
Horbach, Andrei; Bartsch, Thomas; Briskorn, Dirk

Working Paper

Optimally scheduling real world sports leagues by
reduction to SAT

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 646

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Horbach, Andrei; Bartsch, Thomas; Briskorn, Dirk (2009) : Optimally
scheduling real world sports leagues by reduction to SAT, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 646, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147564

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147564
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 646

Optimally Scheduling Real World Sports Leagues by Reduction to SAT

Andrei Horbach1, Thomas Bartsch2'3, Dirk Briskorn1

Mai 2009

1: Andrei Horbach, Dirk Briskorn
Christian-Albrechts-Universität zu Kiel,

Institut für Betriebswirtschaftslehre,
Olshausenstr. 40, 24098 Kiel, Germany

http://www.bwl.uni-kiel.de/Prod
horbach@bwl.uni-kiel.de, briskorn@bwl.uni-kiel.de

2: SAP AG
Neurottstraße 16, 69190 Walldorf, Germany

thomas.bartsch@sap.com

3: TB - Sports League Scheduling
Mosbacher Str. 178, 68259 Mannheim, Germany

thomas.bartsch@conbus.de

mailto:horbach@bwl.uni-kiel.de

Abstract

Several types of constraints must be satisfied by schedules of real world sports
leagues, e. g. Stadium unavailability, fixed matches, forbidden matches, minimum num-
ber of breaks. Taking into account such constraints, determining a feasible schedule
becomes a challenging task. Usually, there is no schedule satisfying all given constraints
and, hence, some of the constraints are considered as 'soft' ones. There are various
models appropriately describing the environment of real sport leagues. Only heuristic
methods are known from the literature for solving instances of such models for real
dimensions. We consider here a model which satisfies the demands of many sports
leagues. We solve our model by a method which consists in formulating the problem
as series of instances of the propositional satisfiability problem and adaption of a sat-
isfiability solver for these specific instances. We test our method on two real world
sports leagues and solve the problem optimally in each case. Our solver shows good
computational results also on generated test instances, which are motivated by real life
requirements of sports league scheduling. Our solver can be easily extended to meet
the demands of other sports leagues.

Keywords: Timetabling, sports, sports league scheduling, round robin tournaments,
soft constraints, propositional satisfiability

1 Introduction and Motivation

Many real world sports leagues are carried out according to a round robin tournament (RRT).

A RRT is a structure for competitions between the teams of a league. A RRT is divided into

rounds. Each round consists of periods. In each round teams T, \T\ = n, n is even, compete

such that each team plays exactly once against each other team, either at home or away.

Furthermore, each team i,i € T has to play exactly once in each period and, hence, a round

consists of exactly n — 1 periods. Depending on the number of rounds r, RRTs are called

r-RRT. RRTs with r — 1 and r = 2 are called Single RRTs and double RRTs respectively.

Two periods p and p' are called mirrored, if i plays at home against j in period p if and only

if j plays at home against i in period p' for each team pair i,j. A double RRT is a mirrored
double RRT\f periods p and n — 1 +p are mirrored for each p = 1,... ,n — 1. A double RRT

is mirrored according to English system, if t he last period of the first round (period n — 1) is

mirrored to the first period of the second round (n), and periods 1 to n — 2 are mirrored to

n + 1 to 2n — 2 correspondingly.

Note that a mirrored double RRT as well as a double RRT mirrored according to English

system can be represented by a Single RRT by mirroring matches of the first round to the

corresponding periods of the second round. An illustrative example for a Single RRT where

n = 6 is given in Table 1. Here i-j denotes that team i plays at home against team j.

We say team i has a break in period p if and only if i plays twice at home or twice away in

periods p — 1 and p. Since each match has to be carried out at one of the venues of both

1

period 1 2 3 4 5

match 1 3-4 4-5 2-4 4-6 6-5
match 2 5-2 1-3 5-1 3-5 4-1
match 3 6-1 2-6 6-3 1-2 2-3

Table 1: Single RRT for n — 6

opponents, breaks can not be completely avoided. The most common goal concerning breaks

is to minimize the number of their occurrences. De Werra [10] shows that the number of

breaks cannot be less than n - 2 in a single RRT. Then, it is easy to see that the number of

breaks cannot be less than 2(n-2) and 3(n-2) in a double RRT and a mirrored double RRT,

respectively. Practically, this condition is usually replaced by the requirement that no team

has more than one break within a round and one break in the first period of each but the first

round. Moreover, breaks must not occur in a given subset of periods. These requirements are

imposed to guarantee more fairness for all teams in all phases of the toumament. The Single

RRT provided in Table 1 has 4 breaks for 6 teams and, therefore, has the minimum number

of breaks.

