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Abstract 

The elastic generalized assignment problem (eGAP) is a natural extension of the 
generalized assignment problem (GAP) where the capacities are not fixed but can be 
adjusted which is expressed by continuous variables. These variables might be un-
bounded or restricted by a lower or upper bound, respectively. This paper concerns 
techniques in order to reduce several variants of eGAP to GAP which enables us to 
employ Standard approaches for the GAP. This results into an heuristic, which can be 
customized in order to provide solutions having an objective value arbitrarily close to 
the optimal one. 

Keywords: elastic generalized assignment problem, mixed integer program-
ming, reformulation, binary representation 

1 Introduction 

The elastic generalized assignment problem, eGAP for short, is a natural extension of the 
generalized assignment problem (GAP), a well-known combinatorial optimization problem 
with applications in production, logistics, and distribution planning. The GAP isto assign jobs 
to agents in order to minimize assignment cost without extending a given capacity for each 
agent. While the capacity can not be influenced according to the GAP, the eGAP considers the 
opportunity to extend or reduce, respectively, the available capacity. Extending the capacity 
causes cost while reducing capacity provides a profit. The GAP is well-known to be NP-hard, 
NP-hardness of eGAP follows straightforwardly, see Nauss [9]. 

While there exist several efficient algorithms for the GAP, see, e.g. Yagiura et al. [17], the 
eGAP has not been studied much so far, although it is of great practica! relevance. To the 
best of our knowledge, there is only one recent paper by Nauss [9] for a special case of the 
eGAP. It concerns a branch and bound algorithm to solve small but difficult instances. This 
algorithm is based on a previous work, which was developed for the GAP, see Nauss [8]. 

Due to the possibility of adjusting the capacity the well-known Cover inequalities, see 
Nemhauser and Wolsey [10], Schrijver [12] as well as Fügenschuh and Martin [3], can not 
be used one-to-one. Therefore, the powerful formulations developed by Wolsey [14] have to 
be adapted. This seems to be expensive here, see Ceria et al. [2], due to the number of pos-
sible cuts. Thus we propose to reduce the problem to the well-known GAP, for which several 
efficient algorithms exist. 

The exposition of our work is as follows: In s ection 2 we present the mixed integer formulation 
and develop some properties of solutions. The approaches with one variable for the adjustment 
at each agent, being unbounded or limited by one or two bounds, respectively, are given in 
section 3. Then, we give a generalization by introducing additional variables for the adjustment 
for each agent in section 4. In s ection 5 we provide some computational results and section 6 
finally concludes the paper. 

2 Model Formulation and First Insights 

Given a set M = {1,... ,m} of agents and a set iV = {1,... ,n} of jobs, the objective of the 
eGAP is to serve all jobs at minimum cost, regarding the adjusted capacity of each agent. To 
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this end, the following binary decision variables are used: 

{1 if job j is assigned to agent i 

0 otherwise 

The binary variables ensure that a job can only be served fully by an agent. 

The following parameters are assumed to be given: Each agent i provides a fixed amount of 
capacity bi (bi > 0) of an arbitrary resource. In contrast to the GAP, the original capacity 
bi, can be adjusted. Continuous variable represents the amount of capacity which is added 
(sf > 0) or removed (sj < 0), respectively. The cost for the capacity adjustment are q, Q > 0. 

Job j asks for a specific amount (a^ > 0) of the capacity of a particular agent if x^ = 1. 
For serving job j's demand from agent i, the total cost % (c% > 0) occur. These cost needn't 
depend on the value a^. 

Now, the problem can be stated mathematically as follows: 

min ^ ] CijXij (1) 
ieM jeN ieM 

S.t. ^ ] CLijXij bi + Si VieM (2) 
jeN 

J2xa = 1 Vj£N (3) 
i6M 

^ ^ Ui VieM (4) 
xij 6 {0,1} VieM, VjeN (5) 

The objective function (1) is twofold. The first part represents the sum of assigned jobs' cost. 
The second part considers cost and sales when additional capacity is bought and superfluous 
capacity is sold, respectively. Constraints (2) ensure that the (modified) capacity limit of 
the agents is not exceeded. Constraints (3) in combination with (5) ensure, that each job 
is assigned exactly to one agent. Finally, constraints (4) give the bounds for the capacity 
adjustment. 

