
Briskorn, Dirk; Choi, Byung-Cheon; Lee, Kangbok; Leung, Joseph; Pinedo, Michael

Working Paper

Inventory constrained scheduling on a single machine

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 640

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Briskorn, Dirk; Choi, Byung-Cheon; Lee, Kangbok; Leung, Joseph; Pinedo,
Michael (2008) : Inventory constrained scheduling on a single machine, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 640, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147558

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147558
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 640

Inventory Constrained Scheduling on a Single Machine

Dirk Briskorn1'2'*, Byung-Cheon Choi2, Kangbok Lee2, Joseph Leung3, Michael Pinedo2

October 2008

1: Christian-Albrechts-Universität zu Kiel
Institut für Betriebswirtschaftslehre

Olshausenstr. 40, 24098 Kiel, Germany
http://www.bwl.uni-kiel.de/bwlinstitute/Prod

briskorn@bwl.uni-kiel.de

2: Stern School of Business
New York University

44 West 4th Street, New York, NY 10012, USA
http://www.stern.nyu.edu/~mpinedo

mpinedo@stern.nyu.edu, bchoi@stern.nyu.edu, klee3@stern.nyu.edu

3: Department of Computer Science
New Jersey Institute of Technology

University Heights, Newark, NJ 07102, USA
http://web.njit.edu/~leung/

leung@cis.njit.edu

*: supported by a fellowship within the Postdoc-Program
of the German Academic Exchange Service (DAAD)

mailto:mpinedo@stern.nyu.edu
mailto:bchoi@stern.nyu.edu

Abstract

This paper studies inventory constraints in a machine scheduling environment. Jobs
can add and remove items of different types to the inventory and from the inventory,
respectively. Jobs removing items cannot be processed if the required amount of i tems is
not available. We first have a look at general models and determine the computational
status of these problems. Since it turns out that general models are strongly NP-hard
except for makespan minimization on one machine we have a look at special cases in the
following. We determine the computational complexity of all considered special cases
for objection functions J2 Cj and Lmax and several special cases for objective functions
Y.wjCj and Y2 Uj.

Keywords: Machine scheduling, inventory constraints, computational complexity.

1 Introduction

In machine scheduling the usual setting gives the problem to schedule a set of Jobs on a set
of machines subject to a set of rules such that a given objective is optimized. One of the
rules involved can be a precedence relation between two Jobs. A regulär precedence relation
i -< j requires that Job j's processing cannot be started before Job i's processing is finished.
The concept of precedence relation has been generalized to minimum and maximum time-lags.
Minimum time-lag and maximum time-lag Zy* related to Jobs i and j require that j is
started not earlier and not later, respectively, than Z^-n and Z*j* time units after i is finished.
Note that we obtain i -< j if we set Iff1 = 0 and Zf1?* = oo. ** 1J J hj
In this paper we introduce an other generalization of precedence constraints. We consider a
set T of types. There is a storage for items of each type and an initial inventory is given.
Now, a Job might require (or consume) an amount of items to be started and might release
an amount of items to the storage when it is finished. Naturally, we want to consider only
schedules having non-negative inventory levels.
Inventory constraints as described above has been considered in project scheduling, see Bar­
tels and Zimmermann [1], Neumann and Schwindt [8], Neumann et al. [9], and Schwindt and
Trautmann [10] for example. In Neumann and Schwindt [8] it has been shown that inven­
tory constraints are a generalization of both renewable and non-renewable resources. Thus,
finding a minimum makespan project schedule considering (Standard) precedence constraints
and inventory constraints is a generalization of the well-known Resource Constrained Project
Scheduling Problem which is known to be strongly NP-hard.
An obvious application of this model can be observed in cross-dock-terminals, see Boysen
et al. [2] for example. Trucks arrive to drop or pick up, respecitvely, goods. Here, types
of goods correspond to the types of items in our model. Trucks correspond to jobs. Each
door of the terminal corresponds to machine each of which can handle one truck/job at a
time. Here, the requirement of non-negativity of the inventory is trivially motivated by the
real-world-application: no truck can be processed if he is supposed to pick up goods being not
available at that time. We can think of various objectives here, in particular all of the common
machine scheduling objectives.
An other application arises in financial Investment projects. Let us assume we have a set of
Investment projects we want to undertake or have to undertake, respectively. Each project
corresponds to a job and needs a certain amount of money to be started. After finishing the
project we have a cash inflow which can be reinvested in an other project. Money corresponds
to one type of items here. We can imagine further types such as project managers supervising
a project during execution. Of course a project can only be started if the necessary amount

1

of managers is available. After finishing the project this number of managers will be available
for further projects. An obvious objective for example would be to maximize the (discounted)
cash inflow of projects carried out in a given time horizon (or - equivalenty - minimizing the
(discounted) cash inflow of projects carried out outside the horizon). An other objective we
can easily represent by means of a Standard machine scheduling objective function. Assuming
we have to undertake each project we may want to minimize the needed makespan.
In this paper we consider inventory constraints in machine scheduling environment and in-
vestigate the computational complexity of various problems. The remainder is organized as
follows. In Section 2 we fomalize the problem we have given the underlying idea of above. We
furthermore extend the notation by Graham et al. [3] to represent the problems considered in
the paper at hand. In Section 3 we give results regarding complexity results. In S ection ?? we
proof that for two variants only finding a feasible Solution is strongly NP-hard. In Section 3.1
we consider the objectives related to flowtime and in Section 3.2 we consider due date related
objectives.. For each problem special cases are considered also. In Section 4, finally, we give
conclusions and an outlook an future work.

2 Problem Specification

We consider a set T of types and set J of jobs. Each job j has a processing time pj and might
have a due date dj. Moreover, each job j has a consumption of r£t units of items of type
t G T at the beginning of its processing which means that the inventory of type t is decreased
by r£t when j is started. When finished each job j releases r£t units of items of type t to the
corresponsing inventory, thus the inventory level increases by rjt. Note, that if r|t = r£t holds
for all j £ J and t £ T, then inventory constraints are equivalent with resource constraints
where a certain amount of resource is occudpied during processing of a job and is released
afterwards. However, r£t ^ r£t may hold. For each type an initial inventory Rt is given.
On a single machine a schedule is specified by a sequence a. Let <r{l), 1 < l < n, be the job
being scheduled in the Ith position and let Iiit, 1 < l < n, t £ T, be the inventory level of t
after the job scheduled in position l is finished. Thus,

Il,t = Rt + ~ r°cr(n,t) •
1 <l'<l

Let J~ — [j | Y2teTrj,t > 0} and J+ = {j | J2teTrj,t > 0}- A schedule a is feasible if and
only if all jobs in J are scheduled and at each time the inventory of each type is non-negative,
that is if job j £ J is scheduled in position l, then we have > r| t for each t £ T.
We extend the notation by Graham et al. [3] as follows to represent the concepts mentioned
above. If inventory constraints are considered, then we have inv G ß. If t he number of types
is limited to k, then we have inv(k) e ß.
As described above we consider a common lower bound for the inventory level of each type
by requiring the level to be non-negative. Naturally, we can consider an upper bound It as
well. The motivation may be given by limited storage capacity. If s torage capacity is limited,
we have inv G ß or inv(k) G ß, respectively.
Next, we outline the relation between inventory constraints and precedence constraints. We
reduce an arbitrary problem having precedence constraints to the corresponsing problem having
inventory constraints. Consider a problem ot\ß\i where prec G ß. Let precedence be given by
E = {(«, j)} where (i,j) means that job j cannot be started before job i is finished. For an
arbitrary instance Pv of a|/?|7 we construct an instance Pl of a|/?'|7, ß' = (ß\ {prec})U{inv}

2

as follows. We do not change any parameters but drop prcedence constraints. Instead we give
inventory constraints as follows:

T = {te\eeE} (1)

Rt = 0 V«GT (2)
rlte = 1 if (i,j)eE,ie J (3)
rlu = 1 if 0'(4)

For each precedence relation e a separate type te is given, see (1). Type te is consumed and
released by j and i, (i,j) = e, exclusively, see (3) and (4). Due to (2) i must proceed j.

3 Results

This Section is outlined as follows. First, we State that finding a feasible Solution for l|z'm/(l)|7
or l\inv(2)\j is strongly NP-hard.

Theorem 1. Finding a Solution to l\inv(l)\"f is strongly NP-hard.

Theorem 2. Finding a Solution to l\inv(2)\j is strongly NP-hard.