The constraints mentioned above are due to the type of tournament. Beside these, there are

further side constraints motivated by real world environments. First, due to various reasons,

e. g. other events and construction works, the predefined home venue of a team might be

not available in some periods. Thus, in such periods the schedule must prescribe a match

of team i at its opponents venue. On the other hand, a team may have a strong preference

to play at home in a specific period. Second, the number of simultaneous home matches of

specific subsets of teams is limited. For a specific subset of teams the number of matches

played at home per period may be restricted to be no more than a given threshold. For

example, considering metropolitan areas being home of several teams it can be desired to

limit the number of parallel matches for security reasons or in Order to limit the bürden to the

infrastructure. Third, the competition between two teams may be required to be carried out

in a certain subset of periods. This can be due to, for example, arranging matches between

top level teams at the end of the season in order to provide a thrilling final phase. Fourth, if

there is a subset of competitions between teams that are highly attractive, then these should

be distributed as equally as possible over the whole season.

In real world leagues teams communicate their requirements to the Organizer and the Organizer

is responsible for the schedule. No team is Willing or able to consider the requirements of the

other teams when providing its own. Typically, it is impossible to satisfy the requirements of

all teams. This is why we consider such requirements as soft and try to satisfy as many of

them as possible. As scheduling is a multi-stage process, this simple objective usually suffices.

Having obtained an optimal schedule, the Organizer analyzes it. If she finds out that a team is

2

discriminated, she can moderate the requirements of the others for the next run of the solver.

Models for sports league scheduling have been the topic of extensive research. A whole stream

of papers is based on the analogy between sports league scheduling and edge coloring of

complete graphs. • Examples are de Werra [10, 11, 12, 13, 14], de Werra et al. [15], and Drexl

and Knust [17]. Brucker and Knust [6] and Drexl and Knust [17] analyze the relationship

between sports league scheduling and multi-mode resource-constrained project scheduling.

Briskorn et al. [5] line out the similarity of structures of single RRTs and planar three index

assignments. Real world problems have been considered in Bartsch et al. [1], Deila Croce and

Oliveri [16], Durän et al. [18], Kendali [22], Rasmussen [26], Ribeiro and Urrutia [28] and

Schreuder [29] examine particular formulations.

Extensive overviews of literature on sports leagues scheduling in the context of Operations re

search are provided by Knust [23] and Rasmussen and Trick [27]. Linear integer programming

is one possible approach to the problem. Computational experiments show, however, only

limited capability to schedule round robin tournaments. Briskorn and Drexl [3] State in their

experiments that the industrial solver llog CPLEX is not able to find any Solution with the

minimum number of breaks even after 6 days of computation for instances of Single round

robin tournament problem with 10 teams. Using their advanced branching Schema they solve

optimally (regarding the minimization of overall cost assuming that each match imposes indi-

vidual costs) single RRT instances with at most 10 teams within the runtime of approximately

2 hours. Generalizing the mentioned branching scheme, Briskorn [2] obtains similar results

taking into account Stadium unavailability and forbidden matches additionally. However, this

is not enough for real world scheduling problems.

Our model is very similar to the model considered and solved by Bartsch et al. [1]. The exact

methods suggested by Bartsch et al. [1] are only able to solve instances with at most 8 teams.

To solve real world instances the authors use a rather elaborated 'semi greedy' heuristic which

determines good but not optimal solutions.

The method we suggest in t his paper solves the problem without compromising the optimality.

The key element of our method is a reduction to the conjunctive normal form satisfiability

problem (SAT). To the best of our knowledge there is no approach to sports leagues scheduling

employing a SAT solver described in the literature so far.

The decision version of SAT has been historically the first problem proven to be NP-complete

(Cook [7] and Levin [24]).

Recently, the SAT techniques have been developed to such an extent that for several combi-

natorial problems a reduction to SAT and the use of an adapted SAT solver can be a good

alternative to a problem specific solver running on the original problem formulation.

One of the simplest but fast and robust implementations of the SAT solver is MiniSat developed

by Een and Sörensson [19]. MiniSat is an extended C++ Implementation of the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm. In this paper we adapt MiniSat to achieve efficiency

3

in the specific domain of sports league scheduling. Our method can be used in combination

with any SAT solver based on the DPLL aIgorithm.

The remainder of this paper is organized as follows. In Section 2 we formulate the sports

league scheduling problem formally and represent it by means of a SAT model in Section 3.

Section 4 provides details about the used SAT solver and its adaption for sports scheduling.

In Section 5 we line out test instances and computational results. Section 6 concludes.

2 Round Robin Tournament Problem with Side Con

straints

2.1 General Problem Formulation

Exactly n teams play in r rounds. Both n and r are even. Each round Pj, l e {1,... ,r},

consists of (n — 1) consecutive periods {(l - 1) x (n — 1) + 1,..., l x (n — 1)}. The season

P is the union of all rounds: P := (J Pj.

Let S be a subset of T x T x P. We say that team i plays against team j at home (away)

in period p according to S if (z, j,p) € S ((j,i,p) G S). Set S is a schedule if according to S

1) each team plays in each period,

2) for each pair of teams, there is exactly one period in each round where they play against

each other,

3) for an odd round l and each pair of teams {i, j} team % plays at home against j at least

once and j plays at home against i at least once within rounds l and l +1.

Given a schedule S, we define a period p, p > 1, to be a break period of team i, if i plays at

home in both periods p—1 and p, or i plays away in both periods p- 1 and p. Given a subset

Pbf of P as a set of break-free periods, schedule S is break consistent with respect to P6/ if

4) no team has more than one break period per round,

5) no period from Pbf is a break period for any team.

