated into a set of
equations. For sets of inequalities, however, multiple solutions exist. This
constitutes a well-known problem in operations research (Stimson, 1969;
Brockhoff, 1972) and it was even recognized by early scholars of conjoint
analysis (Srinivasan, Shocker, 1973). Thus, different preference functions may

well lead to the same ranking.
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Since rankings build a set of consecutive inequalities (section 2.1), they provide
lower and upper limits for variable estimates. Within these limits all solutions
are equally feasible. Therefore, alternative preference functions form estimation
intervals. An estimation interval conditional of other variable estimates given
can be assessed by modifying the estimate for a single independent variable so
long as no rank reversal occurs. In order to obtain overall estimation intervals,
one has to replicate this procedure for all possible combinations of the other
variables. This, however, requires extensive simultaneous calculations.

An easily applicable, heuristic procedure is proposed to approximate the size of
the deterministic estimation intervals. First, the observed rank order is recoded
into multiple sets of metric utility values by adding stochastic terms to each rank
while keeping the rank order unchanged. Subsequently, standard OLS
technique is used for estimating the utility functions. The results are saved if a
fit of observed and estimated ranking is achieved and if the estimated utility
function deviates by more than 10 utility points from any of the solutions already

found.

Table 2 summarizes the findings of the simulation example. It shows that the
estimation intervals are surprisingly large. The estimation intervals of entire
preference functions account on average for more than 90 utility points in the
main-effect or 35 in the extended design. Thus, the part-worth values of two
alternative preference functions which lead to the same error-free ranking can
deviate by up to this amount. This shows that the true preference functions can
be quite different. In addition, a more detailed analysis shows that even the
ranking of variable importance weights by itself can differ substantially. For
example, an estimation interval may include solutions, in which two variables
are either the least important or the most important ones (Teichert, 1997).
Thus, a high degree of ambiguity in effect estimates has to be diagnosed.

Looking at the individual variables, the largest estimation intervals are to be
found for dominant variables. As expected (section 2.2), the information
provided by the ranking inequalities is insufficient to closely localize their true
value. Finally, the least important variable seems to be especially affected:
while the absolute value is lowest, the size of the estimation interval is still
above average. With estimation intervals of more than 18 (10) utility points it is

-11-



even likely to observe sign reversals for the least important variable which is
unlikely to posses an importance weight of more than 10 utility points. Thus it
can be concluded that the relative accuracy of variable estimates deviates
between variables with different importance weights.

Table 2: Size of deterministic estimation intervals

27 main-effect design extended 2*' design
Total* most least Total* most least

Type of preference important important important  important

function variable  variable variable  variable
Homogeneous 90.7 17.4 17.8 38.0 7.7 10.1
(19.8) (5.6) (4.9) (8.2) (1.5) (4.0)
Heterogeneous 90.0 17.9 19.2 35.7 7.3 9.1
(17.7) (6.1) (6.3) (7.4) (1.7) (3.5)
Dominant 123.3 336 231 57.8 17.5 10.6
(19.0) (5.7) (6.9) 81) (3.2) (2.7)

*) The total estimation interval is calculated as the sum of the absolute sizes of the estimation intervals of the single
variables.

In comparison between main-effect and extended designs, the size of the
deterministic estimation interval is greatly reduced by increasing the number of
stimuli. There are two reasons for this: First, the average utility difference of two
rank neighbouring stimuli becomes smaller and, accordingly, the limits for
possible solutions. Second, the more stimuli are used, the more inequalities
determine the estimate. In case of error-free data, both effects narrow the size
of the estimation interval and center it around the true mean. This explains

Colberg’s findings as outlined in section 2.2.

In sum, the interval scale properties of ranked data need to be questioned.
However, we agree with Colberg’s finding that extended designs provide - in
case of error-free data - estimates which approximate those gained from
interval-scaled data. As shown below, the differentiation between both effects is
useful, because it contains valuable information in the case of stochastic data.

Proposition 2: Evaluation procedures should take ambiguity of effect estimates

into account and thus should provide estimation intervals.
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2.4 Relationship between error-free and empirical rankings

Empirical rank data are not error-free translations of the true metric utility values
but are characterized by a stochastic error term. Thus it is unlikely that the
observed empirical rankings are identical with the ,true®, error-free rankings.
The observed ranking however is the only information provided by respondents.
Both the number and the location of rank reversals are unknown and are
implicit within the estimation procedure. This constitutes a severe problem,
because an observed ranking may be the result of different errors from different
,true” rankings and thus from different underlying utility functions.

For example, an observed faulty ranking of a ,true“ utility function may be
identical with an error-free ranking of another (and thus ,false®) utility function.
This point is elaborated through a simulation of the two most-likely errors, i.e.
the reversals between those ranks with most similar metric utility values®. Table
3 shows the (non-representative) results of this assessment. It can be seen that
the ability to detect even simple rank reversals is by no means guaranteed and
that it varies largely. This can be explained by the (non)existence of redundant
information: A rank reversal remains hidden, when it is the only inequality which
provides the specific information. Reduced designs possess small degrees of
freedom and thus next to no redundant information. Accordingly, the ability to
detect rank reversals remains low even if more than one rank reversal occurs.
In contrast, extended designs provide multiple redundant information. However,
the larger their estimation intervals are (Table 2), the less able are they to
locate single rank reversals, since single variable estimates can be realigned to
a large extent without affecting the entire rank order.
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Table 3: Ability to detect a rank reversal for different designs, types of
preference function and error-components as measured by the % of
observations which lead to a fully consistent ranking

2%% main-effect design extended 2*" design
Type of Preference Function: 1 Reversal 2 Reversals| 1 Reversal 2 Reversals
Homogeneous 80% 72% 31% 14%
Heterogeneous 88% 7% 20% 8%
Dominant 92% 85% 43% 17%

Empirical data very often could have more than one rank reversal. Thus,
inconsistencies are likely to remain unsolved. In fact, a Kendall's tau of 0.8 is
often seen as sufficient to classify the observed rankings as internally valid,
which corresponds to 3 identified reversals of rank pairs in the case of 8 stimuli
and 12 in the case of 16 stimuli. The larger the unresolvable inconsistencies,
the less determined the estimate becomes, because the location of reversals
remains ambiguous. Identified rank reversals may in fact be correctly ordered
rank pairs whereas as correctly identified rank pairs may constitute hidden rank
reversals. Such a misleading interpretation of observed rankings is more likely if
the number of possible rank reversals increases. Thus, the number of possible
Ltrue“ rankings and of underlying ,true” utility functions are increased with larger
number of stimuli.

In sum, it can be concluded that it is unlikely that all rank reversals are
accurately identified. This will inevitably lead to defects of both the estimation
procedure and of the applied goodness-of-fit measures when they rely on the fit
between estimated and observed rankings. Based on the available information
an incorrect utility function might be estimated and even a perfect fit might be

falsely diagnosed.