Both Theorems are proven by reduction from 3-PARTITION. The formal proofs can be found
in Appendices A and B. Consequently, in the following we restrict ourselves to the cases with
inv(1) G ß where each Job either consumes items or releases items that is

Er^Erw = 0 yjeJ-
tzT teT

We then represent the modification of the inventory level (of the only type) by Job j by Tj
(rj = x if rj % > 0, Tj = —rfi otherwise). Furthermore, we write R, Ii, and / instead of Rt,
Iijt, and It, respectively, for notational convenience. We consider objective functions]T)Cj
and J2wjCj 'n Section 3.1 as well as Lmax and J^Uj in Section 3.2.
The resulting problems turn out to be strongly NP-hard for both easier objective functions,

Cj and Lmax. We give proofs for that and afterwards focus on special cases derived by
letting certain parameters be equal throughout J~ or J+.
In order to have a short notation we introduce binary parameters FP(J'), FW(J'), Fd(J'), and
Fr(J') indicating whether parameter p, w, d, and r, respectively, of all jobs in J' are fixed to
the same value (parameters value equals 1) or not (parameter's value equals 0). Additionally,
we denote the value of fixed parameters by p+, p~, w+, w~, d+, d~, r+, and r~, respectively,
if the values apply for J+ or J~. That is,

FP(J+) = 1 OPj =p+ Yj £ J+ and FP(J) = 1 <& Pj —p Vj 6 J ,

jFW(J+) = 1 Wj = w+ Wj £ J+ and FW(J~) = 1 wj = w~ Vj G J-,

Fd(J+) = 1 &dj = d+ Wj G J+ and Fd(J~) = l&dj = d~ Vj e J~, and

Fr(J+) = 1 & rj = r+ Vj £ J+ and Fr(J~) = 1 rj = r~ Wj G J~.

In particular in cross dock terminals problems with certain parameters having equal values may
have straightforward applications since sizes (capacities) and handling speeds e.g. are often
standardized.

3

3.1 Flowtime Related Objectives

For a given instance P of l|im;(l)| YlCj we define the Symmetrie instance P'. P' has the
same number of jobs as P and the jth job of P' has processing time and inventory modification
denoted as p'j a nd r'j, respectively.

1. p'j = maXfeJ Pf + 1 —pj

2. r'j = -rj

3. R' = R + YljeJ rj

Lemma 1. The optimal sequence ofjobs to an instance P of problem \\inv{\)\ ̂ Cj is the
reverse optimal sequence of corresponding jobs of Symmetrie instance P'.

Proof. Consider Symmetrie sequences u and u' as solutions to P and P'. It is easy to see that
er is feasible to P if and only if er' is feasible to P'. Now, let

A _ n(n+ 1) and B = (n+ 1) ^pj.

Obviously, A and B are constant values.

n n , \
+ 1 - k)p'a,{k) = + 1 - k) (maxpj + 1 - p^n+i-k))

k=1 fc=l ^ /

n(n + 1) (^ \(M
= 2)~ ~ ^<7(n+1~fc)

A — + l)pa(n+l-k) + kP<r(n+l-k)
k—1 k—1

n
— A — B + + 1 — k)pa(k)

k=1

Hence, the objective values of er a nd er' differ only by a constant and, therefore, o is optimal
to P if and only if u ' is optimal to P'. •

For a given instance P of l|m?;(l)| J2wjCj we define the Symmetrie instance P'. Again, P'
has the same number ofjobs as P and the jth job of P' has processing time and inventory
modification denoted as p'j and r'j, respectively.

1. p'j = Wj

2. w'j = pj

3. r'j = -rj

4. R' = R + YljeJ Tj

Lemma 2. The optimal sequence ofjobs to an instance P of problem l\inv(l)\^2wjCj is
the reverse optimal sequence of corresponding jobs of Symmetrie instance P'.

4

Proof. Consider Symmetrie sequences a and er' as solutions to P and P'. It is easy to see that
er is feasible to P if and only if <j' is feasible to P'. Optimality follows from the well known
symmetry property of 1|(J2wjCj- D

As mentioned above we look at special cases speeified by equal values for certain parameters
of Jobs in J+ or J~. Lemmas 1 and 2 enable us to project results for one special case to an
other special case since if P has identical processing times, weights, or inventory modification
for jobs in J+, then P' has identical processing times, weights, or inventory modification,
respectively, for jobs in J~ (and vice versa).

Theorem 3. l|ira;(l)| Cj is strongly NP-hard even if all jobs in J~ are identical.

The proof is inspired by the proof for NP-hardness of l|rj| by Lenstra et al. [6]. Here,
we just give the basic idea of the proof. The proof itself can be found in Appendix C.
We construct an instance of l\inv(l)\ with three classes of jobs Ja , Jb, and J~. Jobs
in J° represent number a,j from the instance of 3-PARTITION by having rj = dj + p and
Pj = üj + p for each j 6 Ja where is p is constant. Jobs in J~ are used to form a partition
of Ja.

e

Figure 1: Schedule Structure

Figure 1 sketches the structure of a schedule of the instance of 1 |ww(l) |]T)Cj if the answer
to the instance of 3-PARTITION is yes. We have sections consisiting of several jobs of Jb,
three jobs of J°, and one job of J~. In each section all jobs of Jb are followed by all jobs of
J°. In each section the job of J~ is the concluding job. The main issue is to fix jobs of J~ to
specific positions. We arrange that each job of J~ cannot be positioned earlier than a specific
Position by tuning consumption and release of items accordingly. A specific number of jobs of
Jb serve as block in each section which must be completely processed after the consuming job
of the previous block. The processing time of jobs of Jb must be chosen large enough such
that a switch of a job of J~ and a consecutive job of Jb leads to an objective value exceeding
a given threshold.

Theorem 4. l\inv(l)\52Cj is strongly NP-hard even if all jobs in J+ are identical.

Proof. The Theorem follows from Theorem 3 and Lemma 1. •

Theorem 5. l\inv(l)\J2wjCj is strongly NP-hard

• even if all jobs in J+ are identical and FW(J~) = 1,

• even if all jobs in J~ are identical and FW(J+) = 1,

• even if all jobs in J+ are identical and FP(J~) = 1, and

• even if all jobs in J~ are identical and FP(J+) = 1.

5

Proof. The Theorem follows from Theorems 3 and 4 and Lemma 2. •

Theorem 6. lfFp(J+) + Fw{J+) + Fr(J+) > 2 and FP{J~) + FW(J~) + W") > % then

l|mw(l)| Yjwici is solvat>le in O(nlogn).

Proof. First we show that there is an optimal Solution such that J+ is ordered according
the individual parameter (in SPT order if FW{J+) = Fr{J+) = 1, in non-increasing order
of weights if FP{J+) = Fr(J+) = 1, and in non-increasing order of inventory modification
if FP(J+) = FW(J+) = 1). Consider a Solution having at least two jobs of J+ not in the
proposed order. Then, there are at least two consecutive jobs jf and in J+ not in the
proposed order in the current Solution. It is easy to see that switching jf and cannot violate
the inventory constraints. So, if FP(J+) = Fw{J+) = 1, then we can switch jf and j£. If
FP(J+) = Fr(J+) = 1, then we can switch and j£ since this does not affect completions
times of other jobs and sum of weights to a position l cannot increase for each 1 < l < n. If
FW(J+) = Fr(J+) = 1, then we can switch and since the weights of the job in each
position does not change and no job can be delayed.
The same arguments apply to J~. Note that each of these Orders has jobs in WSPT order.
Let J+ = n+} and J~ = {n+ +1,..., n+ + n"} be ordered (according to the criteria
described above).

