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Abstract 

Single round robin t ournaments are a well known class of s ports leagues schedules. 
We consider leagues with a set T of n teams where n is even. Costs are associated to 
each possible match. Since matches are carried out at one of both opponents venues 
matches may be forbidden in certain periods due to unavailability of stadiums. The 
goal is to find the minimum cost tournament among those having no forbidden match. 
We employ a Lagrangian relaxation approach in order to obtain tight lower bounds. 
Moreover, we de velop a cost-oriented repair mechanism yielding a feasible tournament 
schedule to each Solution of the relaxed problem. 

Keywords: Sports league scheduling, Lagrangian approach, round robin tourna­
ments, Stadium availability, forb idden matches 

1 Introduction 

Single round robin tournaments (RRT) cover a huge variety of different typ es of sports league 
schedules arising in practica. A set of teams T, |T| = n even, competes such that each team 
plays exactly once against each other team, either at home or away. Such a match is specified 
by the team i playing at home, the team j playing away, and the period p it is carried out 
in. In the following a match is identified by triple (i,j,p), i € T, j e T, j ^ i, and p € P. 
Furthermore, each team i G T has to play exactly once in each period and, hence, we have a 
set P of n — 1 periods altogether. 

An illustrative example for a Single RRT where n = 6 is given in Table 1. Here i-j denotes 
that team i plays at home against team j. 

1 2 3 4 5 

match 1 3-4 4-5 2-4 4-6 6-5 
match 2 5-2 1-3 5-1 3-5 4-1 
match 3 6-1 2-6 6-3 1-2 2-3 

Table 1: Single RRT for n = 6 

A double RRT is a tournament where each team plays against each other team exactly once 
at home. As in Single RRTs each team plays exactly once per period. Thus, \P\ = 2n - 2. 
A mirrored double RRT has the additional property that team i plays at home against team 
j in period p, p < n — 1, if and only if team i plays at j's home against team j in period 
p + n — 1. Note that a Single RRT can represent a mirrored double RRT. Hence, it is sufficient 
to schedule a Single RRT after projecting all requirements involving periods n to 2n — 2 on 
periods 1 to n — 1. 

Since each match has to be carried out at one of both opponents' venues we have to take 
Stadium availability into consideration. A Stadium can be unavailable in a specific period for 
various reasons. There may be other events such as sports events or concerts. Moreover, the 
Stadium may be closed due to a construction site. Even if it is not closed there may be a strong 
Intention to have no match during construction because seating capacity may be reduced. 

1 



Furthermore, it may be suitable to forbid certain matches. The league's planners might be 
interested in having a lot of thrilling matches at the end of the season. Then, it would be 
appropriate to forbid matches between top level teams for the first periods. Moreover, a 
team can prefer to have a match against a top level team or against a traditional rival in 
specific periods. This, again, can be due to changing seating capacity or can be due to an 
other festival taking place in the the same area. Whatever the reason is, of course the set of 
possible matches can be reduced by forbidding all those matches that are not favored. 

Models for sports league scheduling have been the topic of extensive research, see Briskorn 
and Drexl [6] for example. A whole stream of papers is based on the analogy between sports 
league scheduling and edge coloring of complete graphs. Examples are de Werra [11, 12, 13, 
14, 15], de Werra et al. [16], and Drexl and Knust [17]. Brucker and Knust [8] and Drexl and 
Knust [17] analyze the relationship between sports league scheduling and multi-mode resource 
constrained project scheduling. Briskorn et al. [7] line out the similarity of structures of Single 
RRTs and planar three index assignments. Bartsch [2], Bartsch et al. [3], and Schreuder 
[26, 27] examine particular formulations. 

Extensive overviews of literature on sports leagues scheduling in the context of Operations 
research are provided by Knust [24] and Rasmussen and Trick [25]. 

The remainder of this paper is organized as follows. In Section 2 we define a sports league 
scheduling problem and represent it by means of IP models. In Section 3 we develop a 
Lagrangian approach to obtain lower bounds for the sports league scheduling problem defined 
in Section 2. In Section 4 we line out computational results and, finally, Section 5 contains 
conclusions. 

2 The models 

We associate costs cijiP with the match of team i at home against team j in period p. Cost 
Cjjp of a specific match are rather abstract here. However, there are several applications of 
qjp with practica! relevance, see Briskorn and Drexl [6]: 

• Teams may have preferences to play at home in certain periods as outlined in Section 
1. We can easily express preferences through CiiJiP. Let pri)P 6 R be team i's preference 
to play at home (priiP > 0) or to play away (pri<p < 0), respectively, in period p. A 
preference prip is stronger than a preference pri>iP> if \ pn,p\ > \Pri',p'\- Then, costs can 
be defined as CjJiP = —pr^p + prjtP, for example. Here, cost CijtP represents neglected 
preferences of i and j in p decreased by fulfilled ones if this specific match is carried out 
in period p. 

