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Abstract 

Single round robin t ournaments are a well known class of sports leagues schedules. 
We consider leagues with a set T of n teams where n is even. Costs are associated 
to each possible match. Moreover, Stadium availability, fixed matches, and regions' 
capacities are taken into account. The goal is to find the minimum cost tournament 
among those having the minimum number of breaks and being feasible with regard to 
these additional constraints. A br anching scheme is developed where branching is done 
by fixi ng a break for a team. Thus, the focus is on identifying breaks leading to an 
infeasible home away pattern set in ord er to avoid the resulting infeasible subtrees of a 
branch and bound tree. 

Keywords: Sports league scheduling, round robin tournaments, home-away-pattern 
set, break, Stadium, region, branch-and-bound 

1 Introduction 

Round robin tournaments (RRT) cover a huge variety of different types of sports league 
schedules arising in practice. In a Single RRT a set of teams T, |T| = n even, competes 
such that each team plays exactly once against each other team, either at home or at the 
opponent's home. In the latter case, we say the first team plays away. Furthermore, each 
team has to play exactly once in each period and, hence, we have a set P of n — 1 periods 
altogether. 

A mirrored double RRT is a tournament where each pair of teams meet twice, both, the first 
half and the second half of the tournament, form a Single RRT each, and team i plays at 
home against team j in period p of the first half if a nd only if j plays at home against team i 
in period p of the second half. It is easy to see that we can schedule a mirrored double RRT 
by projecting all requirements regard ing the second half on the first haifand, then, schedule a 
Single RRT. 

An illustrative example for a Single RRT where n = 6 is given in Table 1. Here i-j denotes 
that team i plays at home against team j. 

1 2 3 4 5 
match 1 3-4 4-5 2-4 4-6 6-5 
match 2 5-2 1-3 5-1 3-5 4-1 
match 3 6-1 2-6 6-3 1-2 2-3 

Table 1: Single RRT for n = 6 

Since each match has to be carried out at one of the venues of both opponents breaks come 
into play. We say team i has a break in period p > 1 if and only if i plays either twice at 
home or twice away in periods p — 1 and p. For the sake of fairness among teams the most 
common goal concerning breaks is to minimize the number of their occurences. It is well 
known from de Werra [9] that the number of breaks cannot be less than n — 2 in a single 
RRT. Furthermore, de Werra [9] shows that this number of breaks can be obtained for each 
even n. The single RRT provided in table 1 has 4 breaks for 6 teams and, therefore, it has 
the minimum number of breaks. 

1 



The constraints introduced above are due to the type of tournament. In the following, we 
will outline constraints arising in the context of real world tournaments. First, an important 
restriction is caused by Stadium unavailability. A team i's Stadium may not be available in 
some periods and, consequently, i has to play at the opponent's venue then. Suppose for 
example, that teams 3 and 4 cannot play at home in period 4 and 2, respectively. Then, the 
Single ART in Table 1 is not feasible but the one in Table 2 is (and, additionally, it has a 
minimum number of breaks also). 

1 2 3 4 5 

match 1 2-5 5-4 3-5 5-6 6-4 
match 2 4-3 1-2 4-1 2-4 5-1 
match 3 6-1 3-6 6-2 1-3 3-2 

Table 2: Single RRT for n = 6 

Obviously, Stadium availability just serves as an example for causes forcing teams to play in t he 
opponent's Stadium in a specific period. For example, it can be the Organizers goal to fulfill 
teams' preferences to play at home or away. Preferences are mostly due to individual interests, 
e.g. german soccer club Bayern Munich wants to play at home during the Oktoberfest. In t he 
context of a mirrored double RRT, a team forced to play away (due to Stadium unavailability) 
in period p of the second half is forced to play at home in period p of the first half. That 
is why we consider this kind of restriction, namely a team has to play at home in a certain 
period, as well. 

A second constraint is given by fixed matches which is a common requirement in real world 
tournament scheduling, see Bartsch et al. [2] for example. If a match of i against j is fixed 
to be carried out in period p, then we require that both teams compete in p no matter at 
which venue. Of course, combining this requirement with Stadium unavailability for team i in 
p, for example, we can fix the venue to be j's home, as well. Projection of requirements in 
the second half to the first half is straightforward. 

A third restriction concerns groups of teams from the same area. A prominent example is 
London where no less than 13 professional teams are located. Five of them played in the 
Premier League, Englands first soccer league, in season 2005/2006. Even if each of these 
teams has a Stadium on its own the infrastructure of the region might be overloaded if too 
many teams play at home in a specific period. For example, traffic jams and overcrowded 
public transportation systems resulting from fans heading to the stadiums at the same time 
must be avoided. Furthermore, the capacity of security staff and of firemen needed in case of 
emergency is limited. Consequently, the number of matches teams of this area play at home 
in the same period should be limited. Since we consider a mirrored double RRT we have to 
limit the number of matches teams of this area play away in the same period as well. This 
is because these matches correspond to matches at home in the second half. Suppose for 
example that teams 1, 3, and 4 are located in the same region and are not allowed to play 
at home in the same period. In the Single RRT represented by Table 1 this requirement is 
violated in period 4. Additionally, in period 3 all of these teams play away which results in 
3 matches at home in period 3 of the second half. The Single RRT in Table 2 fulfills this 
requirement. 