Algorithm 1

1. 1 = 0, j+ = 1, j~ = n+ +1

2. IQ = R

3. repeat until j+ = n+ + 1 or j~ — n+ -f n~ + 1

(a) ifpj-/wj- < Pj+/wj+ and Ii > —rj-, then choose j~ and set 7;+i = Ii + fj- and
3~ =j~ + l

(b) eise choose j+ and set 7/+i = Ii + Tj+ and j+ = j+ + 1

(c) 1 = 1 + 1

4. schedule remaining jobs of J+ or J~ at the end

This algorithm gives an optimal schedule. Let o and a* be the result of our algorithm and an
optimal schedule (obeying partial Orders for «7+ a nd J~ as described above), respectively. Let
k and k* be the first position where we have a(k) ± a*(k) and the position of a(k) in er*,
respectively. Due to the order of J+ and J~ we must have r^r^k) < 0.
If a(k) e J+, then since our algorithm chooses a(k) instead of a*(k) scheduling o*{k) in
position k of o is infeasible or

Po-(fc) Ptr* (fc)
W<r(k) wcr*(k)

In the first case er* is infeasible. In the second case, we can move a(k) in position k of a*
and delay jobs in positions k to k* - 1 by one position. Note that only jobs out of J~ will be
delayed and furthermore jobs in both subsets are in WSPT order. So, we argue by pairwise
exchange that we can bring cr(k) in position k of <j* w ithout increasing the objective value.
Furthermore, this move is feasible since Ihk<l<k* is increased by rff(fc) - 7V(i) > 0.
If Mf c) < then since our algorithm chooses a(k) instead of a*(k) we must have

6

Pcr(k) Po~*{k)
W<r(k) ^a*(k)

Then, we can move cr(fc) at position k in er* a s in the above case. Again, the move is feasible
and cannot worsen er*. •

Summarizing the results provided by Theorems 3 to 6, we can State that

• l|ira;(l)| J2Cj is unary NP-hard,

• l\inv{l)\ YlwjCj 's polynomially solvable if Fp(J+) + FW(J+) + Fr(J+) > 2 and
Fp(J-) + Fw(J~) + Fr(J-)>2.

Note that l\inv{l)\52Cj is polynomially solvable if FP{J+) + Fr(J+) > 1 and FP(J~) +
Fr(J-) > 1. In the following we give a polynomial time algorithm for a special case which
does not completely fit in our scheme of fixing certain parameter of jobs in J+ and J~ to
specific values.

Theorem 7. If all jobs in j E J~ are identical, Tj = —ljr~, lj £ N, for j e J+, and
R + YljeJ Tj — 0 ' then l\inv(l)\Y2wjCj /s solvable in O(nlogn).

Proof. Clearly, the subset of jobs J~ can be scheduled in arbitrary order. Let

and let

Ii ^ J+,^- < j = {\J~\ + +1^1}

be ordered in WSPT order. Furthermore, let

4 = J+\Jf = {|7-| + If | + 1,..., |J|}

be ordered such that

Algorithm 2

1. schedule in slots 1 to | J+|

2. schedule jobs 1 to l = (R + 52j&j+ /\r~\ °f J~ 'n slots | \ + 1 to \ Jf\ +1

3. j+ = |J~\ + \J+\ + i,k=\J+\ + l + l

4. repeat until j+ — \J\ + 1

(a) schedule j+ in slot k

(b) schedule jobs l + 1 to l + Tj+/\r~\ in slots k + 1 to k -f r,+/\r~\

(c) 1 = 1 + Tj+/\r~\, k = k + Tj+/\r~\ + 1

7

This algorithm gives an optimal schedule. Let a and o* be the result of our algorithm and an
optimal schedule, respectively. Obviously, we can reorder jobs of J~ in a* in ascending order
of index. Let k and k* be the first position where we have cr(k) ^ a*(k) and the position of
a(k) in er*, respectively. Due to the order of J~ we cannot have r^k) < 0 and < 0.
It is obvious that we can schedule Jf and

R + Y^jej+rj

\r~\

jobs of J~ at the beginning (by pairwise exchange). Note that after position

w i+

the inventory equals zero.
Each job j £ is followed immediately by exactly Tj/\r~\jobs of J~. Suppose there are only
k < Tj/\r~\ jobs of J~ between the first job j E and the next job j' of J."£• By pairwise
interchange of / and Tj/\r~ \ — k following jobs of J~ we can increase the distance between j
and j' to Tj/\r~\ +1. This cannot increase the objective value since py/wy > p~/w~. Then,
at the start of job j' the inventory level is zero. Now, it is easy to see that the same argument
applies for all other jobs of •
Correctness of the algorithm follows by interchange argument considering job j 6 and
ri/!r_l Jobs out of J~ as an atomic unit. •

3.2 Due Date Related Objectives

This Section deals with the objectives to minimize the maximum lateness and the number
of tardy jobs. Section 3.2.1 focuses on maximum lateness. However, a pseudopolynomial
algorithm for minimum number of tardy jobs is given (Theorem 10) which obviously solves
maximum lateness in pseudopolynomial time also. Section 3.2.2 is exclusively restricted to
number of tardy jobs. For the formal proofs of NP-hardness we refer to Appendices D to D.

3.2.1 Maximum Lateness

Theorem 8. l\inv(l)\Lmax is strongly NP-hard even ifFp(J~) = Fr(J~) = Fd(J+) = 1.

Theorem 9. l\inv(l)\Lmax is NP-hard even ifjobs of J~ are identical and Fd(J+) = 1.

Theorem 10. If Fd(J~) = 1, then l\inv(l)\Y^,Uj can be solved in

O (n2 (ZjeJ+Pi) (Ejej+ TJ))•

Proof. Let J~'e C J~ denote the subset ofjobs of J~ being early. First, we observe that we
can schedule all jobs of J~'e in a row. Consider the last job out of J~'e. Moving all other jobs
of J~'e right before it (and, therefore, scheduling some jobs of J+ earlier) cannot violate the
inventory constraints (because delaying consuming jobs is always allowed) and cannot worsen
the objective value (because due dates of consuming jobs are identical). Jobs of J~ \ J~'e

can be scheduled in row at the end of the schedule.
Additionally, we can divide J+ into two subsets and preeeeding and following J~,e,
respectively. Both subsets can be assumed to be scheduled by the algorithm by Moore [7].
This means Jf (J£) consists of a set of early jobs J^"'e (J^'e) followed by a set of tardy jobs

8

J^'1 {Jpl), as illustrated in Figure 2. J+'e, Jp6, Jpl, and Jpl can be assumed to be in EDD
order.
Assume jobs are numbered such that J+= | J+|} (ordered in EDD) and J~ = {| J+|-f
1,..., | J+| + | J~|}. Binary variables

Zj Wj E J , 1 <l<j- I J+\,p G ^ 1,..., ^2 pA , r G < 1 ,...,
ieJ- I j€J~

\ri\ (>

being equal to 1 if and only if t here is a subset of jobs J' C {|J+| + 1,... ,j}, \J'\ = l, such
that

^pj=p and ^2 rj = -r.
jeJ' jeJ'

Clearly,

®|j+|+i,ij»,r = 1 if and only if P|j+|+1 = p and r\J+ |+i = -r and
x3,i,P,r = 1 J > \J+1 + 1 if and only if Xj_u>Ptr = 1 or = 1.

Using this recursive relation we can compute all in 0(n2 52 Vj\ 52 Pj)-
We consider the subproblem where the number of early jobs of J~ is required to be at least e~.
For given number e~ = \ J~'e\ of early jobs in J~ we do the following. We find all variables

rj Z|J+|+|J-|,e-lP,r = > , r G <
{ jeJ- J jeJ~

The number of these variables cannot be Iarger than 52 \rj\52Pj• Since we can schedule the
corresponding subset in a row we consider a Single job j~ specified by pj- = p, rj~ = r, and
dj_ = d~. Job j~ will represent J~'e in the following.
For given j~ we consider the problem to find the optimal schedule when j~ is required to be
not tardy in the following.
First, we show that there is an optimal schedule with

— maxpj + 1,... ,d Cj- G <^d — maxpj + 1

Obviously, Cj- must not be larger than d~ since otherwise j~ is tardy. Suppose there is an
optimal schedule with j~ not tardy and Cj- <d~ — maxjeJ+pj. We distinguish two cases.

• If = 0, then we obviously can delay j~ by d~ — Cj- time units without violating
inventory constraints. Still, j~ is not tardy.

• If 7^ 0, then we can choose the first job in and move it before j~. Still, j~
cannot be late and no other job has been delayed. By repeating this procedure, we can
reach

Cj-e —m&x.Pj + l,...,d |.

9

For each j and each possible completion time

Cj- € |cT - maxpj -hl,...,

(and, hence, no more than J2\rj\12PjmaxPj times) we consider the problem to find the
optimal schedule if i~ is fixed to this specific completion time. To do this, we construct a
graph G = (V, E, c) as follows.