Set Pbf usually consists of periods in the beginning and the end of each round.

Usually, the schedule must be mirrored according to some system, i.e. the matches of each

period in any even round l are exactly the matches of some predefined period in round l — 1

with inverse home rights.

4

Next, we define several additional restriction that can be imposed on S. Various real world

sports scheduling problems use different combinations of these constraints.

For a subset TM of T x T, constraint top_games (TM) is defined as:

6) no two pairs of TM play at the same period according to S.

For a pair of teams {i, j} and a period p, constraint region({i,j}, p) is defined as:

7) at least one of teams i or j plays away in period p according to S.

This constraint is usually imposed on the schedule for two teams sharing the same Stadium.

A mirrored break consistent schedule is feasible if constraint top_games(TM) and all con

straints region({?:, j'}, p), {i,j} G T x T, p e P, are satisfied.

For a teams i and a period p soft constraint unavailable_stadium(i, p) is defined as:

8) team i plays away in period p.

We call a feasible schedule efficient for a given set US of unavailable_stadium() con

straints, if it minimizes the number of violated constraints from US.

For a pair of teams (i,j) and a subset of periods P' soft constraint set_pair({z,j7'}, P') is

defined as:

9) there is at least one home match of i against j in one of the periods from P'.

We impose a lexicographic order on the two objectives, that is, first, the number of violated

constraints of type unavailable_stadium and, then, the number of violated constraints of

type set.pair is to be minimized.

In its most general form our problem can be formulated as follows. Given an even integer n as

number of teams, an even integer r as number of rounds, a mirroring system (i.e. the periods

must be mirrored 'classically' or according to English system), a top_games() constraint, a

set of region constraints R, a set of unavailable_stadium constraints US, and a set of

set_pair() constraints SP. Find an efficient schedule minimizing the number of violated

constraints from SP.

To simplify our following notations we will consider sets US and SP as ordered sets and

denote by USs and SPs constraint number s in the corresponding set.

5

2.2 Real World Problems

2.2.1 First Austrian Soccer League

In the first Austrian soccer league n = 10 teams play in r = 4 rounds. Hence,]P| = 36

periods have to be played and each round consists of 9 periods, see also Bartsch et al. [1],

Rounds 1 and 2 as well as rounds 3 and 4 are mirrored as a double RRT according to English

system given by the following restriction that must be satisfied for each feasible schedule «S1:

10a) if e S, then (j,i,p') e S where p' — ((p+ 1) mod (n - 1)) + l(n - 1) + 1, for

each p e Pi, l G {1,3},

i.e. the first period of the second round is the mirrored last period of the first round, the

second period of the second round is the first period of the first round, the third is the second

and so on.

Table 2 summarized the Information on involvement of teams in constraints introduced in

Section 2.1 based on data for season 2004/2005.

Team top_games region set_pair unavailable-stadium

Grazer AK / / /
Austria Wien / / /
Pasching
Rapid Wien / / / /
Bregenz
Admira
Salzburg /
Matttersburg /
Sturm Graz / / /
Kärnten /

Table 2: Teams of the First Austrian Soccer League and constraints they are involved in.

Furthermore, both double RRTs are connected by the following constraint:

IIa) if (i,j,p) E S, then (i,j,p+ 1) & S and {j,i,p + 2) £ S, for p G {17,18}.

The schedule must be break consistent for Pb* — {2,18,19,20,36}. These are the very first

and the very last periods of each half season, were breaks are considered as very undesirable.

Constraint top_games is instantiated by

TM — {(Austria Wien, Rapid Wien), (Grazer AK, Sturm Graz)}.

6

These matches are considered as especially interesting because of the historical local derbies

(Vienna Derby and Graz Derby) between the teams of each pair.

Constraints region are instantiated by pairs {Austria Wien, Rapid Wien} and

{Grazer AK, Sturm Graz}. The teams of each pair share one main Stadium and there-

fore can not play home simultaneously.

Potentially, each teams can be involved in constraints of type unavailable_stadium and

set.pair. As for season 2004/2005, the most restricted in its ability to use the Stadium is

Kärnten and Salzburg with their 5 periods of closed Stadium each. Some other teams don't

have any restrictions of this type.

A further requirement is a special one and is not covered in the general problem description.

It is introduced to satisfy the supporters of teams Rapid Wien and Mattersburg. It is well

known, that many people support both these teams and desire to visit the home matches of

both of them. To do them a favor, the league asks for a schedule where these teams do not

have more than four parallel home matches. The same is true for teams Austria Wien and

Admira.

2.2.2 First German Handball League

In the first German handball league n — 1 8 teams play in r = 2 rounds. Hence, there must

be |P| = 34 periods in the season and 17 periods in each round, see also Bartsch et al. [1].

The season is played as a mirrored double RRT, that is, a feasible schedule S must satisfy:

10g) if (i, j,p) € S with p e P\, then (j, i,p + n- 1) G S.

