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Abstract 
A single round robin tournament (SRRT) consists of n teams and a set of periods. 

Matches between the teams have to be scheduled such that each team plays against 
each other team exactly once and each team plays at most once per period. In order 
to establish fairness among teams we consider a partition of the teams into strength 
groups. Then, the goal is to avoid that a team plays against extremely weak or extremely 
strong teams in consecutive periods. In t his paper we pick up two concepts ensuring 
different degrees of fa irness and adress several questions which remained open so far. 

Keywords: sports scheduling, round robin tournaments, fairness, strength groups, 
graphs 

1 Introduction 

In a single round robin tournament (SRRT) a set of n teams is given where each team 
has to play against each other team exactly once. All these matches have to be scheduled in a 
set of periods (rounds) P where |P| = n — 1 if n is even and \P\ — n if n is odd. Furthermore, 
each team is supposed to play at most one match per period. If n is even, this means that 
each team plays exactly once per period; if n is odd, in each period exactly one team has a 
"bye", i.e. does not play. The Situation with an odd number of teams is usually reduced to the 
case with an even number of teams by adding a dummy team n + 1. Then in e ach period the 
team playing against n+1 has a bye. It is well known that feasible schedules for SRRTs can be 
constructed for every number n (even and odd) from 1-factorizations (near-l-factorizations) 
of the complete graph Kn (see e.g. de Werra [4]). 
In p ractice for sports tournaments often additional restrictions have to be satisfied. As outlined 
in Bartsch et al. [2], in real world sports leagues fairness issues are quite important. One 
possibility of measuring fairness is the concept of so-called carry-over effects (Russell [7]), 
where it is not favourable if t eams have the same sequence of opponents. 
Another requirement is that a team should not play against extremely weak or extremely 
strong teams in consecutive periods. In order to model such a constraint, as in Bartsch [1] 
and Briskorn [3] we partition the set of all teams into g > 2 strength groups So,-.. ,Sg-1. 
Note that in the following all indices are 0-based, i.e. we always use 0 as starting index. The 
index of the group containing team i £ {0,..., n — 1} is denoted by g(i). 
Unless mentioned otherwise, we restrict ourseives to the Situation that all groups have the 
same size |5S| = ^ > 1 for s = 0,..., g — 1. Without loss of generality we may assume that 

the teams are numbered such that Ss = j+ k | k = 0,..., j — 1 j for s = 0,..., <7 — 1. 

In Briskorn [3] two concepts are introduced assuring a certain degree of fairness with respect 
to groups. A schedule for a SRRT is called 

• group-changing, if n o team plays against teams of the same group in two consecutive 
matches, 

* group-balanced, if no team plays more than once against teams of the same group 
within g consecutive matches. 

It is easy to see that the second property implies the first one, since each group-balanced 
schedule (where each team plays against each group exactly once within g > 2 consecutive 
matches) is also group-changing. 
As an example consider a tournament with n — 6 teams and g = 3 groups S0 = {0,1}, 
Si = {2,3}, S2 = {4,5}. 
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• If team 0 plays against the opponents 1,2,3,4,5 in this order, the corresponding schedule 
is not group-changing since 2 and 3 (as well as 4 and 5) belong to the same group. 

• If team 0 plays against the opponents 1,2,4,3,5 in this order, the corresponding schedule 
is group-changing but not group-balanced since in the subsequences 2,4,3 and 4,3,5 
one group appears twice. 

• If team 0 plays against the opponents 2,4,1,3,5 in this order, the corresponding schedule 
is group-balanced according to team 0. 

An interesting question is whether for given parameters n and g a schedule for a tournament 
with (at least) one of these properties exists. In Briskorn [3] it has been proved that for even n 
a group-balanced schedule for a SRRT exists if an d only if g and j are even. Furthermore, it 
was shown that for certain combinations of the parameters g and | group-changing schedules 
can be constructed and that for g = 2 and odd - no group-changing schedule exists. All 
known results are summarized in Table 1, where indicates that this combination is not 
possible. 

n 
n/g even 

even 
n/g > 1 odd 

n odd 
n/g odd 

g — 2 
g = 3 

g > 4 even 
g > 5 odd 

group-balanced [3] 
open, Section 2 

group-balanced [3] 
group-changing [3] 

no group-changing [3] 

group-changing [3] 
open, Section 3 

open, Section 3 

Table 1: Existence results for group-balanced and group-changing schedules 

From the table it can be concluded that all problems with an odd number n of teams as well 
as problems with g = 3 groups are open. In the remainder of this paper we consider these 
situations. While in S ection 2 problems with even n and g = 3 groups are studied, in S ection 
3 we consider problems with odd n. Furthermore, in Section 4 we relax the restriction that all 
groups contain the same number of teams and present some results for arbitrary group sizes 
to allow group-changing schedules. Finally, some conclusions and topics for further research 
can be found in Section 5. 

2 Problems with even n and g = 3 

In this section we consider problems with an even number n of teams and g = 3 groups. 
According to Briskorn [3] it is already known that in this case (since g is odd) group-balanced 
schedules can not exist. On the other hand, for SRRTs with even n and odd g > 5 in [3] 
group-changing schedules have been constructed. Unfortunately, this construction scheme 
fails if g = 3 holds. However, g = 3 is an important case because in practice often strong, 
weak and middle leveled teams are distinguished. 
Since n is even and each of the g = 3 groups contains the same number ^ of teams, we 
must have n mod 6 = 0 and | must be even. By complete enumeration (using an integer 
Programming formulation) it can be shown that for n = 6 no group-changing schedule exists. 
On the other hand, we give a construction scheme for group-changing schedules for all n > 12 
with § £ {26,34,58, 74}. 
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The basic idea is to arrange all matches between teams of the same group in the equidis-
tant periods 2,5,8,.. .,n — 4 (with two periods in between). These f — 1 periods Pmt = 
{3& — 1 | k = 1,..., | - l} are called internal periods in the following. Matches between 
teams of two different groups will be scheduled in the periods in between. Two consecutive 
periods p,p+ 1 e P\ Pmt are called block in the following. 
We start with constructing a schedule for all matches between teams of the same group. 
For each group (containing an even number | of teams) we consider the complete graph KR 
where all teams of the group are considered as nodes and the edges correspond to the matches 
between these teams. Recall that a 1-factorization of a graph G = (V,E) is a partition of 
the edges E into disjoint 1-factors, where a 1-factor is a set of edges such that each node is 
incident to exactly one of them. It is well-known that for each even k € N a 1-factorization 
F = {F0,..., Ffc_2} of the complete graph Kk exists (see e.g. Wallis [8]). Since each team 
is supposed to play exactly one game per period, every 1-factor induces a schedule for a Single 
period. Thus, an arbitrary 1-factorization of the complete graph Ka can be used for scheduling 
all matches between teams belonging to the same group since the number of internal periods 
equals § — 1. 
It remains to schedule all other matches between teams belonging to different groups. All 
these matches can be represented by the complete tripartite graph K (§;3) with | nodes in 
each partite set. While the nodes in each partite set correspond to the teams of one group, the 
edges model the matches between teams of different groups. Figure 1 illustrates the complete 
tripartite graph K(4; 3) representing n = 12 teams and the matches between teams belonging 
to different groups. Solid lines represent matches between teams of So and Si, dashed lines 
represent matches between teams of So and S2, and dotted lines represent matches between 
teams of 6% a nd S2-

