
Choi, Byung-Cheon; Briskorn, Dirk

Working Paper

Project scheduling with processing time compression cost
and lateness penalties

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 651

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Choi, Byung-Cheon; Briskorn, Dirk (2010) : Project scheduling with
processing time compression cost and lateness penalties, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 651, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147569

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147569
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 651

Project Scheduling with Processing Time Compression Cost and Lateness Penalties

Byung-Cheon Choi1, Dirk Briskorn2

January 2010

1\ Chungnam National University
Department of Business

79 Daehakro, Yuseong-gu Daejeon 305-764, Korea
polytime@cnu.ac.kr

2: Christian-Albrechts-Universität zu Kiel
Institut für Betriebswirtschaftslehre

Olshausenstr. 40, 24098 Kiel, Germany
http://www.bwl.uni-kiel.de/Prod/team/briskorn/

briskorn@bwl.uni-kiel.de

Abstract

We consider a project scheduling problem where the precedence constraints graph
is an out-tree. The processing times can be compressed by using additional resources,
which causes cost and simultaneously reduces the processing times of jobs. The objective
is to minimize the sum of total lateness penalties and total compression costs where the
cost function for compressingthe processing times is linear in the amount of com pression.
The problem can be decomposed into two types of subproblems. We show that both
subproblems can be solved in polynomial time. Using these results, we show that the
main problem is solvable in polynomial time if th e number of chains in t he out-tree is
fixed.

Keywords: Project scheduling; controllable processing times; convex programming;
shortest path problem.

1 Introduction

Project scheduling is an important task in project management. A project consists of several
jobs which may be interrelated by precedence constraints. In order to complete a project,
each job has to be completed, while the precedence constraints are satisfied. Additionally,
we assume that the processing time of each job can be deceased by using additional resource
such as manpower, fuels and so on. Consequently, some costs occur from the compression of
a job's processing time.

Quite some pieces of work have been published considering project scheduling with a trade-off
between processing times and resource consumption. Elmaghraby [6] introduces the multi-
mode resource constrained project scheduling problem (MRCPSP) assuming that each job j
can be performed in several modes. Each mode m reflects a feasible combination of processing
time pj<m and resource request r,,m,fc for resource k such that the corresponding job can be
completed in pjtTn time units if rj^k units of resource k are employed. Renewable as well
as non-renewable resources are considered. The objective is to minimize the makespan while
availability of each resource is limited. Clearly, MRCPSP is strongly NP-hard as a generalization
of the well-known resource-constrained project scheduling problem which has been proven to
be strongly NP-hard by Blazewicz et al. [2].

De et al. [4] consider two variants of the discrete time-resource tradeoff problem (DTCTP)
where jobs can be performed in d ifferent modes and there is a Single non-renewable resource.
The objective of the first one is to minimize the makespan subject to resource availability,
while the objective of the second one is to minimize the total consumption of resource subject
to the constraint on the completion time of the project. De et al. [4] show that these problems
are NP-hard.

Controllable processing times have mainly been considered in the context of machine scheduling
so far. For a survey on machine scheduling with controllable processing times, we refer to
Shabtay and Steiner [8].

To the best of our knowledge, few research has been conducted on project scheduling with
continuously controllable processing times so far. Deckro et al. [5] consider a continuous
version of the DTCTP with a quadratic objective function. Lee and Lei [7] consider two types
of controllable processing times in a project scheduling environment without any precedence

1

constraints: (i) Pj = P° + Qj/xj and (ii) pj — p° j - qjXj where, in both cases, p° and qj are
constants and Xj is the amount of resources employed to carry out job j. They consider the
problem to schedule a project with controllable processing times according to (i) or (ii) where
total resource employment is restricted as above. No precedence constraints are given. The
objective is to minimize total completion time or total weighted tardiness for (i) and minimize
of maximum tardiness for (ii). Additionally, for (ii) the problem to minimize total resource
employment while providing a schedule without any tardy Jobs is considered.

The paper at hand contributes to this field of research by considering a new project scheduling
setting. Clearly, an out-tree precedence structure can arise in projects where the Start of each
job except the first job depends on the completion of exactly one predecessor. The objective
of our problem setting clearly reflects the trade-off between compressing processing times and
the employment of additional resources.