• Naturally, maximizing the overall attendance is a major objective of the Organizers. We 
can represent the economic value of the estimated attendance by c ijiP. Let estimated 
attendances m«j,p be given for each match of team i at home against team j in period 
p. For a given pair of teams i,j estimated attendances might be time-dependent, that is 
eahj,p 7^ eai,j,p' might hold for p p'. This is due to other events in t he same region or 
the current season, for example. We can define costs as CjJ)P = —eoy,p and obtain the 
objective to maximize total tournament's attendance. Equivalently, ciJ)P can be defined 
as the number of seats remaining empty in the Stadium of i if i plays at home against 
3 in V-
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• Often, a Stadium is owned by some public agency and teams have to pay a fee for each 
match taking place in t hat particular Stadium. This fee might depend on season, day of 
the week, and time when the match takes place as well as competing events. We can 
represent it by CijtP and obtain the objective to minimize the sum of fees to be paid. 

We define the cost of a tournament as the sum of arranged matches' costs and consider the 
problem to find a minimum cost Single RRT considering Stadium availabilities and forbidden 
matches. Let F C (T x T x P) be the set of forbidden matches such that (i,j,p) G F if 
(•i,j,p) is forbidden. Furthermore, let Hp and Ap be the subset of teams that cannot play 
away and at home, respectively, in period p. Note that a team cannot play away in period 
p < n— 1 if i t cannot play at home in period p+n — 1 in a mirrored double RRT. We represent 
the problem at hand by an IP model that is referred to as RRT in the following. 

z = min E E E ci,j,pxi,j,p (1) 
ieT jeT\{i} peP 

s.t. ^ ] (Xi,j,p + xj,i,p) = 1 ViJ G T, i < j (2) 
p€P 

y ] (Xi,j,P + Xj,i,p) = 1 Vi eT,peP (3) 

xi,j,p = 0 v (i,j,p) G F (4) 
Xi,j,P = 0 Vi G Ap,pe P (5) 
xi,j,p = 0 V j G Hp,p G P (6) 
Xi,j,P G {0,1} V i,j G T,i^j,p G P (7) 

We employ binary variables i G T, j G T, j p G P, equaling 1 if an d only if t eam i 
plays at home against team j in period p. Then, objective function (1) represents the goal of 
cost minimization. Constraints (2) and (3) assure the single RRT structure. Note that we can 
formulate (2) as lower-equal or greater-equal constraint without changing the Solution space 
of RRT. Restriction (4) prevents forbidden matches from being carried out. Constraints (5) 
and (6) ensure matches are arranged only if t he corresponding Stadium is available. 

A major issue when solving the problem specified by RRT in a branch-and-bound scheme 
is the weak lower bound z provided by the LP relaxation, see Briskorn [5] and Briskorn and 
Drexl [6]. Model RRT exhibits a structure such that Lagrangian relaxation is appropriate 
to be applied. Therefore, it is suitable to obtain tighter lower bounds by using a Lagrangian 
relaxation approach. Note that both constraints, (2) and (3), are candidate for relaxation. 
In the following we discuss both alternative relaxations and outline why relaxing (2) is more 
promising. 

First, we employ Lagrangian multipliers Afj-, i,j € T, i < j in order to relax constraint (2) 
yields the following model RRT\. 

It is obvious from (10) and (3) to (7) that RRT\ can be decomposed into n — 1 isolated 
models RRTp G P. 

Then, we represent the Lagrangian dual of RRT as RRTLD. 

3 



RRTX 

m^n yi °<-ü,pxi,j,p+yi yi (^—53 ^ ̂ .«.p)) w 
»6T j€T\{i} peP i£T j€T,i<j \ p6P J 

= min ^ ^ ^ 1 f ^ 1 ((ci,i,p — k,j) xi,j,p + (cj,i,p ~ ^i,j) xj,i,p) j (9) 
»er j<=T,i<j \ P&P ) 

~ y v ^ ] Aj,j + min ^ ^ ~ ^i,j) Xi,j,P~^~ ( Cj,i,P ~ ~ ^i, j)Xj,i,p) (10) 
ieT jeT,i<j peP »er jeT,i<j 

s.t. (3), (4), (5), (6), (7) 

RRT%° 

ZX = min ^ ^ ^ ] {{Ci,j,po ~ ^i,j) xi,j,po ^ (Cj,i,PO ~ ^i,j) Xj<hPo) (11) 
«ET je r,i<j 

S-t- (xi,j,P0 + xj,i,pa) = 1 Vi er (12) 
jZT\{i} 

Xi,j,PO = 0 V (i,j,Po) € F (13) 
Xi,j,P0 = 0 V i € APo (14) 
Xi,j,P0 = 0 (15) 
Xi,j,P0 e {o, 1} (16) 

It is well known that 

Z < J&D < 

Note that RRT%° is a minimum weight perfect matching problem (details for the reduction 
can be found in Section 3.1.2) that is solvable in polynomial time. Furthermore, it is well 
known that is does not have the integrality property and, therefore, depending on the cost 
function c the provided lower bound is stronger than the one of the LP relaxation, that is 
z < zLD. 