Models for sports league scheduling have been the topic of extensive research. A whole stream 
of papers is based on the analogy between sports league scheduling and edge coloring of 
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complete graphs. Examples are de Werra [9, 10, 11, 12, 13], de Weira et al. [14], and Drexl 
and Knust [16]. Brucker and Knust [8] and Drexl and Knust [16] analyze the relationship 
between sports league scheduling and multi-mode resource constrained project scheduling. 
Briskorn et al. [7] line out the similarity of structures of Single RRTs and planar three index 
assignments. Real world problems have been considered in Bartsch et al. [2], Deila Croce and 
Oliveri [15], Durän et al. [17], Kendall [19], Rasmussen [22], Ribeiro and Urrutia [24] and 
Schreuder [25] examine particular formulations. 

Extensive overviews of literature on sports leagues scheduling in the context of Operations 
research are provided by Knust [20] and Rasmussen and Trick [23]. 

In Briskorn and Drexl [5] a prominent decomposition scheme is picked up as the basic idea for a 
branch&bound (B&B) approach for scheduling Single RRTs with a minimum number of breaks 
(but without taking Stadium availability and regions' capacities into consideration). Using the 
linear programm (LP) relaxation of an integer programming model branching is done by fix ing 
a break for a team. Döing this the venues of all teams are fixed step by step. It is well known, 
see Miyashiro et al. [21] for example, that we cannot fix venues arbitrarily since there may 
be no corresponding single RRT. Thus, the focus is on identifying breaks leading to infeasible 
combinations of venues and, then, ignoring the corresponding subtrees. Briskorn and Drexl [5] 
develop several efficient tests to identify infeasible breaks. The scheme has been proven to be 
capable to significantly reduce the number of nodes related to an infeasible linear programm 
(LP) and it clearly outperforms state-of-the-art solver Cplex. Therefore, in the paper at hand 
we aim at extending the approach such that Stadium unavailibility, fixed matches, and regions' 
constraints can be taken into account. 

In the remainder this paper is organized as follows. In Section 2 we define a sports league 
scheduling problem and represent it by means of IP models. In Section 3 we develop the 
branching scheme. Section 4 lines out computational results and, finally, Section 5 contains 
conclusions and an outlook to further research. 

2 Problem Definition and Model 

Given a set of teams T, |T| = n even and a set of periods P, |P| = n — 1, a schedule S 
can formally specified as a subset of T x T x P. Each triple (i,j,p) e T x T x P with 
i ^ j corresponds to a match of team i against team j at i's home in period p. We say i 
plays at home against j in p according to S and j plays away against i in p according to S if 
(i,j,p) e S. 

A subset S cTxTxFisa schedule if each team plays exactly once against each other 
team and each team plays exactly once per period according to S. We say team i has a home 
break and an away break in period p > 1 if a nd only if i plays twice at home and twice away, 
respectively, in periods p— 1 and p. A s tring specifying the venue (home/away) of a team for 
each period is called a home away pattern (HAP). 

We use the following notation in order to specify Stadium availability. We have sets Hp C T 
and Ap C T for each p G P. If i € Hp and i € Ap, then i must play at home and away, 
respectively, in period p. Note that teams in T\(HP U Ap) can play both, at home and away, 
in p. Consequently, a schedule S is feasible regarding Stadium availability constraints if 

I for each period p e P each team i € Hp and i € Ap plays at home and away, respectively, 
in p according to S. 
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Fixed matches are particularized using the notation described in t he following. For each period 
p £ P we have a set Fp C {{i,j) \ i ,j £ T,i < j} of all pairs of teams such that (i,j) 6 Fp 

if and only if i must compete j in p. For notational convenience F = Upep-^p- Note that 
Fp fl Fp/ = 0 if pi^p' and for each team i £T and each period p £ P there cannot be more 
than one pair of teams containing i in Fp. Consequently, a schedule S is f easible regarding 
fixed matches if 

II for each period p £ P and each (i,j) £ Fp i plays against j in p according to S. 

We use the following notation in Order to specify constraints regarding regions. We have a 
set TZ C 2T of regions. Each region R £ TZ has capacity CR which specifies the maximum 
number of matches allowed to be carried out at home simultaneously and, thus, the maximum 
number of matches allowed to be carried out away simultaneously by teams in R. A schedule 
is feasible regarding regions' capacities if 

III for each period p £ P and each region R £ TZ the number of matches of teams in R 
carried out at home does not undershoot \R\ - CR and does not exceed CR according 
to S. 

A feasible schedule is a schedule providing a minimum overall number of breaks and fulfilling 
I to III. Furthermore, we associate cost cijiP with (i, j,p). Cost c^jtP of a specific match can 
be seen in a rather abstract way here. However, there are several application of CijtP with 
practica! relevance, see Briskorn and Drexl [6], We define the cost of schedule S as the sum of 
costs corresponding to triples in S. Then, we consider the problem to find a feasible schedule 
S with minimum cost, namely the minimum cost single RRT problem with side constraints 
(MCSRRT). 