The remainder of this paper is organized as follows. In Section 2, we define the problem
formally. Section 3 shows that the problem can be decomposed into two types of subproblems.
In Sections 4 and 5, we prove that both subproblems can be solved in polynomial time by
reductions to a shortest path problem and a convex programming problem, respectively. We
prove the polynomiality of the problem with the fixed number of chains in Section 6. Finally,
we complete the paper with concluding remarks and future works.

2 Problem Definition

We define a chain c to be a inclusion-wise maximum subset of jobs ji,..., jnc such that

• jk is a predecessor of jk+i for each k = 1,..., nc — 1 and

• jobs ji,..., jnc_i have exactly one successor each.

Note that jnc may have an arbitrary number of successors and nc may equal 1. According to
this definition, each job is contained in exactly one chain.

The problem can be specified as follows. We consider a project scheduling problem such that
the processing times are compressible and the precedence constraints graph is an out-tree.
The out-tree graph consists of l chains. There is one chain whose first job has no predecessor.
The first job of remaining chains has exactly one predecessor which is the last job of another
chain.

There is a set of n* jobs {(i, 1),..., (i, rij)} in chain i, i = We specify a job by
a tuple (i,j) where i gives the chain containing the job and j specifies the position of the
job in chain i. We have an initial processing time py, a due date dij, a maximal amount
for compression Uij, a penalty for lateness Wij, and a compression cost rate Qj associated
with job = = ,rii. The objective is to find the schedule (T, x) which
minimizes

l Tli
z(T, X) = ^ ^ Wij + y])] ci,jxi,j

(ij)er i=i j=i

where T is the set of tardy jobs and x is the vector of compression Xij for each job
i = 1,..., l, j = 1,... ,m.

2

Let the unique job without any predecessor be referred to as root job. We refer to jobs with
no successor as leaf jobs. Let a chain be called the root (leaf) chain if it contains a root (leaf)
job. Furthermore, let chain i be referred to as the chain of level h, if th e number of chains is
h in the path from the root job to the last job of chain i. Note that since the path between
two jobs is unique in a tree graph, the level of each chain is uniquely defined.

For example, consider the project network depicted in Figure 1. We have eight chains. Clearly,
each but the last node in a chain and the root node has exactly one outgoing arc and exactly
one ingoing arc, respectively. Since job (1,1) is the root job, chain 1 is the root chain, and
since jobs (3,n3), (4,n4), (6,n6), (7,n7), and (8,n8) are leaf jobs, chains 3, 4, 6, 7, and 8
are the leaf chains. The level of chain 1 is 1, the level of chains 2 and 5 is 2, and the level of
the remaining chains is 3.

Figure 1: Example for project network

We refer to a job (i, j) completed exactly at its due date, that is Qj = ditj, as a JIT job.

3 Decomposition

Consider an optimal schedule. We identify

• the first and the last JIT jobs a, and bi, respectively, in chain i, i — 1,..., l, if t here are
at least two JIT jobs in chain i,

• the unique JIT job bi in chain i, i = 1,..., l, if t here is exactly one JIT job in chain i,
and

• those chains having no JIT job at all.

3

Figure 2 provides an exemplary project network. In e ach chain the first and the last JIT job is
drawn boldly if th ey exist. For example, chain 1 has exactly one JIT job, chain 4 has two JIT
jobs, and chain 5 has none.

We decompose the project network as follows. We disconnect each of the JIT jobs described
above from its immediate successors by dropping arc i —> j from the network where i and
j are a JIT job and one of its immediate successors, respectively. For the original problem
provided in Figure 2 we outline the decomposed network in Figure 3.

Then, we obtain two types of subproblems.

1. The first type of subproblems consists of a Single chain such that the last job is a JIT
job or a leaf job in the original problem and the first job has a release date. We refer
to this type of subproblem as SubChain in the following. Let chain i' be the chain such
that job () is the immediate predecessor of job (i, 1).

(a) If chain i is neither the root chain nor a leaf chain, job is no JIT job, and
chain i has at least two JIT jobs, then we obtain an instance of SubChain consisting
of the set of jobs {(%, a* + 1),..., (i,bi)}.

Figure 2: Original project network

Figure 3: Decomposed Subproblems for the original project network

4

(b) If chain i is neither the root chain nor a leaf chain, job () is a JIT job, and
chain i has at least one JIT job, then we obtain an instance of SubChain consisting
of the set of jobs {(i, 1),.. ,,(i,bi)}.