R2 e {l...,T|r,.|}}

E = EIUEZUE[UE12

P\ + Pj+1 + P[< Cj- — p j-, Pf + pj+1 < dj+1}

P\ + P\ + Pj+i < Cj- - Pj- }

Cj- + P2 +Pj+1 < dj+i, i?2 + fj+i < R + TJ' + ri~ /
j'EJ+ J

^2 + Tj+X <R + ^ Tj' + Tj- >
j'eJ+)

c(e) = 0 Ve £ E% U E2

c(e) = 1 Ve £ E[{J El2

Node (j, Ff, P{, P|, R2) represents a partial Solution having jobs 1 to j assigned to J±'e, J2'e,
J*'1, and J2'1 such that

r, Pj'—P\i ^2 py ~ P\i ^2 py=p%> ^2 Tj>=R2.
j'ej+'euj+'1

Edges in Ef and E2 represent the assignment of job j + 1 to J*'e and J2'e. This is possible
only if job j + 1 is early when scheduled at the end of the corresponding set. Furthermore,
assignment of j + 1 to J^'e is allowed only if the total processing time of Jf fits before j~.
Assignment of j + 1 to J2'e is allowed only if j + 1 is not needed before j~ to reach an
inventory of \rj-\.
Edges in E[and E\ represent the assignment of job j'+l to J^'1 and J2'1. Assignment of j+1
to J^~'1 is not allowed if the total processing time of J+ does not fit before j~. Assignment
of j +1 to J2'1 is allowed only if j + 1 is not needed before j~ to reach an inventory of jr^— |.
The length of an edge representing a job being scheduled tardy (early) is 1 (0) since this
assignment contributes 1 (0) to the objective value.
Clearly,

10

M = |.E| e o M £ Pi) £
\ \ieJ+ / jeJ+ jeJ+

and, hence, we can find a shortest path from an artificial source (0,0,0,0,0) to a node
(|J+|,Pf,Pi,P|,Ä2) in

Considering that we have to find a shortest path for each number of positive vari­
ables and each possible completion time we have overall computational complexity of

J+>1 31 h h 4'e 4'1 JA 35

4 j-<' J2 J-

Figure 2: Schedule Structure

Figure 2 provides the scheme of schedules as considered in the proof of Theorem 10. Set J~
of jobs is divided into two blocks J~,e and J~'1 where J~,e are guaranteed to be early (possibly
jobs in J~'1 can be early also). J~'1 i s cheduled last while J~e is scheduled to be completed
with in [dr - maxjeJ+pj + 1,..., d~]. In Figure 2 J~'e consist of e~ = 3 jobs jlt j2, and j3.
Set J+ of jobs is divided into two blocks J+ and preceding and following J~e, respectively.
Both blocks are subdivided into two subsets containing early and late jobs, respectively. Each
subset can be assumend to be in EDD order.

Lemma 3. There is an optimal Solution to l|i?w(l)|Z/max having the subset J~ ordered in
non-decreasing due dates.

Proof. Note that the makespan is fixed. Let er be an optimal Solution where set J~ is not
ordered in EDD order. Then, let j be the last job of J~ being preceded by a job j' G J~ with
dj> > dj. Let k and k' be positions of j and j', respectively, in er. Then, movingj' in position
k and moving jobs in positions k' + 1,..., k to positions k',..., k — 1 is feasible (since Jj,
k' < l < k, is increased by —ry > 0) and cannot worsen the Solution (since dj> > dj). •

Theorem 11. If FP(J+) + Fr(J+) > 1, then l|m^(l)|Lmax can be solved in O (n3).

Proof. Let due dates d'j, j G J be given. Furthermore, let J~ be ordered in reversed EDD
order and let Jf be the Ith job in J~. Then, the following algorithm finds a schedule u such
that no job is tardy in 0(n2) if s uch a schedule exists.

Algorithm 3

1. In = R + 52jejrj

2- T = YljejPj

11

3. Jm = {j\je J+,dj>T}

4. k — 7i, l — 1

5. repeat until k = 0

(a) if dj- > C, then

i. o{k) =

ii. 1 = 1 + 1

iii- h-I = h ~ r*(k)
iv. J™ = Jav U {j | j G J+,dj G [T-P(7{k),T[}

v. T = T — po-(fe)

(b) eise if JQU = 0 or rainj6jav {r,} > /fc, then STOP

(c) eise if miHjeJ™ {rj} < Ik

i. if FP(J+), then j* = argminj6j<™ {rj}

ii. eise if Fr(J+), then j* = argmaxjeJav {p.,}

iii. a{k) = j*

iv. Ik-i =Ik- rff{k)

v. = (J- \ {f}) U {; | ; E J+, dj E [T - , T[}

vi. T=T - pa(k)

(d) k = k — 1

Assume there is a sequence a having no tardy job and the algorithm aborted without finding
a schedule. Then, there is a feasible schedule er' where jobs J~ are ordered in EDD order,
see Lemma 3. Let k be the last position where er' and the partial schedule ap constructed
by our algorithm differ. If no job was found for position k by our algorithm, then a' must be
infeasible and, consequently, so is a. Note that raP^ > 0 or 7V(fc) > 0, otherwise, due to
EDD order of J~. If a job was assigned to position k by our algorithm, then let k' denote the
position of ap(k) in er'.
If p(fc) < 0, then we can move ap(k) at position k of er' while moving jobs in positions k' + 1
to k in er' to positions k' to k — 1. Note that no job of J~ (except for ap(k)) is moved due
to the unique order of J~ in a' and crp. Obviously, o' stays feasible.
If faP(k) > 0 and TV(fc) > 0, we have ap(k) G Jav and o'{k) G Jav in Iteration n — k + 1 of our
algorithm (when ap(k) is assigned to <rp). Then, T>(fe) < if Fp{J+) and pffP(k) > P<r'(k)
if Fr(J+) due to the choice of j*. Hence, exchanging <jp(k) and er'(fc) in a' cannot violate
inventory constraints and cannot delay a job except for crp(k). However, ap(k) can not be
tardy after the switch because crp(k) G Jav.
If r ap{k) > 0 and < 0, then a'(k) must be an infeasible choice for er' because otherwise
the algorithm would have chosen a'(k) as well. This induces correctness of the proposed
algorithm.
Note that the objective value is bounded from above by Lmax = Y^jejPj anc' from below by

Lmax = — max.jejdj. Using binary search on we can find the optimal Solution
by employing the algorithm above in 0(n3). •

Remark 1. lfFp(J+)+Fr{J+)+Fd(J+) > 2, then l\inv(l)\Lmax can be solved in 0(nlogn)
since J+ can be assumed to be sorted according to the individual parameter.

12

Summarizing the results provided by Theorems 8 to 11, we can State that

• l|mu(l)[Lmax is unary NP-hard,

• l\inv(l)\Lmax is binary NP-hard even if j obs of J~ are identical and Fd(J+) = 1, and

• l|mu(l)|Lmax is polynomially solvable if FP(J+) + Fr(J+) > 1.

3.2.2 Number of Tardy Jobs

Theorem 12. 1 \inv{l)\ 52 Uj is NP-hard even if Fd(J~) = 1 and all jobs ofJ+ are identical.

Theorem 13. If Fd(J+) + FP(J~] = 2 and FP(J+) + Fr(J+) > 1, then l|mu(l)| 52 Uj can
be solved in O (n2 log m).

Proof. It is easy to see that J+ can be ordered according non-increasing inventory modification
if FP(J+) and in SPT order if Fr(J+). We consider the subproblem where the number of early
jobs of J+ is required to be at least e+.
Jobs of J~ are structured in an optimal schedule as follows. The subset J~'1 of tardy jobs of
J~ can be scheduled at end in a row in arbitrary order. The set J~,e = J~ \ J~<1 of early
jobs of J~ can be assumed to be scheduled in EDD order (by the interchange argument of
Lawler [5]). J~'e is divided into J^,e and J^,e preceding and following the the e+th job of
J+. Furthermore, we can see that

|«/i' I — ei —
52j€J+,j<e+Pj

P'

Let J+ = | J+|} be ordered as described above and let J+ =
{| J+\ + 1,..., | J+\ + | J~|} be in EDD order. Each job in J±'e can be assumed to be sched­
uled as early as possible while preserving EDD order, non-negative inventories, and job e+

being early. This property follows from a simple interchange argument (delaying early jobs
of J+ is allowed if inventory remains non-negative and job e+ remains early). Thus, Jf'e is
further subdivided by jobs 1,..., e+ — 1 which are scheduled such that (i) inventory is non­
negative and (ii) job e+ is early. Each job in Jpe can be assumed to be scheduled as early
as possible while preserving EDD order and non-negative inventories. Thus, J^,e is further
subdivided by jobs e+ + 1,..., | J+\, see Figure 3.