Proposition 3: Evaluation procedures should take the inability to detect rank
reversals into account. Therefore, they should not utilize the fit between

estimated and observed ranking as the only criterion for assessing estimation
outcomes.
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2.5 Stochastic model

According to the basic idea of conjoint analysis, respondents should rank
stimuli using a holistic and comparative assessment of stimuli utilities in
accordance with their ,true* utility function. Thus, it can be assumed that
respondents assess stimuli utilities holistically with an error term centered
around their true means and subsequently articulate their ranking in
accordance to these judgments. This can be specified by adding a normal-
distributed error term to the metric stimuli utility values. Other distributional
patterns may be thought of, however, the normal distribution is in line with a
comparable model on rating scales (Srinivasan, Basu, 1989) and can base on
the arguments elaborated therein.

Figure 2 provides an illustration of this error model, which has been intuitively
used in many simulation analyses of rank-order conjoint data (e.g. Carmone,
Green, 1981, Wittink, Cattin, 1981, Umesh, Mishra, 1990, Darmon, Rouziés
1991, 1994). It shows that the probability of observing a rank reversal can be
assessed by calculating the integral of overlapping normal distributions. Given
that the probability distributions of more than two neighbouring stimuli are
overlapping, a joint probability integral has to be calculated. This dependence
of probabilities is a point of major difference between ranked conjoint data and
rating data, in which the assessment of one stimulus would be independent of
all others (Srinivasan, Basu, 1989).

- 10%

1 g%

~ 6%

Probability

T 4%

+2%

st s2 s  s4 S5 Ser S8 - 0%

Metric order of stimuli

Figure 2:  Probability distribution of metric stimuli utilities which constitute an
observed ranking
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Different assumptions about the decision making process and the error term
are to be found in travel behavior research (Hensher, 1994): It is assumed that
respondents rank the stimuli from top to bottom by repeatedly choosing the
most preferred stimulus. The chosen stimuli is excluded and the choice
procedure is repeated to the last. Based on this model, the ,Luce and Suppes
Ranking Choice Theorem“ (Luce, Suppes, 1965) handles a ranking as a
sequence of independent choice tasks. This justifies applying the estimation
method of rank explosion (Chapman, Staelin, 1982), which decomposes ranked
data into subsets of independent choices. In contrast, our model would lead to
dependent choice tasks®, which would see the method of rank-explosion as
falsely diagnosing increased error variance in lower ranks (see analogous
empirical findings in: Ben-Akiva et al., 1992; Bradley, Daly, 1994).

Comparing both models, the Luce and Suppes approach seems to be less
adequate for describing respondents” behavior. It would require respondents to
reassess subsets of the n stimuli over and over again, leading to ¥%2*n(n+1)-1
comparisons, while simultaneously forgetting about possible misperceptions in
the former stages and neglecting already ranked stimuli. This sees respondents
as very persistent and extremely forgetful at the same time. In addition,
respondents would neither be allowed to pre-sort the stimuli nor to re-evaluate
their ranking, despite the fact that both aspects are often encouraged in
interviewers” guidelines in order to enhance the reliability of answers (e.g.
Schrader, 1990, Teichert, 1993).

The normal distributed model better reflects the hypothesized process of
respondents” assessments. In fact, Figure 2 can be viewed as an analogy to a
desirable process of respondents” assessment. The location of stimuli’s
probability distributions may be seen as the outcome of presorting the stimuli
on a continuous line. The respondent now refines his judgment by comparing
the utilites of neighbouring stimuli, considering the better and the worse
alternatives. Each stimulus is given exactly one perceived utility value and
stimuli are ranked according to their resulting order on the x-axis.
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Overall, the model of normal distributed stimuli evaluations is in accordance to
the basic idea of Conjoint-analysis. Thus, the further analysis will be based on
this error model. This allows us to calculate probabilities to observe any
possible ranking under the premise of a given metric preference function and a
distributional assumption. Since an exact calculation would require extensive
enumeration of overlapping integrals from normal distributions, we recommend

and apply an approximation shown in the appendix.

Given a normal distributed error model, rank reversals are to be expected,
when neighbouring ranks possess similar metric utilities, and they are unlikely,
when neighbouring ranks are highly different. Thus the probability of observing
rank reversals depends not only on the error term but also on the distribution of
metric stimuli utilities, which deviate between different experimental settings
(section 2.2). The true ranking has the highest probability of occurrence, when
the stimuli are distributed equally, i.e. interval-scaled. This joint probability is cut
in half, when one rank pair is nearly identical, and divided by four, when two
rank pairs are similar. Thus the probability of observing the true ranking is
highly sensitive to the number of minor stimuli differences. To provide a sketch
of this effect, probability values are calculated for the utility functions of the
simulation example. Table 4 shows that there are high variations in the
probability of observing the true ranking, which can be traced back to different
causes:

 The size of the error-term has a non-linear negative effect on the probability
of observing the ,true” ranking. The metric differences between neighbouring
ranks build threshold-values: the ranking remains unchanged as long as the
error term does not exceed the smallest utility difference of a rank pair.

e The probability of observing the ,true* ranking diminishes with increased
number of stimuli. Since a larger number of stimuli leads both to more rank
pairs and to smaller utility differences between rank neighbors, it is more
likely to observe at least one rank reversali.

* Lower probabilities are observed for the homogeneous type of preference
function. Here, the probability of observing a rank reversal is higher despite
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similar interval-scale properties, because this type possesses the highest
range of differences (Table 1) and thus is likely to contain similar rank pairs.

e The high standard deviation within the single cells shows that the casewise
distribution of metric stimuli utilities highly influences the probability of
obtaining the ,true” ranking. Thus individually different rank recoveries are to
be expected even in identical experimental settings.

Table 4: Probability of observing an error-free ranking (standard deviation)

2*2 main-effect design extended 2% design
size of ND(0,c) error term size of ND(0,o) error term
c=5 c=10 o=20 c=5 c=10 c=20
Type of preference function

Homogeneous 43.2% 18.2% 3.5% 04% <0.1% <0.1%
(20.7%) (10.1%) (1.9%)| (0.6%) (<0.1%) (<0.1%)

Heterogeneous 49.3% 22.0% 4.7% 3.8% 0.1% <0.1%
(19.4%) (9.6%) (1.9%)| (4.4%) (0.2%) (<0.1%)

Dominant 47.8% 23.7% 6.3% 4.7% 0.2% <0.1%
- (22.7%) (12.3%) (2.8%)] (5.9%) (0.3%) (<0.1%)

TOTAL 46.7%  21.3% 4.8% 2.9% 0.1%  <0.1%
(21.0%) (11.0%)  (2.5%)| (4.6%) (0.2%) (<0.1%)

In sum, both the probability of observing the true ranking and the number of
rank reversals do not only depend on the size of the error term but also on the
metric differences between neighbouring stimuli. Thus, the ranked data do not
contain all information which could be utilized by the evaluator. The stochastic
model and the pattern of possibly underlying metric stimuli utilities provide

further information.