(c) If the root chain 1 has at least one JIT job, then we obtain an instance of SubChain
consisting of the set of jobs {(1,1),..., (1, i»i)}-

(d) If chain i is a leaf chain, job (f, 7v) is no JIT job, and i has at least one JIT
job, then we obtain an instance of SubChain consisting of the set of jobs {(i, a, +
1),..., (i, rii)} and {(*, +1),..., (i, n*)} if i has at least two JIT jobs and i has
exactly one JIT job.

(e) If c hain i is a leaf chain and job (i', n̂) is a JIT job, then we obtain an instance
of SubChain consisting of the set of jobs {(i, 1),..., (i,nj)}.

(f) If no ne of conditions (a) to (e) holds for chain i, then we do not obtain an instance
of SubChain from chain i.

The release time of the first job of the instance of each SubChain is derived from the
fixed completion time of its immediate predecessor. The completion time of the last job
is fixed if i t is chosen to be a JIT job. Note that the root job is released at time zero. In
the example provided by Figures 2 and 3 we have an instance of SubChain according to
(la) which consists of jobs (4, 2), (4,3), and (4,4). Furthermore, we have an instance of
SubChain according to (lb) consisting of job (7,1) only. Jobs (1,1) and (1,2) form an
instance of SubChain according to (lc). Additionally, we have one subproblem of type
(ld) which consists of jobs (7,2) and (7,3) and one subproblem of type (le) consisting
of jobs (8,1) and (8,2).

2. Nodes not contained in an instance of SubChain derived according to (la) to (le) are
contained in an instance of the second type of subproblems. We refer to this type
of subproblem as SubOutTree in the following. SubOutTree is a special case of the
underlying problem. Note that since arc i —* j in the original problem is dropped if a nd
only if i is one of the chosen JIT jobs, each of the chosen JIT jobs must be a leaf job
in one of the subproblems. In an instance of SubOutTree the root node has a release
time which is derived as in (1). Each leaf node is either a JIT job or a leaf job in the
underlying original problem. Note that there may be subproblems of type (2) having no
JIT job at all by choice of the first and the last JIT jobs for each chain in the underlying
original problem. In t he example provided by Figures 2 and 3 we have one subproblem
of type (2) without any JIT job which consists of jobs (2,3), (5,1), (5,2), (6,1), and
(6,2). Furthermore, we have one subproblem with JIT jobs consisting of jobs (1,3),
(2,1), (2,2), (3,1), (3,2), and (4,1).

By the decomposition scheme outlined above we derive two types of subproblems having a
special structure. Of course, we do not know the set of JIT jobs in advance. However,
there are O (n2l) feasible choices for the set of the first and the last JIT jobs in each chain,
i.e., {ai:bi\i = 1,2,...,/}. Hence, the overall procedure to solve the problem at hand is
to enumerate all feasible choices. Based on each feasible choice we decompose the original
problem to no more than 0(1) subproblems which belong to SubChain or SubOutTree. After
solving each subproblem, we can easily obtain an explicit optimal schedule for the original
problem and the choice at hand. It remains to show that both, SubOutTree and SubChain,
can be solved in polynomial time. Consequently, in Sections 4 and 5 we present polynomial
time algorithms to solve SubOutTree and SubChain, respectively.

5

4 Polynomiality of SubOutTree

In t his section we consider an instance of SubOutTree. As outlined in S ection 3 only leaf jobs
may be JIT jobs here. Note that, however, a leaf job may not be a JIT job. Let Sij be the
set of job (i, j) and its successors.

Lemma 1. If t here does not exist any JIT job in Sij, then jobs belonging to Sij are uncom-
pressed in each optimal schedule.

Proof Consider an optimal schedule (T*,x*) such that job a is compressed, where a G Sij.
Then, let (T, x) be a new schedule constructed by letting xa = x*a — e where e > 0 is sufficiently
small and Xj = Xj for j ^ a. Clearly, since there exists no JIT job in {(z, j)} U Sjj, the set of
tardy jobs does not change, i.e., T = T*. Thus,

n
z(T, z) = + CjXj = z(T*,x*) - cae < z(T\ x*).

j£T j=1

This is a contradiction. •

By Lemma 1 we can drop the jobs in Sij from the problem instance for each job (i,j) such
that Sij does not contain a JIT job. Henceforth, we assume that each leaf job is a JIT job.
For simplicity of notations, let chain 1 be the root chain and L be the set of leaf chains in the
instance of SubOutTree.