Si 

Figure 1: Complete tripartite graph K(4; 3) 

In the following we define the problem of finding a group-changing schedule for all matches 
between teams of different groups in the periods P \ Pmt in terms of graph theory. Clearly, 
all matches of a block (containing two periods) induce a 2-factor of K 3) since each team 
plays exactly once in each period. Recall that a 2-factor of a graph G — (V,.E) is a subset 
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E' of edges such that each node v G V is incident to exactly two edges e0, e\ E E', eQ 7^ e\ . 
Note that each 2-factor consists of a collection of node-disjoint cycles. 
A 2 -factor of K (|; 3) has to meet two requirements to qualify as a subset of matches which 
can be scheduled in a block of a group-changing schedule: 

(i) Each cycle contained in the 2-factor must have even length since otherwise the corre-
sponding matches cannot be distributed to the two periods of a block such that each 
team plays exactly once in each period. 

(ii) In the 2-factor each team i G Ss, s G {0,1,2}, must be incident to exactly one match 
against a team of £(s_i) mod 3 and exactly one match against a team of <S(s+i) mod 3 since 
otherwise the corresponding schedule is not group-changing. 

We define a circular even 2-factor (ce2f) as a 2-factor of K (|; 3) fulfilling requirements (i) 
and (ii). Accordingly, a circular even 2-factorization (ce2F) is a decomposition of all edges 
into disjoint ce2fs. 

Theorem 1. If a ce2F of the complete tripartite graph K (|; 3) for ev en n exists, a group-
changing schedule for n teams and g = 3 groups can be constructed by 

• scheduling the matches between teams of the same group in the internal periods ac-
cording to an 1-factorization of KR, and 

• scheduling all matches between teams ofdifferent groups according to a ce2F ofK (|; 3) 
in the blocks in between. 

Proof. First, we show that by the described construction a SRRT is obtained. Obviously, 
each match is scheduled exactly once. Moreover, each team plays exactly once in each period 
p G According to (i) each cycle c contained in a 2-factor of a ce2F is 2-colorable. A 
2-coloring of c induces a partition of the matches (edges) in c into two subsets such that each 
team (node) covered by c has exactly one match in each color class. Consequently, a ce2f 
induces a subset of matches decomposable into two subsets such that each team plays exactly 
once per subset. This means that each team plays in both periods of a block exactly once. 
Finally, we show that the resulting schedule is group-changing. According to property (ii), each 
team i plays against teams of different groups in t he two periods of a block. Furthermore, it 
plays against teams of its own group 5S(,) in the period immediately preceding the block (if 
it is not the first block) and the period immediately following the block (if it is not the last 
block). Thus, the schedule is group-changing. • 

It is e asy to see that no ce2F of K (§;3) exists if | is odd. Since then also the number of 
nodes n is odd, there must be at least one cycle having odd length in each 2-factor. Therefore, 
we restrict ourselves to | being even in t he following. In the next two subsections we construct 
ce2Fs of the graph K (f;3) for all even | with | 0 {2,26,34,58,74}. While Subsection 2.1 
deals with the case f = 4fc for k G N, in Subsection 2.2 a construction scheme for all even 
§ i {2,26,34,58,74} is given. 

2.1 Case ^ = 4k with k 6 N 

In this subsection we provide a construction scheme for a ce2F of the graph K (|;3) with 
| = 4k for all k G N. Note that the subgraph induced by two of the three groups is 

4 



the complete bipartite graph Kn n with 3p nodes. It is well-known that for this graph 1-

factorizations exist, e.g. the bipartite 1-factorization FWp = ..., j with 

F?* ~ { [m> ^ + (m + 0 m°d ^ I m = 0, • • •, ̂  - l} for l = 0,..^ - 1. (1) 

As an example, in Figure 2 the 1-factorization FWp for K*n with | = 4 is illustrated. 

FuP pibip ff 

Figure 2: 1-factorization of K44 

The basic idea of our construction scheme is to combine certain 1-factors of F6*p between 
the groups in each block. First, we adress the question how to combine 1-factors of FUp in 
order to obtain a ce2f of K (|; 3). For two different groups Ss, Ss> an d l G {0,..., | — 1} we 
denote by F^ip(Ss>Sa>) the 1-factor Ff"p between the groups Sa and Sa>. 

Lemma 1. Three 1-factors F%P(S0, SJ, F*p{Sl,S2), and F*P(S2,SQ) with l0,h,l2 G 
{0,..., | — 1} form a ce2f of K (f; 3) iflo + h + l2 is odd. 