Proposition 4: Evaluation procedures should relate the ranking information to

the probable pattern of underlying metric utilities.

Based on this proposition, evaluation methods should not only aim at
replicating the observed ranking, i.e. minimize the number of rank reversals.
Since the observed ranking should be looked at as a sequence of equally
normal-distributed comparisons of rank pairs, consideration should be given to
the joint probability of observing both the estimated correct rank pairs and the

rank reversals.
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Alternative solutions should be valued accordingly. An estimate, which
diagnoses rank reversals of similar stimuli and correctly classifies highly
different rank pairs, should be preferred to an estimate, which diagnoses a
cluster of similar stimuli without a rank reversal. The latter estimate is
questionable, since similar stimuli are likely to result in some rank reversals,
while there is a high probability of obtaining the combination of rank reversals

and correctly classified rank pairs from the first solution.

In sum, evaluation procedures should apply a two-sided optimization procedure
which maximizes the joint probability of observing the ranking: (a) observing the
correct rankings and (b) observing the rank reversals.

Proposition 5: Evaluation procedures should be based on the total probability of
observing the actual ranking, that is the probability of observing the specific

combination of rank reversals and correctly ordered rank pairs.

3 Implications for evaluation

The observed ranking constitutes the only information provided by respondents.
Accordingly, estimation procedures and their goodness-of-fit measures are
directed towards replicating the observed ranking through the estimated one. In
the following section, it will be analyzed whether or not the methods hereby
adequately reflect the propositions of the model of ranked Conjoint data.

Since the ,Luce and Suppes Ranking Choice Theorem* already showed to be
not in concurrence with the stochastic model applied here (section 2.5), the
choice-based evaluation techniques are excluded. Instead, the analyses focus
on the metric ordinary least squares regression analysis (OLS), the most often
used evaluation method (Wittink et al., 1994), which is based on a well-known
robustness (e.g. Carmone et al., 1978, Cattin, Bliemel, 1978), and on the
statistically more adequate, non-metric Linear Programming Approach LINMAP
(Shocker, Srinivasan, 1977). These two methods represent the metric and the
non-metric evaluation alternatives. The findings can be easily applied to
variations of these estimation approaches.
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Simulation analysis is applied to assess implications of revealed shortcomings
on the validity of estimates. This allows us to benchmark estimation outcomes
against otherwise unknown true metric utility functions. To be specific, (total)
estimation accuracy is measured as the (sum of) deviation(s) of estimated
variable part-worth values from their true metric part-worth values. Findings are
compared against commonly used validity proxy measures of goodness-of-fit.
Subsequently, the influence of stochastic pattern and of the methods on
estimation performance is analyzed.

3.1 _Adequacy of goodness-of-fit measures

Commonly used goodness-of-fit measures, as Kendalls © (Kendall, 1962) or
Spearman’s p, do not fulfill the propositions of the model of ranked Conjoint-
Data: They strictly rely on the ranking information (which is against proposition
4) and disregard differences in the quality of observed rank reversals (which is
against proposition 1). These procedures would be adequate if two rankings
were compared in isolation. However, since the estimated ranking is based on
estimated metric utility values, the rank comparison implicitly applies a less
sophisticated error model for the estimated metric utility values which is
equivalent to an interval-scale assumption7. This causes goodness-of-fit
measures to neglect valuable information. These measures do not differentiate
between solutions which lead to identical rank recoveries (which is against
proposition 3) but which possess different patterns of underlying metric utilities
(which is against proposition 5). Thus goodness-of-fit does not constitute an

exact measure of ranking consistency, but a robust approximation of it.

A more severe shortcoming stems from the basis of comparison: Goodness-of-
fit measures relate the observed to the estimated ranking and not the true
ranking. Since rank reversals may remain hidden (proposition 2) and estimation
procedures tend to nearly maximize the fit between observed and estimated
rankings (see section 3.4), we expect goodness-of-fit measures to
systematically overestimate the true consistency. Simulations are performed in
order to assess this shortcoming. The findings (Table 5) show that the more
rank reversals occur, the more the estimated fit® overestimates the consistency
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of the true ranking. Similar findings were found in a study of Stallmeier (1993)
on graded paired comparisons and on rating data: Commonly used goodness-
of-fit measures consistently overestimate the true fit and sometimes led to
measures twice as high. The fit between observed and estimated ranking can
at best serve as an upper limit of the consistency of answers, but should not be
regarded as an unambiguous indicator. Since all of these shortcomings are
inherent in commonly used indices of validity and reliability, it is questionable
whether they reflect the true state of nature correctly’.

Corollary 1: Goodness-of-fit measures provide ambiguous clues on the

consistency of observed rankings.

Table 5: ,True“ versus estimated goodness-of-fit using OLS regression: Mean

Kendalls r (standard deviation)

Intervall classes for true goodness-of-fit (Kendalls 1)
1<.70 J0<1<=80 .80<1<=.90 90<1<=1.0
(n=66) (n=174) (n=329) (n=331)
True goodness-of-fit 0.63 0.75 0.85 0.94
(0.06) (0.03) (0.03) (0.03)
Estimated goodness-
of-fit using OLS 0.76 0.84 0.92 0.95
___________ (0.09) {0.08) (0.06) (0.04)
Mean differencebw | T TTTTTTTTT
estimated and true fit 0.13 0.09 0.07 0.01
Minimum difference -0.04 -0.03 -0.13 -0.18
Maximum difference 0.50* 0.26 0.19 0.10

*) In the extreme case, the true Kendalls 1 equals 0.317, while the Kendalis  value based on the estimate equals 0.817
and thus could even be considered as fulfilling minimum requirements in regard to consistency.

3.2 Accuracy of estimated internal validity

The goodness-of-fit is usually interpreted not only as a measure of
respondents” consistency but also as an indicator for the internal validity of the
derived estimate (Miller-Hagedorn et al., 1993). In this sense, goodness-of-fit is
a two-fold proxy measure, since the objective of the estimation procedure is not
to reshape the observed, stochastic ranking but to assess the metric utility
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function, which underlies the unknown error-free ranking. However, as Table 5
shows, a reasonable fit between observed and estimated ranking may coincide
with a bad fit between observed and error-free, true ranking. Thus, recovery of
the observed ranking and recovery of the underlying utility function does not
necessarily coincide. Accordingly, we expect goodness-of-fit measures to
provide a distorted picture of the internal validity.

The model of ranked Conjoint-data could cover more shortcomings of the
goodness-of-fit as an indicator of internal validity. This stems from the dual
nature of ranked data, in which rank reversals may contain valuable information
for estimating the underlying metric utility function by revealing those rank pairs
which are of similar utility (see section 2.5). Rank recovery can be achieved
also by applying an estimation procedure which is not based on the model of
ranked data. Recovery can be gained even from random data (e.g. Mullet,
Karson, 1986; Weisenfeld, 1989). Finally, there exists a well known non-
comparability of goodness-of-fit measures across different experimental
settings (Green, Wind, 1973; Umesh, Mishra, 1990).