4.1 Optimality Properties

Furthermore, we say that job (i,j) is partially compressed if 0 < xid < uitj and introduce

• di representing the due date of the leaf job in chain i, i G L,

• Ai and Bi representing the sets of compressed jobs and uncompressed jobs in chain i,
that is, Xij > 0 if and only if (i, j) G Ait i = 1,..., l, and xitj = 0 if and only if
(hj) e Bi, i = l,...,l,

• ^max = Taax{cid\j € A} and c%in = mm{cid\j e BJ, i =

Theorem 1. There exists an optimal schedule (T*,x*) such that for i = 1,2,..., I,

1 rAi < rBi J" ^max — min'

2. max{j\(i,j) G Auchj = c^n} < min{j|(i, j) G Bi,^ = c^ax}, and

3. There is no more than one partially compressed jobs in Ax.

Proof (1) Consider an optimal schedule (T*,x*) such that c^n < cfor 1 < k < l. This
implies that there exist jobs (k, a) G Ak and (k, b) G Bk such that Ck,a > Ck,b- We can
construct a new schedule (T, x) by setting

• £fc,a = x*k a - e,

6

• xk,b = e. and

• xKj = xlj for Vj $ {a, 6},

where e > 0 is sufficiently small. Since there is no JIT job among jobs between (k, a) and
(fc, b), the set of tardy jobs does not change, i.e., T = T*. Since cfei0 > cfc)6,

i «i
Z(T> x) = Wi'i + 22 E = Z(T*'x") ~ (et,. - Cfc,b)e < z(T*, X*).

(ij)6T t=l j=l

This is a contradiction, which completes the proof of (1).

(2) Consider an optimal schedule (T*,x*) such that a > b where a = max{j|(fc,j) €
Ak,ckj = cjj„} and b = min{j\(k,j) e Bk,cKj = c^} for 1 < k < l. Note that
Cfc,0 = Then, we can construct a new schedule (T,x) by setting

• xKa = xl,a-e,

• xk,b = e. and

• xkJ = x*k j for j £ {a, b}.

where e = min{x£a, uktb}- Since jobs (k,b),... ,(k,a — 1) are completed earlier, we have
T CT*. Thus, since ck,a = ck,b,

l Tli
z(T,x)= ^2 ""y + EE^y <z(T*,x*) - (ck<a- cktb)e = z{T*,x*).

(i,j)€T i=l j=1

If e = x*k a, jobs (k,a) and (k,b) belong to Bk and Ak, respectively, in (T,x). If e =
uk>b < both jobs, (k,a) and (k,b), belong to Ak in (T,x). We can apply this argument
repeatedly until condition (2) is fulfilled. This completes the proof of (2).

(3) Consider an optimal schedule (T*, x*) with two partially compressed jobs (k, a) and (k, b),
a < b, in c hain k for 1 < k < l. Let two new schedules (T, x) and (T',x') be constructed by
setting

• xk,a = xl,a + e

• xk,b = xk,b ~ e<

* X'k,b = Xk,b + 6 and

* Xk,j = x'k,j = xkJ for vi £ {«' b)

where e > 0 is sufficiently small. Note that the set of tardy jobs does not change, i.e.,
T = T' = T*. Then,

z(T,x) — z (T*,x*) + [ca - cb)e and z(T',x') = z(T*,x*) - (ca - cb)e.

If ca — C b 7^ 0, then min{z(T,x),z(T',x')} < z(T*,x*) which is a contradiction. Hence,
ca Cb — 0. Then, we can construct a new schedule (T",x") by s etting

7

• X'k,a = Xk,a + f

• Xk,b = X*k,b -

• XkJ = Xk,j f0r £ {0,6},

where e = min{iifcia - x*ka,x*kb}. Then, in (T",x"), either = ukia or = 0 or both.
Note that jobs (k,a),... ,(k,b — 1) are completed earlier in (T",x") than in (T*,x*) and,
therefore, we have T" C T*. Since ck,a = ckfb, £|.=1 Z"=i = £«=i E"=i ciJxh-
Thus, we have

We can apply this procedure repeatedly until the number of partially compressed jobs in chain
k becomes less than or equal to one. This completes the proof. •

4.2 Reduction to Convex Programming Problem

Based on Theorem 1, we will reduce SubOutTree to the convex programming problem. For
this reduction, the following notations will be used.