MCSRRT can be represented by an IP model as specified by (1) to (12). We use binary variable 
xi,j,P, i £ T, j £ T, j ^ i, p £ P, equaling 1 if and only if team i plays at home against 
team j in period p. Then, objective function (1) represents the goal of cost minimization. 
Constraints (2) to (4) assure the single RRT structure. Restrictions (2) and (3) force each 
pair of teams to meet exactly once. This can happen in an arbitrary period if (i,j) is not fixed 
and in the predefined period if (i,j) £ Fp. Constraint (4) forces each team to play exactly 
once per period. Then, restrictions (5) or (6) ensure that britP equals 1 if t eam i plays twice 
at home or twice away, respectively, in periods p— 1 and p. Constraint (7) limits the number 
of breaks to the minimum number. Note that combining (5), (6), and (7) leads to britP = 1, 
i £ T, p £ P-2, if and only if i has a break in p. Constraint (8) enforces that matches 
are arranged regarding Stadium availabilities. Constraints (9) and (10) limit the number of 
matches in region R to no more than the corresponding capacity CR. 

In this paper we additionally consider three special cases of problem MCSRRT. These are 
derived by setting Hp = Ap = 0 for each p £ P, Fp = 0 for each p £ P, or 7Z = $. More 
specifically, we tackle the minimum cost single RRT problem with Stadium unavailabilities 
(MCSRRTs) where Fp = 0 for each p £ P and 72. = 0, the minimum cost single RRT problem 
with fixed matches (MCSRRTf) where Hp = Ap = 0 for each p £ P and 71 = 0, and the 
minimum cost single RRT problem with regions (MCSRRTr) where Hp — Ap — Fp = 0 for 
each p £ P and TZ = 0. Thus, in each of these special cases only one of I, II an d III is to be 
considered. 
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xi,i,p G {0,1} V i,j G T,i^j,p G P (11) 

G {0,1} V i eT,p € P-2 (12) 

3 Branch-and-Bound Algorithm 

3.1 Basic Idea 

As in Briskorri and Drexl [5] the basic idea is to use the LP relaxation of the model presented 
in Section 2 and to branch on the break of teams. Note that there is exactly one break per 
team if w e consider teams without a break to have a break in the first period, see Miyashiro 
et al. [21]. At each node of the search tree we first solve the LP relaxation of (1) to (12). 
Regarding the found Solution, a team i is chosen whose break is not determined yet. Then, 
for each possible break for i a child node is created where the corresponding break is fixed for 
i. By fixing the break for i we decide for each period whether i plays at home or away. Note 
that the MAP is strictly alternating in all periods but the unique break period. Unfortunately, 
there may be up to 2(n — 1) child nodes since a break can occur in each period and either at 
home or away. Hence, the search tree can grow extremely broad. Here, the challenging part 
is to reduce the set of possible breaks for i and, therefore, the number of child nodes of the 
current node dynamically as much as possible without cutting out feasible solutions. 

A path in the search tree from the root node to a node with depth n defines a MAP set that 
is a set of HAPs assigned to teams. A MAP set is called feasible if there is a single RRT 
where each team plays in each period according to the HAP set. The complexity of deciding 
feasibility of a HAP set is an open question in t he general case as well a s in the case where the 
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number of breaks is n — 2, see Briskorn [3] and Miyashiro et al. [21]. When deciding whether 
to create or not a child node (corresponding to a specific break) we have to decide whether 
the resulting partial MAP s et can be completed to a feasible füll MAP set. In the following 
we call a partial HAP set feasible if a nd only if t here is a corresponding feasible füll MAP s et. 
Obviously, if we know that a partial HAP set is i nfeasible, then we can prune the corresponding 
subtree. Furthermore, for a specific node we call a break infeasible if it leads to an infeasible 
partial HAP set. Then, we ignore infeasible breaks when creating child nodes. 

Briskorn and Drexl [5] consider the model consisting of (1) to (7) as well as (11) and (12) 
where F = 0 and develop necessary conditions for a specific break to be feasible. In order to 
keep the paper at hand self-contained we first State these conditions. We assume a set P^ of 
periods has already been chosen as break periods for a set T^ of teams on the path from the 
root node to the current node of the search tree. Then, a specific break defined by period p 
and venue for team i £ T \ T6r is infeasible if 

1. the resulting set P^ U {p} of break periods contains n/2 4- 1 periods or 

2. a subset T6r C T67" U {z} of teams cannot play ('^O matches among each other. 

These conditions are motivated by two well known properties of feasible HAP sets, namely 

1. in each period there are either two or zero breaks and, therefore, there are exactly n/2 
break periods and 

2. each subset T C T of teams must play ('^') matches against each other since each 
team must play against each other. 

Details regarding these conditions can be found in Miyashiro et al. [21]. In B riskorn and Drexl 
[5] efficient tests for the conditions above are implemented. Note that feasibility of a specific 
break depends neither on team i nor on Tif Stadium unavailability, fixed matches, and 
regions' capacities are not considered. Feasibility of a specific break can be decided based on 
Pör and p only since - regarding feasibility of the partial HAP set - teams are interchangable. 

In the paper at hand, however, we aim at strengthening the tests mentioned above for the 
case where at least one of Stadium unavailability, fixed matches, and regions' capacities has 
to be considered using individual Information about teams. Therefore, we extend the concept 
of infeasibility of a specific break with regard to a given set of break periods to infeasibility of 
a specific break for a specific team with regard to a given set of breaks assigned to a set of 
teams. That is, depending on the set of teams involved a partial HAP set may be feasible or 
not. 