Table 3 lists the teams' names, strength group they belong to and involvement in constraints

introduced in Section 2.1 based on data for season 2006/2007.

The set of break free periods are instantiated by

Pbf = {2,4,6,13,15,17,19,21, 23,30,32,34}.

The set of top matches is instantiated by TM = | ̂ < J < 6}, that is all matches

between teams in strength group 1 are rated as top matches. Potentially, all teams are involved

in constraints of type set_pair and unavailable.stadium.

3 SAT formulation

In this section we reduce the sports league scheduling problem described in S ection 2 to series

of instances of the conjunctive normal form satisfiability problem.

7

Team group top_games set_pair unavailable.stadium

Vfl Gummersbach
SG Flensburg-Handewitt
SC Magdeburg
TBV Lemgo
THW Kiel
HSG Nordhorn
TV Growallstatt
SG Kronau-Östringen
HSV Hamburg
FA Göppingen
MT Melsungen
Tus-N-Lübbecke
HSG Wetzlar
Vfl Pfullingen-Stuttgart
SC Concordia Delitzsch
HSG Düsseldorf
TSV GWD Minden
Wilhelmshavener HV

2
2
2
2
2
2
3
3
3
3
3
3

/
/
/
/
/
/

/
/
/

/

/
/

/
/
/
/
/

/

Table 3: Teams of the First German Handball League and constraints they are involved in.

A propositional formula is a formula that is defined over variables that take values in the

set {true, false}. A propositional formula is in conjunctive normal form (CNF) if it is a

conjunction (AND, A) of clauses, where each clause is a disjunction (OR, V) of literals. A

literal is either a variable, then it is called a positive literal, or its negation (NOT, ->), then it

is called a negative literal.

The conjunctive normal form satisfiability problem (CNF SAT or just SAT) is defined as follows.

Given a CNF, does there ex ist an assignment of the variables, such that the CNF evaluates to

true under such assignment? If su ch a satisfying assignment exists, we say that the formula

is satisfiable and the assignment is called a model. Otherwise the formula is unsatisfiable.

In the following we first formulate a CNF whose satisfying assignments encode feasi-

ble schedules. Then we define a variable for each soft constraint set_pair() and

unavailable_stadiumO that indicates whether the constraint is violated. Next, we State

clauses preventing more than a certain number of soft constraints of each type from being
violated.

First, we introduce necessary decision variables. For each team pair (i,j) and each period p

we define a match variable xtjP as

true if team i plays at home against j in period p,
false otherwise.

8

For each team i and each period p we define a home break variable hbiP and an away break

variable abiv as

if team i has a home break in period p,
otherwise,

if team i has an away break in period p,
otherwise.

For each team i and each period p we define a home match variable hip as

, _ j true if team i plays at home in period p,
%v \ false otherwise.

Then, constraints 1) to 3) are transformed into clauses (1) to (5). Here, clauses (1) to (3)

force each team to play exactly once per period. Clause (1) ensures that each team has a

match in each period. Clauses (1) to (3) guarantee that each team plays exactly once per

period. Clause (4) and (5) ensures that each pair of teams has a match in each round and

matches of the same pair of teams are carried out in different venues in consecutive rounds,

respectively. Then, clauses (6) and (7) force the variable hip to indicate if team i plays at

home or away in period p.

\f (%ijp V %jip) Vz € T,p G P (1)

~~[XijP V ~'Xjfep V i,j, k e T,i^j,j f k,i ± k,p£ Pi,l G . ,r - 1} (2)

[%jip V täfcip Vi,j,k G T,i ^ k,i ^ k,p G Pi, l G {!,-• .,r - 1} (3)

\J (Xijp V Xjip) Vi,j eT,i^ j,l = {1,... ,r} (4)
p€Pi

<

1

Vi,j eT,i^ j, l € {1,.. ., r}, l is odd (5)
p€Pi{jPi+i

\/i,j 6 T,j ^i,pe P (6)

l%ijp V f^ip Vi,j G T,j ^i,pE P (7)

The following clauses connect home variables with home break variables and away break

variables, respectively. Clause (8) causes hbip — t rue if i plays at home in both, p — 1 and p,
according to the assignments of the home variables. Clauses (9) and (10) set h^-i) = hip =

true if i has a home break in p. Clauses (11) to (13) are strictly analogue for away break

variables.

hbiP V]h'ip V i) Vi eT,p E P,p> 1 (8)

'hbiP V h> ip VieT,pe p,p> l (9)

-'hbip V i) Vi eT,p e P,p> l (10)

abip V hip V i) Vi ET,pe f (11)

-iabiv V -'hip V« G T,p e P,P > l (12)

~^abip V -i/ij(p_i) V i e T,p € P,p > 1 (13)

hbip

(ibzp

j true
\ false

j true
\ false

9

Constraints 4) to 5) are transformed into clauses (14) to (18). Clauses (14) to (16) forbid

two breaks for a team in a round. Clauses (17) and (18) trivially prevent breaks in break free

periods.