Proof. Obviously, F^^Sx), and F*P(S2, S0) form together a 2-factor of 
K (f;3) since exactly two 1-factors are chosen for each group. Moreover, the 2-factor fulfills 
condition (ii), i.e. it is circular. Let us consider an arbitrary path from a node i E Ss to 
another node i' E Ss induced by F^p, F^p, and F^p. Obviously, the length of this path is 
a multiple of 3. Now consider an arbitrary path having length 3. Note that there are exactly 
two such paths for each i G S s and both connect i with another node i' G Sg^y Let i and i' 
be the Start and end node of such a path. Since | js even and lo + h + h is odd, |i — i'\ is 
odd, as well. This implies that an even number of paths of length 3 must be concatenated to 
construct a circle and, hence, circles have even length. • 

In the following we will show that a ce2F of the graph K (§;3) with § = Ak for all k € N 
exists. According to Lemma 1 combining 1-factors F^P(S0, S\), F^p(Si, S2), and F^P(S2,SQ) 
with indices l0, h, l2 G {0,..., f - 1} yields a ce2f if 

• exactly one index is odd, and the other two are even, or 

• all three indices are odd. 

According to Lemma 1 the specific combination of 1-factors can be chosen arbitrarily. However, 
we focus on a specific arrangement in the following. 
At first we combine the odd 1-factors F^p for / = 4A + 1 (A = 0,..., ̂  — 1) with the two 
even 1-factors and F^v As an example Figure 3 illustrates the case / = 1 for the graph 
K( 4; 3), where the 1-factors FQP(SQ,SI), FIP(SI,S2) and F2P(S2,S0) are shown. Here, the 
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Si 

Figure 3: f^^,^), ff and ff (&,,%) for fT(4;3) 

Si 

Figure 4: ff (%,&), and ff (%,So) for K(4;3) 

node on top of the column representing a group has the smallest index, solid and dashed lines 
symbolize the two color classes. 
We apply each combination three times by rotating the specific 1-factors such that each 1-
factor is applied to each pair of groups exactly once. This means that each combination is 
arranged in three ce2fs: Ff (So, S1), F?P(SU S2), ff (%, S0) in the first ce2f, ff (&, S2), 
f^"(%,%), in the second ce2f, and Ff Ff (&,,%) in 
the third ce2f. 
By arranging this configuration for all A = 0,..., — 1 we arrange ce2fs and cover Ff 
for e ach even index l e {0,..., | — 1}. It remains to cover Ff for all odd l = 4/x + 3 
(// = 0,..., — 1) in the £ remaining ce2fs. This can be done by arranging Ff between 
each pair of groups, i.e. by choosing Fltnp(S0, Si), Ff («Si, %), and Ff (S2, S0). Clearly, the 
prerequisite of Lemma 1 is fulfilled and, hence, we obtain a ce2f in each block. 
As an example Figure 4 illustrates the case l = 3 for the graph K(4;3), where the 1-factors 
F3Mp(So, <Si), F?P{SUS2) and ff (%, S0) are shown. 
The preceding construction implies: 

Theorem 2. For the graph K (|; 3) with § = 4k a ce2F exists for all k G N. 

2.2 Case | £ {26, 34,58, 74} 

In t his subsection we provide a construction scheme for a ce2F of the graph K (f;3) for all 
even g ^ {2,26,34,58,74}. If ^ is a multiple of 4, the construction method from the previous 
subsection can be applied. By using an integer programming formulation it can be shown that 
for | = 2 no ce2F exists. On the other hand, using Cplex we found ce2Fs F6 and F10 for 
if(6;3) and fT(10;3). These ce2Fs are given in the appendix. 
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At first we will show that from ce2Fs for a graph K(l\ 3) with l G N ce2Fs for the larger 
graphs K(kl] 3) can be constructed for all k G N . 

Lemma 2. If a ce2F of K(l;3) for so me integer l G N exists, then also a ce2F of K(kl\3) 
for all k G N exists. 

Proof. The basic idea of this constructive proof is to Cluster nodes and to use the structure 
known for the graph induced by the Cluster. This technique has been applied in several works 
concerning decomposition of graphs, see e.g. Laskar [5] or Laskar and Auerbach [6]. 
Suppose we have a ce2F F of K(l\ 3) for some l G N. Then we construct a ce2F F' of 
K(kl) 3) for all k G N as follows: 

1. In the graph K(kl\3) partition the nodes of each group Sa, s G {0,1,2}, into / subgroups 
for m = 0,— 1, having size k each. 

2. Consider K(l; 3) as the complete tripartite graph induced by the 3/ subgroups. Each 2-
factor in the 2-factorization F of K(i, 3) is expanded to k 2-factors in the 2-factorization 
F' of K(kl] 3). Note that for each pair of subgroups (belonging to different groups) 
all edges between the nodes in these subgroups can be represented by the complete 
bipartite graph We may employ FHp to decompose them into k 1-factors. For 
this purpose we assign an arbitrary orientation to each circle from the 2-factors in F. 
Then, we combine the 1-factors F^p for A = 0,..., k — 1 between each pair of subgroups 
being consecutive in a circle. 

It is easy to see that F' is a 2-factorization of K(kl) 3). Moreover, we have a circular structure 
due to the circular structure of F. It is obvious that circles of even length are constructed 
since each underlying circle in F is of even length q and circles in F' can only have lenghts 
being multiples of q. • 

Thus, according to Lemma 2, we can construct ce2Fs of K(6k] 3) and K(10k; 3) for all k G N 
using the ce2Fs F6 and F10 as building blocks. 
In a similar way the following lemma provides a basis for a more powerful recursive construction. 

Lemma 3. If a ce2F ofK(l\ 3) for some l G N exists, then also a ce2F of K(kl + 4m; 3) for 
each pair of integers k, m with 4m > kl > 3m exists. 

Proof. The basic idea of this constructive proof is to divide the nodes into two parts inducing 
subgraphs Gkl := K(kl;3) and G4m := Ä"(4m;3). Suppose we have a ce2F F of K[l\3) for 
some iE N. Then we construct a ce2F of K(kl + 4m; 3) using structural elements of F and 
known ce2Fs of G4m (cf. Subsection 2.1) as follows: 

1. According to Lemma 2 from F we can construct a ce2F F' of Gkl for all k G N. We 
arrange F' of Gkl as part of the first kl ce2fs of K{kl + 4m; 3). 