Consequently, as described above at each node we first choose a team i whose break is to 
be fixed next. Then, we decide which breaks are infeasible for i considering the set of breaks 
already fixed for the corresponding subproblem. The tests to check infeasibility of a specific 
break are developed in Section 3.2. Further details of the branching scheme are outlined in 
Section 3.3. 

Of course, setting the break for each team cannot guarantee the resulting LP subproblem to 
have an integer optimal Solution. In o rder to emphasize the impact of our branching scheme 
we consider the IP corresponding to the subproblem in such a case and solve it using Cplex. 
Our experience with basic problems, see Briskorn and Drexl [5], teils us that only a very small 
amount of IPs have to be solved. 
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3.2 Identifying Infeasible Breaks 

In the following we will call a break which has not been declared infeasible yet a potemtial 
break. Then, a child node i cre ated for each potential break. The tests for infeasibility can be 
separated into four classes: 

• The anonymous tests proposed in Briskorn and Drexl [5] to check whether a break is 
infeasible even if we do not consider individual requirements arising for teams. Thus, if 
we decide that a specific break is infeasible in general, then this break is infeasible for 
each team. The basic necessary conditions checked here are given above. For details 
about an efficient Implementation we refer to Briskorn and Drexl [5]. 

• We develop static individual tests deciding whether a specific break is infeasible for team 
i given Stadium unavailabilities. We describe the reduction of the set of potential breaks 
for each team in S ection 3.2.1. 

• We propose dynamic individual tests deciding whether a specific break is infeasible for 
team i given fixed matches, regions' capacities, and a set of already fixed breaks and 
the corresponding teams. We describe the reduction of the set of potential breaks for 
each team in Section 3.2.2. 

• Dynamic tests for consistency of the sets of potential breaks are outlined. We develop an 
efficient technique checking a necessary condition for consistency of the set of potential 
breaks in a certain subproblem in S ection 3.2.3. 

3.2.1 Considering Stadium Unavailability 

Stadium unavailability for team i in period p trivially means that team i can have a home 
break neither in p nor in p + 1. Moreover, since there is exactly one break per team (including 
breaks in t he first period) we can determine which breaks would lead to a match of i at home 
in p. Breaks unconditionally leading to a match of i at home in p are home breaks in a period 
in s et 

Ph = {p' | p' < p,p — p' mod 2 = 0} U {p' | p' > p, p' — p mod 2 = 1} 

and away breaks in a period in s et 

Pa = {p' | p' < p, p — p' mod 2 = 1} U {p' | p' > p, p' — p m od 2 = 0} 

Thus, home breaks in Ph and away breaks in Pa are infeasible for i. If te am i has to play at 
home in period p we can determine the breaks being infeasible by exchanging Ph and Pa. 

If t here is more than one period where Stadium unavailability restricts the venue a team can 
play at, then we can apply the same technique mentioned above for each such period. However, 
in t he following we present a more efficient way. We look at periods in a circular fashion, that 
is after the last period n — 1 follows period 1. Let Ps = {pi,... ,Pk}, k > 2, be the set of 
periods where team i cannot play at home or away. Then there is one k', 1 < k' < k, such 
that the break of i must occur in periods pv + 1 to pw+i where k + 1 = 1. This is obvious 
from the fact that there is exactly one break per team and the intervals derived from P3 are 
disjoint. We can identify the interval by t he following rules. 
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Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Venue - H - - - H - - - A - - - - - A -

Breaks for 2 A H H A H A H A H A H A H A H A H 
Breaks for 6 A H A H A H H A H A H A H A H A H 

Breaks for 10 H A H A H A H A H A A H A H A H A 
Breaks for 16 H A H A H A H A H A H A H A H A A 

Pot. Breaks H A H A 

Table 3: Feasible Break for given Stadium Unavailability 

1. If Vk'+i — Pk' is even and the venues of i in pk> an d pk'+i are different, then there must 
be a break of i in periods pu + 1 to pv+1-

2. If Pk'+i — P k' is odd and the venues of i in pk> an d Pk'+i are identical, then there must 
be a break of i in periods pk> + 1 to Pk'+i-

3. If none of the above, then i cannot have a break in periods pk> + 1 to pk'+i. 

Rules 1 and 2 are obvious since the venues in pk< an d py+i do not allow a HAP that is strictly 
alternating between pk> an d pk>+1- Rule 3 is due to the fact that no team has more than one 
break. If th ere is one break in periods pk> + 1 to pk>+i, then there must be a second break in 
periods pk> + 1 to pv+i due to the venues in pk> an d pk'+i-

Table 3 lines out the application of the rules mentioned above. The second line "Venue" gives 
four fixed venues for team i in periods 2, 6, 10, and 16. Each of the following lines gives 
the possible breaks regarding one of the fixed venues. Here "Breaks for p" refers to the fixed 
venue in period p. This line gives the venues of the break of i if i ts break occurs in t he period 
corresponding to the column taking into account the venue of i in p. Thus, the entry for 
period 4 in line "Breaks for 10" can be read as if i has its break in period 4, then it is an away 
break since i plays away in period 10. 

