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Abstract 

This paper studies inventory constraints in a machine scheduling environment. Jobs 
can add and remove items of different types to the inventory and from the inventory, 
respectively. Jobs removing items cannot be processed if the required amount of i tems is 
not available. We first have a look at general models and determine the computational 
status of these problems. Since it turns out that general models are strongly NP-hard 
except for makespan minimization on one machine we have a look at special cases in the 
following. We determine the computational complexity of all considered special cases 
for objection functions J2 Cj and Lmax and several special cases for objective functions 
Y.wjCj and Y2 Uj. 

Keywords: Machine scheduling, inventory constraints, computational complexity. 

1 Introduction 

In machine scheduling the usual setting gives the problem to schedule a set of Jobs on a set 
of machines subject to a set of rules such that a given objective is optimized. One of the 
rules involved can be a precedence relation between two Jobs. A regulär precedence relation 
i -< j requires that Job j's processing cannot be started before Job i's processing is finished. 
The concept of precedence relation has been generalized to minimum and maximum time-lags. 
Minimum time-lag and maximum time-lag Zy* related to Jobs i and j require that j is 
started not earlier and not later, respectively, than Z^-n and Z*j* time units after i is finished. 
Note that we obtain i -< j if we set Iff1 = 0 and Zf1?* = oo. ** 1J J hj 
In this paper we introduce an other generalization of precedence constraints. We consider a 
set T of types. There is a storage for items of each type and an initial inventory is given. 
Now, a Job might require (or consume) an amount of items to be started and might release 
an amount of items to the storage when it is finished. Naturally, we want to consider only 
schedules having non-negative inventory levels. 
Inventory constraints as described above has been considered in project scheduling, see Bar­
tels and Zimmermann [1], Neumann and Schwindt [8], Neumann et al. [9], and Schwindt and 
Trautmann [10] for example. In Neumann and Schwindt [8] it has been shown that inven­
tory constraints are a generalization of both renewable and non-renewable resources. Thus, 
finding a minimum makespan project schedule considering (Standard) precedence constraints 
and inventory constraints is a generalization of the well-known Resource Constrained Project 
Scheduling Problem which is known to be strongly NP-hard. 
An obvious application of this model can be observed in cross-dock-terminals, see Boysen 
et al. [2] for example. Trucks arrive to drop or pick up, respecitvely, goods. Here, types 
of goods correspond to the types of items in our model. Trucks correspond to jobs. Each 
door of the terminal corresponds to machine each of which can handle one truck/job at a 
time. Here, the requirement of non-negativity of the inventory is trivially motivated by the 
real-world-application: no truck can be processed if he is supposed to pick up goods being not 
available at that time. We can think of various objectives here, in particular all of the common 
machine scheduling objectives. 
An other application arises in financial Investment projects. Let us assume we have a set of 
Investment projects we want to undertake or have to undertake, respectively. Each project 
corresponds to a job and needs a certain amount of money to be started. After finishing the 
project we have a cash inflow which can be reinvested in an other project. Money corresponds 
to one type of items here. We can imagine further types such as project managers supervising 
a project during execution. Of course a project can only be started if the necessary amount 

1 



of managers is available. After finishing the project this number of managers will be available 
for further projects. An obvious objective for example would be to maximize the (discounted) 
cash inflow of projects carried out in a given time horizon (or - equivalenty - minimizing the 
(discounted) cash inflow of projects carried out outside the horizon). An other objective we 
can easily represent by means of a Standard machine scheduling objective function. Assuming 
we have to undertake each project we may want to minimize the needed makespan. 
In this paper we consider inventory constraints in machine scheduling environment and in-
vestigate the computational complexity of various problems. The remainder is organized as 
follows. In Section 2 we fomalize the problem we have given the underlying idea of above. We 
furthermore extend the notation by Graham et al. [3] to represent the problems considered in 
the paper at hand. In Section 3 we give results regarding complexity results. In S ection ?? we 
proof that for two variants only finding a feasible Solution is strongly NP-hard. In Section 3.1 
we consider the objectives related to flowtime and in Section 3.2 we consider due date related 
objectives.. For each problem special cases are considered also. In Section 4, finally, we give 
conclusions and an outlook an future work. 

2 Problem Specification 

We consider a set T of types and set J of jobs. Each job j has a processing time pj and might 
have a due date dj. Moreover, each job j has a consumption of r£t units of items of type 
t G T at the beginning of its processing which means that the inventory of type t is decreased 
by r£t when j is started. When finished each job j releases r£t units of items of type t to the 
corresponsing inventory, thus the inventory level increases by rjt. Note, that if r|t = r£t holds 
for all j £ J and t £ T, then inventory constraints are equivalent with resource constraints 
where a certain amount of resource is occudpied during processing of a job and is released 
afterwards. However, r£t ^ r£t may hold. For each type an initial inventory Rt is given. 
On a single machine a schedule is specified by a sequence a. Let <r{l), 1 < l < n, be the job 
being scheduled in the Ith position and let Iiit, 1 < l < n, t £ T, be the inventory level of t 
after the job scheduled in position l is finished. Thus, 

Il,t = Rt + ~ r°cr(n,t) • 
1 <l'<l 

Let J~ — [j | Y2teTrj,t > 0} and J+ = {j | J2teTrj,t > 0}- A schedule a is feasible if and 
only if all jobs in J are scheduled and at each time the inventory of each type is non-negative, 
that is if job j £ J is scheduled in position l, then we have > r| t for each t £ T. 
We extend the notation by Graham et al. [3] as follows to represent the concepts mentioned 
above. If inventory constraints are considered, then we have inv G ß. If t he number of types 
is limited to k, then we have inv(k) e ß. 
As described above we consider a common lower bound for the inventory level of each type 
by requiring the level to be non-negative. Naturally, we can consider an upper bound It as 
well. The motivation may be given by limited storage capacity. If s torage capacity is limited, 
we have inv G ß or inv(k) G ß, respectively. 
Next, we outline the relation between inventory constraints and precedence constraints. We 
reduce an arbitrary problem having precedence constraints to the corresponsing problem having 
inventory constraints. Consider a problem ot\ß\i where prec G ß. Let precedence be given by 
E = {(«, j)} where (i,j) means that job j cannot be started before job i is finished. For an 
arbitrary instance Pv of a|/?|7 we construct an instance Pl of a|/?'|7, ß' = (ß\ {prec})U{inv} 
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as follows. We do not change any parameters but drop prcedence constraints. Instead we give 
inventory constraints as follows: 

T = {te\eeE} (1) 

Rt = 0 V«GT (2) 
rlte = 1 if (i,j)eE,ie J (3) 
rlu = 1 if 0'(4) 

For each precedence relation e a separate type te is given, see (1). Type te is consumed and 
released by j and i, (i,j) = e, exclusively, see (3) and (4). Due to (2) i must proceed j. 

3 Results 

This Section is outlined as follows. First, we State that finding a feasible Solution for l|z'm/(l)|7 
or l\inv(2)\j is strongly NP-hard. 

Theorem 1. Finding a Solution to l\inv(l)\"f is strongly NP-hard. 

Theorem 2. Finding a Solution to l\inv(2)\j is strongly NP-hard. 

Both Theorems are proven by reduction from 3-PARTITION. The formal proofs can be found 
in Appendices A and B. Consequently, in the following we restrict ourselves to the cases with 
inv( 1) G ß where each Job either consumes items or releases items that is 

Er^Erw = 0 yjeJ-
tzT teT 

We then represent the modification of the inventory level (of the only type) by Job j by Tj 
(rj = x if rj % > 0, Tj = —rfi otherwise). Furthermore, we write R, Ii, and / instead of Rt, 
Iijt, and It, respectively, for notational convenience. We consider objective functions ]T)Cj 
and J2wjCj 'n Section 3.1 as well as Lmax and J^Uj in Section 3.2. 
The resulting problems turn out to be strongly NP-hard for both easier objective functions, 

Cj and Lmax. We give proofs for that and afterwards focus on special cases derived by 
letting certain parameters be equal throughout J~ or J+. 
In order to have a short notation we introduce binary parameters FP(J'), FW(J'), Fd(J'), and 
Fr(J') indicating whether parameter p, w, d, and r, respectively, of all jobs in J' are fixed to 
the same value (parameters value equals 1) or not (parameter's value equals 0). Additionally, 
we denote the value of fixed parameters by p+, p~, w+, w~, d+, d~, r+, and r~, respectively, 
if the values apply for J+ or J~. That is, 

FP(J+) = 1 OPj =p+ Yj £ J+ and FP(J ) = 1 <& Pj —p Vj 6 J , 

jFW(J+) = 1 Wj = w+ Wj £ J+ and FW(J~) = 1 wj = w~ Vj G J-, 

Fd(J+) = 1 &dj = d+ Wj G J+ and Fd(J~) = l&dj = d~ Vj e J~, and 

Fr(J+) = 1 & rj = r+ Vj £ J+ and Fr(J~) = 1 rj = r~ Wj G J~. 