• Let cTj = (aj(l),ai(2),...,o'i(7ii)) represent the sequence of jobs in chain i in order of
non-decreasing compression cost, that is, 1 < Ui(j) < n< and Cji<Tiy) < ciitr<(j+1) for
1 < 3 < Tii — 1, i = 1,2,..., I. Let ties in compression cost be broken by low er job index.

• Let öi be the total amount of compression in chain i, i = 1, 2,..., I.

• Let Hi be the set of chains in the path from root job to leaf job for i G L.

Due to Theorem 1 we have

• xiMi) = uwü) f°r 0 < j < \Ai\ — 1,

• 0 < ^ ui,cri(|Aj|) \A-i| > 0,

• XWU) = 0 f0r \M + 1 - ^ ni> and

• Öi = X)j=l Xi,aU) = Sj=l

for each 1 < i < 1. Then, the total compression cost of chain i becomes fi(x)dx, where

for x = 0

i(j) f°r 1 < x — 1 ui,<n(j')> 1 — j — ni-

Then, the total compression cost F(Si,..., <5;) ca n be calculated as

J_ rgi

m-{«wo ^•' (1)

F{5x,... ,81) = ^2 [fi(x)dx. (2)
i-1

8

Lemma 2. F(8X,... ,81) is a convex function.

Proof Clearly, fi(x)dx is a convex function due to (1) and the definition of ait i = 1,I.
Since F(5i,..., 8i) is the sum of convex functions, it is a convex function. •

Since all leaf jobs are JIT jobs due to Lemma 1,

"A
E Z %=* (3)
h£Hi j—1 heHi

must hold for each i G L. Hence, we can obtain the value of F(8\, in an optimal
schedule by solving the convex program (4).

min F(81,S2,...,Si)
s-t- J2heHi HZj=iP0h,j ~ J2heHi = di for i G L (4)

0 < 8i < i = l,2,...,l,

However, there may exist multiple optimal solutions in t he convex program (4). Let S* be the
set of optimal solutions to the convex program (4). Let {pi(l), p{(2), ...,#(<%)} be the set of
chains consisting of the path from the root chain to leaf chain i for i G L such that

• pi(1) and pi(cti) are the root chain and the leaf chain, respectively,

• Chain pi(k) is the successor of chain Pi{k') if k ' < k.

Lemma 3. There exist a Solution (81,8%, ...,8*) G S* such that for an arbitrary Solution
(5I,52, G S *,

k k
& = 1,2,forieL.

3=1 j=1

Proof Let 8l = (6},... ,8j) G S* and 82 = (8f,... ,öf) € S* be optimal solutions to (4)
such that there is a path from the root chain to leaf chain i and a chain Pi(h), h = l,...,cti,
where

k k h fi
J2 Slu) Z Z sl(i) for each k = 1,2- -»h - 1 and £ < E 5W
3=1 j=1 j=1 j=l

Then, obviously, < 82^hy Since total compression in each path from the root chain to
a leaf chain is fixed, there exists a set of chains {hx,..., hg} such that

• for each path from pi(h) to a leaf chain which is a successor of pi(h) there is exactly
one chain in {hi,..., hg} which is in this path and

• i =

Since solutions 81 and 82 are optimal solutions to the convex program (4), there exist jobs
(pi(h),ß0) in chain pi(h) and job (hg,,ßa,) in chain hg>, g' = 1,... ,g, such that

9

• CPi(h),0O — Sg'=1 chg/,ßg/,

• xli(h),ßo < uPi(h),ßo and > 0, g' = 1,2, where x\4 is the compression
amount of job (i, j) in 51.

IMow we can modify ö1 by increasing xlPi{h)ß0 by e and decreasing ß t, g' = 1,... ,g, by t
where

e = min{uwWiÄJ - x\{h)tPo, min{x\glßgl,g' = 1,..., 9}}.