—'hbip V hbip' Vi eT,p,p' e PI,P' >p,le (14)

*@ibip V ~ ~^Q>bipf Vi e T,p,p' £ Pi,p' >p,l e {1,... ,r} (15)

-ihbiP V -<ab ip/ Vi e T,p,p' e Pup' ^p,l e {i,...,r} (16)

-'hbip Vz (17)

->abiv vi e E (18)

Constraints 6) and 7) are transformed into clauses (19) to (20) straightforwardly.

-ixijp V ->xi'j'p V (i, j) eTM, (%', j') eTM,pe P (19)

->hipv-ihjp Vregionp) (20)

The clauses specified so far suffice to represent constraints 1) to 7). However, we add several

clauses being non-trivially implied by those introduced above in Order to improve Performance

of the solver.

The following clauses State that there is a home-break in period p if and only if there is an

away-break in p. This clause is due to a well-known property of RRTs having the minimum

number of breaks: in each period there is either a home-break as well as an away-break or no

break at all, see Briskorn and Drexl [4] for example. Note that we do not have the minimum

number of breaks here. However, this property holds for RRTs with exactly one break per

team also. Clause (21) states that there is either no home-break of i in p or there must be an

away-break in p as well. Clause (22) is analogous.

\J abjP V -i/iöjp Vi 6 T,p 6 P (21)

\J hbjp V -lafejp VieT,peP (22)

Clauses (23) and (24) set break period variable bp = true if and there is a home-break in period

p and bp = false otherwise. Clause (25) states that there cannot be three consecutive break

periods. This is known for RRTs having the minimum number of breaks and for RRTs with

exactly one break per team and round, see Briskorn and Drexl [4] for example. Furthermore,

there cannot be 6 breaks periods in 8 consecutive periods which can be represented by a set

of clauses as well.

-ihbip\/bp VieT,peP (23)

\/ hbip V -bv Vp e P (24)
ieT

->bip V -i öj(p+i) V -ibi(p+2) VI 6 {1,... ,r},p E Pi,p < l(n - 1) - 2 (25)

10

While clauses (1) to (25) ensure a feasible schedule we neither determine no restrict the
number of violated soft constraints.

For each constraint SPs £ SP we define a set pair violation variable vsp3 as

s f true if c onstraint SPs is violated,
VSp (false otherwise.

For each constraint USs £ US we define a unavailable Stadium violation variable vus3 as

,s f true if constraint USa is violated,
" (/oke otherwise.

Clauses (26) and (27) ensure that vsp3 = true and vuss = true, respectively, if the corre-

sponding soft constraint is violated.

-ihipVvuss Vunavailable_stadium(?, p) = USa, USaeUS (26)

\f Xijp V vsps Vset_pair P') = SPs, SPseSP (27)
peP'

Now, we introduce clauses that restrict the number of violated soft constraints to be at most

UPStadiums 3nd U, respectively.

\/ = + 1 (28)
us3ec

V = + l (29)
spsec

Hence, the CNF which is the conjunction of (1) to (29) asks for a feasible schedule having no

more than UBstadiums violations of constraints unavailable_stadium() and no more than

UBPairs violations of constraints set_pair({«, j}, P'), respectively.

Note that the number of clauses (28) and (29) is exponential in the number of constraints of

the corresponding type. Section 4 explains how the SAT solver can be adapted to dynamically

handle a huge number of such clauses.

Next, we introduce clauses representing constraints for the Austrian soccer league, first, and

for the German handball league, afterwards. Clauses (30) and (31) represent constraint 10a)

for the Austrian soccer league.

'Xijp V mod (n—l))+l(n—l)+l) V i,j £ T,j ^ itp £ Pi, l £ {l, 3} (30)

%jipV ~'^'ji(((p+l) mod In —1))+Z(n—1)+1) Vi,j £ T,j ^ i,p £ Pi,l £ {l,3} (31)

Clause (32) represents constraint IIa) for the Austrian soccer league.

\/ (-'Xijp' V -#;*') Vi, j £ T, j ^ i,p £ {2n - 3,2n - 2} (32)
p<p'<p+2

11

Clauses (33) and (34) represent constraint 10g) for the German handball league.

—,%ijp V Vi,j G T, j 7^ % •, p G P\

•Ejip V i) Vi, j G T, j / iiP £ P\

(33)

(34)

4 The Solver

The basic aIgorithm for SAT has been proposed by Davis and Putnam [8] and Davis et al. [9],

see Algorithm 1. This algorithm not only answers the question of satisfiability but also finds

a satisfying assignment if it exists. This algorithm is the basis of the most modern complete

SAT solvers. A Version of this algorithm is implemented by Een and Sörensson [19] in their

solver MiniSat.