Our simulation findings (Table 6) are in line with this. They show that there is no
clear relationship between metric estimation accuracy and achieved rank
recovery, measured by Kendalls =. A high number of rank inconsistencies
decreases estimation accuracy under low-error conditions but enhances it
under high-error conditions. This is because few reversals of highly different
rank pairs are likely to cause a higher distortion of estimation outcomes than
many of them, as stochastic misrankings are likely to offset each others

influence on estimation outcomes.

Even if goodness-of-fit measures are used only to identify outliers they deliver
information of questionable quality. For example, a cut-off-level of Kendalls 1 =
0.8 divides the simulated ND(0,20) extended design subsample into 112
rejected observations with an average deviation of 22.1 utility points and 188
accepted observations with average deviation of 25.8 utility points between

estimated and ,true” utility function.

In sum, the concept of measuring internal validity by the proxy goodness-of-fit
has to be questioned. It can neither validate the applied utility model nor can it
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provide a safe-guard against unreliable answers. Furthermore, methodological
studies which base their evaluations on improved goodness-of-fit measures
may provide misleading conclusions, since maximizing goodness-of-fit does not

necessarily concur with achieving superior estimation accuracy.

Corollary 2: Ranking consistency is an inadequate proxy of internal validity.

Table 6: Comparison of Goodness-of-fit measures under different error terms

Mean values (n=300)
(standard deviation)

Preference function

2% main-effect design
size of ND(0,c) error term
=0 =5 o=10 o=20

extended 2> design
size of ND(0,0) error term
=0 go=5 =10 o=20

Kendalls 1
True

OLS

LINMAP

Total deviation DEV *
OLS

LINMAP

Korrelation between
Kendalls t and DEV
OLS

LINMAP

e e s —— — ——— A ——

b s ot e et e ———— —

100 093 090 0.80
(0.00) (0.07) (0.08 (0.13)

099 098 097 094
(0.02) (0.03) (0.05 (0.07)

100 098 097 0.94
(0.00) (0.03) (0.05) (0.07)

e e v e e . s e i i — ——— ———— " —

e e e e i e ot e e ——— ——————— —

n.a. 0.03 -001 -0.05
n.a. 0.12 0.00 -0.03

1.00 091 086 0.76
(0.00) (0.06) (0.07) (0.09)

099 092 089 081
(0.01) (0.05 (0.06) (0.07)

099 094 090 084
(0.01) (0.04) (0.05) (0.06)

e e s — —— — ———————— — — it {——

*) The total deviation measures metric estimation accuracy and is caiculated as the sum of the absolute deviations of
the metric variables” part-worth estimates from their true values.

3.3 Influence of response quality

The simulation results listed in Table 6 show that the three error-levels ND(0,5),

ND(0,10) and ND(0,20) possess realistic dimensions: Comparing the resulting
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estimated goodness-of-fit measures with cut-off levels applied in real-life
conjoint applications (e.g. Mullet, Karson, 1986; Sattler, 1994), the upper error
level seems to simulate a sample with bad consistency, the medium error level
a reasonable one and the lower error level one with high consistency. However,
even a medium error level of ND(0,10) leads to confidence intervals of metric
stimuli utilities which can highly exceed the differences between rank pairs'.
This indicates a high noise in empirical Conjoint-data and suggests a high
influence of the error term on estimation accuracy.

In contrast it can be seen from Table 6 that the accuracy of preference function
estimates remains nearly stable across different error levels. An error term of
up to 10 points exerts only minor influence on the quality of estimation
outcomes'’. The higher number of rank reversals, documented by lower
Kendalls t values, do not affect average estimation accuracy. More
interestingly, even the variations in estimation accuracy stays nearly stable.
This shows that not only aggregated but also individual estimates possess
similar quality at different error-levels. The evaluator should thus not be overly

concerned about the consistency of the observed ranking.

The estimation accuracy of the extended design even improves slightly when
adding an error term (Table 6). This is because minor rank reversals provide
information by revealing those rank pairs which are of similar utility. This,
however, requires rank reversals to be detected and interpreted as such.
Accordingly, the information of the error component can be used better in
extended designs, because rank reversals are more likely to remain hidden
within the main-effect design (see section 2.4). Similarly, LINMAP is better able
to utilize the stochastic information, since it does not force observed rankings

into interval-scaled differences (see section 3.4).

Corollary 3: Estimation accuracy is insensitive to the size of the ND error term

and thus to variations in the quality of responses.

Even in case of error-free conditions, the estimated preference functions
deviate visibly from the true ones, with the sum of part-worth estimates lying off
from their true values by an average above 20 points. These limitations in
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estimation accuracy can be attributed to inherent shortcomings of ranked data

and of the applied estimation procedures.

Furthermore, the estimation accuracy gained from the extended design does
not deviate largely from the one gained from the main-effect design. This
indicates that the estimation procedures do not utilize the information provided
by the ranking in an efficient manner. Otherwise, a significantly increased
estimation accuracy would be expected in case of applying the extended
design, since this design delivers twice as much information and accordingly
cuts the size of the estimation interval nearly in half (Table 2). The controversial
findings point at shortcomings of the estimation procedures.

3.4 Adequacy of estimation methods

Traditional estimation procedures deliver only point estimates. They do not
contain information on the size of the estimation interval (which is against
proposition 2). The estimation procedures which are based on different
propositions about the basic principles of ranked data use different search
algorithms and, thus, lead to divergent estimates. Thereby, neither estimation
techniques fulfills all of the required traits postulated by the model of conjoint
data.

The metric estimation technique OLS assumes use of interval-scaled ranked
data (which is against proposition 1). The observed ranks are simply interpreted
as metric numbers. An unique solution is achieved by minimizing the squared
sum of deviations between estimated and observed metric values. Thus, each
rank reversal is valued as equally important (which is against proposition 4),
and a rank reversal encountering a skipped rank is valued as more important
than the sum of two reversals of neighboured ranks. In minimizing the sum of
squared errors, information from both rank reversals as well as from correctly
ordered rank pairs determines estimation outcomes (proposition 5). In this
regard, the OLS algorithm departs from a mere replication of the observed
ranking (proposition 3) but may falsely diagnose rank reversals even in error-
free conditions (see Table 6).
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LINMAP does not state assumptions on the scale properties of the ranked data
(proposition 1). It uses the method of linear optimization to minimize the sum of
metric corrections which have to be added to force the estimated error-free
stimuli values into the observed rank order. LINMAP will provide an estimate
with no rank reversals, as long as there is such a solution, since in this case the
necessary metric corrections are zero and, thus, minimized. Accordingly, it is
likely that rank reversals are falsely resolved (which is against proposition 3).
However, even in error-free conditions a perfect fit is not necessarily achieved,
since ties are neglected (Albers, 1984). Under error-free conditions, LINMAP
leads (in 192 out of 300 cases) to an estimate which falsely identifies ties in the
extended design (Table 6).