For each fixed venue of team i we have the venue of the break fixed depending on the period 
of the break. Hence, if two fixed venues of a break in period p are conflicting, then p cannot be 
a break period of i. Consider period 3 for example. From the facts that team i plays at home 
in 2 and 6 we conclude that a break of i in 3 can only occur at home and away, respectively. 
Obviously, this is a contradiction and, therefore, the assumption that the break occurs in 3 
must be wrong. Thus, we can drop both breaks in 3 from the set of potential breaks of i. 

The last line of Table 3 gives the venues for each period where all lines coincide. These 
symbolize the only possible breaks regarding the fixed venues of i. A column without entry 
represents a period where both breaks are infeasible for i. 

Now consider the application of rules 1 to 3 to the example given in T able 3. We have k = 4 
and pi = 2, p2 = 6, p3 = 10, and p4 = 16. Rule 2 applies to k' = 2 while for each k' ^ 2 
Rule 3 applies. This is reflected by the last line in Table 3. 

3.2.2 Considering Fixed Matches and Regions' Capacities 

In t he following we develop a mechanism in order to identify infeasible breaks regarding fixed 
matches and regions' capacities. Again, we restrict the set of potential breaks of each team 
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Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Break - - 1 - - - 2 - - - 3 - - - - - -

HAP 1 A H H A H A H A H A H A H A H A H 
HAP 2 A H A H A H H A H A H A H A H A H 
HAP 3 H A H A H A H A H A A H A H A H A 

Venues 4 A H A H 
Venues 5 - - H - - - - - - - - - H - - - -

Breaks 4 A H A H A H A - - - H A H A H A H 
Breaks 5 H A H H A H A 

Table 4: Feasible Breaks for given Fixed Matches and Regions' Capacities 

by identifying periods where a team i cannot play at home and away, that is periods where 
the venue of i can be considered fixed. Both, regions' capacities as well a s fixed matches, can 
only lead to a fixed venue for team i under special circumstances. 

1. If te am j is fixed to play against team i in period p and, furthermore, j is fixed to play 
at home and away in p, then i must play away and at home, respectively, in p. 

2. If i G R and there is a set T" C R, \T'\ = CR, of teams such that each team in T" plays 
at home (away) in p, then i (as well as all other teams in R \ T') must play away (at 
home) in p. 

While chances are low that one of these rules is applicable for the initial problem chances get 
higher during the branching process since fixing breaks implies fixing venu es for teams. Hence, 
after fixing a break for team j we check whether (min{%,j},m&x{%, j}) G F for any team 
i ^ j. If so Rule 1 applies for i. Furthermore, for each R3 j we update the remaining home 
capacity and the remaining away capacity of R in each period p, that is the number of teams 
of R being allowed to play at home and away, respectively, in addition to those teams of R 
having a fixed venue in p. If t he remaining home capacity or the remaining away capacity is 
reduced to zero for any period p, then Rule 2 applies for region R and period p and, therefore, 
for each team i E R, i ^ j. If on e of these rules is applicable and tightens the restrictions for 
the venue where i competes in any period p, then we can consider this restriction as Stadium 
unavailability in p and proceed as in Section 3.2.1. 

Table 4 illustrates the procedure specified above. Let us assume we already fixed breaks for 
three teams which results into three fixed HAPs. Then, the second line gives for each period 
p the team that has a break already fixed in p. The resulting HAPs are given in lines "HAP 
1", "HAP 2", and "HAP 3". We refer to the corresponding teams as Teams 1, 2, and 3 in t he 
following. Let us further assume that teams 1, 2, and 3 belong to a region R having capacity 
CR = 3. Then, teams 1, 2, and 3 use up the region's capacity in periods 7 to 10. This means, 
that a fourth team (team 4 in the following) of R has to play away in periods 7 and 9 and 
has to play at home in periods 8 and 10. These fixed venues are outlined in line "Venue 4". 
Employing the technique outline in Section 3.2.1 we find that only breaks according to line 
"Breaks 4" are potential for team 4. 

Now suppose that a fifth team (team 5 that does not necessarily belong to R) is fixed to play 
against teams 2 and 3 in periods 3 and 13, respectively. Then, team 5 has to play at home in 
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periods 3 and 13 since its opponent plays away. This is symbolized in line "Venues 5". Again, 
employing the technique outline in Section 3.2.1 we find that only breaks according to line 
"Breaks 5" are possible for team 5. 

3.2.3 Rinding Pairs of Teams 

In th is Section we develop a procedure to further reduce the set of potential breaks. The focus 
here is on the combination of sets of potential breaks. We employ a property of feasible HAP 
sets having the minimum number of breaks. Among others Miyashiro et al. [21] show that 
in such a HAP set there are exactly n/2 periods having two breaks. Obviously, two teams 
having their breaks in the same periods have complementary HAPs, that is in each period 
their venues are different from each other. Thus, in a feasible HAP set we have n/2 pairs of 
teams connected to each other by identical break periods and complementary HAPs. 

For a given partial HAP set and a set of potential breaks for each team we check whether we 
can pair up teams such that both teams in each pair can have complementary HAPs. Note 
that we can see a fixed break for team i as the only potential break for i. Then, two teams i 
and j can form a pair if t here is at least one period p such that i and j have potential breaks 
in p in different venues. Next, we show how to decide whether we can pair up all teams. We 
define an undirected graph G = {V,E) as follows. 