In particular in cross dock terminals problems with certain parameters having equal values may 
have straightforward applications since sizes (capacities) and handling speeds e.g. are often 
standardized. 
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3.1 Flowtime Related Objectives 

For a given instance P of l|im;(l)| YlCj we define the Symmetrie instance P'. P' has the 
same number of jobs as P and the jth job of P' has processing time and inventory modification 
denoted as p'j a nd r'j, respectively. 

1. p'j = maXfeJ Pf + 1 —pj 

2. r'j = -rj 

3. R' = R + YljeJ rj 

Lemma 1. The optimal sequence ofjobs to an instance P of problem \\inv{\)\ ̂ Cj is the 
reverse optimal sequence of corresponding jobs of Symmetrie instance P'. 

Proof. Consider Symmetrie sequences u and u' as solutions to P and P'. It is easy to see that 
er is feasible to P if and only if er' is feasible to P'. Now, let 

A _ n(n+ 1) and B = (n+ 1) ^pj. 

Obviously, A and B are constant values. 

n n , \ 
+ 1 - k)p'a,{k) = + 1 - k) ( maxpj + 1 - p^n+i-k) ) 

k=1 fc=l ^ / 

n(n + 1) ( ^ \( M 
= 2 )~ ~ ^<7(n+1~fc) 

A — + l)pa(n+l-k) + kP<r(n+l-k) 
k—1 k—1 

n 
— A — B + + 1 — k)pa(k) 

k=1 

Hence, the objective values of er a nd er' differ only by a constant and, therefore, o is optimal 
to P if and only if u ' is optimal to P'. • 

For a given instance P of l|m?;(l)| J2wjCj we define the Symmetrie instance P'. Again, P' 
has the same number ofjobs as P and the jth job of P' has processing time and inventory 
modification denoted as p'j and r'j, respectively. 

1. p'j = Wj 

2. w'j = pj 

3. r'j = -rj 

4. R' = R + YljeJ Tj 

Lemma 2. The optimal sequence ofjobs to an instance P of problem l\inv(l)\^2wjCj is 
the reverse optimal sequence of corresponding jobs of Symmetrie instance P'. 
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Proof. Consider Symmetrie sequences a and er' as solutions to P and P'. It is easy to see that 
er is feasible to P if and only if <j' is feasible to P'. Optimality follows from the well known 
symmetry property of 1|( J2wjCj- D 

As mentioned above we look at special cases speeified by equal values for certain parameters 
of Jobs in J+ or J~. Lemmas 1 and 2 enable us to project results for one special case to an 
other special case since if P has identical processing times, weights, or inventory modification 
for jobs in J+, then P' has identical processing times, weights, or inventory modification, 
respectively, for jobs in J~ (and vice versa). 

Theorem 3. l|ira;(l)| Cj is strongly NP-hard even if all jobs in J~ are identical. 

The proof is inspired by the proof for NP-hardness of l|rj| by Lenstra et al. [6]. Here, 
we just give the basic idea of the proof. The proof itself can be found in Appendix C. 
We construct an instance of l\inv(l)\ with three classes of jobs Ja , Jb, and J~. Jobs 
in J° represent number a,j from the instance of 3-PARTITION by having rj = dj + p and 
Pj = üj + p for each j 6 Ja where is p is constant. Jobs in J~ are used to form a partition 
of Ja. 

e 

Figure 1: Schedule Structure 

Figure 1 sketches the structure of a schedule of the instance of 1 |ww(l) | ]T)Cj if the answer 
to the instance of 3-PARTITION is yes. We have sections consisiting of several jobs of Jb, 
three jobs of J°, and one job of J~. In each section all jobs of Jb are followed by all jobs of 
J°. In each section the job of J~ is the concluding job. The main issue is to fix jobs of J~ to 
specific positions. We arrange that each job of J~ cannot be positioned earlier than a specific 
Position by tuning consumption and release of items accordingly. A specific number of jobs of 
Jb serve as block in each section which must be completely processed after the consuming job 
of the previous block. The processing time of jobs of Jb must be chosen large enough such 
that a switch of a job of J~ and a consecutive job of Jb leads to an objective value exceeding 
a given threshold. 

Theorem 4. l\inv(l)\52Cj is strongly NP-hard even if all jobs in J+ are identical. 

Proof. The Theorem follows from Theorem 3 and Lemma 1. • 

Theorem 5. l\inv(l)\J2wjCj is strongly NP-hard 

• even if all jobs in J+ are identical and FW(J~) = 1, 

• even if all jobs in J~ are identical and FW(J+) = 1, 

• even if all jobs in J+ are identical and FP(J~) = 1, and 

• even if all jobs in J~ are identical and FP(J+) = 1. 
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Proof. The Theorem follows from Theorems 3 and 4 and Lemma 2. • 

Theorem 6. lfFp(J+) + Fw{J+) + Fr(J+) > 2 and FP{J~) + FW(J~) + W") > % then 

l|mw(l)| Yjwici is solvat>le in O(nlogn). 

Proof. First we show that there is an optimal Solution such that J+ is ordered according 
the individual parameter (in SPT order if FW{J+) = Fr{J+) = 1, in non-increasing order 
of weights if FP{J+) = Fr(J+) = 1, and in non-increasing order of inventory modification 
if FP(J+) = FW(J+) = 1). Consider a Solution having at least two jobs of J+ not in the 
proposed order. Then, there are at least two consecutive jobs jf and in J+ not in the 
proposed order in the current Solution. It is easy to see that switching jf and cannot violate 
the inventory constraints. So, if FP(J+) = Fw{J+) = 1, then we can switch jf and j£. If 
FP(J+) = Fr(J+) = 1, then we can switch and j£ since this does not affect completions 
times of other jobs and sum of weights to a position l cannot increase for each 1 < l < n. If 
FW(J+) = Fr(J+) = 1, then we can switch and since the weights of the job in each 
position does not change and no job can be delayed. 
The same arguments apply to J~. Note that each of these Orders has jobs in WSPT order. 
Let J+ = n+} and J~ = {n+ +1,..., n+ + n"} be ordered (according to the criteria 
described above). 

Algorithm 1 

1. 1 = 0, j+ = 1, j~ = n+ +1 

2. IQ = R 

3. repeat until j+ = n+ + 1 or j~ — n+ -f n~ + 1 

(a) ifpj-/wj- < Pj+/wj+ and Ii > —rj-, then choose j~ and set 7;+i = Ii + fj- and 
3~ =j~ + l 

(b) eise choose j+ and set 7/+i = Ii + Tj+ and j+ = j+ + 1 

(c) 1 = 1 + 1 

4. schedule remaining jobs of J+ or J~ at the end 

This algorithm gives an optimal schedule. Let o and a* be the result of our algorithm and an 
optimal schedule (obeying partial Orders for «7+ a nd J~ as described above), respectively. Let 
k and k* be the first position where we have a(k) ± a*(k) and the position of a(k) in er*, 
respectively. Due to the order of J+ and J~ we must have r^r^k) < 0. 
If a(k) e J+, then since our algorithm chooses a(k) instead of a*(k) scheduling o*{k) in 
position k of o is infeasible or 

Po-(fc) Ptr* (fc) 
W<r(k) wcr*(k) 

In the first case er* is infeasible. In the second case, we can move a(k) in position k of a* 
and delay jobs in positions k to k* - 1 by one position. Note that only jobs out of J~ will be 
delayed and furthermore jobs in both subsets are in WSPT order. So, we argue by pairwise 
exchange that we can bring cr(k) in position k of <j* w ithout increasing the objective value. 
Furthermore, this move is feasible since Ihk<l<k* is increased by rff(fc) - 7V(i) > 0. 
If Mf c) < then since our algorithm chooses a(k) instead of a*(k) we must have 
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Pcr(k) Po~*{k) 
W<r(k) ^a*(k) 

Then, we can move cr(fc) at position k in er* a s in the above case. Again, the move is feasible 
and cannot worsen er*. • 

Summarizing the results provided by Theorems 3 to 6, we can State that 

• l|ira;(l)| J2Cj is unary NP-hard, 

• l\inv{l)\ YlwjCj 's polynomially solvable if Fp(J+) + FW(J+) + Fr(J+) > 2 and 
Fp(J-) + Fw(J~) + Fr(J-)>2. 