Before presenting reduetions of eGAP to GAP for most cases, we introduce some definitions 
and basic properties, first. 

For short, a Solution of the eGAP can be expressed by the tuple (x, s), where x is the binary 
vector containing all values of i e M and j € N, and s is the vector of the corresponding 
capacity modifications sit i e M. Additionally, we define the following capacity consumptions: 

Wi := dij V i e M 
j£N 

where Wi gives the capacity consumption at agent i, if all jobs are assigned to this agent. 

Note, that the number of feasible Solution of the eGAP is not smaller than that of a cor
responding GAP with capacities of bi + lit for each i G M. This might be a bürden, if an 
heuristic is used to solve the eGAP, which is based on local search, see e.g. Glover et al. [4]. 
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3 Capacity Adjustment with one Variable 

3.1 Capacity Adjustment with no restrictive Bounds 

Before dealing with the one-sided and the two-sided limitation of the capacity adjustment in 
the following subsections, we first highlight the special case, where s* is not limited by any 
affective bound, e.g. /,• < -b{ and u{ > Wi - bi V i e M. Obviously, for each Solution 
constraint (2) is tight. 

Lemma 1. Given an optimal Solution (x, s) with Y^jeN aijxij > k + k for a ny i E M, the 
corresponding constraint (2) is fulfilled with equality for this agent. 

Proof. Suppose for any i £ M, bi + Ii < J2jeN aijxij < k + Si• Then, (x, s') with s- = 
EjeJV aijxü ~bi< Si is feasible and has objective value J2ieM HjeN + EieM c»1 si < 
£i<=M J2jeN + SieM • si• Therefore, (x, s) can not be optimal. • 

Thus, Si can be replaced in the objective by YljeN aijxij ~ &» while (4) is left out. After 
regrouping the objective function we obtain: 

~^2dbi + min ]C(c« + (6) 
ieM ieM jeN 

s.t. ^2 Xij = i v j € N (7) 
ieM 
x^ e {0,1} V ie M, \f j eN (8) 

Problem (6) to (8) is solvable in linear time by setting = 1 for each tuple (i, j) with j e N 
and i = arg mini'c^j, using an arbitrary tie breaker if needed. 

3.2 Capacity Adjustment with Upper Bounds 

Assume, k < —bi for each agent and there is an i', i' € M, uv < Wv — 6,'. Here again, for 
each Solution constraint (2) is tight, see lemma 1. Thus we can replace % by YljeN aijxij ~ h 
in (1) and (4) Vi € M, where the lower bounds lt are already left out. Now the problem can 
be stated as follows: 

- ̂2 °ibi + min (9) 
ieM ieM jeN 

S.t. xij — 1 VJGM (10) 
ieM 

aijxij < bi+Ui V % E M (11) 
jeN 

x^ € {0,1} V i 6 M, V jeN (12) 

This is a Standard GAP with modified cost and adjusted capacities. Obviously, for all i" £ M, 
Ui<> > Wi" — bi", constraint (11) can be left out, too. 
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3.3 Capacity Adjustment with Lower Bounds 

Now, we have an i', i' € M, U> > —b? and Ui >Wi~bi for each i e M. Here, (4) is simply 
replaced by k < Sj V i G M, which does not change the underlying problem. 

As no further reduction is possible here, we propose to transfer the concepts, developed for 
the Knapsack problem with a continuous variable, KPC for short, see Büther and Briskorn [1]: 
We implement the binary coding of the adjustments for the eGAP. 