So far we did not specify the domain of multipliers Aitj, i < j. The domain depends on the 
formulation of constraint (2). If we formulate (2) as equation or lower-equal or greater-equal 
constraint, then we have Ay € K, Ajj < 0, or Aitj > 0, respectively, for all i < j. While all 
three formulations are equivalent in RRT narrowing down the domain of the multiplier may 
influence the convergence of a subgradient optimization process which we employ in order to 
solve RRTLD. 

Instead of (2) we can relax (3) employing Lagrangian multipliers ßitP, i eT.pe P and obtain 
model RRTß. As we can see, RRTß decomposes into an isolated optimization problem for 
each pair i and j, i < j, of teams. Then, the problem is to choose period pij for each pair of 
teams, where 
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RRTID 

*LD = mBX 53 Kj + Ylzla 

\i£T j£T,i<j pep 
(17) 

Pij = arg min ({aJiP - - pjiP | (i, j, p) £ F,i & Ap,j <£ H p} U 

{Ci,i,p — ßi,p ~ ßj,p | (j: h v) Fl i 0 -<4p; ^ 0 ^p}) • 

Although this subproblem is trivial to solve in linear time there is no advantage over the bound 
provided by the LP relaxation since RRTß, obviously, has the integrality property, see Fischer 
[19] for further details. 

RRTp 

z = min 52 53 53 53 53 ̂ i,p ( ^ — 53 (Xi<j>p xi,i,p) I (18) 
»er je.T\{i} pep ierpep \ jeT\{i} / 

= 53 53 ^m*n53 53 ^ _ ^.p_ ^,p) x*,j,p (19) 
ier P6P ieT jgr\{»}peP 

s.t. (2),(4),(5),(6),(7) 

After discussing both possible relaxations we choose to relax constraint (2) and develop an 
approach yielding lower and upper bounds for model RRTLD in Section 3. 

3 The Lagrangian Approach 

The Lagrangian approach to solve RRTLD follows the classic subgradient method, see Geof-
frion [20] and Held et al. [21] for details, and can be sketched as follows. First, we initialize 
the Lagrangian multipliers Ajj. Then, we repeat the following steps until a stopping criterion 
is fulfilled. We solve the relaxed model RRT\ by solving RRT% for each p € P yielding a 
lower bound of the optimal objective value to RRT. According to the obtained Solution we 
modify the Lagrangian multipliers. Details of these steps are described in Section 3.1. Fur-
thermore, we employ a heuristic procedure that is described in Section 3.2 to obtain feasible 
solutions and, thus, upper bounds. We abort the procedure if we reach an optimal Solution or 
the update of multipliers does not have any effect anymore (see Section 3.1 for details). The 
scheme is s ketched as algorithm "Subgradient Optimization". 

3.1 Subgradient Optimization 

3.1.1 Multiplier Update 

The easiest way - and still a very common approach - to initialize the Lagrangian multipliers 
is to simply let A<j = 0 for each i < j. We employ a procedure to level cost cijiP — Aij 
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Algorithm 1 Subgradient Optimization 
Input: an instance I of RRT 
Output: a lower bound LB, an upper bound UB and a feasible Solution bestSol for I 

initialize 
while STOPPING-CRITERION not reached do 

construct RRT\ 
for all p G P do 

solve RRTPX 

end for 
construct currentSol 
if Solution is feasible then 

update LB, UB, bestSol 
STOP 

eise 
currentSol = feasibleSolution(currentSol) 
update LB, UB, Xitj, bestSol 
if UB = LB then 

STOP 
end if 

end if 
end while 

somewhat. By setting 

Kj = minci.j.p V% < j 
ptr 

we obtain at least one period for each pair of teams where the resulting cost CijtP — Ai;j equals 
zero while CjJiP — Aitj > 0 in general. It turns out that the later approach slightly accelerates 
convergence of subgradient optimization and, thus, we employ it for computational evaluation. 
However, as stated in Beasley [4] the choice of initial multipliers is not expected to have a 
major influence on convergence and, thus, we restrict ourseives to this rather straightforward 
method. 

For the multiplier update in each Iteration we adapt the approach proposed by Baker and 
Sheasby [1] and Crowder [10] to our model formulation. We consider the best upper bound z 
obtained so far and the objective value zk of the relaxed model RRTXk corresponding to the 
current Lagrangian multipliers in Iteration k. Let x* • be the value of XijiP in the Solution to 
RRT\k. We then compute the step size tk for th e multiplier update in Iteration k as 

Sier ̂ 2jer,i<j (l SpeP (xi,j,P + xj,i,p)j 

where sk is obtained by s etting s° = 2 and sk = sfc-1/2 when no improvement in the lower 
bound has been reached in the last 10 iterations and sk = s*-1 otherwise. 

We employ exponential smoothing to the direction of the multiplier update, that is 
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dlj - (! _ a)dtj 1 + « (! ~ (xtj,P + 4i,p)) ' 

where 0 < a < 1. Note that ot = 1 is equivalent to no usage of smoothirig. The actual 
update of the Lagrangian multiplier is done according to 

AjJ'-Ak + tX, 

for each i < j. 