In minimizing the metric distance of any rank reversal, LINMAP utilizes the
information content from different distances between rank pairs (proposition 4).
However, the distance between two correctly classified stimuli is not analyzed
(which is against proposition 5). Thus the algorithm ceases as soon as it finds
one of the possible solutions. The location of this solution within the estimation
interval is arbitrary (which is against proposition 2) and depends on the initial

values given by the algorithm‘z.

The comparison between OLS and LINMAP reveals strength and weaknesses
of both methods, which requires a differentiated assessment of their relative
performance: OLS wrongly bases on the interval-scale proposition, but correctly
bases its evaluation on the entire ranking, i.e. it considers the patterns of metric
differences between all rank pairs simultaneously. From this basic differences
between both estimation procedures we can derive suppositions on their
relative performance.

The interval-scale assumption causes OLS to overvalue the information
provided from closely neighbouring ranks. Furthermore, the squared term
causes skipping of ranks to exert a high impact on estimation outcomes. Highly
distorted estimates are thus to be expected, if closely neighbored rank pairs
cause skipped ranks. Accordingly, the propositions of OLS seem to be best
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satisfied in case of small designs and small error terms, because a skipping of
closely neighbored ranks is less likely to occur under these conditions.

LINMAP, on contrary, can be expected to underperform under the above
mentioned conditions. In cases of relatively small numbers of rank reversals,
LINMAP provides less determined solutions because it does not fully utilize the
information of correctly ordered rank pairs. This leads to an arbitrary choice of
any solution within the larger estimation intervals of smaller designs (section
2.3). Furthermore, LINMAP is likely to resemble suboptimal solutions which
avoid rank reversals but cluster similar stimuli against more realistic solutions,
which encounter rank reversals of similar stimuli and correctly classified stimuli

of larger metric differences.

In order to assess the implications of these shortcomings on estimation
performance, our simulation findings are split by type of preference function.
This allows us to localize the origin of the (non-representative) performance
differences of the estimation methods found in the aggregated analysis (Table
6). Since similar patterns could be found for all error levels, Table 7
summarizes only the findings of the deterministic case for ease of reference
(see section 2.3). These results and further detailed analyses show that the
relative estimation accuracies of OLS and LINMAP behave as expected:

a) The accuracy of the OLS-estimate turns out to depend highly on the
adequacy of the interval-scale assumption. A correlation analysis between
estimation accuracy and coefficient of variation of rank pairs’ utility
differences reveals a correlation coefficient of r=0.49 for OLS across all 600
deterministic observations. There is no such correlation if LINMAP is used
(r=0.04), because LINMAP does not rely on the interval-scale assumption.
Correspondingly, Table 7 shows that OLS is less able to utilize the
information provided by additional observations, if interval-scale properties
are not improved. Accordingly, the accuracy of the OLS-estimate on average
even deteriorates in extended designs, if the observations stem from
homogenous preference functions, because interval-scale properties are not
achieved (section 2.2).
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b) The accuracy of the LINMAP-estimate is strongly affected by the size of the

estimation interval (see section 4 for description of the calculus) with a

correlation coefficient of r=0.55 across all deterministic observations. In

contrast, the OLS-algorithm tends to center its estimate within the estimation

interval, which leads to less dependency of estimation accuracy on the size

of the estimation interval (r=0.33). As observed in other simulation studies
(Darmon, Rouziés, 1991, 1994), the LINMAP estimate underperforms in
case of main-effect designs which possess especially large estimation

intervals. it improves in extended designs the more the size of the estimation

interval is reduced, and thus most in case of dominant preference functions

(Table 2).

Table 7: Estimation accuracy of estimation methods in the deterministic model:
Mean deviation from true part-worth values (standard deviation)

Type of preference function

2% main-effect design

Total* most Least
imp. var. imp. var.

extended 2* design

Total most least
imp. var. imp. var.

OoLS
Homogeneous

Heterogeneous

Dominant

LINMAP
Homogeneous

Heterogeneous

Dominant

21.3 0.1 1.2
(8.0) (4.4) (5.1)
19.0 0.9 0.4
(7.1) (5.0) (5.0)
29.2 8.4 0.0
(10.0) (6.3) (3.4)
22.3 1.9 1.1

(10.0) (4.9 (5.3)

19.2 -1.9 0.9
(9.0 (54 (4.4)

389  -155 33
(15.8) (8.4 (5.4)

29.8 10.2 -10.5
(6.4) (2.5 (2.4)

18.6 6.0 -6.0
(8.0) 36) (33

27.0 -10.3 -2.9
(9.6) (7.9) (2.9)
23.5 7.7 -8.2
(6.3) (2.6) (2.4)

14.3 35 4.0
(6.7) (34 (3.3

28.2 -9.5 -3.5
(10.1) (8.3 (2.8)

*) The total deviation measures metric estimation accuracy and is calculated as the sum of the absolute deviations of
the metric variables’ part-worth estimates from their true values.

In sum, the revealed shortcomings of traditional estimation methods showed to

exert a higher influence on the accuracy of estimated preference functions than
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either the design applied or the quality of answers being obtained. The relative
estimation performance can thus be related to failures in fulfilling the requisite
traits of the model of ranked Conjoint-data. This hints towards the existence of

systematic shortcomings of traditional estimation procedures.

Corollary 4: Estimation accuracy can be strongly influenced by shortcomings of

estimation procedures.

3.5 _Accuracy of estimated part-worth values

Given that estimated part-worth values deviate from the true ones as outlined
above, it is of interest whether there is some systematic bias in the estimates.
Hence, Table 7 contains information on the least and the most important
variables. [ndividual-level estimates are on average unbiased given that the
mean estimate does not deviates from the mean true value. Shortcomings may
then distort individual-level analyses, but do not affect aggregated outcomes.

This, however, does not hold true for all variables in the experimental conditions
applied. First of all, the dominant variable is strongly underestimated regardless
of design applied or estimation method chosen. This is not surprising, as the
experimental design assumes a compensatory utility function and as it is not
designed to provide information on the extent of dominance. The robustness of
conjoint-experiments against violations of the linear-additive, compensatory
preference function thus has its limitations. It is unlikely that the influence of a
dominant variable is accurately estimated.