Note that l\inv{l)\52Cj is polynomially solvable if FP{J+) + Fr(J+) > 1 and FP(J~) + 
Fr(J-) > 1. In the following we give a polynomial time algorithm for a special case which 
does not completely fit in our scheme of fixing certain parameter of jobs in J+ and J~ to 
specific values. 

Theorem 7. If all jobs in j E J~ are identical, Tj = —ljr~, lj £ N, for j e J+, and 
R + YljeJ Tj — 0 ' then l\inv(l)\Y2wjCj /s solvable in O(nlogn). 

Proof. Clearly, the subset of jobs J~ can be scheduled in arbitrary order. Let 

and let 

Ii ^ J+,^- < j = {\J~\ + +1^1} 

be ordered in WSPT order. Furthermore, let 

4 = J+\Jf = {|7-| + If | + 1,..., |J|} 

be ordered such that 

Algorithm 2 

1. schedule in slots 1 to | J+| 

2. schedule jobs 1 to l = (R + 52j&j+ /\r~\ °f J~ 'n slots | \ + 1 to \ Jf\ +1 

3. j+ = |J~\ + \J+\ + i,k=\J+\ + l + l 

4. repeat until j+ — \J\ + 1 

(a) schedule j+ in slot k 

(b) schedule jobs l + 1 to l + Tj+/\r~\ in slots k + 1 to k -f r,+/\r~\ 

(c) 1 = 1 + Tj+/\r~\, k = k + Tj+/\r~\ + 1 
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This algorithm gives an optimal schedule. Let a and o* be the result of our algorithm and an 
optimal schedule, respectively. Obviously, we can reorder jobs of J~ in a* in ascending order 
of index. Let k and k* be the first position where we have cr(k) ^ a*(k) and the position of 
a(k) in er*, respectively. Due to the order of J~ we cannot have r^k) < 0 and < 0. 
It is obvious that we can schedule Jf and 

R + Y^jej+rj 

\r~\ 

jobs of J~ at the beginning (by pairwise exchange). Note that after position 

w i+ 

the inventory equals zero. 
Each job j £ is followed immediately by exactly Tj/\r~\jobs of J~. Suppose there are only 
k < Tj/\r~\ jobs of J~ between the first job j E and the next job j' of J."£• By pairwise 
interchange of / and Tj/\r~ \ — k following jobs of J~ we can increase the distance between j 
and j' to Tj/\r~\ +1. This cannot increase the objective value since py/wy > p~/w~. Then, 
at the start of job j' the inventory level is zero. Now, it is easy to see that the same argument 
applies for all other jobs of • 
Correctness of the algorithm follows by interchange argument considering job j 6 and 
ri/!r_l Jobs out of J~ as an atomic unit. • 

3.2 Due Date Related Objectives 

This Section deals with the objectives to minimize the maximum lateness and the number 
of tardy jobs. Section 3.2.1 focuses on maximum lateness. However, a pseudopolynomial 
algorithm for minimum number of tardy jobs is given (Theorem 10) which obviously solves 
maximum lateness in pseudopolynomial time also. Section 3.2.2 is exclusively restricted to 
number of tardy jobs. For the formal proofs of NP-hardness we refer to Appendices D to D. 

3.2.1 Maximum Lateness 

Theorem 8. l\inv(l)\Lmax is strongly NP-hard even ifFp(J~) = Fr(J~) = Fd(J+) = 1. 

Theorem 9. l\inv(l)\Lmax is NP-hard even ifjobs of J~ are identical and Fd(J+) = 1. 

Theorem 10. If Fd(J~) = 1, then l\inv(l)\Y^,Uj can be solved in 

O (n2 (ZjeJ+Pi) (Ejej+ TJ) )• 

Proof. Let J~'e C J~ denote the subset ofjobs of J~ being early. First, we observe that we 
can schedule all jobs of J~'e in a row. Consider the last job out of J~'e. Moving all other jobs 
of J~'e right before it (and, therefore, scheduling some jobs of J+ earlier) cannot violate the 
inventory constraints (because delaying consuming jobs is always allowed) and cannot worsen 
the objective value (because due dates of consuming jobs are identical). Jobs of J~ \ J~'e 

can be scheduled in row at the end of the schedule. 
Additionally, we can divide J+ into two subsets and preeeeding and following J~,e, 
respectively. Both subsets can be assumed to be scheduled by the algorithm by Moore [7]. 
This means Jf (J£) consists of a set of early jobs J^"'e (J^'e) followed by a set of tardy jobs 
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J^'1 {Jpl), as illustrated in Figure 2. J+'e, Jp6, Jpl, and Jpl can be assumed to be in EDD 
order. 
Assume jobs are numbered such that J+= | J+|} (ordered in EDD) and J~ = {| J+|-f 
1,..., | J+| + | J~|}. Binary variables 

Zj Wj E J , 1 <l<j- I J+\,p G ^ 1,..., ^2 pA , r G < 1 ,..., 
ieJ- I j€J~ 

\ri\ ( > 

being equal to 1 if and only if t here is a subset of jobs J' C {|J+| + 1,... ,j}, \J'\ = l, such 
that 

^pj=p and ^2 rj = -r. 
jeJ' jeJ' 

Clearly, 

®|j+|+i,ij»,r = 1 if and only if P|j+|+1 = p and r\J+ |+i = -r and 
x3,i,P,r = 1 J > \J+1 + 1 if and only if Xj_u>Ptr = 1 or = 1. 

Using this recursive relation we can compute all in 0(n2 52 Vj\ 52 Pj)-
We consider the subproblem where the number of early jobs of J~ is required to be at least e~. 
For given number e~ = \ J~'e\ of early jobs in J~ we do the following. We find all variables 

rj Z|J+|+|J-|,e-lP,r = > , r G < 
{ jeJ- J jeJ~ 

The number of these variables cannot be Iarger than 52 \rj\52Pj• Since we can schedule the 
corresponding subset in a row we consider a Single job j~ specified by pj- = p, rj~ = r, and 
dj_ = d~. Job j~ will represent J~'e in the following. 
For given j~ we consider the problem to find the optimal schedule when j~ is required to be 
not tardy in the following. 
First, we show that there is an optimal schedule with 

— maxpj + 1,... ,d Cj- G <^d — maxpj + 1 

Obviously, Cj- must not be larger than d~ since otherwise j~ is tardy. Suppose there is an 
optimal schedule with j~ not tardy and Cj- <d~ — maxjeJ+pj. We distinguish two cases. 

• If = 0, then we obviously can delay j~ by d~ — Cj- time units without violating 
inventory constraints. Still, j~ is not tardy. 

• If 7^ 0, then we can choose the first job in and move it before j~. Still, j~ 
cannot be late and no other job has been delayed. By repeating this procedure, we can 
reach 

Cj-e —m&x.Pj + l,...,d |. 
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For each j and each possible completion time 

Cj- € |cT - maxpj -hl,..., 

(and, hence, no more than J2\rj\12PjmaxPj times) we consider the problem to find the 
optimal schedule if i~ is fixed to this specific completion time. To do this, we construct a 
graph G = (V, E, c) as follows. 