One stopping condition for the subgradient optimization depends on the update function. We 
stop the procedure when sk drops below 10-6 since then the multipliers are almost not changed 
at all. 

3.1.2 Solving the Subproblem 

As mentioned in Section 2 the Lagrangian subproblem RRT\ decomposes into n — 1 isolated 
Problems RRT%, p G P. Problem RRT% can be described as finding a minimum cost match-
day. Here, a matchday is specified as a set of n/2 matches where each team contributes 
exactly once. We can further reduce the number of variables by fixing variables to zero such 
that there is no more than one free variable for each pair of teams i and j, i < j. If both, 
(i,j,p) and (j,i,p), are allowed regarding (13), (14), and (15), then we set XijtP = 0 if 
°ij,p > cjt*iP or = ci,i,p and i < j. In the following we refer to variables that are not 
fixed to zero (due to Stadium unavailability, forbidden matches, or the consideration of costs 
as seen above) as free variables. 

In th e following we consider a directed graph Gp = (F, Ap) on \V\ = n nodes for each period 
p. We have Ap = {(i,j) | XjtitP is a free variable}. Nodes and arcs correspond to teams and 
matches, respectively. An arc from i to j represents a match between i and j at j's home in 
period p. 

Figure 1: Example Graph for n = 6 

Figure 1 illustrates a graph representing the structure of an examplary Lagrangian subproblem 
RRTl for n = 6 teams and period p on the left hand side. We have Hp = {4,6}, Ap = {2, 5}, 
and {(l,4,p), (2,4,p)} C F. The set of arcs in the graph on the left hand side specifies the 
set of possible matches in period p (considering Stadium unavailability and forbidden matches). 
Furthermore, we have arc weights c-jp = aijiP - 0n the riSht hand side of 
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Figure 1 we see the reduced set of possible matches corresponding to the free variables. Teams 
1 and 3 can meet in both venues. Since both matches are equivalent regarding feasibility of 
a Solution we cän restrict ourselves to the cheaper one of both matches. Assuming that 
4,1 ,p < 4,3,P we obtain the graph on the right hand side of Figure 1. 

Note that the set of free variables does not depend on the Lagrangian multipliers since 

Ci,j,p ^ Cj,i,p """ ^min(i,j),max(i,j) < Cj,i,p ^ °i,j,p < Cj,i,p-

In all what follows we denote the cost related to teams i and j and period p as CijiP and 
If there is no free variable related to teams i and j and period p, then we set ciiJ)P = CjtiiP = oo. 
Consequently, the reduced cost in the Lagrangian subproblem is denoted by and c^ip. 

After reducing the number of free variables finding a minimum cost matchday reduces to 
finding a minimum cost perfect matching in this graph. A perfect matching A' is a subset of 
arcs such that each node is incident to exactly one arc in A' and corresponds to a matchday. 
We can solve the minimum cost perfect matching problem by the famous blossom algorithm 
by Edmonds [18]. For an survey on efficient implementations we refer to Cook and Rohe [9], 
However, since efficiency of this algorithm is not a critical issue for problem sizes we consider 
here we employ the classic blossom algorithm. 

3.2 Upper Bounds 

In e ach Iteration of the subgradient optimization procedure we obtain a set of n — 1 perfect 
matchings (or 1-factors). Note that a feasible Solution to our problem RRT corresponds to 
a ordered 1-factorization of the complete graph on n nodes. A 1-factorization is a partition 
of the edges of a graph into 1-factors as a Single RRT is a partition of all matches between 
teams of T into matchdays. An o rdered 1-factorization is a 1 -factorization where the 1-factors 
are given in a specific order which corresponds to the assignment of matchdays to periods. 
Hence, in order to generate a f easible Solution based on the optimal Solution of the Lagrangian 
subproblem we have to transform an ordered set of n —1 1-factors (matchdays) into an ordered 
1-factorization (a single RRT). 

Hilton and Johnson [22] develop a technique to transform a set of factors of the complete 
graph Kn into a factorization of the same graph. They assume they have a number of t < n—1 
subgraphs and each subgraph Gg, 1 < g < t, is a Zg-edge-connected and kg-regulär where 
kg > lg. Hilton and Johnson [22] provide a procedure to deterministically transform these 
subgraphs into a factorization F of Kn such that |.F| = t and each factor Fit 1 < g < t, 
is lg-edge-connected and kg-regular. Note that this exactly Covers the requirements for a 
construction of feasible Solution: in our case we have k9 = 1, lg = 0, and, therefore, t = n — 1. 

In th e following we develop a procedure that is based on the mechanism of Hilton and Johnson 
[22] and is extended for cost orientation and consideration of runtime requirements. First, 
we translate the basic foundings of Hilton and Johnson [22] into the terms of our problem 
formulation in order to keep the paper self-contained. Moreover, we can simplify the notation 
since we consider a special case of the setting in Hilton and Johnson [22], here. 