Algorithm 1 DPLL-Algorithm
decisionJevel = 0
while true do

propagateO
if not conflict then

if all variables assigned then
return Satisfiable

eise
++decision_level, decideO

end if
eise

analyzeO
if top-level conflict found then

return Unsatisfiable
eise

backtrackO
end if

The algorithm starts at decision level zero, chooses a literal (a variable and the true or the

false direction) to branch on, makes the true assignment of the literal and completes it by unit

propagation which is done in propagateO. If a variable is chosen for branching it is marked as

decision variable, if t he value is assigned to the variable at unit propagation, it is a propagated

variable. If propagateO returns no conflict, the algorithm steps to the next decision level

and chooses a next literal to branch on. If under the current partial assignment propagateO

determines a conflict (a clause can not be satisfied under this partial assignment), the conflict

is returned. The conflict is analyzed. The result of analyzeO is the backtracking level, the

largest level up to that all assignments have to be canceled such that the last conflict is not

end if
end while

12

false under the current partial assignment. In the state-of-the-art solvers analyzeO returns

also a learnt clause, which is a consequence of the other clauses in the database and, hence,

must be satisfied by each satisfying assignment and can be considered as a reason of the last

conflict. The learnt clause is added to the database and propagation goes on.

The components of DPLL are:

• branching procedure decideO, which makes choice of the next literal to branch on;

• procedure propagateO, which makes unit propagation and determines conflicts;

• procedure analyzeO, which analyzes conflicts, decides about the level of backtracking,

and generates learnt clauses;

• procedure backtrackO, which unwinds all made assignments up to the backtracking

level returned by analyzeO.

Two techniques should be noted as making special contribution to the efficiency of modern

SAT solvers. Clause learning, being involved in unit propagation, speeds up the recognition

of future conflicts and may lead to an impressive rise of Performance. The watched literals

scheme proposed by Moskewicz et al. [25] and first implemented in their solver zChaff is now

a Standard method for efficient constraint propagation. The key idea behind this scheme is

to maintain two special literals for each not yet satisfied clause that are not false under the

current partial assignment. As long as the clause has two such literals, it can not be involved in

unit propagation. Only if false is assigned to one of these two literals, propagateO assigns

true to the other literal, if t he clause is not satisfied yet. More details on state-of-the-art SAT

solvers can be found in Gomes et al. [20].

Because of the huge amount of clauses guaranteeing upper bounds for the number of violated

constraints we add them to the solver only if they are violated or can be used for unit prop

agation. We adapt the method propagateO so that each time a soft constraint violation

variable is fixed to true, it tests if the number of violated soft constraints of the same type

is greater than the current upper bound. If it is the case, a conflict clause of type (28) or

(29) is generated and returned to the overall search procedure. If t he number of violated soft

constraints is exactly the corresponding upper bound, a set of all relevant clauses of type (28)

or (29) is generated, added to the database and immediately used for unit propagation. As

result of the unit propagation all other soft constraint violation variables of the same type are

fixed to false.

It is well-known, that the branching order significantly influence the Performance of a SAT

solver. Briskorn [2] and Briskorn and Drexl [3] show that the computational effort in order to

find feasible and optimal solutions, respectively, to optimization problems concerning RRTs

can be significantly reduced by branching on home break variables and away break variables

13

first. The advantage of this branching scheme can be explained by the fact that fixing the

break of a team implies the venue (home/away) of this team in each period if t he number of

breaks per team in a round is limited to be no more than one. Therefore, in our case it was

eritically to make. the solver to branch first on the break variables hbip and abip.

5 Computational Study

We tested our solver on real world instances as well as on instances designed for evaluation

purposes and outline results in Sections 5.1 and 5.2, respectively.

Our results were obtained on a PC with Intel Core 2 Quad CPU Q9550 and 4 GB of RAM

running under Windows 2003 Server. Our solver uses only one of four available processor

kernels. The code is written in C++ and compiled with Microsoft Visual C++ 2005 Compiler.

5.1 Solving Real World Instances

We tested the solver on an instance of the First German Handball League (season 2006/2007)

and on an instance of the First Austrian Soccer League (season 2004/2005). It should be

noted, that the solver at hand was not used for scheduling of these two leagues at that time.

Instead, an elaborated heuristic from Bartsch et al. [1] was used. It required quite a lot of

problem specific analysis and provided good, but not optimal solutions.

Our solver needed 194 seconds to optimally solve the instance of the First German Handball

League. The optimal Solution satisfies 33 out of 46 unavailable_stadion constraints and

all 16 set_pair constraints.

The satisfaction of all set_pair constraints is explained by the fact that some evidently

unsatisfiable constraints were sorted out already on the stage of data mining. It would be not

necessarily for our solver.

The instance of the First Austrian Soccer League was solved optimally within 11 seconds. 16

out of 17 unavailable_stadion constraints and 12 out of 13 set.pair constraints were

satisfied.

5.2 Solving Designed Instances

5.2.1 Instance Generator

To test the solver we generated various test instances of different dimensions. We simulate

factors that influence constraints appearing in real life problems of the First German Handball

League. We generate instances with n = 10,..., 20 teams, n taking even values.

14

Usually, the league needs a schedule satisfying a restriction of a type: each team should have

in the first 2k and in the last 2k periods of each round exactly the same number of home and

away matches. This restriction can be expressed by requiring the periods 2i,i = 1,..., k and

n — 1 — 2k + 2i,.i = 1,..., k to be break free. We set k = 1 for instances with 10 teams

and require hereby that in the first 2 and in the last 2 periods of each round each team plays

the same number of home and away matches. For n = 12 and n = 14 we set k = 2, and for
n = 16,..., 20 we set k = 3.