R2 e {l...,T|r,.|}} 

E = EIUEZUE[UE12 

P\ + Pj+1 + P[ < Cj- — p j-, Pf + pj+1 < dj+1} 

P\ + P\ + Pj+i < Cj- - Pj- } 

Cj- + P2 +Pj+1 < dj+i, i?2 + fj+i < R + TJ' + ri~ / 
j'EJ+ J 

^2 + Tj+X <R + ^ Tj' + Tj- > 
j'eJ+ ) 

c(e) = 0 Ve £ E% U E2 

c(e) = 1 Ve £ E[{J El2 

Node (j, Ff, P{, P|, R2) represents a partial Solution having jobs 1 to j assigned to J±'e, J2'e, 
J*'1, and J2'1 such that 

r, Pj'—P\i ^2 py ~ P\i ^2 py=p%> ^2 Tj>=R2. 
j'ej+'euj+'1 

Edges in Ef and E2 represent the assignment of job j + 1 to J*'e and J2'e. This is possible 
only if job j + 1 is early when scheduled at the end of the corresponding set. Furthermore, 
assignment of j + 1 to J^'e is allowed only if the total processing time of Jf fits before j~. 
Assignment of j + 1 to J2'e is allowed only if j + 1 is not needed before j~ to reach an 
inventory of \rj-\. 
Edges in E[ and E\ represent the assignment of job j'+l to J^'1 and J2'1. Assignment of j+1 
to J^~'1 is not allowed if the total processing time of J+ does not fit before j~. Assignment 
of j +1 to J2'1 is allowed only if j + 1 is not needed before j~ to reach an inventory of jr^— |. 
The length of an edge representing a job being scheduled tardy (early) is 1 (0) since this 
assignment contributes 1 (0) to the objective value. 
Clearly, 
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M = |.E| e o M £ Pi) £ 
\ \ieJ+ / jeJ+ jeJ+ 

and, hence, we can find a shortest path from an artificial source (0,0,0,0,0) to a node 
(|J+|,Pf,Pi,P|,Ä2) in 

Considering that we have to find a shortest path for each number of positive vari­
ables and each possible completion time we have overall computational complexity of 

J+>1 31 h h 4'e 4'1 JA 35 

4 j-<' J2 J-

Figure 2: Schedule Structure 

Figure 2 provides the scheme of schedules as considered in the proof of Theorem 10. Set J~ 
of jobs is divided into two blocks J~,e and J~'1 where J~,e are guaranteed to be early (possibly 
jobs in J~'1 can be early also). J~'1 i s cheduled last while J~e is scheduled to be completed 
with in [dr - maxjeJ+pj + 1,..., d~]. In Figure 2 J~'e consist of e~ = 3 jobs jlt j2, and j3. 
Set J+ of jobs is divided into two blocks J+ and preceding and following J~e, respectively. 
Both blocks are subdivided into two subsets containing early and late jobs, respectively. Each 
subset can be assumend to be in EDD order. 

Lemma 3. There is an optimal Solution to l|i?w(l)|Z/max having the subset J~ ordered in 
non-decreasing due dates. 

Proof. Note that the makespan is fixed. Let er be an optimal Solution where set J~ is not 
ordered in EDD order. Then, let j be the last job of J~ being preceded by a job j' G J~ with 
dj> > dj. Let k and k' be positions of j and j', respectively, in er. Then, movingj' in position 
k and moving jobs in positions k' + 1,..., k to positions k',..., k — 1 is feasible (since Jj, 
k' < l < k, is increased by —ry > 0) and cannot worsen the Solution (since dj> > dj). • 

Theorem 11. If FP(J+) + Fr(J+) > 1, then l|m^(l)|Lmax can be solved in O (n3). 

Proof. Let due dates d'j, j G J be given. Furthermore, let J~ be ordered in reversed EDD 
order and let Jf be the Ith job in J~. Then, the following algorithm finds a schedule u such 
that no job is tardy in 0(n2) if s uch a schedule exists. 

Algorithm 3 

1. In = R + 52jejrj 

2- T = YljejPj 
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3. Jm = {j\je J+,dj>T} 

4. k — 7i, l — 1 

5. repeat until k = 0 

(a) if dj- > C, then 

i. o{k) = 

ii. 1 = 1 + 1 

iii- h-I = h ~ r*(k) 
iv. J™ = Jav U {j | j G J+,dj G [T-P(7{k),T[} 

v. T = T — po-(fe) 

(b) eise if JQU = 0 or rainj6jav {r,} > /fc, then STOP 

(c) eise if miHjeJ™ {rj} < Ik 

i. if FP(J+), then j* = argminj6j<™ {rj} 

ii. eise if Fr(J+), then j* = argmaxjeJav {p.,} 

iii. a{k) = j* 

iv. Ik-i =Ik- rff{k) 

v. = (J- \ {f}) U {; | ; E J+, dj E [T - , T[} 

vi. T=T - pa(k) 

(d) k = k — 1 

Assume there is a sequence a having no tardy job and the algorithm aborted without finding 
a schedule. Then, there is a feasible schedule er' where jobs J~ are ordered in EDD order, 
see Lemma 3. Let k be the last position where er' and the partial schedule ap constructed 
by our algorithm differ. If no job was found for position k by our algorithm, then a' must be 
infeasible and, consequently, so is a. Note that raP^ > 0 or 7V(fc) > 0, otherwise, due to 
EDD order of J~. If a job was assigned to position k by our algorithm, then let k' denote the 
position of ap(k) in er'. 
If p(fc) < 0, then we can move ap(k) at position k of er' while moving jobs in positions k' + 1 
to k in er' to positions k' to k — 1. Note that no job of J~ (except for ap(k)) is moved due 
to the unique order of J~ in a' and crp. Obviously, o' stays feasible. 
If faP(k) > 0 and TV(fc) > 0, we have ap(k) G Jav and o'{k) G Jav in Iteration n — k + 1 of our 
algorithm (when ap(k) is assigned to <rp). Then, T>(fe) < if Fp{J+) and pffP(k) > P<r'(k) 
if Fr(J+) due to the choice of j*. Hence, exchanging <jp(k) and er'(fc) in a' cannot violate 
inventory constraints and cannot delay a job except for crp(k). However, ap(k) can not be 
tardy after the switch because crp(k) G Jav. 
If r ap{k) > 0 and < 0, then a'(k) must be an infeasible choice for er' because otherwise 
the algorithm would have chosen a'(k) as well. This induces correctness of the proposed 
algorithm. 
Note that the objective value is bounded from above by Lmax = Y^jejPj anc' from below by 

Lmax = — max.jejdj. Using binary search on we can find the optimal Solution 
by employing the algorithm above in 0(n3). • 

Remark 1. lfFp(J+)+Fr{J+)+Fd(J+) > 2, then l\inv(l)\Lmax can be solved in 0(nlogn) 
since J+ can be assumed to be sorted according to the individual parameter. 
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Summarizing the results provided by Theorems 8 to 11, we can State that 

• l|mu(l)[Lmax is unary NP-hard, 

• l\inv(l)\Lmax is binary NP-hard even if j obs of J~ are identical and Fd(J+) = 1, and 

• l|mu(l)|Lmax is polynomially solvable if FP(J+) + Fr(J+) > 1. 

3.2.2 Number of Tardy Jobs 

Theorem 12. 1 \inv{l)\ 52 Uj is NP-hard even if Fd(J~) = 1 and all jobs ofJ+ are identical. 

Theorem 13. If Fd(J+) + FP(J~] = 2 and FP(J+) + Fr(J+) > 1, then l|mu(l)| 52 Uj can 
be solved in O (n2 log m). 

Proof. It is easy to see that J+ can be ordered according non-increasing inventory modification 
if FP(J+) and in SPT order if Fr(J+). We consider the subproblem where the number of early 
jobs of J+ is required to be at least e+. 
Jobs of J~ are structured in an optimal schedule as follows. The subset J~'1 of tardy jobs of 
J~ can be scheduled at end in a row in arbitrary order. The set J~,e = J~ \ J~<1 of early 
jobs of J~ can be assumed to be scheduled in EDD order (by the interchange argument of 
Lawler [5]). J~'e is divided into J^,e and J^,e preceding and following the the e+th job of 
J+. Furthermore, we can see that 

|«/i' I — ei — 
52j€J+,j<e+Pj 

P' 

Let J+ = | J+|} be ordered as described above and let J+ = 
{| J+\ + 1,..., | J+\ + | J~|} be in EDD order. Each job in J±'e can be assumed to be sched­
uled as early as possible while preserving EDD order, non-negative inventories, and job e+ 

being early. This property follows from a simple interchange argument (delaying early jobs 
of J+ is allowed if inventory remains non-negative and job e+ remains early). Thus, Jf'e is 
further subdivided by jobs 1,..., e+ — 1 which are scheduled such that (i) inventory is non­
negative and (ii) job e+ is early. Each job in Jpe can be assumed to be scheduled as early 
as possible while preserving EDD order and non-negative inventories. Thus, J^,e is further 
subdivided by jobs e+ + 1,..., | J+\, see Figure 3. 