Having a Solution to the Lagrangian subproblem we denote the number of matches between two 
teams i and j, i < j, by xhi = Xij = X)pep + zy,i,P). Suppose we have xitj ^ 1 for at 
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least one pair i and j (otherwise, we have a feasible Solution) and let f = J2i J2j>i \x%,j ~ 1| 
be the total violation of constraint (2). Since the number of matches of each team i is 
Y2jxj,i = " — 1 (due to the perfect matching structure) we can always find three distinct 
teams i, j, and k such that > 1 and xi>k = 0. Then, we can find a sequence of distinct 
teams (fc0, • • •, km), 1 < m < n - 1, such that 

• k0 = k 

• Xi,h3,Pg — 1 and xjtks+1,ps = 1 for each 0 < g < m - 1 and pg G P and 

• xi,km = 0 °r xj,km > 1-

In piain english, each team and its right neighbour in t he sequence are the opponents of i and 
j, respectively, in an arbitrary but fixed period. Additionally, the last team in the sequence 
is a team that does not play against % at all or does play against j at least twice (possible 
both). The essential step of the method is to exchange the opponents in each period pg, 
0 < g < m — 1. Note that pg ^ pgt if g ^ g' since the sequence of teams is distinct. It 
is obvious that we obtain an other set of n — 1 matchdays. Moreover, Hilton and Johnson 
[22] prove that /' < / — 2 if f is the total violation of constraint (2) after the step. More 
accurately, if xijkrn = 0 and xjtkm > 1, then /' = / - 4 and if e ither xitkm = 0 or xjikm > 1, 
then f' — f — 2. Note that / < n(n — 2) and, therefore, we obtain a Single RRT after no 
more than n{n — 2)/2 steps. 

Now, we illustrate the procedure described above on a small example. We consider n = 6 
teams and let us suppose we have obtained the matchdays as given in the set labelled "Initial" 
(in increasing order of periods) in Figure 2. Here, we have 3%,3 = a%,5 = 24,6 = 2, x2,s = 
^3,4 = £3,6 = 0 and Xij = 1 for each other i < j and, therefore, / = 6. Moreover, i = 3, 
j = 2, and k = 5 fulfills the requirements described earlier. We can find the sequence of teams 
(5,1,6) that obviously has the properties stated above. Note that x3)6 = 0 but x2ß = 1. For 
this sequence we have p0 = 5 and pi = 4. Accordingly, the first step is to exchange opponents 
of teams i = 3 and j = 2 in both, periods pQ = 5 and p\ = 4. We obtain the set of matchdays 
labelled "Step 1". Now, x2,3 = £4,6 — 2, x2ß — x 3)4 = 0 and Xij = 1 for each other i < j 
and, therefore, f = 4. The total number of violation has dropped by 2 which corresponds to 
the fact that either xitkm = 0 or Xjtkm > 1 for the sequence found. Since /' > 0 we have to 
iterate the procedure at least once more. We can find i = 2, j = 4, and k = 3 now. We find 
sequence (3,6) where p0 = 2. Here, x2ß = 0 and 2:4,6 = 2. The second step is to exchange 
the opponents of i = 2 and j = 4 in period po = 2. We obtain the set of matchdays labelled 
"Step 2" forming a Single RRT. This means the total number of violations has dropped by 4 
which corresponds to the fact that xi<km = 0 or Xjtkm > 1 for the second sequence. 

Hilton and Johnson [22] prove that a sequence as described above exists for each pair of teams 
1 and j such that a third team k exists with xitk > 1 and Xjtk = 0. In th e following we propose 
an approach to find a cost efficient sequence (ko,...,km) in terms of the costs implied by 
switching opponents in periods p0,... ,pm-1- First, we consider the case where we already 
chose a pair of teams i and j and consider them fixed in the following. Note that we can 
express the cost related to each pair of teams kg and kg+x, 0 < g < n - 2 in t he sequence as 

Ckg,kg+1 — ^j11 {Cmm{j,kg}tTnzx{j,kg},p + Crain{iifcs+1})max{jifcs+1}ip— (20) 
p£pk'g,kg+1 

(Cmin{i',fcs},max{i,fts},p ~ Cmin{j,fcs+i},max{j',A;g+i},p) } , 
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where Pk^kg+1 denotes the set of periods where the opponents of i and j are kg and kg+i, 
respectively. The minimization term in (20) is due to the fact that are kg and kg+i, 0 < g < 
m — 1, may be opponents of i and j, respectively, in more than one period. Since we can 
arbitrarily choose one of those periods as far as correctness of step is concerned, we choose 
the period where the switch of opponents implies minimum cost. Note that the expression 
that is to be minimized describes the change in costs if t he opponents are exchanged. 