By repeatedly applying the procedure above we can construct (<f*,..., Jf). •

It is easy to see that (6*, ...,<5;*) minimizes total tardiness penalty cost among all solutions in
S*. We can obtain (fj, ...,5/) by solving the convex program (4) such that costs are perturbed
according to

Cij = (1 + e' 2 = 1,2,...,/, j = (5)

where is the perturbed compression cost rate of job (i, j) and e > 0 is sufficiently small, /
is the number of chains, and & is the level of chain i. Note that the number of the optimal
Solution satisfying Lemma 3 is unique.

Theorem 2. A Solution which minimizes total tardiness penalty among solutions in S* can
be found in polynomial time.

Proof It follows immediately from Lemma 3 and the polynomiality of convex program (4),
see Boyd [3], •

4.3 Algorithm for SubOutTree

Based on Theorems 1 and 2, the following algorithm is obtained.

Algorithm SubOutTree

1. After perturbing citj according to (5), obtain (5*, <5|, •••, 8f) by s olving the convex pro­
gram (4).

2. For each chain i, i = 1,..., I, compress jobs according to the Order cr f such that the total
compression amount of chain i equals <5*. That is, set

= m^n maX ^0, 8i — Ui,CTi(j')

3. Find the tardy jobs in chain i, 1 < i < l. Let T* be the set of the tardy jobs in chain i.

4. The total objective value becomes whj + 2Di=i 52"'= 1 xtj-

Step (1) can be done in polynomial time according to Theorem 2. Steps 2 and 3, clearly, can
be done in polynomial time. Thus, Algorithm SubOutTree finishes in polynomial time.

Theorem 3. SubOutTree is polynomially solvable.

Proof The optimal schedule can be obtained by Algorithm SubOutTree, which runs in poly­
nomial time. The proof is complete. •

10

5 Polynomiality of SubChain

In this section we consider an instance of SubChain. Since the precedence constraints form
a single chain, the notation can be simplified by dropping chain index i, that is, we write
j, p°j, dj, Uj, wj, xj, and cj instead of (i,j), p0ij: ditj, ui:j, wiijt xitj, and cy, respectively.
Without loss of generality, we assume that the number of jobs in the instance of SubChain
under consideration is n.

5.1 Optimality Conditions

Suppose that there exists an optimal schedule such that {&i,..., km} is the set of JIT jobs
where ki < • • • < km. For simplicity, let ko = 0 be a dummy job with PQ = 0, IÜQ = 0 and
dg = ri where r\ is the release time of the first job. A feasible choice of {&%,..., km} implies
that

+ E£=*1_1+IP° -dk" and (G)

dkq-l + YljLkq-i+l (Pj ~ Ui) ^ dkq (7)

must hold for q = 1,2For the clarity of explanation, we introduce the following
notation. For q — 1, let Ag and Bq be the sets of compressed jobs and uncompressed
jobs in {/c9_i+l,..., kg}, and let, furthermore, = max{cj|j 6 Aq} and c^in = min{cj|j G
Bq}-

Theorem 4. There exists an optimal schedule (T*,x*) such that

1- Cmax 5: Crnin' Q = m>

2. ifc&ax = c%n, then max{j|j G Aq,Cj = c^in} < min{j|j G Bq,Cj = c^L}, q =
1,..., m,

3. the number of a partially compressed jobs in Aq is at most one, q = 1,..., m,

4. the jobs in {km + 1,..., n} are uncompressed.

Proof Properties (1), (2), and (3) can be proven as Theorem 1, and Property (4) can be
proven as Lemma 1. •

According to Theorem 4, there exists an optimal schedule such that the total cost of com-
pressing the jobs between JIT jobs Ar9_i and kqt q = 1, is minimum. Note that there is
exactly one schedule satisfying (1) to (4) in Theorem 4 for a given choice of {fci, ...,km}.

5.2 Reduction to Shortest Path Problem

In Se ction 5.1, we derived optimality conditions assuming that the set of JIT jobs is known in
advance. It remains to find the set of JIT jobs in an optimal schedule. Based on Theorem 4,
this problem can be resolved by reducing it to the shortest path problem.

Lemma 4. SubChain can be reduced to the shortest path problem.