Algorithm 4 

1. = 1, j~ = | + 1, J 'e = 0, IQ = R, T = = 0, k = 1, k — n 

2. for n\ < and j~ < \ J+\ + | J~\ 

(a) if 7fc_i > |7j— | and T + p~ < dj-

i. schedule j~ in slot k 

ii. J~'e = J-'e U {;-} 

iii. Ik = /fe-i + rj~ 
iv. k = k + 1, n® = n\ + 1, T = T + p , j — j +1 

(b) eise /fc_x > \rj- \ and T + p~ > dj-

i. J-'e = J-'e U {j~} 
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ii. j* = argminjvej-1.{rj/} 

iii. schedule j* in slot k' 

iv. move jobs in J~'e following j* in the slot of the previous job in J~,e 

v. adapt Ip, 1 < p < l — 1 

vi. k' = k' — 1, j~ = j~ + 1 

(c) eise if 4-i < |Tj-1 

i. schedule j+ in slot k 

ii. Ik = h-I + rj+ 

iii. k = k+1, T = T + p3+, j+ = + 1 

3. schedule jobs j+ to e+ next; set k = k + e+ + 1 — j +, j+ = e+ + 1 

4. for j~ <\J+\ + \J~\ 

(a) 2a 

(b) 2b 

(c) 2c 

5. schedule jobs j+ to | J+\ of J+ in slots k' — \ J +\ + j+ — 1 t o k' 

The algorithm above gives an optimal schedule when at least e+ early jobs of J+ are required. 
It guarantees e+ early jobs of J+ due to the stopping criteria of Loop 2 and Step 3. Note that 
Step 3 does nothing if during the execution of Loop 2 at least e+ jobs have been scheduled 
early. 
Obviously, for each position l the number ofjobs of J+ being scheduled in positions 1 to l is 
minimum subject to inventory constraints and a minimum number of k early jobs of J+ (note 
that the order ofjobs in J+ is fixed). In turn, this means for each position l the number of 
jobs of J~ being scheduled in positions 1 to l is maximum subject to inventory constraints 
and a minimum number of k early jobs of J+. 
First, we show that there is an optimal schedule having job j* being chosen in Step 2(b)ii 
tardy. Consider the first job J~, 1 < p < \J~\ being chosen tardy and let J7_ be the job 
which should be scheduled next. Since the number ofjobs in J+ being scheduled before is 
minimum there must be tardy job among the the first j~ jobs of J~. Let a* and a be an 
optimal schedule and the schedule provided by our algorithm, respectively. Suppose J~ is 
not tardy in a*. Then at least one other job J~, 1 < q < | J~\, q ^ p, is scheduled tardy. 
Since r3- < Tj- we can exchange J~ and J~ in o* without violating inventory constraints. 
If dj- > dj-, then J~ is early. If dj- < dj-, then reordering of the jobs scheduled early may 
be necessary. However, it is easy to see we can feasibly reorder them in EDD order. 
From the fact the we feasibly choose tardy jobs and maximize the number of jobs of J~~ 
scheduled up to each position, correctness of the algorithm follows. Solving the problem 
described above takes O(nlogn) (see Moore [7]) for each 1 < k < n and, thus, overall 
complexity is 0(n2logn). • 

Theorem 14. lfFd(J+) = 1 and FP(J+) + Fr(J+) > 1, then l|ira;(l)| Uj can be solved 
in O (n2 (£,rj)2 (E%f). 
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h Ji'e h j;,e h Js'e h J?e 35 J-'1 

d+ 

Figure 3: Schedule Structure 

Proof. It is easy to see that J+ can be assumed to be ordered in non-increasing inventory 
modification if Fp(J+) = 1 and in SPT order if Fr(J+) = 1. We can restrict ourseives to 
schedules being structured as in the proof of Theorem 13, see Figure 3. 
Let J+ = {1,...,|J+|} be ordered as described above and let J~ = 
{|J+| + 1,..., |J+\ + \J~\} be in EDD order. 
We consider the subproblem where the number of early jobs in J+ is required to be at least 
e+. Note that job e+ can be finished in each point of time in 

Y.p»d+ 

j<e+ 

and, hence, in no more than 

d+ < 
jeJ 

periods. For each 1 < e+ < |J+| and each 

j<e+ 

(and, therefore, no more than nJ^Pj times) we define graph G = (V,E,c) as follows. Let 

e+ e+—1 
P+ = and R+ = R + ^ ry. 

j'=i i'=i 

V = {o, PI, i?, K ss) i J e J-, < i, pt. -f? < E»,-Ri < E4 
E = E{ U El U E l 

E{ = {((;, +%+i, ^ + n+i, 1 

j < n, Pf +Pj+1 < Ce+ — P+, —R\ — Tj+1 < R+, CiÜ + 1, Pf, Pf) < 4?'+i} 

El = {(Ü, ^1), Ü + 1, ^ + Pj+l, ^ + Tj+l)) | 

j < n, C2(j + 1, fg, -R®, P2) < 4+J 
El = {(ü, ü +1, f?, ^)) 1 i < %} 

c(e) = 0 VeeElUEl 

c(e) = 1 Ve £ El 

Node (j, Pf, Pj, P|, R-z) represents a partial Solution having jobs | J+\ +1 to | J+| +j assigned 

to J{'e, Jz'e, and J~l such that 
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yi Pf—pi) ^2 Pf—p^ rj'~p-1' rj'~^-
j'£J\'e j'ejp' j'ejp' j'eJ2"'e 

Edges in J51® an d £?| represent the assignment of job j + 1 to J^~'e and J^~'e. Assignment 
of job j + 1 to jpe is possible only if e+ still can be finished by Ce+ and the inventory is 
not decreased below zero. Furthermore, job j + 1 must be early when scheduled after those 
jobs assigned to J±'e earlier. Function C\ gives the completion time and is specified below. 
Assignment of job j +1 to J^"'e is possible only if job j +1 is early when scheduled after those 
jobs assigned to JJf'6 earlier. Function C2 gives the corresponding completion time. 
Edges in El represent the assignment of job j +1 to J"•' which is always possible. The length 
of an edges representing a job being scheduled tardy (early) is 1 (0) since this assignment 
contributes 1 (0) to the objective value. Completion time functions C\ and C2 sind defined 
as follows. 

Ci<j,Pi,ni) = P;+PJ + E 
j'eJ-,j'<s(\Rt\) 

C2O', Ph #1, RD = ce+++Pj + Pj' 
j'BJ-J'<al\iq\+\iq\) 

s(R) = min{j e J+ \ rf > R} 
j'eJ+,j'<j 

The completion time Cj of job j E Ji'e is the sum of all preceding jobs plus its own processing 
time. Preceding jobs are jobs already assigned to J^'e before. Additionally, s(R) is the first 
job in J+ such that jobs 1 to s(R) provide an inventory level such that j can be processed 
(after jobs assigned to J^'e earlier have been processed before). Jobs 1 to s(R) must be 
processed before j also and, therefore, their processing times contribute to the completion 
time of j. Completion time Cj of job j € J^~'e is defined analogously taking into account that 
the completion time of e+ is fixed. 
Clearly, we have 

in = |E| e O (a 

and we can find a shortest path from an artificial source (0,0,0,0,0) to a node (|J+| + 
in 

<>(» (5»'(£»)')• 

Then, solving the problem for each 

1 < e1 < | J+| and Ce+ e Pj>d+] 
j<e+ 

takesO(^(E^(E%f). O 

Theorem 15. lfFd{J~) = FP(J+) = 1 and FP(J~) + Fr{J~) > 1, then l\inv{l)\EUj can 
be solved in O (n6). 
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Proof. It is easy to see that J~ can be ordered according non-increasing inventory modification 
if Fp(J~) and in SPT order if Fr(J~). We consider the subproblem where the number of early 
jobs of J~ is required to be at least e~. We can see that with same arguments we can restrict 
ourseives to the same structure of schedules as in the proof of Theorem 10 (see Figure 2) and, 
therefore, we consider subsets of jobs J* , J2, Jt'e> J\'l> J2'e< j£'l< anc' J~'e (as defined in 
the proof of Theorem 10) in the following. Furthermore, we can fix 

|Ji"| = min 
d Pj 

P+ » l^+l \ P-

Clearly, | J*\ < lp since otherwise jobs of J~,e are tardy or we have machine idle time before 
J+. If |/j"| < lp we must have \j£\ ^ 0. Hence, we can switch J~'e and the first lp — | 
jobs of J2 . The Solution cannot be worsened since all jobs of J~,e are early and no other job 
has been delayed. Furthermore, inventory constraints cannot be violated since only jobs of J~ 
have been delayed. Obviously, from | Jf\ = lp we obtain |J^"| = | J+| — lp. 
Let jobs of J+ be numbered in EDD. We define a graph G = (V, E, c) where c : e —> (u , r), 
u G {0,1}, r G {0,..., M} for each e G E. 