Algorithm 4

1. = 1, j~ = | + 1, J 'e = 0, IQ = R, T = = 0, k = 1, k — n

2. for n\ < and j~ < \ J+\ + | J~\

(a) if 7fc_i > |7j— | and T + p~ < dj-

i. schedule j~ in slot k

ii. J~'e = J-'e U {;-}

iii. Ik = /fe-i + rj~
iv. k = k + 1, n® = n\ + 1, T = T + p , j — j +1

(b) eise /fc_x > \rj- \ and T + p~ > dj-

i. J-'e = J-'e U {j~}

13

ii. j* = argminjvej-1.{rj/}

iii. schedule j* in slot k'

iv. move jobs in J~'e following j* in the slot of the previous job in J~,e

v. adapt Ip, 1 < p < l — 1

vi. k' = k' — 1, j~ = j~ + 1

(c) eise if 4-i < |Tj-1

i. schedule j+ in slot k

ii. Ik = h-I + rj+

iii. k = k+1, T = T + p3+, j+ = + 1

3. schedule jobs j+ to e+ next; set k = k + e+ + 1 — j +, j+ = e+ + 1

4. for j~ <\J+\ + \J~\

(a) 2a

(b) 2b

(c) 2c

5. schedule jobs j+ to | J+\ of J+ in slots k' — \ J +\ + j+ — 1 t o k'

The algorithm above gives an optimal schedule when at least e+ early jobs of J+ are required.
It guarantees e+ early jobs of J+ due to the stopping criteria of Loop 2 and Step 3. Note that
Step 3 does nothing if during the execution of Loop 2 at least e+ jobs have been scheduled
early.
Obviously, for each position l the number ofjobs of J+ being scheduled in positions 1 to l is
minimum subject to inventory constraints and a minimum number of k early jobs of J+ (note
that the order ofjobs in J+ is fixed). In turn, this means for each position l the number of
jobs of J~ being scheduled in positions 1 to l is maximum subject to inventory constraints
and a minimum number of k early jobs of J+.
First, we show that there is an optimal schedule having job j* being chosen in Step 2(b)ii
tardy. Consider the first job J~, 1 < p < \J~\ being chosen tardy and let J7_ be the job
which should be scheduled next. Since the number ofjobs in J+ being scheduled before is
minimum there must be tardy job among the the first j~ jobs of J~. Let a* and a be an
optimal schedule and the schedule provided by our algorithm, respectively. Suppose J~ is
not tardy in a*. Then at least one other job J~, 1 < q < | J~\, q ^ p, is scheduled tardy.
Since r3- < Tj- we can exchange J~ and J~ in o* without violating inventory constraints.
If dj- > dj-, then J~ is early. If dj- < dj-, then reordering of the jobs scheduled early may
be necessary. However, it is easy to see we can feasibly reorder them in EDD order.
From the fact the we feasibly choose tardy jobs and maximize the number of jobs of J~~
scheduled up to each position, correctness of the algorithm follows. Solving the problem
described above takes O(nlogn) (see Moore [7]) for each 1 < k < n and, thus, overall
complexity is 0(n2logn). •

Theorem 14. lfFd(J+) = 1 and FP(J+) + Fr(J+) > 1, then l|ira;(l)| Uj can be solved
in O (n2 (£,rj)2 (E%f).

14

h Ji'e h j;,e h Js'e h J?e 35 J-'1

d+

Figure 3: Schedule Structure

Proof. It is easy to see that J+ can be assumed to be ordered in non-increasing inventory
modification if Fp(J+) = 1 and in SPT order if Fr(J+) = 1. We can restrict ourseives to
schedules being structured as in the proof of Theorem 13, see Figure 3.
Let J+ = {1,...,|J+|} be ordered as described above and let J~ =
{|J+| + 1,..., |J+\ + \J~\} be in EDD order.
We consider the subproblem where the number of early jobs in J+ is required to be at least
e+. Note that job e+ can be finished in each point of time in

Y.p»d+

j<e+

and, hence, in no more than

d+ <
jeJ

periods. For each 1 < e+ < |J+| and each

j<e+

(and, therefore, no more than nJ^Pj times) we define graph G = (V,E,c) as follows. Let

e+ e+—1
P+ = and R+ = R + ^ ry.

j'=i i'=i

V = {o, PI, i?, K ss) i J e J-, < i, pt. -f? < E»,-Ri < E4
E = E{ U El U E l

E{ = {((;, +%+i, ^ + n+i, 1

j < n, Pf +Pj+1 < Ce+ — P+, —R\ — Tj+1 < R+, CiÜ + 1, Pf, Pf) < 4?'+i}

El = {(Ü, ^1), Ü + 1, ^ + Pj+l, ^ + Tj+l)) |

j < n, C2(j + 1, fg, -R®, P2) < 4+J
El = {(ü, ü +1, f?, ^)) 1 i < %}

c(e) = 0 VeeElUEl

c(e) = 1 Ve £ El

Node (j, Pf, Pj, P|, R-z) represents a partial Solution having jobs | J+\ +1 to | J+| +j assigned

to J{'e, Jz'e, and J~l such that

15

yi Pf—pi) ^2 Pf—p^ rj'~p-1' rj'~^-
j'£J\'e j'ejp' j'ejp' j'eJ2"'e

Edges in J51® an d £?| represent the assignment of job j + 1 to J^~'e and J^~'e. Assignment
of job j + 1 to jpe is possible only if e+ still can be finished by Ce+ and the inventory is
not decreased below zero. Furthermore, job j + 1 must be early when scheduled after those
jobs assigned to J±'e earlier. Function C\ gives the completion time and is specified below.
Assignment of job j +1 to J^"'e is possible only if job j +1 is early when scheduled after those
jobs assigned to JJf'6 earlier. Function C2 gives the corresponding completion time.
Edges in El represent the assignment of job j +1 to J"•' which is always possible. The length
of an edges representing a job being scheduled tardy (early) is 1 (0) since this assignment
contributes 1 (0) to the objective value. Completion time functions C\ and C2 sind defined
as follows.

Ci<j,Pi,ni) = P;+PJ + E
j'eJ-,j'<s(\Rt\)

C2O', Ph #1, RD = ce+++Pj + Pj'
j'BJ-J'<al\iq\+\iq\)

s(R) = min{j e J+ \ rf > R}
j'eJ+,j'<j

The completion time Cj of job j E Ji'e is the sum of all preceding jobs plus its own processing
time. Preceding jobs are jobs already assigned to J^'e before. Additionally, s(R) is the first
job in J+ such that jobs 1 to s(R) provide an inventory level such that j can be processed
(after jobs assigned to J^'e earlier have been processed before). Jobs 1 to s(R) must be
processed before j also and, therefore, their processing times contribute to the completion
time of j. Completion time Cj of job j € J^~'e is defined analogously taking into account that
the completion time of e+ is fixed.
Clearly, we have

in = |E| e O (a

and we can find a shortest path from an artificial source (0,0,0,0,0) to a node (|J+| +
in

<>(» (5»'(£»)')•

Then, solving the problem for each

1 < e1 < | J+| and Ce+ e Pj>d+]
j<e+

takesO(^(E^(E%f). O

Theorem 15. lfFd{J~) = FP(J+) = 1 and FP(J~) + Fr{J~) > 1, then l\inv{l)\EUj can
be solved in O (n6).

16

Proof. It is easy to see that J~ can be ordered according non-increasing inventory modification
if Fp(J~) and in SPT order if Fr(J~). We consider the subproblem where the number of early
jobs of J~ is required to be at least e~. We can see that with same arguments we can restrict
ourseives to the same structure of schedules as in the proof of Theorem 10 (see Figure 2) and,
therefore, we consider subsets of jobs J* , J2, Jt'e> J\'l> J2'e< j£'l< anc' J~'e (as defined in
the proof of Theorem 10) in the following. Furthermore, we can fix

|Ji"| = min
d Pj

P+ » l^+l \ P-

Clearly, | J*\ < lp since otherwise jobs of J~,e are tardy or we have machine idle time before
J+. If |/j"| < lp we must have \j£\ ^ 0. Hence, we can switch J~'e and the first lp — |
jobs of J2 . The Solution cannot be worsened since all jobs of J~,e are early and no other job
has been delayed. Furthermore, inventory constraints cannot be violated since only jobs of J~
have been delayed. Obviously, from | Jf\ = lp we obtain |J^"| = | J+| — lp.
Let jobs of J+ be numbered in EDD. We define a graph G = (V, E, c) where c : e —> (u , r),
u G {0,1}, r G {0,..., M} for each e G E.