2. We complete the first kl ce2fs of K(kl+4m; 3) by ce2fs of G4m. These ce2fs of GAm are 
arranged by combining 1-factors according to Fbi'p of K4m,4m as in the construction in 
Section 2.1. More specifically, we choose all 2m even 1-factors F^x for A = 0,..., 2m—1 
and the kl — 2m odd 1-factors F^_kl+1+2X for A = 0,...,kl — 2m — 1. Since kl > 3m, 
the number of used odd 1-factors is at least m and, therefore, at least half the number of 
used even 1-factors. Regarding Lemma 1, we can arrange 3m ce2fs of G4m by combining 
two even 1-factors with one odd 1-factor in each ce2f. Furthermore, we can arrange 
kl — 3m ce2fs of G4m using the remaining odd 1-factors (only a single 1-factor in each 
ce2f, cf. Section 2.1). 
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Up to now, we have kl complete ce2fs of K(kl + 4m; 3). It remains to arrange all edges of 
G4m according to F^x+i and F^_X_2X for all A = 0,..., 4m2~fc' -1 (these edges have been left 
out in Step 2) and all edges between Gkl and Gim in the remaining 4m ce2fs of K{kl+Am\Z). 
In the following we represent node i by (g{i),i') where g{i) again denotes the group of i and 
i' := i mod | is the index of i within its group. W.l.o.g. we assume that the nodes of G4m 

are numbered such that they satisfy 0 <i'< Am — 1. 

3. For A = 0,... ,4m —1 in the ce2f with index kl + X for q = 0,1,2 and i' = 4m,... ,kl + 
Am — 1 we arrange edges 

[(?) i')> ((<7 + 1) m°d 3, (i' — Am + A) m od 4m)] and 

[(<7>»'). ((? ~ 1) mod 3, {%' — 4m + A) mod 4m)]. 

In S tep 3 we exclusively arrange circles of length 6. In the ce2f with index p E {kl, ...,kl + 
Am— 1} of K(kl + Am) 3) the nodes (q, {ß + i') mod 4m) for q = 0,1, 2 and i' = 0,... ,Am — 
kl — 1 are not involved yet. 

4. For n = kl,..., kl + Am— 1 in the ce2f with index ß for q = 0,1, 2 and i' = 0,..., Am — 
kl — 1 we arrange edges 

[(q, (/i + i') mod 4m), {{q + 1) mod 3, (^ + 4m - kl ~ 1 — i') mod 4m)] and 

[(<?) (ß + O mod 4m), ((g — 1) mod 3, (/i + Am — kl — 1 — i') mod 4m)]. 

In Step 4 we, again, exclusively arrange circles of length 6. Edges originating from Step 4 
form ce2fs corresponding to and ir^_1_2A for A = 0,..., 4m~kl — 1. Summarizing, we 
obtain a ce2F of K{kl + 4m; 3). • 

Figure 5 illustrates the ce2f with index ß = kl + 2 = 8 of K(\A\ 3) where k — 1 , l = 6, and 
m = 2. Nodes of Gim = G8 and Gki = G6 are drawn as solid and empty dots, respectively. 
Edges arranged in Step 4 are incident to the both upper nodes of each column. 
In t he following we want to apply Lemma 3 with k = 1. Thus, we study which even numbers 
N G N can be written in the form N = l + Am with l,m E N and 4m > l > 3m. We get 

(f, f) for N mod 8 = 0, N > 8, 

for jV m od 8 = 2, N > 42, 

(Z'm^ ~ (^, ̂ ) for N mod 8 = 4, N > 28, 

for # mod 8 = 6, #>14. 

Thus, each even number | > 36 can be written in the form | = l + Am with l, m E N and 
4m > l > 3m. 

Theorem 3. For t/je graph K (|; 3) a ce2F exists for all even | ^ {2,26,34,58,74}. 

Proof. Due to Theorem 2 we already know a ce2F of (f ;3) for all | which are a multiple 
of 4. For all other even ^ < 36 in Table 2 we summarize the results whether a ce2F is known 
for the graph fT(|; 3) or not. Only for | E {2,26,34} no ce2F is known. Note that for 
| = 26,34 no numbers k, l, m exist which satisfy the conditions of Lemma 3. 

Due to (2) each even | > 36 can be represented as | = l + Am with 4m > l > 3m. Thus, if 
a ce2F for the specific graph K(l\3) is known, according to Lemma 3 also a ce2F of K (f;3) 
exists. 
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Si 

Figure 5: ce2f with index ^ = 8 of K( 14; 3) 
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2 
3 existence argument 

2 no IP 
6 yes IP 

10 yes IP 
14 yes Lemma 3 (k = 1, l = 6, m = 2) 
18 yes Lemma 2 (k = 3, / = 6) 
22 yes Lemma 3 (k = 1, / = 10, m = 3) 
26 ? — 
30 yes Lemma 2 (k = 5, l = 6) 
34 ? — 

Table 2: Existence results for a ce2F of Ä"(f; 3) 

This construction Covers all values f which do not depend on a (direct or indirect) represen-
tation with l = 26 or l = 34. The first part of Table 3 lists all numbers which directly depend 
on l = 26 or l = 34. The second column gives the feasible domain Dm consisting of all values 
m G N with 4m > l > 3m for the specific value of l. For each element of Dm the third 
column contains the value l + 4m. If a nother argument not based on the specific value of l 
for the existence of a ce2F of K(l + 4m;3) is known, it is stated in the fourth column. 
The only numbers which directly depend on l\ = 26 or I2 = 34 and for which no other 
argument is known are Zj + 4 • 8 = 58 and l2 + 4 • 10 = 74. These numbers are treated in 
the same way in the second part of Table 3. It can be seen that all numbers which directly 
depend on l3 = 58 or Z4 = 74 can be covered by other arguments. Thus, our construction 
only fails for all even | G {2,26,34, 58,74}. While for | = 2 it is proved that no ce2F exists, 
the other four cases remain open. • 

l Dm m l + 4m argument 

26 {7,8} 7 54 Lemma 2 (k = 9, l = 6) 
8 58 — 

34 {9,10,11} 9 70 Lemma 3 (k = 1,/ = 30, m = 10) 
10 74 — 
11 78 Lemma 2 (k = 13, l = 6) 

58 {15,16,17,18,19} 15 118 Lemma 3 (k = 1, l = 54, m = 16) 
16 122 Lemma 3 (k = 1,1 = 54, m = 17) 
17 126 Lemma 3 (k = 1,1 = 54, m = 18) 
18 130 Lemma 3 (k = 1, l = 62, m = 17) 
19 134 Lemma 3 (k = 1,1 = 62, m = 18) 