First, we replace the capacity adjustment s* by Si = Ui — Si V i G M, see Nauss [9]. The 
new variables s* represent the unused capacity adjustments and thus, they are bounded by 
0 < Si < Ui — k \f i €. M. For Illustration one can imagine, that in advance the capacities are 
extended at cost q • Ui and then, during the optimization, the superfluous capacities can be 
sold which is expressed by Sj > 0. Now, the continuous variables s* are substituted by binary 
code §i = YlkieDi eikiViki< with Di = {1,... ,di} V i G I. Here, binary variable yiki equals 
one if and only if contributes to the sold capacity. 

Now, we detail our requirements regarding d; and see Büther and Briskorn [1]: 

i Values of s, must not undershoot 0 or exceed — l it respectively, that is 0 < 
JlkieDi eikiViki < Ui-k for each binary vector = {yiU ... ,yidi}. 

ii Given a precision p E N for each value Vi E [0,«j — k] there must be a binary vector yi 
such that |Vi - < 10"p-

iii Regarding i a nd ii the number of additional binary variables di should be chosen as small 
as possible. 

It is well-known, that any integer value can be stated by a binary representation. Thus, by 
choosing the values for appropriate, we can represent any integer number between 0 and 
Ui - Ii. If Ui - k = 2r - 1 with r G N then = log2 (w, — k + 1) = r and eiki = 2fc<_1 for 
each ki G A is the obvious choice. Otherwise, if U i — k ^ 2r — 1 for all r G N we choose 
di = [log2 (ui -h + 1)], eiki = 2fci_1 for each k G and eidi = ui-li-2di'1 + l. 

Additionally, the concept can even be used approximately for real numbers for the adjustment 
Si. Regarding the required precision p G N we apply the procedure described above to the 
value [ltF • (u i — ViGM. After obtaining values e^, we divide them by KP. Obviously, 
these transformed values suffice condition ii, see Müller-Bungart [7]. The number of additional 
variables is now di = flog2 ([KP (ui - U)\ + 1)]. Therefore, the approximation and thus the 
quality of the upper bound can be improved arbitrarily by increasing p. 

The reformulation, namely eGAPw„, can now be represented as follows: 

(13) 

(14) 
fciSKi 

V j G N (15) 

G {0,1} 

yi^ e (0,1} 

V i G M, V j G AT (16) 

V i G M , V h G Dt (17) 
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Lemma 2. The model formulation eGAPbin can be transferred to an equivalent Standard GAP. 

The basic idea of our proof is to extend the eGAP%„ by adding artificial variables, which are 
then used to build the required constraints for a Standard GAP. 

Proof. First, the artificial binary variables yVki, V i' G M, V G Dit with i' ^ i are introduced. 
These variables correspond to the extension v* at agent i and they enable us to "seil" this 
capacity extension at agent i'. Obviously, for these variables we require e^. = 0 V i' ^ i to 
have no influence neither on the constraints nor on the objective function value, as such a 
selling is not admissible. Then, we can formulate analog to (15): 

Apparently, combining (13) to (17) with the artificial variables and (18), we get a Standard 
GAP. 

For each Solution of the GAP, one can find a corresponding Solution for the eGAP^, having 
the same assignment of jobs and the same objective function value and the other way round. 

First, for the GAP, if we have for an arbitrary yiki = 0, i G M, then (18) reduces to 
2/i'fc. = 1- As all artificial variables have coefficients of zero, an arbitrary of them 

will take on the value 1 and the remaining will be 0. Therefore, an equivalent Solution for 
the eGAPfcn can be found by simply setting yiki = 0 and ignoring the artificial variables. 
Otherwise, if we have yiki = 1, i G M, for the GAP, then (18) reduces to Yli>eM\{i} Wh = 0 
and all artificial variables i' G M\{i}, are zero. In this case we have a corresponding 
Solution for the eGAP%„, by setting yiki = 1, too. 