V = {U', nv ni' O I 3 E J+,n\, n[, ne2<j}

E = E{ U El \JE[VJE12

Et = {((;, 4, nv O, Ü + 1» + 1. nv 4)) I 3 < n,nt + 1 + n\ < lp,

dj+i > K + 1)P+}
Ei = ni> nI). (3 + l,nt,n[+ l,n|)) \j <n,n{ + l+n\ <lp]
El = {(U, nl,n[, n%), (j + 1, n\, n[,ne2 + 1)) | j < n, j + 1 - n\ - n[< \ J+\ - lp,

dj+i > lPP+ + Pj + (ne2 + l)p+ i
jeJ-e J

El2 = + \,n\,nlx,ne2)) | j < n,ne2 + l + n^ < \J+\ - lp}

c(e) = (0, M — ri+i) Ve G E\

c(e) = (1, M — r i+i) Ve G E\

c(e) = (0,0) Ve G El

c(e) = (1,0) Ve G El2

Node (j, n\, n[, ra|) represents a partial Solution such that jobs 1 to j are assigned to J^'e,
J^'e, Ji'1, and J2'1 such that

If I = If I = vi, |f | = If I = j - n\ - n% - n[.

Edges in E\ and E\ represent the assignment of job j + 1 to Jx,e and J2'e, respectively.
This is possible only if j ob j + 1 is early when scheduled at the end of the corresponding set.
Furthermore, assignment of j + 1 to J*'e and J2'e is allowed only if the total number of jobs
in and J2 , respectively, is not exceeded.
Edges in E[and El2 represent the assignment of job j +1 to jf'1 and J2'1. Assignment of
j + 1 to J±'1 and J2'1 is allowed only if the total number of jobs in and j£, respectively,
is not exceeded.
If e G E[U El2 and e G E\ U E% we have u(e) = 1 and u(e) = 0 since this assignment
contributes 1 and 0, respectively, to the objective value.

17

If e e E{ U E{ we have r(e) = M - rj+i. Since the number ofjobs in e £ Ef U E\ in the
Solution is fixed we get total

eeP jeJ+

for each path P. Note that for the Solution to be feasible we must have

X) ri £ - rr
jeJt

Clearly, |y| = |E| £ 0(n4). We find a restricted shortest path (regarding the first component
of c) where a path is a restricted path if and only if the sum of the second cost components
of all edges in the path sum up to no more than a prespecified upper bound

d = lpM — rj-
jeJ~'e

According to Hassin [4], we can solve the restricted shortest path problem in 0(ü\E\) if the
shortest restricted path is known to be not longer than ü. In our case u = n and hence
computational complexity for finding the restricted shortest path is 0(n5).Then, solving the
problem described above for each 1 < k < n takes 0(n6). •

Theorem 16. lfFp(J~) = Fr(J~) = FP(J+) = Fr(J+) = 1, then l|mu(l)| YjUj can ^e

solved in 0(n2 log n).

Proof. Let J+ = {1,..., | J+|} and J~ = {| J+| + 1,..., | J+| + |<7~|} be in EDD order. We
consider the subproblem where the number of early jobs of J+ and J~ is required to be at least
e+ and e~, respectively. First, we develop a property of optimal schedules for this subproblem
that there is a feasible schedule for this subproblem having a structure as follows.

Property 1. There is an optimal schedule such that we have subsets of early and tardy jobs,
respectively, of J+ and J~ as follows.

J+>* = {| J+| — e+ + 1,..., | J+|}

J+>1 = {1,...,|J+| -e+}

J~'e = {| J+| + |- e- + 1,..., | J+| 4-1 J-|}

J-'1 = {|J+| + l,...,|J+| + |J-|-e-},

that is for each subset the e+ and e~, respectively, jobs having the largest due dates are chosen
to be early. Furthermore,, we can assume orders ofjobs of J+ and J~ to be

(| J+| - e+ +1,..., | J+|, 1,..., | J+\ - e+) and

(|J+| + |J-'l\ - e~ + 1,..., | J+| + |J~\,\ J+| + 1,..., |J+\ + \J~\- e~) .

Suppose we have a Solution er where \J~'l\ = \J~\ — e~ and J~'1 ^ J~>1. Let j £ J~'1 be
the first job that is not in J~'1. Then, there is at least one job of j' € J~'e fl J~'1. Note that
dj' > dj and, hence, we can exchange j and j' in er without violating any constraint.
Furthermore, there is an feasible Solution to the subproblem having jobs 1,..., | J+|—e+ last in
J+ and jobs \ J+ \ — e+ +1,..., | J+ \ i n EDD order by the same arguments as above. Moreover,
it is easy to see that J+'e, J+'1, J~'e, and J~'1 can be ordered in EDD order.

18

Summarizing, orders for both subsets J+ and J~ of jobs can be assumed to be fixed for given
e+ and e~. Let both subsets be given in the corresponding order and numbered accordingly
for given e+ and e~ in the following. Let J2+ and Jdenote the Ith and Arth j ob in J+ and
J~, respectively.

Algorithm 5

1. j+ = 1, j- = \J+\ + 1, I = R, T = 0

2. for j+ < |J+|andj <|J+| + |J-|

(a) if I > |r~| and dj- < dj+ and dj- >T + p~

i. schedule j~ next

ii. 1 = I + r~

iii. r =r +1

(b) eise if (I < |r"| or dj- > dj+) and dj+ > T + pj

i. schedule j+ next

ii. I = I + r+

iii. j+ =j+ + 1

(c) eise STOP

3. schedule remaining jobs in J or J+ and check feasiblity (STOP in case of infeasibility)

The algorithm gives a feasible Solution if there is one in 0(n). Assume there is a feasible
sequence a and the algorithm aborted without finding a schedule. Let k be the first position
where a and the partial schedule ap constructed by our algorithm differ. If no job was found
for position k by our algorithm, then a must be infeasible. Note that r^^rv^) < 0 due to
Property 1 otherwise. If a job was assigned to position k by our algorithm, then let k' denote
the position of ap(k) in er.
If < 0, then daP(k) < <L(&). If, additionally, a{k' — 1) > | J+| — e+, then a{k' — 1) must
be early and da^) < < d^k'-i)- Then, moving ap{k) in position k of a and delaying jobs
in positions k to k' — 1 by one position cannot make any job tardy. Moreover, since ap(k) is
a feasible choice regarding inventory constraints we cannot violate inventory constraints in o.
By a similar argument if a(k' — 1) < | J+\ — e+, then only jobs 1,..., | J+\ — e + can become
tardy by this move. Obeviously, this is feasible to the subproblem. If rap^ > 0, then the
arguments are analogous to the case above.
Next, we consider the subproblem to find a schedule where the number of early jobs is required
to be at least 0 < e < n, respectively. We can solve this subproblem be solving the subproblem
above for each 0 < e+ < e and e~ = e — e+ which takes 0(n2). Employing binary search on
the domain of 0 < e < n we can solve the overall problem in 0(n2logn). •

Theorem 17. IfFd(J~) = Fr(J~) = Fd(J+) = Fr(J+) = 1, then can be
solved in 0(n2).

We give only a sketch of the proof in the following since it employs techniques used intensively
in preceding proofs.

Proof. Both subsets J+ and J~ can be assumend to be ordered in SPT order. Varying the
number of early jobs in J~ we can find the optimal Solution in 0(n2) •

19

Summarizing the results provided by Theorems 8, 9, 10 and Theorems 12 to 17, we can State
that

• l|inu(l)| YjUj is unary NP-hard even if FP(J~) = 1, Fr(J~) = 1, and Fd(J+) = 1,

• l\inv{l)\YjUj is binary NP-hard even if jobs of J~ are identical and Fd(J+) = 1,

• l|inu(l)| J2Uj 's binary NP-hard even if Fp(J+)+FT(J+) > 1 and Fd(J+) + Fd(J~) >
1,

• l\inv{l)\Y^Uj is NP-hard even if FP(J+) + Fr(J+) > 1,

• l\inv(l)\J2Uj is polynomially solvable if FP(J+) = 1, Fd(J~) = 1, and Fp(J~) +
> i,

• l\inv(l)\Y^Uj is polynomially solvable if FP(J~) = 1, Fd(J+) = 1, and Fp(J+) +
Fr(J+) > 1,

• l|mv(l)| YjUj is polynomially solvable if FP(J+) = 1, Fr(J+) = 1, FP(J~) = 1, and
Fr(J-) = 1, and

• l\inv(l)\EUj is polynomially solvable if Fd(J+) = 1, Fr(J+) = 1, Fd(J~) = 1, and
Fr(J-) = 1.