74 {19,20,21,22,23,24} 19 150 Lemma 3 (k = 1, / = 70, m = 20) 
20 154 Lemma 3 (A: = 1,1 = 70, m = 21) 
21 158 Lemma 3 (k = 1,1 = 70, m = 22) 
22 162 Lemma 3 (A: = 1,1 = 70, m = 23) 
23 166 Lemma 3 (k — 1, l = 78, m = 22) 
24 170 Lemma 3 (k = 1, l = 78, m = 23) 

Table 3: Numbers l + 4m depending on l G {26,34,58,74} 
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3 Problems with odd n 

In th is section we consider problems with an odd number n of teams. Note that in this case g 
and j must be odd as well. As mentioned in the introduction, in each period exactly one team 
has a bye. Usually, tournaments with an odd number of teams are reduced to the Situation 
with an even number of teams by adding a dummy team. This construction is not possible 
in our Situation, since the dummy team had to be assigned to one group which would lead to 
different group sizes and additionally would destroy the concept of group changes. For this 
reason we must consider the case of odd n individually. 
A schedule for a SRRT with odd n corresponds to a near-l-factorization of the complete 
graph Kn. Recall that a near-l-factorization of a graph G = (V, E) is a partition of E into 
near-l-factors, where a near- 1-factor is a set of edges such that each but one node is incident 
to exactly one edge. This node is incident to no edge. It is well-known that for each odd 
n e N a near-l-factorization F = {F0,..., Fn-i} of the complete graph Kn exists. 
In the following we will s how that a group-balanced schedule exists for each odd n and each 
odd g with ^ G N by providing an appropriate construction scheme. At first we construct 
pairs of groups according to a near-l-factorization of Kg. We pair each group with each other 
group exactly once in the first g periods. Then each group is not paired in exactly one period 
and in each period there is exactly one group which is not paired. Furthermore, we copy this 
structure ^ — 1 times in the remaining n — g periods. An example for n = 15 and g = 5 is 
shown in Figure 6, where rows correspond to groups and columns to periods. The entry for 
row S3 (s = 0,..., g - 1) and column p € {0,..., n — 1} gives the opponent group of group 
Ss in period p. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

% S2 S4 Si S3 — % % Si % — S2 s4 Si s3 

Si s4 S3 S0 S2 S4 % So % s4 — % So s2 

s2 % % — S4 Si S3 — & Si £3 So — s4 Si 
s3 % s4 S% — S0 s2 s4 — So % s4 Si — So 
s4 Si % So % — Si % So S2 — Si S3 So S2 — 

Figure 6: Pairs of groups for n = 15 and g = 5 

Afterwards, we arrange matches according to these pairs of groups as follows. If tw o different 
groups S\ and 5% are paired in period p, then each team in group S\ plays against a team from 
group S^ in p. If S \ is not paired in period p, then the teams in S\ play against each other. 
These internal matches can be arranged according to a near-l-factorization of the complete 
graph Kr with r := j € N. Note that each group is not paired in exactly r periods (with 
distance g), and r equals the number of near-l-factors of Kr. Thus, in each of these periods 
exactly one team does not play and each team does not play exactly once. 
The other matches between teams of different groups may be arranged according to an arbitrary 
1-factorization of the complete bipartite graph Kr>r, e.g. using FUp as defined in (1). 
According to such a 1-factorization we can arrange all matches between teams of different 
groups S\ and SM in r periods, which is exactly the amount of times S\ and S^ are paired. 
Thus, as a result we obtain a feasible SRRT schedule. From the construction of pairs of groups 
it follows that this schedule is group-balanced. 
As an example in Figure 7 the resulting schedule for n = 15 and g = 5 is shown. In order 
to see the group changes, the teams 0,..., 14 are additionally labeled with the corresponding 
group indices 0,... ,4. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Oo - 62 124 3i 93 20 72 134 4i 103 lo 82 144 5i H3 
lo 2o ?2 134 4i io3 - 82 144 5: H3 Oo 62 124 3i 93 

2o lo 82 144 5i ii3 Oo 62 124 3i 93 - 72 134 4i 103 

3i 124 - 9s Oo 62 134 5i IO3 2o 72 144 4i Iis lo 82 
4i 134 5i 103 lo 72 144 - Iis Oo 82 124 3i 93 20 62 
5i 144 4i H3 20 82 124 3i 93 lo 62 134 - 103 Oo 7g 

62 03 Oo - 124 3i H3 2o 82 134 5i 103 lo 72 144 4: 

7 2 103 lo 82 134 4i 93 Oo - 144 3i 113 20 62 124 5i 
82 113 20 72 144 5i 103 lo 62 124 4i 93 Oo - 134 3i 
93 62 124 3i - Oo 72 134 5i 113 20 82 144 4i 103 lo 

103 ?2 134 4i n3 lo 82 144 3: - Oo 62 124 5i 93 20 

H3 82 144 5i io3 20 62 124 4i 93 lo 7g 134 3i - Oo 
124 3i 93 Oo 62 134 5i 113 20 82 - 4i 103 lo ?2 144 

134 4i IO3 lo 72 124 3i 93 Oo 62 144 5i H3 20 82 -

144 5i Iis 20 82 - 4i 103 lo ?2 134 3i 93 Oo 62 124 

Figure 7: Group-balanced SRRT for n = 15 and g = 5 

Obviously, the construction scheme given above can be applied for every odd number n and 
each odd g > 1 with n = rg, r E N. Thus, we have 

Theorem 4. For every odd number n of teams and each odd number g > 1 of groups with 
5gNa group-balanced SRRT exists. 