Now, given a Solution for the eGAPw», if yiki = Q, i € M, one gets a corresponding Solution 
for the GAP by setting an arbitrary artificial variable %/% = 1, i' G M\{i}, and the remaining 
in (18) to 0. Therefore, one can find M — 1 solutions for the GAP, having the same objective 
function value. Otherwise, if yiki = 1, i G M, all artificial variables yi<ki, i' G M \ {z}, of the 
GAP have to be set to 0 and yiki = 1, to generate the corresponding Solution. • 

Combining the two cases for the " real" variables for the adjustment in the GAP, either yiki or 
any corresponding artificial variable is set to one or for short yiki G {0,1}, as required in the 
eGAPfcin, too. Summarized, fulfilling (18) in the GAP is equivalent to ensuring (17) in the 

Due to the binary coding, the number of variables increases. The original model, eGAP, 
has M • N + M variables, where the eGAPtin already has M • N + X]ieM di variables, with 
di = ("logg (ui — Ii + 1)] > 1. If we extend the ränge of the adjustment s* to real numbers, 
the value of di increases to di = [log2 (KP • (u i — Ii) + 1)]. 

Thus, the equivalent GAP for the eGAPWn contains N' jobs, where N' = N 4-
corresponding to the number of real jobs and the number of pseudo-jobs for the capacity 
adjustment. 

Since we reduce the Solution space to discrete values of s within [0, Ui — ^], where the domain 
of §i is a subset of the domain of Sj, the Solution obtained via eGAP%n is a feasible Solution 
for the original model eGAP, too. Thus, the Solution to eGAP&in is an upper bound for the 

(18) 

eGAP bin. 
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optimal Solution to eGAP. Given an optimal Solution (x, s) to eGAPfcin the upper bound can be 
strengthened if bi + k < YjeNaijxij < k + Ui-Si. This appears, if t he necessary adjustment 
is not presentable by binary coding regarding the precision p. Then, s,- can be increased to 
[si]= = bi + Ui - YjeN aijxij< according to lemma 1. In the following we analyze the gap 
between the upper bound by eGAP^n and the optimal Solution to eGAP. 

Theorem 1. The gap A between the upper bound obtained by eGAPun and the optimal 
objective value according to eGAP can not be larger than YieM % • 1 0-p. 

Proof. Let denote the binary code which is dosest to but not larger than s*. Then, given 
the optimal Solution (x,s) to eGAP and the optimal Solution (x',s) to eGAPtin the following 
holds. 

yi yi °%jxij 
ieM jeN 

— ^ 
ieM 

< 
ieM jeN ieM 

(19) 

< 
ieM jeN 

— ^2 Ci • Si 
ieM 

(20) 

< yi yi °ijxij 
ieM jeN 

- y^c> ~ Ls.jä 
ieM 

(21) 

where the Constant YieM0*' has been left out for simplification. 

Relation (19) expresses that the improved optimal Solution to eGAP^n is an upper bound to 
the optimal Solution of eGAP. Obviously, this improved Solution has no higher value than the 
optimal Solution to eGAP^ itself, giving (20). Representation of (x, s) in terms of eGAP%% 
can not have a smaller value than (x',s), as otherwise this Solution would have been found 
with eGAPas well, therefore (21) is valid. 

Apparently, regarding requirement ii we get: 

A < ^ ] CijXij + ^ ] C-i • Si — ^ ^ ] Cijxij 4- ^ ] Cj • L^iJä (^2) 
ieM jeN ieM ieM jeN ieM 

= Y, °i - lAls) < * • 10~P- (23) 
ieM ieM 

• 

As we can see from theorem 1 we can always obtain an upper bound (and a corresponding 
heuristic Solution) which is arbitrarily close to the optimal objective value by increasing p. 
Obviously, if all coefficients of the jobs in the capacity constraints are integer numbers, the 
adjustment will only take on integer numbers, too, according to lemma 1. Thus, with p = 0 
our reformulation will always deliver an optimal Solution. This leads to the open question 
whether we can choosep such that we always obtain an optimal Solution by solving eGAP^. 