The least important variable is underestimated, if the extended design is
applied. Since there are analogous findings to this in other studies, it seems
that the less important variables are systematically underestimated (Darmon,
Rouziés, 1991, 1994; Teichert, 1996). This should cause us to reconsider the
origin of estimation differences to self-explicated data, which typically put more
emphasis on less important variables (e.g.: Schoemaker, Waid, 1982). It may
well be the case, that the empirically observed differences do not only stem
from psychological effects of the evaluation task, but that they are also caused
by inherent methodological properties of decompositional ranked data
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Simultaneously, the most important variables tend to be overestimated. In
combination with the underestimation of less important variables, conjoint
estimates tend to augment the differences in variable importance weights. This
effect is most strongly observed in case of homogeneous preference functions.
Here, the range of OLS-estimated variable importance weights exceeds those
of the simulated ,true“ preference functions by 152% (LINMAP: 116%) in case
of the extended design. While the extent of this bias is based on the chosen
experimental conditions’, similar findings are documented for narrow
preference function ranges in a simulation study of Darmon, Rouziés (1989)"*.
Thus, respondents which put equal weight on each variable can hardly be
revealed. Conjoint-estimates are likely to identify distinct preference functions
even if respondents are indifferent between variables.

Finally, differences between individual preference functions show to be
overestimated as well. A comparison of the differences of individual utility
functions provides evidence for this systematic bias: In case of the extended
design, the differences of the simulated .true® homogenous preference
functions are only half as high as their estimated values'®. Such patterns may
cause distortion of aggregated analyses, e.g. clustering techniques may identify

market segments which do not exist.

The revealed distortions relate to the experimental conditions applied and do
not necessarily constitute generalizable patterns. Different experimental
conditions may lead to different distortions. However, for the conditions chosen
it could be shown that the distortions of individual estimates do not level out on
average but lead to systematic differences. Thus, the findings lead us to:

Corollary 5: Shortcomings of estimation procedures can cause systematic

differences between true and estimated utility function.

3.6 _Summary of findings

Table 8 provides a summary of the findings on the adequacy of traditional
evaluation methods with the model of ranked Conjoint-data. From this it can be
seen that LINMAP and OLS possess in many aspects complementary strengths
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and weaknesses. Accordingly, the analyses revealed a changing superiority:
OLS showed to perform better in case of smaller designs and smaller error
term: while LINMAP outperformed OLS in case of larger designs and larger

error terms.

By and large, these traditional evaluation methods fail to meet most of the
requisite traits postulated before. Thus the theoretical basis of the evaluation
methods possesses major shortcomings, if the proposed model of ranked

Conjoint-data holds true.

Table 8: Adequacy of traditional evaluation methods with ranking model

Propositions of ranking model for OLS-technique LINMAP | goodness-of-fit
evaluation procedure: E measures
(1) Do not rely on interval scale NO YES : NO
i
(2) Consider ambiguity of estimates NO NO | NO
1
(3) Consider missing ability to detect (not explicitly) NO } (NO)
rank reversals :
|
(4) Utilize information of underlying (not in full concurrence ! NO
metric pattern to error model) ';
I
(5) Base evaluation on entire ranking | (YES, but based NO ,' NO
on interval scale) :
]

Simulation analyses showed two major areas of resulting shortcomings which in
combination question the adequacy of traditional evaluation outcomes: First,
goodness-of fit measures are likely to fail in serving as a quality measure, since
they neither constitute an adequate proxy of internal validity (corollary 2) nor do
they even provide unambiguous clues on the consistency of observed rankings
(corollary 1). Second, the estimation accuracy of traditional estimation methods
is highly questionable. It does not depend as much on the size of the error term
(corollary 3) but results from shortcomings of the estimation procedures
(corollary 4), which even may cause systematic biases (corollary 5). In
combination, the evaluator is confronted with a high degree of inherent
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uncertainty about the determinacy of estimates gained from ranked-based
Conjoint analysis.

4 Possibilities for improvement

As a main shortcoming, traditional estimation procedures do not adequately
reflect ambiguity of effect estimates. They deliver only point estimates, which
are not strictly derived from the model of ranked Conjoint-data but based on
arbitrary assumptions. However, in order to justify choosing any of the possible
solutions, it is necessary that this one possesses superior qualities over the
others. Hence, in the following section it will be analyzed whether or not a
superior estimate can be gained based on the information available from the

ranking.

In order to extract the entire information available from ranked Conjoint-data,
one has to reconsider its very basic nature: One knows neither the true utility
function nor the true, error-free ranking, but rather observes a stochastic
ranking. The best-fitting point estimate is thus the one which leads to the
observed ranking with the highest probability under a given error term. A
prerequisite for gaining a best-fitting point estimate is that the estimated utility
functions lead to the observed ranking with significantly different probabilities
and, vice versa: It is necessary that an estimated preference function leads to a
particular ranking with a higher probability than to any other ranking.

As shown before (section 2.3), the ranked data provide estimation intervals. In
the absense of an error term, the alternative solutions are all equally possible,
as long as they meet the requirements of the ranking. Thus it is impossible to
derive a best-fitting point estimate for error-free data. The same holds true for

stochastic data, if the error model is unknown.

Under a given error model and size of the error term it becomes possible to
calculate the probability that an estimate leads to the observed ranking. Hence
a two-stage procedure can be applied: First, a stochastic estimation interval can
be evaluated. Subsequently the probability of obtaining the observed ranking
can be calculated for each possible solution using the approximation method
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described in the appendix. However, a sketch on methodological properties of

stochastic rankings questions the utility of this approach:

a) It is only possible to derive a best-fitting point estimate once the size of the
error term is known. It is unlikely that one and the same solution fits best
under various sizes of the error term. This is due to the non-linear influence
of the error-term. Only if one of the solutions leads to perfect interval-scaled
differences between rank pairs, then this one may prove to be the overall

best solution.

b) Preference functions may lead to a variety of possibly observed rankings
with nearly equally high probability: According to the error model, out of all
possibly observed rankings the deterministic estimate always has the highest
probability of being observed'®. Thus, its probability can serve as an upper
limit to other probabilities and its inverse serves as an estimate of the
minimum number of possibly observed rankings. Going back to the example
of Table 4, we expect to observe, on average, more than 200 different
rankings with less than 0.1% probability each in the extended design, given
an medium-level error term. Thus, the probability of observing one specific
rank order approaches zero both with increasing number of stimuli and with
increasing size of the error term. In this case, the probability distributions can
not provide clues on the superiority of alternate solutions. Point estimates
may remain arbitrary.

Since it is unlikely to identify a best-fitting estimate, the center of gravity of each
variables” estimation interval can be considered as an alternative, robust point
estimate. In this case, the middle of variables’” estimation intervals serves as
point estimates for the specific variable. This conservative approach is common
practice in operations research (Davidson, Suppes, 1957). It limits the
consequences of potentially wrong estimates, because the maximum possible
estimation error is minimized.

In order to assess the benefits of this procedure, stochastic estimation intervals
are evaluated analogous to the proposed heuristic method (see section 2.3)".
Table 9 lists the estimation intervals found under the various error levels. From
this it can be seen that the size of the estimation intervals is influenced only
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slightly by the quality of answers obtained. While the random effect narrows the
estimation interval of main-effect designs slightly, it widens the estimation
interval in extended designs. Overall, the findings show (section 3.3) that the
stochastic pattern does not highly influence the achievable estimation accuracy.
This was expected. Accordingly, the consequences of estimation ambiguity on
point estimates (section 3.6) hold true for Conjoint-analyses, independent of the
quality of answers obtained.