We can see that ckgikg+l is independent from cfc ,)fc ,+1 for 1 < g < g' < n - 2. This is why 
we can reduce the problem to find the minimum cost step for a given pair i and j of teams 
to the shortest path problem. We define a directed weighted graph G%J' = (V'J", A1^, wl,i) as 
follows: 

Vitj {so<J'} U {sz^'} U {k'j I k eT} 
: 
= {(so,Jlfc,J) I x i>ki,j > 1 A x jiki.i = 0} 
= | xi>ki,j = 0 V xjtki,j > 1} 

ßij = | 3p G P, xi>ki,jtP = xjtii„ ',P = !} 
= 0 
= -5 Va = (khJ, si1'3) G AlJ, xi<ki,j = 0 A x jiki j > 1 
= 0 Vo=(^,^)€A^,^u = •• 0 © xjiki,i > 1 
= 

There is an artificial source so and an artificial sink si in the graph. Each other node corre­
sponds to a team. There is an arc (fc*J',ZlJ') if a nd only if k and l are opponents of i and j, 
respectively, in at least one period and therefore can be consecutive elements in a sequence 
for i and j. There is an arc (so,J', k1'3) and an arc if k,,J is allowed to be the 
first and the last, respectively, element in a sequence for % and j. Then, a path from so1'3 to 

Initial 3 6 

Step 1 6-

Step 2 6, ' 3 6 

Figure 2: Example for Repair Schema 
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sf'J corresponds to a sequence for i and j and the shortest path corresponds to the sequence 
causing the lowest increasement of cost in the Solution to the Lagrangian subproblem. 

Ares in A^ correspond to switches of opponents and therefore the weight of a = (k/<J") e 
Atf corresponds to change of total cost in the current Solution caused by the switch 
represented by a. Ares in A%£ do not influence the repair step as far as costs are concerned. 
It depends on the last element of the sequence whether the total violation of constraints is 
reduced by 2 or by 4. We prefer those step reducing the total violation by 4 and, therefore, 
give the corresponding arcs a negative weight —5. Of course, we can prevent steps reducing 
the total violation by 2 by setting ö = M. Then, a sequence reducing the total violation by 
2 is chosen only if there is no sequence reducing total violation by 4. On the other hand, by 
setting S = 0 we do not distinguish between sequences depending on the reduetion of total 
violation. 

Figure 3: Example for Shortest Path Graph 

Figure 3 illustrates graph G®'-7 corresponding to teams i = 3 and j = 2 and to the set of 
matchdays labelled "Initial" in Figure 2. There are two paths from so3,2 to si3'2, these are 
so3,2 —» 5 3'2 —» l 3,2 —> 6 3,2 —> si 3'2 and so3'2 —> 5 3'2 —» 4 3'2 —> s i3'2. Since the second path 
leads to a sequence reducing the total number of violations by 4 (which does only depend on 
the last element 43'2) the arc leading to si3'2 has weight —5. 

Graph GM serves to find the minimum cost sequence if teams i and j are fixed. However, 
ususally there is more than one pair of teams i and j as described above. Next, we define 
a graph enabling us to employ a shortest path algorithm to find among all pairs i and j the 
corresponding sequence implying the cheapest modification of the Solution. Let IJ be the set 
of all possible pairs (i, j) of teams i and j with i < j. We define a graph G = (V,A,w) as 
follows: 

11 



v = {so} u {si} u ylJ 

(y)e/J 

A — Aso U Asi U [J Al'j 

Ko = {(so, so1'3) | (i,j) G IJ} 
Asi = {(sihJ,si) j ( i,j) EU} 
wa = w^j Va G Al'j, (i,j) G IJ 
wa = 0 Va G Aso U Asi 

Figure 4: Example for Shortest Rath Graph for all Pairs (i,j) 

Figure 4 illustrates graph G. We have a unique artificial source so and a unique artificial sink 
si. For each pair (i,j) G IJ we have a subgraph Gl,J. In Figure 4 we have \IJ\ — q and 
1 < l < ?• Now a path from so to si corresponds to the choice of a pair (i,j) G IJ by 
choosing one of the subgraphs. Note that the subgraphs are not connected. Furthermore, a 
sequence is chosen by f inding a path within the chosen subgraph. 

Graph G enables us to find the minimum cost step to reduce the total violation of constraints 
unless there is negative length circle in one of the subgraphs. This might happen since the 
Solution of the Lagrangian subproblem is determined based on reduced cost c^p while we aim 
at finding a feasible Solution to RRT minimizing overall costs based on CijiP. 

Note that a negative length circle can be interpreted in the same way as a sequence. Let 
ko,...,km be a negative circle that is ko = km where ko is arbitrarily chosen as the first 
element. Then, both, i and j, play against each team in k0,..., km_i and switching the 
opponents in corresponding periods p0,... ,pm_2 will lead to a Solution with identical a\, y, 
il ^ j'. Hence, we do not increase the total violation of constraints but do reduce the overall 
cost. Consequently, we apply this step. Note, that in the graph G of the new Solution the 
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negative circle just applied cannot occur again. Moreover, since we reach a cost reduction 
each time we detect a negative circle and the cost reduction cannot be arbitrarily small we 
can only find a negative circle a finite times before obtaining a graph G without any negative 
circle. 