V = {U', nv ni' O I 3 E J+,n\, n[, ne2<j} 

E = E{ U El \JE[VJE12 

Et = {((;, 4, nv O, Ü + 1» + 1. nv 4)) I 3 < n,nt + 1 + n\ < lp, 

dj+i > K + 1)P+} 
Ei = ni> nI). (3 + l,nt,n[ + l,n|)) \j <n,n{ + l+n\ <lp] 
El = {(U, nl,n[, n%), (j + 1, n\, n[,ne2 + 1)) | j < n, j + 1 - n\ - n[ < \ J+\ - lp, 

dj+i > lPP+ + Pj + (ne2 + l)p+ i 
jeJ-e J 

El2 = + \,n\,nlx,ne2)) | j < n,ne2 + l + n^ < \J+\ - lp} 

c(e) = (0, M — ri+i) Ve G E\ 

c(e) = (1, M — r i+i) Ve G E\ 

c(e) = (0,0) Ve G El 

c(e) = (1,0) Ve G El2 

Node (j, n\, n[, ra|) represents a partial Solution such that jobs 1 to j are assigned to J^'e, 
J^'e, Ji'1, and J2'1 such that 

If I = If I = vi, |f | = If I = j - n\ - n% - n[. 

Edges in E\ and E\ represent the assignment of job j + 1 to Jx,e and J2'e, respectively. 
This is possible only if j ob j + 1 is early when scheduled at the end of the corresponding set. 
Furthermore, assignment of j + 1 to J*'e and J2'e is allowed only if the total number of jobs 
in and J2 , respectively, is not exceeded. 
Edges in E[ and El2 represent the assignment of job j +1 to jf'1 and J2'1. Assignment of 
j + 1 to J±'1 and J2'1 is allowed only if the total number of jobs in and j£, respectively, 
is not exceeded. 
If e G E[ U El2 and e G E\ U E% we have u(e) = 1 and u(e) = 0 since this assignment 
contributes 1 and 0, respectively, to the objective value. 
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If e e E{ U E{ we have r(e) = M - rj+i. Since the number ofjobs in e £ Ef U E\ in the 
Solution is fixed we get total 

eeP jeJ+ 

for each path P. Note that for the Solution to be feasible we must have 

X) ri £ - rr 
jeJt 

Clearly, |y| = |E| £ 0(n4). We find a restricted shortest path (regarding the first component 
of c) where a path is a restricted path if and only if the sum of the second cost components 
of all edges in the path sum up to no more than a prespecified upper bound 

d = lpM — rj-
jeJ~'e 

According to Hassin [4], we can solve the restricted shortest path problem in 0(ü\E\) if the 
shortest restricted path is known to be not longer than ü. In our case u = n and hence 
computational complexity for finding the restricted shortest path is 0(n5).Then, solving the 
problem described above for each 1 < k < n takes 0(n6). • 

Theorem 16. lfFp(J~) = Fr(J~) = FP(J+) = Fr(J+) = 1, then l|mu(l)| YjUj can ^e 

solved in 0(n2 log n). 

Proof. Let J+ = {1,..., | J+|} and J~ = {| J+| + 1,..., | J+| + |<7~|} be in EDD order. We 
consider the subproblem where the number of early jobs of J+ and J~ is required to be at least 
e+ and e~, respectively. First, we develop a property of optimal schedules for this subproblem 
that there is a feasible schedule for this subproblem having a structure as follows. 

Property 1. There is an optimal schedule such that we have subsets of early and tardy jobs, 
respectively, of J+ and J~ as follows. 

J+>* = {| J+| — e+ + 1,..., | J+|} 

J+>1 = {1,...,|J+| -e+} 

J~'e = {| J+| + |- e- + 1,..., | J+| 4-1 J-|} 

J-'1 = {|J+| + l,...,|J+| + |J-|-e-}, 

that is for each subset the e+ and e~, respectively, jobs having the largest due dates are chosen 
to be early. Furthermore,, we can assume orders ofjobs of J+ and J~ to be 

(| J+| - e+ +1,..., | J+|, 1,..., | J+\ - e+) and 

(|J+| + |J-'l\ - e~ + 1,..., | J+| + |J~\,\ J+| + 1,..., |J+\ + \J~\- e~) . 

Suppose we have a Solution er where \J~'l\ = \J~\ — e~ and J~'1 ^ J~>1. Let j £ J~'1 be 
the first job that is not in J~'1. Then, there is at least one job of j' € J~'e fl J~'1. Note that 
dj' > dj and, hence, we can exchange j and j' in er without violating any constraint. 
Furthermore, there is an feasible Solution to the subproblem having jobs 1,..., | J+|—e+ last in 
J+ and jobs \ J+ \ — e+ +1,..., | J+ \ i n EDD order by the same arguments as above. Moreover, 
it is easy to see that J+'e, J+'1, J~'e, and J~'1 can be ordered in EDD order. 
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Summarizing, orders for both subsets J+ and J~ of jobs can be assumed to be fixed for given 
e+ and e~. Let both subsets be given in the corresponding order and numbered accordingly 
for given e+ and e~ in the following. Let J2+ and Jdenote the Ith and Arth j ob in J+ and 
J~, respectively. 

Algorithm 5 

1. j+ = 1, j- = \J+\ + 1, I = R, T = 0 

2. for j+ < |J+|andj <|J+| + |J-| 

(a) if I > |r~| and dj- < dj+ and dj- >T + p~ 

i. schedule j~ next 

ii. 1 = I + r~ 

iii. r =r +1 

(b) eise if (I < |r"| or dj- > dj+) and dj+ > T + pj 

i. schedule j+ next 

ii. I = I + r+ 

iii. j+ =j+ + 1 

(c) eise STOP 

3. schedule remaining jobs in J or J+ and check feasiblity (STOP in case of infeasibility) 

The algorithm gives a feasible Solution if there is one in 0(n). Assume there is a feasible 
sequence a and the algorithm aborted without finding a schedule. Let k be the first position 
where a and the partial schedule ap constructed by our algorithm differ. If no job was found 
for position k by our algorithm, then a must be infeasible. Note that r^^rv^) < 0 due to 
Property 1 otherwise. If a job was assigned to position k by our algorithm, then let k' denote 
the position of ap(k) in er. 
If < 0, then daP(k) < <L(&). If, additionally, a{k' — 1) > | J+| — e+, then a{k' — 1) must 
be early and da^) < < d^k'-i)- Then, moving ap{k) in position k of a and delaying jobs 
in positions k to k' — 1 by one position cannot make any job tardy. Moreover, since ap(k) is 
a feasible choice regarding inventory constraints we cannot violate inventory constraints in o. 
By a similar argument if a(k' — 1) < | J+\ — e+, then only jobs 1,..., | J+\ — e + can become 
tardy by this move. Obeviously, this is feasible to the subproblem. If rap^ > 0, then the 
arguments are analogous to the case above. 
Next, we consider the subproblem to find a schedule where the number of early jobs is required 
to be at least 0 < e < n, respectively. We can solve this subproblem be solving the subproblem 
above for each 0 < e+ < e and e~ = e — e+ which takes 0(n2). Employing binary search on 
the domain of 0 < e < n we can solve the overall problem in 0(n2logn). • 

Theorem 17. IfFd(J~) = Fr(J~) = Fd(J+) = Fr(J+) = 1, then can be 
solved in 0(n2). 

We give only a sketch of the proof in the following since it employs techniques used intensively 
in preceding proofs. 