V = T 

E = {(w) | i,j ET,i < j, i and j can form a pair} 

Using the algorithm by Edmonds [18] we can find a maximum matching in G in polynomial 
time. If the maximum matching is a perfect one, that is it contains n/2 edges, then this 
matching represents a partition of T into pairs such that the teams in each pair can have 
complementary HAPs. If the maximum matching has less than n/2 edges, then the partial 
HAP set is infeasible. Obviously, the existence of a perfect matching is a necessary condition 
for the partial HAP set to be feasible. However, it is no sufficient one. This is due to the 
fact that we cannot consider the set of break periods resulting from the pairs of teams. For 
example, the actual pairs may require to set breaks in t hree consecutive periods. However, it is 
well known, see Briskorn and Drexl [4] for example, that in a feasible HAP set with minimum 
number of breaks there cannot be three consecutive break periods. 

Period 1 2 3 4 5 6 7 
Team 1 - A 
Team 2 - - H - - - -
Team 3 - - A - - - -
Team 4 - - - A A - -
Team 5 A H A H A H A 
Team 6 H A H - — — -
Team 7 - - — - H A H 
Team 8 A H 

Table 5: Feasible Breaks 
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In or der to illustrate the procedura described above we provide Table 5 and Figure 1. In T able 
5 a set of potential breaks is defined for each of 8 team. We assume that fixed breaks are 
projected on potential breaks as described above. On the left hand side of Figure 1 we provide 
the corresponding graph G. Since in our example there is no team having two potential breaks 
in at least one period we can State that edge (i,j) exists in G if a nd only if t here is a period 
p such that % and j have different potential breaks in p. The bold lines in the graph on the 
left hand side represent a perfect matching in G. Thus, there is a matching having cardinality 
n/2 and, therefore, the set of potential breaks in Table 5 fulfills our necessary condition. 

Next, let us assume that we branch on the break of team 4 and fix team 4 to have an away 
break in period 4 first. Then, the entry in bold lettering in Table 5 is obsolete and the graph 
on the right hand side of Figure 1 is the corresponding graph G. Now, there is no matching 
having cardinality of more than 3. Thus, there is no perfect matching and an away break in 
period 4 cannot be a feasible choice for team 4. 

3.3 Strategies to Explore the Search Tree 

3.3.1 Choice of Branching Candidate 

The branching scheme prescribes to create a child node for each potential break of a specific 
team. Consequently, branching candidates correspond to teams. In the following we develop 
strategies to choose branching candidates. 

The first one is derived from Briskorn and Drexl [5]. Considering the LP relaxation of (1) to 
(12) we define a fractional break value 

where Xiji0 means Xij,n-i for each team i £ T and period p £ P. Then, among all teams we 
choose the one having the most infeasible constellation of break values. The common idea is 
to enforce feasibility for those teams first where least tendency is given by t he Solution to the 
LP relaxation which break to choose, see Achterberg et al. [1]. In the LP relaxation of (1) 
to (12) it is possible to have zero breaks and, thus, there may be teams without any break. 
On the other hand, there may be teams having more than one break. Since this severely 
contradicts the structure of a feasible IP Solution we choose team 

j€T\{i} 

Figure 1: Graphs for Maximum Cardinality Matching Problem 
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i' = arg max 52 ~ 1 

p6f 

as branching team if Z)pepinY,p # 1- Otherwise (if YlpeP^hP = 1 ^or sach i e T), we 
choose team 

with largest fractional break value. The motivation for choosing i* is as follows. First, the 
current node's optimal Solution is cut by fixing i*'s break. Second, i* having this specific break 
is likely to enable low cost tournaments due to cost orientation of the LP relaxation. 

The second strategy to choose branching candidates aims at increasing probability to find 
feasible solutions in an early stage of the B&B aIgorithm. We choose the team having the 
smaliest number of potential breaks. In some sense this team can be seen as a bottleneck 
and not considering this team now will further decrease probability to find a feasible break in 
future stages. 

3.3.2 Node Order Strategy 

We observe that "Breadth First Search" performs significantly better than "Depth First 
Search" for instances with up to 8 teams. For larger instances, however, the search tree 
grows to large and the administrative overhead equalizes this advantage or - even worse - the 
algorithm aborts due to lack of memory. 

Therefore, we employ a compromise between a short node list guaranteed by "Depth First 
Search" and a small number of nodes being explored guaranteed by "Breadth First Search" 
based on a key value derived from the father node's optimal LP Solution. We normalize the 
father node's Solution value dividing it by the lower bound given by the root node's optimal 
LP Solution and obtain Vf as normalized value. Additionally, we calculate the fraction Xf of 
match variables having binary values in the father node's optimal Solution. Then, we sort 
the node list in non-decreasing order of Vf — w • Xf where w € R. The idea is to explore a 
node earlier if its father's optimal Solution provides many binary variables. In preliminary tests 
w = 1.5 turned out to be a suitable value. 

Furthermore, we need a tie breaker for child nodes of the same father node since these nodes 
are rated equal according to the mechanism proposed above. For a specific child node and, 
thus, for a specific break for team i we consider the average value of those matches that are 
possible for i if this break is fixed. Then, we sort child nodes in non-decreasing order of this 
value. 