Table 9: Limits of stochastic estimation intervals

Mean total estimation 27 main-effect design extended 2°" design

'(gttzrr\,’:; rd deviation) size of ND(0,c) error term size of ND(0,c) error term
=0 o0=5 0=10 06=20| 6=0 o¢6=56 o0=10 ©6=20

Preference function

OoLS

Homogeneous 907 874 781 1002| 380 477 462 514
(19.8) (29.1) (27.3) (31.3)| (82 (11.49) (158 (16.1)

Heterogeneous 90.0 937 101.8 104.1 358 474 467 530
(17.7) (21.1) (21.4) (33.0)| (7.4} (11.5 (139) (16.0)

Dominant 123.3 1158 887 120.0| 578 539 613 69.1
(19.0) (27.0) (19.0) (27.4)| (81) (182) (19.6) (22.2)

*) The total estimation interval is calculated as the sum of the sizes of the estimation intervals of the single variables.

Further results show that the estimates in the center of the estimation intervals
provide only limited improvements (Table 10). They deliver superior results in
the main-effect design but fail to outperform LINMAP in the extended design.
Furthermore, they do not lead to smaller variations in the accuracy of individual
estimates. This failure can partly be explained by the simplified procedure
8

applied for determining the estimation interval™. However, it also indicates that

any point estimate within the estimation interval remains arbitrarily.
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Table 10: Performance of center of gravity

Mean deviation from 2°% main-effect design [ extended 2° design

t(;l;:n;:;t’;;jw;gza\g:)es size of ND(0,c) error term size of ND(0,c) error term
=0 o0=5 06=10 6=20| 6=0 o=5 o=10 0=20

Preference function

Total deviation* DEV 198 216 233 315 182 196 200 245

(9.4) (10.1) (9.8} (126)| (9.00 (87) (84) (9.1)

Relative performance**
.compared with OLS +15% +10% +6% +1%} +29% +14% +10% +0%
.compared with LINMAP | +26% +21% +21% +13%| +17% 3% -14% -13%

*) The total deviation measures metric estimation accuracy and is calculated as the sum of the absolute deviations of
the metric variables” part-worth estimates from their true values.

**) Relative performance is measured as percentage of decrease of mean deviation from true importance weights.
Negative numbers indicate larger deviations of estimates than those gained from the traditional estimation methods.

In sum, the above outlined analyses started with the ambitious objective of
finding a solution which leads with highest probability to the observed ranking.
Following this, the possibility of evaluating a conservative estimate which
minimizes the risk of misled judgment were analyzed. Even this approach,
however, provided only a limited information gain compared over traditional
point estimates. Thus there remains a high degree of ambiguity in point
estimates gained from ranked Conjoint-data.

5 Conclusions

The model of ranked Conjoint-data and simulation findings indicate limitations
of ranked Conjoint-data for gaining accurate utility-function estimates. As a very
simple, but often overlooked rule one should recall that information which is not
provided in the ranking can not be regained by sophisticated statistical
procedures.

While above analyses focused on individual-level estimates, it is unlikely that
improvements of estimation accuracy can be gained by applying existing
aggregation methods. This is because the superiority of individual-level
estimates has repeatedly been documented in empirical conjoint applications
(e.g.: Moore, 1980, Green, Srinivasan, 1990, Krieger et al., 1996). However,
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there are some other possibilities for improving common practice which attract
further attention.

Goodness-of-fit measures as Kendalls t or Spearman’s p are inadequate
proxies for assessing estimation accuracy. Improved measures should reflect
the dual nature of Conjoint-data. They should not only rely on the ranking itself,
but should encompass the underlying metric stimuli utilities as well. Validity
measures based on the normal distributed error mode! should constitute a more
rigid test of model validity than commonly used measures. The applicability of
such an approach has still to be proven, since rankings are sequences of
overlapping normal distributions and thus lead to infinitely small combined
probabilities. However, looking at single probabilities would discard valuable
information on joint probability. Thus, it has to be evaluated whether meaningful

cut-off-levels can be found.

Traditional estimation techniques as OLS or LINMAP are neither superior as
they do not fulfill the requisite traits of the model of ranked Conjoint-data.
A simple heuristic method of deriving point estimates on average outperforms
the traditional estimation methods. This clearly indicates possibilities for
improving estimate accuracy, if an estimation method could be developed
which better fulfill the proposition of the model of ranked-Conjoint data. As an
alternative, it is worthwhile to refine the heuristic procedure of calculating the

center of estimation interval.

In addition, it seems feasible to use information above and beyond simple
point-estimates. However, probabilistic information are likely to overtax the
information processing capabilities of practitioners. They offset the advantages
of the Conjoint method against self-explicated models, which lie especially in its
striking appeal of easiness and understandability. Thus, at least a lower and an
upper estimation bound should be documented in individual-level analyses.

The stochastic information provided by the estimation intervals should be of
larger use in aggregated analyses than for the individual analyses studied here.
For example, a probabilistic clustering could be applied to gain improved
estimates for consumer segments. Furthermore, aggregated estimates, which

regard the individual observations as replications, could utilize distribution
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patterns of observed rankings as valuable information. They should
simultaneously assess a shared utility function and an overall level of the error-
term. A best estimate could then be defined as the solution, which leads to a
distribution of possible rankings which fits best with the distribution of observed

rankings.

Footnotes

' Colberg (1977) defines metric determinacy as the coefficient of determination (i.e. the
correlation coefficient) between ,true*, i.e. given, and estimated part-worth values of a utility

function.

2 Utility function are generated using an averaging mechanism of random part-worth values.
Since each design is tested with only 40 different utility functions, there is only a slight chance
that heterogeneous or dominant utility functions are enclosed in the simulations.

®  The coefficient of determination indicates a good fit between estimated and true utility values
even in those case where the estimated values possess little explanatory power: Assumed a
preference function contains three dichotomous variables and consists of following true
variable weights: 40%, 33%, 27%. Then an estimated preference function with equal variable
weights (33,3%) delivers a coefficient of determination equals 0.975. Colberg observes for
this type of preference function slightly lower coefficients of determination (0.9715 for 4
stimuli and of 0.9664 for 8 stimuli) in his simulations. This implies that the estimates derived
from Conjoint-simulation contained less accurate information than those build on the simple
assumption of equal importance.

Preference functions were generated as following: Three basic pattern were defined with the
following importance weights of the five variables: Dominant preference function: 60%, 10%,
10%, 10%, 10%; homogeneous preference function: all variables equal 20%; heterogeneous
preference function: 30%, 25%, 20%, 15%, 10%. From these basic pattern 3*100 different
utility functions were generated by modifying each variable by two random terms as follows:
(a) addition of an incremental term of +/- 10% and (b) random change of sign of the
corrected importance weights to specify the direction of part-worth values.