In the reality, most of the teams have at their disposal more than one Stadium. Usually, one

of the stadiums is more preferable for all parties involved. This Stadium can be closed due to

reconstruction or, more often, due to other events (e.g. rock concerts) planned for the same

time. The probability that a Stadium is unavailable in a period is different for different teams.

As in o ur real life instance, the best Stadium of HSH Hamburg is closed in 9 out of 34 periods,

the Stadium of THW Kiel is closed in 5 periods. For TBV Lemgo there are no restrictions to

use the Stadium at all.

Without loss of generality, we assume that the Stadium of team 1 is the least and the Stadium

of team n is the most probable to be closed for the matches in each particular period. So we set

the probability that the Stadium of team i is closed in a particular period to be 'xpr'f°^^ep"3tad.

Where pr_forbidden_stad is a parameter of the instance generator.

Then, the high quality group is generated by drawing k teams on random. We set k = 4 for

instances with up to 12 teams, k = 5 for instances with 14 teams, and k — % for instances

with 16 and more teams. All n teams have equal probability to be chosen in the high quality

group and are chosen independently of each other.

The set_pair constraints arise mostly from the fact, that some periods are more attractive

for a team and desired to be used for 'important' matches. The attractiveness of a period can

be influenced by seasonal issues or, more frequently, by availability or unavailability of a better

Stadium.

We instantiated three parameters to generate set_pair constraints. These are:

prob_be_chosen, max_prob_be_chosen_opp and plus_factor. The generation is then or-

ganized as follows. We pick a team i with probability prob_be_chosen as the host team

for a set.pair constraint. Then we generate a probability pb, which is drown as uniformly

distributed random value from the interval [0, max_prob_be_chosen_opp]. For each team

{1,... n} \ {«} we decide with probability pb if it is the visitor team of i in a set_pair con

straint. Having chosen l different visitor teams we generate l set.pair constraints with % as

the host team. Each such a set.pair constraint we instantiate with the same set of periods.

I tili l + plus-f actor periods are drawn independently on random for this purpose.

In total, we instantiate 4 parameters to generate an instance of each dimension. This results in

16 different combinations of parameter values. For each such a combination five instances for

different seed values are generated. Consequently, we generate 80 instances of each dimension.

15

n type of Solution average time (sec.) solved within time limit (sec.)

1 5 10 30 60 120 300 600

10 feasible 0.07 80
10 efficient 0.15 79 80
10 optimal 0.30 76 79 80

12 feasible 0.10 80
12 efficient 0.21 80
12 optimal 1.61 74 78 78 79 79 80

14 feasible 0.28 80
14 efficient 0.76 68 79 80
14 optimal 3.80 44 69 71 74 75 76 76 76

16 feasible 1.12 50 79 79 80
16 efficient 17.02 8 61 75 76 78 78 78 79
16 optimal 31.66 0 37 54 61 66 68 69 72

18 feasible 7.32 3 44 63 80
18 efficient 29.02 0 5 16 52 74 78 78 79
18 optimal 31.99 0 2 3 29 50 61 62 62

20 feasible 106.24 0 6 10 21 34 48 68 75
20 efficient 279.31 0 0 0 3 5 14 37 63
20 optimal 257.93 0 0 0 1 1 6 20 30

Table 4: Results: the average time over solved instances and the number of solved instances
(out of 80) of each set within each time limit.

5.2.2 Computational Results

We tested our solver on 6 instance sets with the dimension of 10 to 20 teams limiting the run

time to 600 sec. for each instance. The results for each of the instance sets are summarized
in Tables 4 and 5.

Table 4 provides the number of instances (out of 80 in each set) with determined feasible,

efficient and optimal solutions for each instance set within the given timelimit. Additionally,

the average time (calculated only over instances solved within 600 sec.) to find and prove

each type of Solution is given. We could solve optimally all instances with up to 12 teams.

For almost all instances with up to 18 teams an efficient Solution was found and proved. Most

of the instances with up to 18 teams were solved to optimality.

Table 5 provides the fraction (calculated for all instances and for instances solved effi-

ciently/optimally) of satisfied unavailable.stadions and set_pairs constraints for each
problem size.

16

n #solved percent of satisfied constraints

all instances efficient/optimally solved

feasible efficient optimal unavailable.stadions set.pairs unavailable.stadions set.pairs
10 80 80 80 85.81 73.53 85.81 73.53
12 80 80 80 87.43 69.81 87.43 69.81
14 80 80 76 87.43 66.61 87.43 68.60
16 80 79 72 88.34 69.51 88.47 73.28
18 80 79 62 88.60 60.92 88.70 69.26
20 75 63 30 82.75 34.90 88.94 71.88

Table 5: Summarized results.

6 Conclusions and Outlook

We show the efficiency of our approach for constructing schedules for round robin tournaments

with up to 20 teams. The Performance decrease rapidly with the growth of the number of

teams. The dimension of 22 teams seems to be the limit for out method in its current form.

This suffices however for scheduling most of real world sport leagues playing round-robin

tournaments.