4 Computational Results 

We carried out our computational study using a 3.8 GHz Pentium 4 machine with 3 GBs of 
RAM running Microsoft Windows Server 2003. We compared our approach to llog Cplex 10.1 
with default settings referred to as "CPLEX" in t he following. We employed the strategy using 
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fractional break values in order to choose a branching candidate and the strategy described in 
Section 3.3.2 as node order strategy. For solving the maximum cardinality matching problem 
introduced in Section 3.2.3 we employed the Boost Graph Library (see Siek et al. [26]). Here, 
the Implementation of Edmonds' algorithm follows Tarjan [27]. We compiled our aIgorithm 
coded in C++ using Microsoft Visual Studio 2005. 

For each number of teams between 6 and 12 we have 9 classes of 20 instances each. In each 
class costs are randomly drawn from integer values between 0 and 20. In the following we 
specify the characteristics of each class. 

1. In class "MCSRRTns" the actual problem is defined by (1) to (7) and (11) as well as 
(12) with F = 0. That is, we do not consider fixed matches, Stadium availability, or 
regions. Then, instances are fully specified by n. 

2. Class "MCSRRTslO" contains instances of problem MCSRRTs. For each team i and 
each period p it is randomly chosen whether i can play at home and away in p or not. 
Probability for a restriction of possible venues is 10%. If the possible venue is r estricted, 
then it is randomly chosen whether the Stadium is unavailable in the first or the second 
half of the tournament with equal probability. 

3. Class "MCSRRTs20" is defined just as class "MCSRRTslO" except for the probability 
of restricted venues being 20%. 

4. Class "MCSRRTf2" contains instances of problem MCSRRTf. We do randomly choose 
whether a specific match of i at home against j in p is fixed or not. Probability for a 
match to be fixed is 2%. 

5. Class "MCSRRTf4" is defined just as class "MCSRRTf2" but probability for a match 
to be fixed is 4%. 

6. Class "MCSRRTrl" contains instances of problem MCSRRTr. We do consider two 
regions of size n/2 each. The capacity of each region R is given as CR = 

7. Class "MCSRRTr2" is defined just as class "MCSRRTrl" except for the sizes of the 
regions. Sizes of regions in "MCSRRTr2" are n/2 + 1 and n/2 — 1. 

8. Class "MCSRRT1" contains instances of problem MCSRRT. Parameters are chosen 
according to "MCSRRTslO", "MCSRRTf2", and "MCSRRTrl". 

9. Class "MCSRRT2" contains instances of problem MCSRRT as well. Parameters are 
chosen according to "MCSRRTs20", "MCSRRTf4", and "MCSRRTr2". 

Results of our computational study, that is average run times in seconds for each problem size, 
instance class, and approach in s econds, are outline in Table 6. For each size of instances we 
distinguish between findingthe optimal Solution ("find opt") and proving its optimality ("prove 
opt"). For both tasks we present the run times needed to accomplish the corresponding task. 
There are classes of instances where Cplex could solve some but not all of the instances. 
The number of instances solved (a proven optimal Solution has been found for) is outlined in 
brackets after the run times needed by Cplex. If no number is given, then all instances have 
been solved. In t he column entitled "B&B*" we outline the average run times needed by B&B 
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for instances Cplex could solve. For our algorithm we additionally outline the number of IP 
subproblems being solved on average in column "# IPs". 

We clearly see that the average run time needed by B&B is significantly Iower than the one 
needed by Cplex for each problem size and instance class. The superiority is higher for larger 
problem sizes. Although the superiority is general we can identify instance classes where it is 
higher than in others. Whenever Stadium unavailability is considered we obtain very pleasant 
run times even for problem sizes both approaches cannot handle if Stadium unavailability is 
not an issue. 

We can see that if Cplex did not solve all instances of a certain class and size, then tackling 
the solved instances with B&B leads to lower run times than those obtained using B&B for the 
whole class. Thus, it seems like both approaches behave similar as far relation of Performance 
on different sets of instances is concerned. This Impression can be reassured by comparing 
Performances on different classes and sizes in Table 6. 

By comparing the run times for MCSRRTns with those for other classes we have to take into 
account that B&B can make use of the symmetry between teams in MCSRRTns. Hence, 
the fact that average run times for MCSRRTs, MCSRRTf, and MCSRRT are lower is even 
more remarkable since we cannot use any symmetry here anymore. The only class of instances 
sticking out with regard to run times is MCSRRTr. However, taking into account missing 
symmetry we can say that the approach performs well in comparison to MCSRRTns. 

Furthermore, comparing run times needed to find the optimal Solution the superiority of our 
approach is confirmed. For each but one problem size and instance class B&B finds the optimal 
Solution significantly faster on average than Cplex does. Taking a closer look at MCSRRTns 
with 10 we see that Cplex finds the optimal Solution faster here. However, it is justified to 
say that this is an odd event since it happens for the only out of 20 instances that could be 
solved at all. Mostly, both phases - finding the optimal Solution and proving its optimality 
after having found it - are done faster on average by our approach. Exceptions for this 
Statement are MCSRRTf2 and MCSRRTr2 with 8 teams. Considering MCSRRTf2 for 8 team 
for example, finding the feasible Solution is done using 1.1 seconds less of run time on average 
by o ur approach. However, proving the optimality is done using only 0.72 seconds less of run 
time, that is we loose 0.38 seconds in the second phase. This loss may be caused by Cplex 
using various techniques in order to tighten the lower bounds, adding cuts for example. Note 
that we do not use such techniques at all in order to emphasize the impact of the branching 
scheme. 