4 Conclusions and Outlook

In this paper we introduce inventory constraints to be embedded in the well-known machine
scheduling framework. Inventory constraints can be seen as a generalization of precedence
constraints. We consider different objective functions and special cases where one or more
parameter of subsets J+ or J~ ofjobs are identical. These special cases are motivated by real
world scheduling problems arising in cross-dock terminals, for example.
The general problems turn out to be strongly NP-hard even for Lmax and However, for
several of the special cases polynomial algorithms are developed. Furthermore, we provide two
pseudo polynomial time algorithms. Although we could determine computational complexity
of many special cases some remain open so far. Table 1 lists minimum and maximum open
problems for objective functions and YlUj- Note that no problems for and
Lmax are left open.
For the future we identify several promising fields of research in this area. First, computational
complexity of the open cases should be determined. Moreover, objective functions YlwjUj'
Er,' and EwjTj are not considered so far. Second, we propose to consider problems with
more than one machine. Third, a setting where |T| > 1 but no job is involved with more than
one type seems to be interesting. The question to answer first for this setting is whether we
can extend algorithms developed in the paper at hand to handle this case. Last but not least it
is important to develop efficient heuristics or approximation algorithms for the problems that
are strongly NP-hard. Here, it seems to be promising to employ algorithms for special cases
as building blocks.

20

Prob
l|mv(l)| J2wjCj min open 0

i
max open 0

0
1

l\inv(l)\52 Uj min open 0
1
1
1

max open 0
1
0
1

Table 1: Open Problems

References

[1] J.-H. Bartels and J. Zimmermann. Scheduling tests in automotive R&D projects. Eu­
ropean Journal of Operational Research, In Press, corrected proof, available online 7
November 2007.

[2] N. Boysen, M. Fliedner, and A. Scholl. Scheduling inbound and outbound trucks at cross
docking terminals. OR Spectrum, to appear.

[3] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimisation and
approximation in deterministic sequencing and scheduling: A survey. Annais of Discrete
Mathematics, 5:236-287, 1979.

[4] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem. Mathe­
matics of Operations Research, 17(l):36-42, 1992.

[5] E. Lawler. Optimal Sequencing of a Single Machine subject to Precedence Constraints.
Management Science, 19:544-546, 1973.

[6] J. Lenstra, A. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems.
Annais of Discrete Mathematics, 1:343362, 1977.

[7] J. M. Moore. An n Job, One Machine Sequencing Algorithm for Minimizing the Number
of Late Jobs. Management Science, 15(1):102-109, 1968.

[8] K. Neumann and C. Schwindt. Project scheduling with inventory constraints. Mathe-
matical Methods of Operations Research, 56:513-533, 2002.

[9] K. Neumann, C. Schwindt, and N. Trautmann. Scheduling of continuous and discontinu-
ous material flows with intermediate storage restrictions. European Journal of Operational
Research, 165:495-509, 2005.

[10] C. Schwindt and N. Trautmann. Batch scheduling in process Industries: An application
of resource-constrained project scheduling. OR Spectrum, 22(4):501-524, 2000.

A NP-Hardness of Feasibility of l|mv(l)|7

We only give the reduction scheme from 3-PARTITION. It is easy to see that there is a feasible
schedule if a nd only if the answer to the instance of 3-PARTITION is yes.

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m,
Bf4 < a.j < B/2 for each j G {1,.. .,3m}. We construct an instance P' of l|zm;(l)|7 as

follows:

• n = 4 m

• Pj = 1

• Tj = —<Xj if j G {1,..., 3m}, Tj — B otherwise

• R = 0

22

• I = B

The idea is that jobs 3m +1 to 4m partition the remaining jobs 1 to 3m into groups of three
jobs such that each group has overall consumption of B. •

B NP-Hardness of Feasibility of l|zm>(2)|7

Again we only give the reduction scheme from 3-PARTITION.

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m,
B/4 < a,j < B/2 for each j G {1,.. .,3m}. We construct an instance P' of l|im>(2)|7 as
follows:

• n = 4m + 1

• Pj = 1

• rj,I = ai< rj,l = 0. rj,2 = 0. and ^,2 = ai 'f; G 3m}

• r3m+l,l = 0, ^3TTI+1,1 = r3m+l,2 ~ 0. and r^m+l 2 = 0

• Tj,i = 0, rj % = B, r|>2 = B, and rj2 = 0 if j G {3m + 2,..., 4m}

• r4m+i,i — 0, rTim+11 = 0. 7"4m+lj2 = and rlm+12 = 0

• i?i = = 0

Again, the idea is that jobs 3m+ 1 to 4m+ 1 partition the remaining jobs 1 to 3m into groups
of three jobs such that each group has overall consumption of type 1 of B and overall release
of type 2 of B. •

C NP-Hardness of l|mi>(l)| J2Cj

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m,
B/4 < a,j < B/2 for each j G {1,..., 3m}. We construct an instance P' of l|mu(l)|J]Cj
as follows: .

• na = 3m

• nb = 2 mB — 2

• n~ = m

• n = na + mnb + n~

• Ja = {!,..., na}, Jb = {na + n~ + 1,..., na + n~ + mnb} , J+ = Ja U Jb, J~ =
{:na + 1,..., na + n~}, J = J+ U J~

• p = max{2nhBm2, (nb + 3)(B + + 3mB + 1}

• pj=p + dj if j G Ja, pj =p'\fje Jb, Pj = l if j e J~

23

• rj = p + aj if j E Ja, rj =p\fje Jb, Tj = —{nb + 3)p — B if j e J

First, we derive a threshold for the objective value from a schedule having a structure such
that we have m sections of nh jobs out of Jb, three jobs out of Ja, and one job out of J~ in
each section. Figure 1 illustrates this class of schedules. Suppose that the partition ofjobs of
Ja into sections implies a yes-answer to the instance of 3-PARTITION, then we can find an
upper bound for the objective value. We develop upper bounds for the contributions 7°, 7b,
and 7~ of subsets Ja, Jb, and J~ to the objective value 7 in such a schedule. In each section
jobs out of Jb are scheduled first and the job out of J~ last (see Figure 1). Let j(i, l) denote
the Ith job in section i out of Ja for 1 < i < m and 1 < l < 3.

m
7° = X) ~~ 1) ((n& + 3)p + B + l) + 3nbp + 6p + 3oj(i,i) + 2aJ(i)2) + Oj(i,3))

i=1

< 3 ((n6 + 3)p + B+l) + rnp{Znb + 6) + ̂ f3J + 2j + j)
i=1 ^ '

= 3 ((n6 + 3)p + B + l) Tn(m^—+ 3mp(nb + 2) + 2mB

Note that

3oi(i,l) + 2aj(i,2) + aj(i,3) < 3y + 2— + —

since we can assume jobs out of J+ in each section to be ordered in SPT order.

ml nb \
7b = X - 1) ((n& + 3)P + B + l) + kp\

t=i y fc=i J

= n»((„' + 3)p + B + l)!^^+mp^+Ü

7° + 76 = (nb + 3}ap——^—— + mp + 3-5n& + 6 j +

(n> + 3)(S + + 2 mB

= (n* + 3) w _ ("" + 3)Vn. + mp ^ + 3.5n> + 6) +

(n" + 3)(B+ + 2 mB

= K±3)W +pm(n» + 3) + ̂ + 3)(£ + :)m(m-l) + ̂

2 2 ^

m
7~ = X * ((n& + 3)p + B 4- l)

24

7 < 7° + 7& + 7

In the following we will show that there is a schedule to P' having total completion time not
larger than 7 if and only if t he answer to P is yes.
If t he answer to P is yes, then we can find a feasible Solution to P' by scheduling m sections.
We choose nb arbitrary jobs of Jb to be scheduled first in each section, the partition gives m
subsets of jobs of Ja to be scheduled in different section (we arrange them in SPT order in
each section), and we choose an arbitrary job of J~ as last job of each section. Döing the
math like above we obtain a total flow time of no more than 7.
Suppose now we have a schedule having total completion time not larger than 7. We show
that this schedule must be structured as above and, moreover, induces a 3-partition for P (by
the partition of Ja to subsets being scheduled in each section). First, it is obvious that we can
schedule Jb and J~ in arbitrary order. We can assume that they are numbered in scheduled
order.