We propose two alternative strategies to apply a low-cost step. First, we can construct graph 
G, find the minimum cost step and apply it. Second, in order to save runtime we find an 
arbitrary pair (i, j), construct graph GlJ, find a minimum cost step for pair and apply 
it. We refer to the first and the second strategy as REPAIR and REPAIR(i, j), respectively, 
in the following. In both cases we apply the Bellmann-Ford algorithm to solve the shortest 
path problem. Note that we can identify a negative circle if there is still a violated triangle 
inequality after \V\ (|VI,J'|) steps of the Bellmann-Ford algorithm. Summarizing, our repair 
scheme to find a feasible Solution can be sketched as repeating algorithm "Repair Step" until 
the resulting Solution is feasible. 

Algorithm 2 Repair Step 
Input: set of n — 1 matchdays having total violation /, cost citj<p 

Output: set of n — 1 matchdays having total violation /' < / — 2 

if REPAIR then 
construct G 

eise 
if REPAIR(i,j) then 

find an arbitrary pair (i,j) 
construct G1,3 

end if 
end if 
found=FALSE 
while found = FALSE do 

apply Bellmann-Ford algorithm 
if there is a negative circle then 

apply circle 
eise 

apply sequence 
found=TRUE 

end if 
end while 

In preliminary tests strategy REPAIR(i, j) has proved to be more efficient and, therefore, we 
restrict everything what follows to REPAIR(z, j). 

4 Computational Results 

In the section at hand we outline results of a computational study carried out to evaluate 
the efficiency of the approach proposed in Section 3. The study has been carried out on a 
3.8 GHz Pentium 4 machine with 3 GBs of RAM running Microsoft Windows Server 2003. 
Naturally, our focus is on run times and lower bound quality of our approach. Moreover, we 
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consider the quality of solutions obtained by our repair scheme. We compare the solutions and 
lower bounds of our approach to optimal solutions and lower bounds, respectively, obtained 
by e mploying Cplex. 

For each number of teams between 12 and 30 we have 16 classes of 20 instances each. The 
classes are specified by two parameters with four possible values each. In the following we 
detail how we generate instances of each class. 

1. Parameter pf € {0.0,0.1,0.2, 0.3} specifies the probability of each match (i, j, t) to be 
forbidden. Given Pf, we randomly decide whether (i,j,t) is forbidden according to pf. 
Note that F = 0 if Pf = 0. 

2. Parameter P" E {0.0,0.1,0.2,0.3} specifies the probability for each team i and each 
period p that i's venue is restricted in p. Given Ps, we randomly decide whether % s 
venue is restricted in p according to Ps. If the venue is not restricted, then i can play at 
home and away, respectively, in p. If it is restricted, then we randomly decide whether i 
must play at home, that is i G Hp, or away, that is i e Ap. 

3. In e ach class costs are randomly drawn from integer values between 0 and 20. 

In the following, we refer to the class of instances having n teams and being generated using 
Pf and Ps as 2(n,Pf,P3). Table 2 gives an overview of the results of our computational 
study. For all classes of instances we outline run time (r.t.) of our approach in seconds and 
the percentage by which the best found lower bound exceeds the LP relaxation lower bound 
(Lb.). For l(n,Pf,Ps) where n < 16 we additionally provide the percentage by which the 
best found upper bound exceeds the optimal objective value (u.b.). 

We can clearly observe that the lower bound yielded by our approach is larger than the LP 
relaxation lower bound. For common numbers of teams in real world tournaments, that is for 
n < 20, we obtain a lower bound that is at least larger by 0.9% than the LP relaxation lower 
bound. However, quality of our lower bounds seems to decrease in n which may be due to the 
quality of upper bounds which is decreasing as well and will be discussed later on. 

While Pf seems not to influence the quality of our lower bound we can see that the lower bound 
gets slightly worse (in comparison to the LP relaxation lower bound) in increasing Ps. An 
intuitive reason for this can be given as follows. As mentioned before the LP relaxation lower 
bound coincides with the optimal objective value of the Langrangian dual if the subproblem 
has the integrality property. Now, consider a problem instance out of J(n, P̂ l.O), that is 
for each team the venue in each period is fixed. Then, RRT% is equivalent to the bipartite 
minimum cost matching problem which is well known to have the integrality property. Hence, 
by increasing P3 we "transform" the minimum cost perfect matching problem which does 
not have the integrality property step by step to a problem having the integrality property. 
Therefore, the gap between LP relaxation lower bound and optimal Solution to the Lagrangian 
dual narrows down when we increase P3. 

As we can see the upper bounds obtained by o ur approach are far from optimality. Still, in 
comparison to basic construction schemes like the circle method, see Kirkman [23], our results 
are reasonably good. We could find feasible solutions to all instances while the circle method 
fails in many cases when P* > 0 or Pa > 0. If th e circle method found a feasible Solution the 
Solution obtained by our approach had lower cost. However, the upper bounds obtained using 
our approach are not competitive to those obtained from sophisticated optimization methods. 
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n 
ps 0.0 0.1 0.2 0.3 n 
P} 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

12 
1. b. 1.7 1.2 1.7 1.4 1.3 1.7 1.2 1.6 1.4 1.3 1.3 1.1 1.3 1.2 1.6 1.4 

12 r. t. 0.42 0.43 0.40 0.44 0.39 0.41 0.45 0.43 0.40 0.42 0.41 0.45 0.42 0.43 0.44 0.47 12 
u. b. 18 19 17 20 15 19 17 19 15 15 14 16 16 15 14 21 