Last but not least we see that the number of IP subproblems being solved on average per in
stance is small enough to be accepted. Hence, although our branching scheme is not complete 
in a sense that it can guarantee an integer optimal Solution in each LP subproblem this case 
occurs very rarely. We would like to emphasize that not a Single infeasible IP subproblem, that 
is an IP subproblem corresponding to an infeasible HAP set, has been solved. Consequently, 
we can afford to solve these subproblems as IPs in terms of run time. 

5 Conclusions and Outlook 

In the paper at hand we develope a branching scheme in order to solve the problem to find 
a cost minimal single RRT considering side constraints, namely minimum number of breaks, 
Stadium unavailability, fixed matches, and regions' capacities. Branching is done by fixing 
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breaks for teams. Here, the focus is on finding out whether a specific break for a certain team 
can lead to a feasible HAP set. We develop efficient tests to identify infeasible breaks. 

We show by means of a computational study that our approach is able to solve problem 
instances of up to 10 teams (12 for some variants of the problem) in s ignificantly less run time 
than Cplex. Since the gap of run times of our approach and Cplex is widening with increasing 
number of teams we expect the superiority to hold for larger instances also. However, run 
times are growing unreasonably large for larger instances. 

Although the branching scheme itself cannot guarantee integer solutions our results show 
that almost no LP subproblem without an optimal integer Solution but without any branching 
candidate is left. Hence, it is justified to solve these rare subproblems as an IP. 

Even though the branching scheme is able to provide a significant reduction of run times we 
can obtain optimal solutions only for very few real world sports leagues since common leagues 
sizes are n = 18 and n = 20 teams. There are two obvious ways to proceed in o rder to develop 
algorithms for these problem sizes. First, the bounding components of our B&B aIgorithm 
can be improved. As mentioned before, so far the only bounding is done by considering the 
lower bound given by the LP relaxation of (1) to (12) with fixed breaks. Here, cut generation 
techniques could help to tighten the lower bound. Second, we can refuse to search the whole 
B&B tree and finding a good Solution in a well chosen part of the tree. 

Another field of work is to employ the knowledge gained in the paper at hand about feasibility of 
partial HAP sets in other Solution techniques, constraint programming approaches for example. 
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Size 6 8 
Goal prove opt find o pt prove opt find opt 

Approach Cplex B&B B&B" # IPs Cplex B&B Cplex B&B B&B* # IPs Cplex B&B 
MCSRRTns 0.20 0.12 — 0.15 — — 27.75 18.16 — 0.40 16.54 10.39 
MCSRRTslO 0.14 0.06 — 0.05 — — 14.57 3.08 — 0.85 11.84 1.13 
MCSRRTs20 0.11 0.03 — 0.30 — — 5.09 0.68 — 0.25 3.22 0.37 
MCSRRTf2 0.11 0.06 — 0.05 — — 5.56 4.84 — 0.05 4.12 3.02 
MCSRRTf4 0.10 0.06 — 0.00 — — 5.93 4.37 — 0.00 4.72 3 18 
MCSRRTrl 0.24 0.14 — 0.05 — — 37.56 14.95 — 0.55 30.87 10.42 
MCSRRTr2 0.29 0.15 — 0.10 — — 37.05 22.88 — 0.70 30.31 12.66 
MCSRRT1 0.10 0.04 — 0.10 — — 3.08 0.72 — 0.20 1.25 0.35 
MCSRRT2 0.06 0.02 — 0.00 — — 0.94 0.25 — 0.15 0.21 0.17 

Size 10 12 
Goal prove opt find o pt prove opt find opt 

Approach Cplex B&B B&B* # IPs Cplex B&B Cplex B&B B&B* # IPs Cplex B&B 
MCSRRTns 14708.80 (01) 7.116.18 3981.45 4.15 3024.00 3126.50 — 
MCSRRTslO 21511.63 (08) 333.08 159.13 3.25 18859.5 140.5 — 18437.92 (14) — 7.71 — 10155.36 
MCSRRTs20 9640.58 (19) 17.87 15.25 2.80 6652.00 6.45 — 160.63 (19) 4.58 — 112.36 
MCSRRTf2 22213.17 (16) 665.56 579.55 1.25 18165.00 302.40 — — — — — 
MCSRRTf4 12308.50 (17) 317.95 244.74 0.55 6993.65 160.65 — 
MCSRRTrl — 7641.75 — 3.40 — 5541.34 — — — — — — 
MCSRRTr2 — 3699.85 — 3.55 — 2388.23 — — — — 
MCSRRT1 7559.11 (19) 68.90 58.21 0.85 5370.63 39.74 — 141.16 (20) 0.75 — 85.49 
MCSRRT2 310.95 (20) 1.60 — 0.35 254.20 0.95 — 56.75 (20) — 2.10 — 26.86 

Table 6: C omputational re sults 