Property 2. Job j, 3m + 1 < j < Am, can not be finished before

Clearly, jobs 3m +1,..., j — 1 must be finished and inventory must be at least (nb + 3)p -f B.
This induces that before j can be started at least

units of items must have been released (which implies k units of processing time used by jobs
in J+ before the start ofj). Furthermore, j — 3m — 1 jobs of J~ (having processing time 1
each) must be finished. Including processing time of j itself this sums up to k + (j — 3m).

Property 3. Job j, 3m+l < j < Am, cannot be started before at least k = (j — 3m)(nb + 3)
jobs out of J+ have been finished.
Suppose only k', k' < k, jobs are finished before j. There are j — 3m — 1 jobs of J~ being
finished before j. Therefore, k' jobs out ofJ+ must have released

units of items.

Property 4. No more than k = (j — 3 m)(nb + 3) jobs out of J+ can be finished before job
j, 3m + 1 < j < Am, is started. Suppose at least k + 1 jobs out of J+ are finished before j.
Then, with Property 2 we have

Cj > (j — 3m)((nb + 3)p + 5 + 1)-

k = (j — 3 m)((nb + 3)p + B)

(j - 3m)((nb + 3)p + B)

units of items. However, k' jobs must release less than

< kp -|- k —— 2nbBm?

< kP

< kp + B(j — 3m)

(j - 3m)((nb + 3)p + B)

25

X Cj ^ 7~ - Ü - 3m)((nft + 3)p + B + 1) + (k+ l)p
jeJ-

= 7~ — (j — 3m)(B + 1) +p.

Furthermore, since all jobs in J+ have processing time of at least p we have

m(nb+3)

EQ> E kp.
jeJ+ k=i

Now, we can see that

m(nb+3)

XC3 > 1~ ~ Ü ~ 3m)B+p+ X kP
j£J fc=1

= 7- - (j - 3m)B + , + pm{n> + 3)(m2("6 + 3) + 1}

= 7--0'-3m)B+P + P=^^+P^+5)

= 7~ — U — 3m)S + p + 7° +T6 — (n& + 3)(B -+•1)—^—— —

> 7» + 7i> + 7-+ 3)(g +i)Ü^ÜL—il
2

> 7 + 1

2

3 mB

where the last inequality holds ifm > 1. Thus, the Solution can not have an objective value
of no more than 7 by lower bound consideration.

Due to Property 3 and 4, exactly nb + 3 jobs out of J+ are scheduled between job j and j +1
for j = 3m + 1,..., 4m — 1. Thus, if Cj < 7 , the schedule must have a sector structure.

Property 5. For job j, 3m + 1 < j < 4 m, we have

Cj — (j — 3m)((nb + 3)p + B -1-1).

Due to Property 2, j cannot be finished before Cj. Now assume that j is finished after
Cj.Since all jobs are scheduled in m ((nb + 3) p + B + l) time units j < Am must hold. If
j < Am, then sector j + 1 starts not before (j — 3m) ((n6 + 3) p + B + l) +1 and, thus,

(nb+3 771 / 71 "ho \
^ Cj > X (n& + 3) (i — 1) ((n& + 3)p + B + 1) + X kP J + (rc6 + 3)
jeJ+ »=i \ k=1)

- ("' + 3)2P^ + mp+ (nb + 3)(B + 1 + („» + 3)

= 7° + 76 — 2 mB + nb + 3

> 7° + 7& + 1

26

Since the lower bound for the contribution to the objective value by jobs of J~ is given by
7~ + 1, we obtain an overall lower bound larger than 7 + 2. Thus, the Solution can not have
an objective value of no more than 7 by lower bound consideration.

Due to Property 5, it is obvious that there exactly three jobs out of Ja between each pair of
consecutive jobs out of J~. The corresponding values of dj in each section sum up to B.
This completes the proof. •

D NP-Hardness of l|mv(l)|Z/max

Proof. The reduction is from 3-PARTITION. Consider an instance P of 3-PARTITION defined
by B £ Z+, set A, \A\ = 3m, Bf4 < dj < B/2 for each j £ {1,..., 3m}. We construct an
instance P' of l\inv(l)\Lmax as follows:

• n — 4 m

• J+ = {l,..., 3m}, J~ — {3m + 1,..., 4m}

• pj = dj if j e J+, pj = 1 if j e J~

• Tj = dj if j £ J+, rj = -B if j £ J~

• dj = (B + 1)m if j e J+, dj = (J — 3m)(B + 1) if j 6 J~

• Ä = 0

In t he following we will show that there is a schedule to P' where each job is finished not later
than its due date if and only if the answer to P is yes.
If the answer to P is yes, then we can construct a Solution to P' having no tardy jobs by
scheduling induced subsets of A and jobs of J~ (in order increasing due dates) alternatingly.
Suppose there is a Solution to P' having no tardy job.
Since jobs of J~ only differ by their due dates we can assume that they are scheduled in o rder
of increasing due dates.
Let Jk C J+, k € {!,..., m}, be the set of jobs scheduled before job 3m + k. Obviously,

rj > kB Vk £ {1,..., m}.
jeJk

Furthermore,

^ rj = Pj < d3m+k - k = k(B + 1) - k = kB.
jeJk j£Jk

The Theorem follows. •

E NP-Hardness of l\inv(l)\Lmax, jobs in J~ identical and

dj = d+ for j £ J+

Proof. The reduction is from PARTITION. Consider an instance P of PARTITION defined
by set A, |A| = 2m, Oj £ N for each j £ {!,..., 2m}. We construct an instance P' of
l\inv(l)\Lmax as follows:

27

• n — 2 m + 1

• J+ = {l,...)2m}1 J~ = {;-}

• Pj = a.j if j £ J+, Pj- = 1 otherwise

• rj = üj if j E J+, rj- = - (52jeJ+rj) /2 otherwise

• dj = 1 + Ei<j'<2m ai' 'f 3 € J+, dj- = /2 + 1 otherwise

• R = 0

In the following we will show that there is a schedule to P' having no tardy job if and only if
the answer to P is yes.
Suppose the answer to P is yes. Let A\ and A2 be the induced subsets of A. Then we can
find a Solution to P' having no tardy job by scheduling the subsets of jobs corresponding to
Ay first, scheduling job 2m + 1 next and, scheduling A2 last.
Suppose there is a Solution to P' having no tardy job. Let be the subset of J+ scheduled
before job 2m + 1. Obviously,

j€Ji

Furthermore,

<w -1 -- =Eia~raf

j£Ji jeJi

The Theorem follows. •

F NP-Hardness of l\inv(l) \ ^2 Uj, jobs in J+ identical and

dj = d~ for j 6 J~

Proof. The reduction is from PARTITION. Consider an instance P of PARTITION defined by
set A, \A\ — 2m , a,j £ N for each j £ {1,..., 2m}. Let

a — &j.
j€{l,...,2m}

We construct an instance P' of \\inv(l)\ 52 Uj as follows:

• n = 2m + 2

• J~ = {1,..., 2m}, J+ = {2m + 1, 2m + 2}

• pj = a + üj if j £ J~, pj = 2ma otherwise

• rj = dj — a if j £ J~~, rj = (m — 1/2) a otherwise

• dj = (3m + 1/2) a if j £ J~, dj = 2ma otherwise

28

• R = 0

We show that there is a Solution to P' having no more than m + 1 tardy jobs if and only the
answer to P is yes.
Suppose there is a Solution to P' having no more than m + 1 tardy jobs. We can assume
that job 2m+1 is scheduled before job 2m + 2. Obviously, job 2m+ 1 must be scheduled
first and, therefore, it is not tardy. Scheduling job 2m + 2 next leads to exactly 1 non-tardy
job since each job in 1,..., 2m is late and so is job 2m + 2. Therefore, we can assume that
the set J' C {1,, 2m} of additional non-tardy jobs is scheduled between jobs 2m + 1 and
2m + 2.
Due to the due dates we have

and, hence, \ J'\ < m. Considering that the overall number of tardy jobs is no more than
m + 1 we have \J'\ = m. From | J'\ =m and

it follows that

jeJ>

Furthermore, we have

Overall, we have aj = &/2.
If t he answer to P is yes, then obviously the partition gives J' and J \ J'. •

29