For solving instances with 22 and more teams we see a possibility for improvements. It is well

known, that a SAT solver based on DPLL algorithm can not efficiently deal with some kinds of

infeasibility, as e.g. the infeasibility of the well known pigeon-hole problem (Haken [21]). We

believe, that a similar Situation occurs frequently in our problem. We think, that this can be

improved by hybridizing a SAT solver with a linear solver or with a bipartite feasible matching

solver.

Furthermore, our method provides the capability to efficiently deal with even more types of

(soft) constraints, so that even more attractive schedules can be constructed.

References

[1] T. Bartsch, A. Drexl, and S. Kröger. Scheduling the Professional Soccer Leagues of

Austria and Germany. Computers &. Operations Research, 33:1907-1937, 2006.

[2] D. Briskorn. A Branching Scheme for Minimum Cost Tournaments with regard to Real

World Constraints. Working Paper, 2009.

[3] D. Briskorn and A. Drexl. Branching Based on Home-Away-Pattern Sets. In K.-H.

Waldmann and U. M. Stocker, editors, Operations Research Proceedings 2006 - Seiected

17

Papers of the Annual International Conference of the German Operations Research So

ciety (GOR), Karlsruhe, September 6th - 8th 2006, pages 523-528. Springer, Berlin,

Germany, 2007.

[4] D. Briskorn and A. Drexl. A branching scheme for finding cost-minimal round robin

tournaments. European Journal of Operation al Research, 197(l):68-76, 2009.

[5] D. Briskorn, A. Drexl, and F. C. R. Spieksma. Round Robin Tournaments and Three

Index Assignment. Working Paper, 2006.

[6] P. Brucker and S. Knust. Complex Scheduling. Springer, Berlin, 2006.

[7] S. A. Cook. Conf. Record of 3rd STOC, chapter The complexity of theorem proving

procedures, pages 151-158. Shaker Height, OH, May 1971.

[8] M. Davis and H. Putnam. A Computing procedure for quantification theory. Journal of

the ACM, 7(3):201—215, 1960. ISSN 0004-5411.

[9] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.

Communications of the ACM, 5(7):394-397, 1962.

[10] D. de Werra. Geography, Games and Graphs. Discrete Applied Mathematics, 2:327-337,

1980.

[11] D. de Werra. Scheduling in Sports. In P. Hansen, editor, Studies on Graphs and Discrete

Programming, pages 381-395. North-Holland, Amsterdam, The Netherlands, 1981.

[12] D. de Werra. Minimizing Irregularities in Sports Schedules Using Graph Theory. Discrete

Applied Mathematics, 4:217-226, 1982.

[13] D. de Werra. On the Multiplication of Divisions: The Use of Graphs for Sports Scheduling.

Networks, 15:125-136, 1985.

[14] D. de Werra. Some Models of Graphs for Scheduling Sports Competitions. Discrete

Applied Mathematics, 21:47-65, 1988.

[15] D. de Werra, T. Ekim, and C. Raess. Construction of Sports Schedules with Multiple

Venues. Discrete Applied Mathematics, 154:47-58, 2006.

[16] F. Deila Croce and D. Oliveri. Scheduling the Italian Football League: An ILP-Approach.

Computers &. Operations Research, 33:1963-1974, 2006.

[17] A. Drexl and S. Knust. Sports League Scheduling: Graph- and Resource-Based Models.

Omega, 35:465-471, 2007.

18

[18] G. Durän, M. Guajardo, J. Miranda, D. Saure, and A. Weintraub. Scheduling the Chilean

Soccer League by Integer Programming. Interfaces, 37:539-552, 2007.

[19] N. Een and N. Sörensson. Theory and Applications of Satisfiability Testing, chapter

An extensible SAT-solver, pages 502-518. Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2004.

[20] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Handbook of Knowledge Repre-

sentations, chapter Satisfiability Solvers, pages 89-132. Elsevier, 2008.

[21] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,

1985.

[22] G. Kendali. Scheduling English Football Fixtures Over Holiday Periods. Journal of the

Operational Research Society, 59:743-755, 2008.

[23] S. Knust. Classification of literature on sports scheduling, 2009. URL

http://www.inf.uos.de/knust/sportlit_class/. (January 29^, 2009).

[24] L. Levin. Universal sequential search problem. Problems of Information Transmission, 9:

265-266, 1973.

[25] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. DAC, pages 530-535, 2001.

[26] R. V. Rasmussen. Scheduling a Triple Round Robin Tournament for the Best Danish

Soccer League. European Journal of Operational Research, 185:795-810, 2008.

[27] R. V. Rasmussen and M. A. Trick. Round Robin Scheduling-a survey. European Journal

of Operational Research, 188:617-636, 2008.

[28] C. C. Ribeiro and S. Urrutia. Scheduling the Brazilian soccer tournament with fairness

and broadcast objectives. Lecture Notes in Computer Science 3867, pages 149-159, 2007.

[29] J. A. M. Schreuder. Combinatorial Aspects of Construction of Competition Dutch Pro

fessional Football Leagues. Discrete Applied Mathematics, 35:301-312, 1992.

19

http://www.inf.uos.de/knust/sportlit_class/