4 Problems with arbitrary group sizes 

Up to now (in this paper and Briskorn [3]) only groups with identical sizes have been studied. 
Clearly, a generalization to arbitrary group sizes is interesting. For example, in practice often 
sports leagues have few excellent teams, few weak teams, and mostly middle leveled teams. 
While the concept of group-balanced schedules is not applicable in such a Situation, the concept 
of group-changing schedules can be transfered. In the following we give first insights into the 
problem of arranging group-changing SRRTs with different group-sizes. 
In t he following we assume that the n teams are partitioned into g groups S0l... , S3_i with 
|S0| > |<Si| > ... > \S9-i\. Obviously, necessary for the existence of a group-changing 
schedule is the condition 

I>I>|S0| P) 
A=1 

since otherwise it cannot be avoided that teams i 0 So play at least two consecutive matches 
against teams from the largest group So. This condition implies |So| < [fj. For even n 
where | is odd, we may strengthen this condition even to |So| < f for the following reason. 
Assume that |So| = f is odd and let S0 := S\ U ... U S9_i be the complement of S0. Then 
also |S0| = § and all matches of teams in S o against teams from So must take place in t he f 
periods 0, 2,4,..., n - 2. Thus, for the internal matches in S o only n — 1 — § = f — 1 periods 
remain. Since |S0| = § is odd, | — 1 periods are not sufficient for a complete tournament in 
SQ. 
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Thus, we have the following necessary condition for the existence of group-changing schedules 
in the case of an even number n of teams: 

7? 71 Tb 77 
|£b| < g if - is even, and |j>o| < - if - is odd. (4) 

On the other hand, in the following we derive a sufficient condition for the existence of 
group-changing schedules by joining groups to Iarger "supergroups". For a partitioning of 
the index set {0,1,..., g — 1} into k < g subsets A0,..., Ak~\ C {0,..., g — 1} with 
h—1 
U A\ = {0,... ,g — 1} and A\ n = 0 for all A ^ fi we consider induced "supergroups" 

A=Q 
:= U for A = 0,..., k — 1. Then we have 

Lemma 4. If for supergroups So,..., Sk-i induced by a partitioning of g > k groups 
S0,..., Sg-i a group-changing schedule exists, this schedule is also group-changing for th e 
original groups. 

Proof. Obviously, if for the supergroups (J 5%,..., (J S^ a group-changing schedule 
/X6J4O fiGAk—i 

exists, this schedule is also group-changing according to the groups So,.. - ,Sg-1 since the 
original groups are a refinement of the supergroups. • 

Using Lemma 4 we can State the following result: 

Lemma 5. If for an even number n of teams and a fixed number g > 3 of groups a group-
changing schedule exists for all possible group configurations S = {%, Si,..., Sg_i} with 
|<S| = g satisfying (4), then also a group-changing schedule exists for all possible group 
configurations S' = {S'Q, S[,..., S'g,} with |<S'| = g' > g satisfying (4). 

Proof. We prove the Statement by induction on the number g of groups and distinguish 
whether | is even or odd. At first we consider the case that | is even. Suppose that a 
group-changing schedule for each configuration S with |S| = g and |«So| < § exists. Let S' 
be an arbitrary configuration with |<S'| = g + 1 and |5Q| < f • 
We claim that |5'^_1| + \S'g\ < f. Suppose to the contrary that |^_x| + |S^| > f. Since 
I-Sol > ... > |^|,we have \S'0\ + |5J| > |S,^_1| + |5^|. Due to g > 3 we obtain fcf=0|S,B| > n, 
which contradicts the fact that all groups together contain n elements. Thus, we must have 
|S*,-il + |S",l<i-
We consider "supergroups" of S' defined by S" := {SQ, • • - > S'g_2i Sg_i U 5^}. Since |<S"| = g 
and maxdS'ol, USgl} < a group-changing schedule for S" exists by assumption. 
Due to Lemma 4 such a schedule is also group-changing for S'. 
In order to prove the case of odd | with similar arguments, we must show that 
max{|So|, \Sg-i U 5^1} < f. Since |5Q| < | is satisfied due to (4), it suffices to show 

We claim that |5Q| > \S'g\ or g > 3 holds. Assume g = 3. Since \ is odd, n is not a 
multiple of 4. Thus, n teams cannot be partitioned into g + 1 = 4 groups of identical sizes 
\S'0\ = |.Si| = ... = \S'g\ in S ' and, hence, \S'Q\ > |S£| must hold. 
If \S' Q\ > |Sg|, then ISol + l^l > l-S^I + \S'g\ and due to g > 3 by similar arguments as above 
l<SJ-il + |SJI<5fe implied. 
On the other hand, if g > 3, then |<S'| = g + 1 > 5 and we obtain + \S'g\ < ^ < f 
concluding the proof. • 
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In the following we show that Lemma 4 only provides a sufficient but not necessary condition for 
the existence of group-changing schedules. Figure 8 provides an example for a group-changing 
schedule with n = 8 teams and g = 3 groups S0 = {0,1,2}, Si = {3,4,5}, S2 = {6,7}. 
All partitionings of S = {S0,SUS2} into supergroups satisfy \S°\ > f = 4, i.e. for them no 
group-changing schedule exists. 

0 1 2 3 4 5 6 

Oo 5i 2o 4i 62 3i lo 72 
lo 4i 62 3i 2o 72 0o 5i 
2o 72 0o 5i lo 4i 62 3i 
3i 62 4i lo 5i Oo 72 2o 
4i lo 3i 0o 72 2o 5i 62 
5i 0o 72 20 3i 62 4i lo 
62 3i lo 72 Oo 5i 20 4i 
72 20 5i 62 4i lo 3i Oo 

Figure 8: Group-changing schedule for groups SQ = {0,1,2}, Si = {3,4,5}, and S2 = {6,7} 

The preceding example can be generalized leading to the following construction scheme: 

Lemma 6. For all even n > 4 which are a multiple of 4 and group sizes |50| = |Si| — 
IS2I = 2 group-changing schedules exist. 

Proof. W.l.o.g. we assume that the teams are numbered such that S2 = {n — 2, n - 1}. Let 
S'0 := S0 U {n — 2}, S[ Si U {n — 1} and k := |So| = |S%| = Since n is a multiple of 
4, k is even. 

1. For the matches between the two groups S'Q,S[ we consider the bipartite graph K"fcjfc. 
We choose an arbitrary 1-factorization of Kk,k (e.g. Fbip according to (1)). The 
corresponding 1-factors are assigned to the periods 0,2,4,...,n — 2 (in an arbitrary 
order). 

2. In the remaining periods 1,3,5,..., n — 3 we schedule the "internal" matches among 
teams in S'Q and respectively. In the following we show that 1-factorizations for the 
graph Kk with even k can be chosen such that the schedule is also group-changing w.r.t. 
group S2. 