11

Proof Given an instance of SubChain, we construct an instance of the shortest path problem
as follows. For 0 < a < n + 1, let N(a) denote a node. Let iV(0) and N(n + 1) be the
source node and the sink node, respectively.

Arc (N(a), N(ß)), 0 < a < ß < n, exists if jo bs a and ß can be JIT jobs such that no job
between a and ß is a JIT job according to (6) and (7). Additionally, for each a, 0 < a < n,
arc (N(a), N(n + 1)) exists.

Length caß of arc (N(a),N(ß)), 1 < a < ß < n, is calculated by the following procedure.
The total compression

ß
5 = da+ P0j~dJ3

j=a+l

is derived from jobs a and ß being JIT jobs. Now, it is easy to derive compression Xj of job
j, a + 1 < j < ß according to Theorem 4. Then, since the Start time of job a + 1 is known,
we can find the corresponding set Taß of tardy jobs easily. Finally, let

ß
ca,ß = ^2 W3 53 CiXV

j=a+1

Note that by Theorem 4, length of edge (N(a),N(ß)) represents the total costs occurring
for jobs {a + 1,... ,ß} if jo bs a and ß are consecutive JIT jobs in a schedule.

Length co,Q of arc (./V(O), N(a)), 1 < a < n, is calculated by a similar procedure. Then,
length co,a represents the total costs occurring for jobs {l,.,.,a} if jo b a is the first JIT jobs
in a schedule.

Length ca<n+i of arc (N(a), N(n +1)), 0 < a < n, is derived by scheduling jobs a +1,... ,n
without any compression. The Start time of job #4-1 is zero if a = 0 and da otherwise. Note
that by T heorem 4, length c^+i represents the total costs occurring for jobs {a + 1
if j ob a is the last JIT jobs in a schedule.

Finding a shortest path corresponds to choosing JIT jobs by visiting nodes. Moreover, the
length of the shortest path is corresponding to the sum of total compression costs and total
tardiness penalties in an optimal schedule. This completes the proof. •

Theorem 5. SubChain can be solved in 0(n3).

Proof The number of arcs in graph in derived from an instance of SubCham is 0(n2) according
to Lemma 4. Hence, we can find the shortest path by the algorithm in Ahuja et al. [1] in
0(n2) time. The construction of the graph can be done in C>(ra3) time since computation of
cost of each arc takes 0(n). This completes the proof. •

6 Conclusions and Future Works

We consider a project scheduling problem with controllable processing times such that the
precedence constraints graph is an out-tree. The objective is to minimize the sum of total
compression costs and total tardiness penalties. The problem can be decomposed into two
of subproblems, SubOutTree and SubChain, based on the set of the first and last JIT jobs

12

in each chain. We prove polynomiality of both subproblems by reducing them to the convex
Programming and the shortest path problem, respectively. Based on these results, we prove
polynomiality of the problem when the number of chains is f ixed.

It is still open to resolve the computational complexity of the problem with an arbitrary number
of chains. Also, it is interesting to explore whether the techniques suggested in this paper can
be applied to problems differing from the one at hand by precedence constraints structures,
e.g., the problem with in-tree precedence constraints graph.

References

[1] R.A. Ahuja, K. Mehlhorn, J.B. Orlin, and R.E. Tarjan. Faster algorithms for t he shortest
path problem. Journal of the Association for Computing Machinery 37:213-223, 1990.

[2] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5:11-24, 1983.

[3] T. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge University PRess, 2004.

[4] P. De, J. Dünne, J.B, Ghosh, and C.E. Wells. Complexity of the discrete time-cost trade-off
problem for p roject networks. Operations Research, 45:302-306, 1997.

[5] R.F. Dercker, J.E. Hebert, W.A. Verdini, P.H. Grimsrud, and S. Venkateshwar. Nonlinear
time/cost trade-off models in project management. Computers & Industrial Engineering,
28(2):219-229, 1995.

[6] S.E. Elaghraby. Activity Networks: Project planning and control by network models. Wiley,
New York, 1977.

[7] C.Y. Lee, and L. Lei. Multiple-project scheduling with controllable project duration and
hard resource constraint: some solvable cases. Annais of Operations Research, 102:287-307,
2001.

[8] D. Shabtay, and G. Steiner. A survey of scheduling with controllable processing times.
Discrete Applied Mathematics, 155:1643-1666, 2007.

13