14 
1. b. 1.5 1.6 1.8 1.6 1.4 1.6 1.6 1.6 1.5 1.2 1.6 1.1 1.2 1.3 1.1 0.9 

14 r. t. 0.68 0.79 0.73 0.75 0.75 0.70 0.72 0.74 0.69 0.75 0.74 0.80 0.74 0.74 0.79 0.69 14 
u. b. 42 48 43 47 34 35 L_ 40 46 32 38 40 47 34 38 52 34 

16 
1. b. 1.5 1.3 1.1 1.2 1.1 1.2 1.2 1.2 1.3 1.5 1.3 1.4 1.3 1.3 1.1 1.0 

16 r. t. 1.29 1.22 1.26 1.26 1.22 1.26 1.21 . 1.26 1.20 1.25 1.22 1.12 1.25 1.24 1.28 1.07 16 
u. b. 79 75 72 78 68 65 68 00

 
h-1 62 65 71 99 59 67 85 99 

18 
1. b. 1.3 1,4 1.4 1.6 1.3 1.0 1.1 1.6 1.1 1.0 1.2 1.1 1.1 1.1 1.1 1.2 18 
r. t. 2.04 2.00 2.00 2.11 2.04 2.05 1.99 2.01 1.91 2.08 2.00 1.73 1.96 2.17 1.93 1.69 

20 
1. b. 1.4 1.2 1.4 1.2 1.3 1.1 1.1 0.9 1.0 1.0 1.0 1.0 1.1 0.9 1.1 0.9 

20 
r. t. 3.09 3.16 3.11 3.13 3.20 3.24 3.23 2.85 3.20 3.06 3.15 2.70 3.18 3.36 2.74 2.65 

22 
1. b. 1.3 1.0 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.9 0.9 0.9 1.0 0.9 0.9 

22 
r. t. 4.51 4.45 4.49 4.89 4.88 4.51 4.57 3.85 4.64 4.64 4.48 3.98 4.54 4.57 3.99 3.80 

24 
1. b. 1.1 1.1 0.9 0.9 1.0 1.0 1.0 0.8 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.7 24 
r. t. 6.69 6.69 6.56 6.83 6.81 6.64 6.67 5.87 6.33 6.77 5.82 5.64 6.58 6.41 6.01 5.82 

26 
1. b. 1.1 0.9 1.0 0.8 1.0 1.0 1.0 0.7 0.8 0.8 0.8 0.7 0.8 0.7 0.7 0.7 

26 
r. t. 9.00 9.35 8.91 8.29 9.10 9.04 9.48 7.73 8.97 9.25 7.78 7.98 9.24 8.91 8.03 7.98 

28 
1. b. 1.0 1.0 1.0 0.9 1.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.7 0.7 

28 
r. t. 12.97 13.16 12.68 10.86 12.24 12.71 11.63 11.04 12.08 13.28 10.66 10.38 12.70 10.97 10.74 11.12 

30 
1. b. 1.2 1.0 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.8 0.6 0.6 0.6 

30 
r. t. 17.60 17.91 17.48 15.00 16.55 16.88 16.09 15.71 17.54 18.23 14.66 15.88 18.02 14.78 14.68 14.85 

Table 2: Computational results 



Naturally, run times increase in n. Values of and Ps do not have a significant influenae 
on run times. The steep increasement of run times is due to the Solution procedure for the 
shortest path problems. Hence, finding feasible solutions bears a relatively high computational 
bürden. 

5 Conclusions and Outlook 

In the paper at hand, we presented a Lagrangian approach to obtain lower bounds for the 
problem to find a mimimum cost tournaments subject to Stadium unavailability and forbidden 
matches. We discussed different relaxation approaches and gave details for the Implemen­
tation of a subgradient optimization approach. Moreover, we propose a cost oriented repair 
scheme which transforms a Solution to the Lagrangian relaxation into a feasible Solution to 
the underlying problem. For the unconstrained problem, that is when we have P* = Ps = 0, 
this approach finds a feasible Solution for an arbitrary Solution to the relaxation. If P? > 0 
or Ps > 0, then the repair scheme may fail. However, we were able to find feasible solutions 
to each single test instance. Finally, we discussed the quality of lower bounds and solutions 
found by our approach. 

We believe an obvious way to proceed is to use the lower bound obtained by the Lagrangian 
approach in a branching framework. Naturally, branching can be done by fixing and forbidding, 
respectively, specific matches. Fixed matches are considered in our relaxation model and, 
hence, it seems promising to combine these two approaches. However, the challenging part 
may be to derive solutions to the Lagrangian dual from the solutions found in father nodes in 
order to save run time. Another promising field of work is the use of the repair scheme in a 
neighbourhood search framework. We may slightly modify the current Solution such that we 
obtain a set of n — 1 1-factors which is not a 1-factorization. Afterwards, we can repair it 
afterwards to a new feasible Solution using our repair scheme. 
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