We consider the group S'Q, the other group can be treated symmetrically. For each 
period t G {1,3,..., n — 3} = {2p, + 1 | p = 0,..., |5o| ~ 1} 'et K be the set of all 
teams in SQ wh ich are opponents of team n — 1 G S[ in period t - 1 ot t + 1 according 
to the schedule from Step 1. In the 1-factor corresponding to period t these teams may 
not be paired with team n — 2 G S'Q since teams n — 1, n — 2 belong to the same group. 

Each set Vt contains at most two teams, furthermore, each team i G So appears in 
at most two sets Vt. Thus, for each t we can find a team it G So \ Vt such that 

(J {^f} ~ So- Let jß .= for p = 0,..., |So| 1-
46{l,3,...,ra-3} 

According to the canonical 1-factorization (cf. de Werra [4]) for p = 0,..., |So| — 1 we 

may set 

f I I 
-PV+1 = {[n — 2,jß]} U < [j f(^+A) mod |5o|>3(n->i) mod |S0|] | A — 1, . . • , g (5) 
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and schedule the matches in period 2/z + 1 according to F2ß+i. The same construction 
is done for the set S[ resulting in a group-changing schedule. • 

An example for this construction with n = 12 teams can be found in Figure 9. After scheduling 
the matches in periods 0,2,..., n - 2 according to FHp, for the group S'0 = {0,1,2,3,4,10} 
we get Vi = {4}, V3 = {3,4}, V5 = {2,3}, V7 = {1,2}, and V9 = {0,1}. Then, team 
n - 2 = 10 can be paired with team jo = i\ = 3 in period 1, team jx = i3 = 2 in period 3, 
team j'2 = is = 1 in period 5, team j3 = i7 = 0 in period 7 and team j4 = i9 = 4 in period 
9. According to (5) the remaining internal matches are scheduled. 

0 1 2 3 4 5 6 7 8 9 10 
0 5 1 6 4 7 2 8 10 9 3 11 
1 6 0 7 3 8 10 9 4 11 2 5 
2 7 4 8 10 9 0 11 3 5 1 6 
3 8 10 9 1 11 4 5 2 6 0 7 
4 9 2 11 0 5 3 6 1 7 10 8 

10 11 3 5 2 6 1 7 0 8 4 9 
5 0 7 10 9 4 6 3 8 2 11 1 
6 1 11 0 8 10 5 4 7 3 9 2 
7 2 5 1 11 0 9 10 6 4 8 3 
8 3 9 2 6 1 11 0 5 10 7 4 
9 4 8 3 5 2 7 1 11 0 6 10 

11 10 6 4 7 3 8 2 9 1 5 0 

Figure 9: Group-changing schedule for groups So = {0,1,2,3,4}, Si = {5,6,7,8,9}, and 
£2 = {10,11} 

Due to the arguments given above and some computational results in connection with integer 
Programming formulations for all even n < 14 and all possible group sizes it is known whether 
a group-changing schedule exists or not. These results are summarized in T able 4. 
Note that in this table Lemma 4 is also used to provide negative results. If for some config-
uration no group-changing schedule exists, then also for all "supergroup configurations" no 
group-changing schedule exists. For n = 8,12,14 we use Lemma 5 in order to State that for all 
g > 3 group-changing schedules exist. On the other hand, for n = 10 one configuration with 
g = 4 does not allow a group-changing schedule. For n > 12 it seems that group-changing 
schedules always exist whenever the necessary condition (4) is satisfied. 

5 Conclusions and outlook 

We picked up a common idea to guarantee a certain degree of fairness in a SRRT with teams 
belonging to different groups. The contribution of this paper is threefold: 

• We considered the case where the number of groups g equals 3 and all groups have 
identical sizes. No group-changing schedule exists for n = 6 teams. Moreover, we 
gave construction schemes for | ^ {2,26,34,58,74}. Although we conjecture that 
group-changing schedules also for | e {26,34,58,74} exist, these cases remain open. 

• For the case where n is odd and group sizes are identical we proposed a construction 
scheme for all possible g (i.e. with 2 g M). 
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1 n | group sizes existence reason 

4 |So| > 2 no |£b| > # violates (4) 
2+2 yes 2 even, construction in [3] 
|50| = 2 yes Lemma 4, supergroups with sizes 2+2 

6 N > 3 no |Sbl > f violates (4) 
2+2+1+1 no IP 
2+2+2 no Lemma 4, supergroups of 2+2+1+1 
2+1+1+1+1 yes IP 

8 N > 4 no |£o| > \ violates (4) 
4+4 yes 4 even, construction in [3] 

II 2
1
 

yes Lemma 4, supergroups with sizes 4+4 
3+3+2 yes construction of Lemma 6 
all other combinations yes by Lemma 5 with g — 3 

10 N > 5 no |So| > f violates (4) 
4+3+3 no IP 
4+4+1+1 no IP 
4+4+2 no Lemma 4, supergroups of 4+4+1+1 
4+3+2+1 yes IP 
4+2+2+2 yes IP 
3+3+3+1 yes IP 
3+3+2+2 yes IP 
all other combinations yes supergroups with sizes 4+3+2+1 or 3+3+2+2 

12 |%| > 6 no |Sb| > ? violates (4) 
6+6 yes 6 even, construction in [3] 

II c£ 
yes supergroups with sizes 6+6 

5+5+2 yes construction of Lemma 6 
5+4+3 yes IP 
4+4+4 yes construction of Section 2.1 
all other combinations yes by Lemma 5 with g = 3 

14 |So| > 7 no |iSo| > ? violates (4) 
6+6+2 yes IP 
6+5+3 yes IP 
6+4+4 yes IP 
5+5+4 yes IP 
all other combinations yes by Lemma 5 with g — 3 

Table 4: Existence of group-changing schedules for even n < 14 and arbitrary group sizes 

• We provided several results for cases where group sizes are not identical. Besides stating 
necessary conditions as well as sufficient conditions we gave a construction scheme for 
a special case. However, several questions remain open. Especially, for n > 16 it is 
not known whether for all configurations satisfying the necessary condition (4) group-
changing schedules exist. 