Proof. Both subsets J+ and J~ can be assumend to be ordered in SPT order. Varying the 
number of early jobs in J~ we can find the optimal Solution in 0(n2) • 
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Summarizing the results provided by Theorems 8, 9, 10 and Theorems 12 to 17, we can State 
that 

• l|inu(l)| YjUj is unary NP-hard even if FP(J~) = 1, Fr(J~) = 1, and Fd(J+) = 1, 

• l\inv{l)\YjUj is binary NP-hard even if jobs of J~ are identical and Fd(J+) = 1, 

• l|inu(l)| J2Uj 's binary NP-hard even if Fp(J+)+FT(J+) > 1 and Fd(J+) + Fd(J~) > 
1, 

• l\inv{l)\Y^Uj is NP-hard even if FP(J+) + Fr(J+) > 1, 

• l\inv(l)\J2Uj is polynomially solvable if FP(J+) = 1, Fd(J~) = 1, and Fp(J~) + 
> i, 

• l\inv(l)\Y^Uj is polynomially solvable if FP(J~) = 1, Fd(J+) = 1, and Fp(J+) + 
Fr(J+) > 1, 

• l|mv(l)| YjUj is polynomially solvable if FP(J+) = 1, Fr(J+) = 1, FP(J~) = 1, and 
Fr(J-) = 1, and 

• l\inv(l)\EUj is polynomially solvable if Fd(J+) = 1, Fr(J+) = 1, Fd(J~) = 1, and 
Fr(J-) = 1. 

4 Conclusions and Outlook 

In this paper we introduce inventory constraints to be embedded in the well-known machine 
scheduling framework. Inventory constraints can be seen as a generalization of precedence 
constraints. We consider different objective functions and special cases where one or more 
parameter of subsets J+ or J~ ofjobs are identical. These special cases are motivated by real 
world scheduling problems arising in cross-dock terminals, for example. 
The general problems turn out to be strongly NP-hard even for Lmax and However, for 
several of the special cases polynomial algorithms are developed. Furthermore, we provide two 
pseudo polynomial time algorithms. Although we could determine computational complexity 
of many special cases some remain open so far. Table 1 lists minimum and maximum open 
problems for objective functions and YlUj- Note that no problems for and 
Lmax are left open. 
For the future we identify several promising fields of research in this area. First, computational 
complexity of the open cases should be determined. Moreover, objective functions YlwjUj' 
Er,' and EwjTj are not considered so far. Second, we propose to consider problems with 
more than one machine. Third, a setting where |T| > 1 but no job is involved with more than 
one type seems to be interesting. The question to answer first for this setting is whether we 
can extend algorithms developed in the paper at hand to handle this case. Last but not least it 
is important to develop efficient heuristics or approximation algorithms for the problems that 
are strongly NP-hard. Here, it seems to be promising to employ algorithms for special cases 
as building blocks. 
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Prob 
l|mv(l)| J2wjCj min open 0 

i 
max open 0 

0 
1 

l\inv(l)\52 Uj min open 0 
1 
1 
1 

max open 0 
1 
0 
1 

Table 1: Open Problems 
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A NP-Hardness of Feasibility of l|mv(l)|7 

We only give the reduction scheme from 3-PARTITION. It is easy to see that there is a feasible 
schedule if a nd only if the answer to the instance of 3-PARTITION is yes. 

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m, 
Bf4 < a.j < B/2 for each j G {1,.. .,3m}. We construct an instance P' of l|zm;(l)|7 as 

follows: 

• n = 4 m 

• Pj = 1 

• Tj = —<Xj if j G {1,..., 3m}, Tj — B otherwise 

• R = 0 
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• I = B 

The idea is that jobs 3m +1 to 4m partition the remaining jobs 1 to 3m into groups of three 
jobs such that each group has overall consumption of B. • 

B NP-Hardness of Feasibility of l|zm>(2)|7 

Again we only give the reduction scheme from 3-PARTITION. 

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m, 
B/4 < a,j < B/2 for each j G {1,.. .,3m}. We construct an instance P' of l|im>(2)|7 as 
follows: 

• n = 4m + 1 

• Pj = 1 

• rj,I = ai< rj,l = 0. rj,2 = 0. and ^,2 = ai 'f; G 3m} 

• r3m+l,l = 0, ^3TTI+1,1 = r3m+l,2 ~ 0. and r^m+l 2 = 0 

• Tj,i = 0, rj % = B, r|>2 = B, and rj2 = 0 if j G {3m + 2,..., 4m} 

• r4m+i,i — 0, rTim+11 = 0. 7"4m+lj2 = and rlm+12 = 0 

• i?i = = 0 

Again, the idea is that jobs 3m+ 1 to 4m+ 1 partition the remaining jobs 1 to 3m into groups 
of three jobs such that each group has overall consumption of type 1 of B and overall release 
of type 2 of B. • 

C NP-Hardness of l|mi>(l)| J2Cj 

Proof. Consider an instance P of 3-PARTITION defined by B G Z+, set A, \A\ = 3m, 
B/4 < a,j < B/2 for each j G {1,..., 3m}. We construct an instance P' of l|mu(l)|J]Cj 
as follows: . 

• na = 3m 

• nb = 2 mB — 2 

• n~ = m 

• n = na + mnb + n~ 

• Ja = {!,..., na}, Jb = {na + n~ + 1,..., na + n~ + mnb} , J+ = Ja U Jb, J~ = 
{:na + 1,..., na + n~}, J = J+ U J~ 

• p = max{2nhBm2, (nb + 3)(B + + 3mB + 1} 

• pj=p + dj if j G Ja, pj =p'\fje Jb, Pj = l if j e J~ 
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• rj = p + aj if j E Ja, rj =p\fje Jb, Tj = —{nb + 3)p — B if j e J 

First, we derive a threshold for the objective value from a schedule having a structure such 
that we have m sections of nh jobs out of Jb, three jobs out of Ja, and one job out of J~ in 
each section. Figure 1 illustrates this class of schedules. Suppose that the partition ofjobs of 
Ja into sections implies a yes-answer to the instance of 3-PARTITION, then we can find an 
upper bound for the objective value. We develop upper bounds for the contributions 7°, 7b, 
and 7~ of subsets Ja, Jb, and J~ to the objective value 7 in such a schedule. In each section 
jobs out of Jb are scheduled first and the job out of J~ last (see Figure 1). Let j(i, l) denote 
the Ith job in section i out of Ja for 1 < i < m and 1 < l < 3. 

m 
7° = X) ~~ 1) ((n& + 3)p + B + l) + 3nbp + 6p + 3oj(i,i) + 2aJ(i)2) + Oj(i,3)) 

i=1 

< 3 ((n6 + 3)p + B+l) + rnp{Znb + 6) + ̂  f3J + 2j + j) 
i=1 ^ ' 

= 3 ((n6 + 3)p + B + l) Tn(m^—+ 3mp(nb + 2) + 2mB 

Note that 

3oi(i,l) + 2aj(i,2) + aj(i,3) < 3y + 2— + — 

since we can assume jobs out of J+ in each section to be ordered in SPT order. 

ml nb \ 
7b = X - 1) ((n& + 3)P + B + l) + kp\ 

t=i y fc=i J 

= n»((„' + 3)p + B + l)!^^+mp^+Ü 

7° + 76 = (nb + 3}ap——^—— + mp + 3-5n& + 6 j + 

(n> + 3)(S + + 2 mB 

= (n* + 3) w _ ("" + 3)Vn. + mp ^ + 3.5n> + 6) + 

(n" + 3 )(B+ + 2 mB 

= K±3)W +pm( n» + 3) + ̂  + 3)(£ + :)m(m-l) + ̂  

2 2 ^ 

m 
7~ = X * ((n& + 3)p + B 4- l) 
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7 < 7° + 7& + 7 

In the following we will show that there is a schedule to P' having total completion time not 
larger than 7 if and only if t he answer to P is yes. 
If t he answer to P is yes, then we can find a feasible Solution to P' by scheduling m sections. 
We choose nb arbitrary jobs of Jb to be scheduled first in each section, the partition gives m 
subsets of jobs of Ja to be scheduled in different section (we arrange them in SPT order in 
each section), and we choose an arbitrary job of J~ as last job of each section. Döing the 
math like above we obtain a total flow time of no more than 7. 
Suppose now we have a schedule having total completion time not larger than 7. We show 
that this schedule must be structured as above and, moreover, induces a 3-partition for P (by 
the partition of Ja to subsets being scheduled in each section). First, it is obvious that we can 
schedule Jb and J~ in arbitrary order. We can assume that they are numbered in scheduled 
order. 