The 3*100 error-free rank orders of the simulation example in section 2.1 serve as basis.
They are corrected by the two most-likely errors, i.e. the reversals between those rank pairs
with most similar metric utility values. Then a heuristic assessment of whether the error is
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visible or whether the faulty observations constitute a different, fully consistent ranking is
performed: Analogeous to section 2.2, the observed rank order is recoded into multiple sets
of metric utility values and evaluated by standard OLS technique. If at least one of 500
simulations provides an estimate with perfect fit, the observation is marked as one which
constitutes a fully consistent ranking.

Given that we observe in the example described in Figure 2 a reversal of ranks 5 and 6, then
stimulus 5 is likely to be highly overvalued. This would lead to a significant increase of the
probability of subsequently observing a reversal between stimuli 5 and 7.

Kendall’s Tau is an ordinal measure which counts the number of rank reversals and sets
them in relation to the total number of rank pairs. This implicitly assumes that each rank
reversal is equally severe. In this regard, there is congruence with the metric measure
Spearman’s Rho, which calculates the metric correlation between observed and estimated
ranking. Both procedures disregard differences in the quality of rank reversals, which is
equivalent with an implicit interval-scale assumption of ranks.

The estimated fit is calculated based on individual OLS-estimates. Since OLS does not
maximize the fit of observed and estimated ranking, this comparison provides a lower bound
for the estimated fit. Higher values are likely to be obtained by LINMAP. See section 3.4 for
detailed explanations and Table 6 as example.

Shortcomings of the goodness-of-fit measures are especially expected in calculating the
predictive validity of small hold-out samples, which possess few ranking information.

A ND(0,10) error term implies that stimuli are evaluated with 95%-confidence intervals of
around +/- 20 utility points around their true means. An interval of size 40 utility points is
equivalent to 20% of the entire normalized utility interval (ranging from -100 to +100 utility
points). In contrast, a rank pair accounts on average for 1/15 of the entire utility interval, thus
rank neighbored stimuli deviate on average by only 13,3 utility points.

The analyses indicate that the error term of 20 points can be regarded as a cut-off level.
Such an error is likely to cause not only minor rank reversals but also skipped ranks. This
leads to a high ambiguity of estimates which rely on few rank pairs, i.e. main-effect design.
The extended design is less affected, because different rank reversals are more likely to

offset each others influence on estimation outcomes.

12 Srinivasan and Shocker (1973) recognize that alternate optima may exist for their linear

13

programming technique LINMAP and that they could be enumerated. However, there is no

evidence for any application of such a procedure.

The range of the simulated ,true" preference functions (see footnote 4) amounts on average
13.7 utility points in case of homogeneous preference functions (23.3 for the heterogeneous
and 58.8 for the dominant preference functions). The average bias of the estimated
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preference function range can be recalculated from Table 7 by subtracting the mean
deviation (of estimated from true part-worth values) of the least important variable from the
mean deviation of the most important variable. In case of the homogeneous preference
functions, the OLS-estimate overestimates the variable range by on average 20.7 utility
points (= -(-10.5)+10.2), which comes to 152% of the average preference function range.

Adverse effects are shown in a second study (Darmon, Rouziés, 1994). Unfortunately, the
authors do not comment on the revealed differences. Furthermore, their variable definitions
are not consistent to the presented resuits (the range recovery index contains the factor 100
in the denominator, whereas the numbers indicate that it is used in the nominator), thus it is
unfortunately impossible to reconstruct their findings.

The differences of individual preference functions are measured by the average standard
deviation of importance weights across all variables. In case of homogeneous preference
functions and extended design, the ,true* deviation amount on average 5.3 utility points,
whereas the preference functions as estimated with OLS deviate by 11.8 utility points and
those estimated with LINMAP by 10.2 utility points.

Based on the normal distributed error term, each stimuli is valued most likely with its true
value. The symmetric distribution also causes joint probabilities to be highest in the middle.

Slight modifications are necessary in order to account for rank inconsistencies of stochastic
data: Instead of requiring a perfect rank recovery of the solutions within the estimation
interval, they only ought to exceed a benchmark value of goodness-of-fit, which here has
been chosen to be the fit which would be obtained if using OLS-regression.

In order to limit the necessary computer time for simulations, the applied algorithm either
stopped if 500 solutions were found or if 1000 trials were unsuccessful in finding another
solution. This procedure, which required substantial calculation time with standard software,
turned out to be insufficient to ensure a full approximation of the estimation interval. The true
utility function was on average enclosed only in two-third of all estimation intervals.
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Appendix: Modeling ranking probabilities

Based on the model of a normal distributed error term centered around the
error-free metric stimuli utilities, it is possible to calculate probabilities to
observe any rank order under a given preference function and fixed size of the
error term. This, however, requires extensive calculations of overlapping
probability integrals. Thus we apply an approximation by dividing the range of

possible utility values into equal intervals of size 2*5 and mean value z.

First, the expected metric utility value M7 (i) are calculated as the error-free
sum of the part-worth values of all stimuli i. Hereby, the stimuli are sorted by
increasing preference with MV (i) < MV (j) and, correspondingly, rank R(i) <
R(j) (lower ranks are defined as less preferred) for any i < j. Given a ND(0, o)

error term, the initial unconditional probabilities of observing a stochastic utility
value MV (i) either within an interval centered around z or lower than that are

calculated as following:
-6
P(MV()$z-8)= [NV(MP(),0)
and p(z-6<MV(i)Sz+8)=p(MV([i)<z+5)—p(MV({i)<z-6)

The joint probability of observing a rank order R is calculated using an iterative
procedure: Beginning with the least preferred stimulus of the error-free rank

order R, the probability of observing its ranking position (given all previous
ones) as postulated by the rank order R is approximated by the product of all
pairwise comparisons of any rank pair R(i), R(j) with j>i:

pli/ B =] pG.j)

Jei+l

with:  p(,j) = Z pz—-86<MV()<z+8)*(1- p(MV(j)Sz+68)) NRE)<R())

D) = plz-< MV() S 2+8)* p(MV(j)S2-8) ARG)2 R()
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Subsequently, the probability distributions of the remaining stimuli are
recalculated based on this information. This leads to new, conditional
probabilities which build the basis for the next iteration step:

(MY ())<z+06)=p(MV(j)<z+8)*(1-p(MV()<z+8))  NR() < R())

p(MV(i)Sz+8)=p(MV(j)<z+6)* p(MV () <z+8) NR(@)>R())

This procedure is repeated from the least preferred to the most preferred

stimulus of the error-free rank order X . Finally, the probability of observing the
entire rank order R is calculated as the product of observing each of the n
stimuli in accordance to its position within the rank order R.

p(®)=[1pG/R)

i=l
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