In o rder to visualize the construction methods of this paper and from Briskorn [3] we imple-
mented an applet which can be found at 

http: //www. Informatik. uos. de/knust/sportssched/webapp/group. html. 
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A Ce2Fs of K(6; 3) and K(10; 3) 

In the following we represent the nodes i = 0,..., n— 1 of the graph /f(2; 3) by pairs (g(i), i') 
where i' = i mod In the following a ce2F F6 = {F® | 0 < / < 5} of K(6; 3) and a ce2F 
F10 = {F}° | 0 < / < 9} of K{ 10; 3) are shown. Each ce2f is given as collection of circles. 

^ = {[(0,0), (1,3), (2,0), (0,3), (1,0), (2,3)], 

[(0,l),(2,4),(l,l),(0,4),(2,l),(l,4)j, 

[(0,2), (1,5), (2,2), (0,5), (1,2), (2,5)]} 

ff = {[(0,0), (1,1), (2,2), (0,3), (1,4), (2,5)), 

[(0,1), (1,2), (2,3), (0,4), (1,5), (2,0)], 

[(0,2), (1,3), (2,4), (0,5), (1,0), (2,1))} 

= {[(0,0), (2,2), (1,4), (0,2), (2,0), (1,2), 

(0,3), (2,1), (1,1), (0,5), (2,3), (1,3), 

(0,4), (2,4), (1,5), (0,1), (2,5), (1,0)],} 

^ = {[(0,0), (1,4), (2,0), (0,4), (1,2), (2,1)], 

[(0,1), (2,2), (1,3), (0,5), (2,5), (1,5), 

(0,3), (2,3), (1,1), (0,2), (2,4), (1,0)]} 

f? = {[(0,0), (2,0), (1,1), (0,3), (2,4), (1,2), 

(0,2), (2,2), (1,0), (0,4), (2,5), (1,3), 

(0,1), (2,3), (1,4), (0,5), (2,1), (1,5)]} 

fs = {[(0,0), (1,2), (2,2), (0,4), (1,4), (2,4)], 

[(0,1), (1,1), (2,5), (0,3), (1,3), (2,1)], 

[(0,2),(2,3),(1,5),(0,5),(2,0),(1,0)]} 
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{[(0,0), (1,7), (2,3), (0,4), (1,3), (2,1), (0,9), (1,9), (2,4), (0,3), (1,8), (2,0)], 

[(0,1),(1, 6), (2,7), (0,7), (1,0), (2,8), (0,5), (1,4), (2,6), (0,8), (1,5), (2,2), 

(0,2), (1,2), (2,9), (0,6), (1,1), (2,5)]} 

{[(0,0), (1,3), (2,0), (0,6), (1,5), (2,5), (0,4), (1,2), (2,4), (0,8), 

(1,0), (2,6), (0,7), (1,7), (2,9), (0,5), (1,9), (2,3), (0,1), (1,4), 

(2.7), (0,3), (1,1), (2,1), (0,2), (1,8), (2,2), (0,9), (1,6), (2,8)]} 

{[(0,0), (1,8), (2,7), (0,9), (1,1), (2,3)], [(0,3), (1,2), (2,1), (0,6), (1,7), (2,5)], 

[(0,1), (1,3), (2,8), (0,2), (1,5), (2,9), (0,7), (1,4), (2,0), (0,8), (1,9), (2,6)], 

[(0,4), (1,0), (2,4), (0,5), (1,6), (2,2)]} 

{[(0,0), (1,6), (2,9), (0,2), (1,0), (2,0), (0,5), (1,2), (2,7), (0,4), 

(1,9), (2,1), (0,3), (1,3), (2,5), (0,7), (1,1), (2,2), (0,6), (1,4), 

(2,4), (0,1), (1,7), (2,8), (0,9), (1,5), (2,3), (0,8), (1,8), (2,6)]} 

{[(0,0), (1,0), (2,7), (0,1), (1,9), (2,5), (0,6), (1,8), (2,1), (0,8), 

(1,6), (2,3), (0,5), (1,5), (2,8), (0,4), (1,1), (2,4), (0,2), (1,7), 

(2.0), (0,7), (1,3), (2,2)], [(0,3), (1,4), (2,9), (0,9), (1,2), (2,6)]} 

{[(0,0), (1,2), (2,2), (0,3), (1,5), (2,0), (0,9), (1,4), (2,8), (0,1), 

(1.8), (2,4), (0,6), (1,3), (2,6), (0,4), (1,6), (2,5)], 

[(0,2), (1,1), (2,7), (0,5), (1,0), (2,3), (0,2), (1,1), (2,7), (0,5), (1,0), (2,3)]} 

{[(0,0), (1,1), (2,8), (0,3), (1,0), (2,9), (0,1), (1,5), (2,7), (0,6), 

(1.9), (2,2), (0,8), (1,2), (2,0), (0,4), (1,7), (2,6), (0,2), (1,4), 

(2.1), (0,5), (1,8), (2,5), (0,9), (1,3), (2,3), (0,7), (1,6), (2,4)]} 

{[(0,0), (1,5), (2,1), (0,1), (1,0), (2,5), (0,5), (1,7), (2,4), (0,4), 

(1,4), (2,2), (0,7), (1,2), (2,8), (0,8), (1,1), (2,6), (0,9), (1,8), 

(2,3), (0,6), (1,6), (2,0), (0,2), (1,3), (2,9), (0,3), (1,9), (2,7)]} 

{[(0,0), (1,4), (2,5), (0,8), (1,3), (2,4), (0,9), (1,7), (2,7), (0,2), 

(1,9), (2,0), (0,1), (1,2), (2,3), (0,3), (1,6), (2,1), (0,4), (1,8), 

(2,8), (0,7), (1,5), (2,6), (0,6), (1,0), (2,2), (0,5), (1,1), (2,9)]} 

{[(0,0), (1,9), (2,8), (0,6), (1,2), (2,5), (0,2), (1,6), (2,6), (0,5), 
(1,3), (2,7), (0,8), (1,4), (2,3), (0,9), (1,0), (2,1)], 

[(0,1), (1,1), (2,0), (0,3), (1,7), (2,2)], [(0,4), (1,5), (2,4), (0,7), (1,8), (2,9)]} 
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