Property 2. Job j, 3m + 1 < j < Am, can not be finished before 

Clearly, jobs 3m +1,..., j — 1 must be finished and inventory must be at least (nb + 3)p -f B. 
This induces that before j can be started at least 

units of items must have been released (which implies k units of processing time used by jobs 
in J+ before the start ofj). Furthermore, j — 3m — 1 jobs of J~ (having processing time 1 
each) must be finished. Including processing time of j itself this sums up to k + (j — 3m). 

Property 3. Job j, 3m+l < j < Am, cannot be started before at least k = (j — 3m)(nb + 3) 
jobs out of J+ have been finished. 
Suppose only k', k' < k, jobs are finished before j. There are j — 3m — 1 jobs of J~ being 
finished before j. Therefore, k' jobs out ofJ+ must have released 

units of items. 

Property 4. No more than k = (j — 3 m)(nb + 3) jobs out of J+ can be finished before job 
j, 3m + 1 < j < Am, is started. Suppose at least k + 1 jobs out of J+ are finished before j. 
Then, with Property 2 we have 

Cj > (j — 3m)((nb + 3)p + 5 + 1)-

k = (j — 3 m)((nb + 3 )p + B) 

(j - 3m)((nb + 3)p + B) 

units of items. However, k' jobs must release less than 

< kp -|- k —— 2nbBm? 

< kP 

< kp + B(j — 3m) 

(j - 3m)((nb + 3)p + B) 
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X Cj ^ 7~ - Ü - 3m)((nft + 3)p + B + 1) + (k+ l)p 
jeJ-

= 7~ — (j — 3m)(B + 1) +p. 

Furthermore, since all jobs in J+ have processing time of at least p we have 

m(nb+3) 

EQ> E kp. 
jeJ+ k=i 

Now, we can see that 

m(nb+3) 

XC3 > 1~ ~ Ü ~ 3m)B+p+ X kP 
j£J fc=1 

= 7- - (j - 3m)B + , + pm{n> + 3)(m2("6 + 3) + 1} 

= 7--0'-3m)B+P + P=^^+P^+5) 

= 7~ — U — 3m)S + p + 7° +T6 — (n& + 3)(B -+•1)—^—— — 

> 7» + 7i> + 7-+ 3)(g +i)Ü^ÜL—il 
2 

> 7 + 1 

2 

3 mB 

where the last inequality holds ifm > 1. Thus, the Solution can not have an objective value 
of no more than 7 by lower bound consideration. 

Due to Property 3 and 4, exactly nb + 3 jobs out of J+ are scheduled between job j and j +1 
for j = 3m + 1,..., 4m — 1. Thus, if Cj < 7 , the schedule must have a sector structure. 

Property 5. For job j, 3m + 1 < j < 4 m, we have 

Cj — (j — 3m)((nb + 3)p + B -1-1). 

Due to Property 2, j cannot be finished before Cj. Now assume that j is finished after 
Cj.Since all jobs are scheduled in m ((nb + 3) p + B + l) time units j < Am must hold. If 
j < Am, then sector j + 1 starts not before (j — 3m) ((n6 + 3) p + B + l) +1 and, thus, 

( nb+3 771 / 71 "ho \ 
^ Cj > X (n& + 3) (i — 1) ((n& + 3)p + B + 1) + X kP J + (rc6 + 3) 
jeJ+ »=i \ k=1 ) 

- ("' + 3)2P^ + mp+ (nb + 3)(B + 1 + („» + 3) 

= 7° + 76 — 2 mB + nb + 3 

> 7° + 7& + 1 
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Since the lower bound for the contribution to the objective value by jobs of J~ is given by 
7~ + 1, we obtain an overall lower bound larger than 7 + 2. Thus, the Solution can not have 
an objective value of no more than 7 by lower bound consideration. 

Due to Property 5, it is obvious that there exactly three jobs out of Ja between each pair of 
consecutive jobs out of J~. The corresponding values of dj in each section sum up to B. 
This completes the proof. • 

D NP-Hardness of l|mv(l)|Z/max 

Proof. The reduction is from 3-PARTITION. Consider an instance P of 3-PARTITION defined 
by B £ Z+, set A, \A\ = 3m, Bf4 < dj < B/2 for each j £ {1,..., 3m}. We construct an 
instance P' of l\inv(l)\Lmax as follows: 

• n — 4 m 

• J+ = {l,..., 3m}, J~ — {3m + 1,..., 4m} 

• pj = dj if j e J+, pj = 1 if j e J~ 

• Tj = dj if j £ J+, rj = -B if j £ J~ 

• dj = (B + 1 )m if j e J+, dj = (J — 3m)(B + 1) if j 6 J~ 

• Ä = 0 

In t he following we will show that there is a schedule to P' where each job is finished not later 
than its due date if and only if the answer to P is yes. 
If the answer to P is yes, then we can construct a Solution to P' having no tardy jobs by 
scheduling induced subsets of A and jobs of J~ (in order increasing due dates) alternatingly. 
Suppose there is a Solution to P' having no tardy job. 
Since jobs of J~ only differ by their due dates we can assume that they are scheduled in o rder 
of increasing due dates. 
Let Jk C J+, k € {!,..., m}, be the set of jobs scheduled before job 3m + k. Obviously, 

rj > kB Vk £ {1,..., m}. 
jeJk 

Furthermore, 

^ rj = Pj < d3m+k - k = k(B + 1) - k = kB. 
jeJk j£Jk 

The Theorem follows. • 

E NP-Hardness of l\inv(l)\Lmax, jobs in J~ identical and 

dj = d+ for j £ J+ 

Proof. The reduction is from PARTITION. Consider an instance P of PARTITION defined 
by set A, |A| = 2m, Oj £ N for each j £ {!,..., 2m}. We construct an instance P' of 
l\inv(l)\Lmax as follows: 
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• n — 2 m + 1 

• J+ = {l,...)2m}1 J~ = {;-} 

• Pj = a.j if j £ J+, Pj- = 1 otherwise 

• rj = üj if j E J+, rj- = - (52jeJ+rj) /2 otherwise 

• dj = 1 + Ei<j'<2m ai' 'f 3 € J+, dj- = /2 + 1 otherwise 

• R = 0 

In the following we will show that there is a schedule to P' having no tardy job if and only if 
the answer to P is yes. 
Suppose the answer to P is yes. Let A\ and A2 be the induced subsets of A. Then we can 
find a Solution to P' having no tardy job by scheduling the subsets of jobs corresponding to 
Ay first, scheduling job 2m + 1 next and, scheduling A2 last. 
Suppose there is a Solution to P' having no tardy job. Let be the subset of J+ scheduled 
before job 2m + 1. Obviously, 

j€Ji 

Furthermore, 

<w -1 -- =Eia~raf 

j£Ji jeJi 

The Theorem follows. • 

F NP-Hardness of l\inv(l) \ ^2 Uj, jobs in J+ identical and 

dj = d~ for j 6 J~ 

Proof. The reduction is from PARTITION. Consider an instance P of PARTITION defined by 
set A, \A\ — 2m , a,j £ N for each j £ {1,..., 2m}. Let 

a — &j. 
j€{l,...,2m} 

We construct an instance P' of \\inv(l)\ 52 Uj as follows: 

• n = 2m + 2 

• J~ = {1,..., 2m}, J+ = {2m + 1, 2m + 2} 

• pj = a + üj if j £ J~, pj = 2ma otherwise 

• rj = dj — a if j £ J~~, rj = (m — 1/2) a otherwise 

• dj = (3m + 1/2) a if j £ J~, dj = 2ma otherwise 
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• R = 0 

We show that there is a Solution to P' having no more than m + 1 tardy jobs if and only the 
answer to P is yes. 
Suppose there is a Solution to P' having no more than m + 1 tardy jobs. We can assume 
that job 2m+1 is scheduled before job 2m + 2. Obviously, job 2m+ 1 must be scheduled 
first and, therefore, it is not tardy. Scheduling job 2m + 2 next leads to exactly 1 non-tardy 
job since each job in 1,..., 2m is late and so is job 2m + 2. Therefore, we can assume that 
the set J' C {1,, 2m} of additional non-tardy jobs is scheduled between jobs 2m + 1 and 
2m + 2. 
Due to the due dates we have 

and, hence, \ J'\ < m. Considering that the overall number of tardy jobs is no more than 
m + 1 we have \J'\ = m. From | J'\ =m and 

it follows that 

jeJ> 

Furthermore, we have 

Overall, we have aj = &/2. 
If t he answer to P is yes, then obviously the partition gives J' and J \ J'. • 
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