Since the eGAPWn can be transferred to an equivalent Standard GAP, all known efficient 
algorithms for the GAP can be applied one-to-one. Every feasible Solution will be feasible to 
the underlying eGAP, too. Additionally, one can now use Standard cover cuts to fasten the 
corresponding Ip relaxation, see Wolsey [15]. In figure 1 an extended capacity is g iven for an 
agent i, i G M. Apparently, all original jobs, can now be assigned to this specific agent. 
But regarding the original jobs and the pseudo-jobs, y^, not all can be assigned to the agent 
at the same time and we get a typical knapsack constraint, which enables cover cuts. 
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bi + Ii bi + Ui 

R\\\\\\\jxxxxxxx>o<xxxx>i%^ 

• Wi 0 Y^keKieik 

Figure 1: Illustration of W\ and a maximal capacity extension at agent i 

Note, as only a lower bound is restrictive, the capacities can be extended arbitrarily and every 
assignment of jobs to agents is feasible. Thus there exists m" feasible assignments, which 
might result in high computation times, if h euristics based on local search are used for analyzing 
the Solution space, see Section 1. 

3.4 Capacity Adjustment with Lower and Upper Bounds 

In this case, our reduction of the model formulation analog to section 3.1 is not possible and 
we propose to use at once the binary coding of the adjustment as presented in section 3.3. 
Thus we obtain again an heuristic Solution where the objective function value is an upper 
bound for the optimal one. As we have two restrictive bounds for the adjustment now, we 
have to focus on the appropriate choice of the eiki to ensure that e»fc — ui ~ with 
Di = {1,..., di) V i E I, see the previous section and Büther and Briskorn [1] for further 
details. The obtained model is a Standard GAP, too, and the results of the previous section 
can be transferred analogously. 

4 Capacity Adjustment with two Variables 

This is a generalization of the eGAP, where we have two continuous variables s~ and sf for 
each capacity constraint. The first variable, i £ M, 0 < , is used for reducing 
the capacity, the second, sf, i E M, 0 < sf < u+, for exten ding it, respectively. Assume, we 
can use not needed capacities for other projects, thus each unit of unused capacity reduces 
the total cost, denoted by c~, while an extension still increases the cost, denoted by cf. The 
variables sf are identical to s, in the previous sections. Now, the double elastic GAP, deGAP 
for short, can be expressed as follows: 
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23c,rs- + ^c+s,+ (24) 
ieM jeN iSM 

^ y aijXij Si < b,+sf Vi€M (25) 
jeN 

yi xij — i V jeN (26) 
ieM 
o<% <%r VieM (27) 

Vif« (28) 
Xij G {0,1} V»e M, v j e N (29) 

We do not claim equality in (25): If t he upper bound uT, is restrictive for an arbitrary i! G M, 
we might still use less capacity than bi - u~ at this agent i' and "waste" unused capacity. 
A real-life application for such a model might appear, if we try to solve problems at capital 
markets, where we can borrow or place money, respectively, with different interest rates. 

Obviously, we have to ensure, that c,~ < cf V i G M. Otherwise, we would be able to gain 
a profit by extending the capacity by s2i > 0 and "seil" this capacity at once, > 0. One 
unit of this nonsensical adjustment would be stated by cf — < 0. From this it follows that 
only one of both variables for the capacity adjustment will be larger than its lower bound. 
Therefore, an idea might be to split the problem into two subproblems for each agent, the 
first requiring s~ > 0 Ast =0 and the second requiring = 0Asf > 0. Unfortunately, this 
results into 2M problems, each of them being an eGAP, which is known to be IMP-hard. 

Note, if cj = cf V i G M, we get the pure eGAP with Si bounded by — u[ < Si < 
Vi £ M, see section 3.4. Therefore, we showed in section 3.4 that the binary coding of the 
adjustment is an appropriate technique. If c," ^ V i £ M, we propose to use the binary 
coding, too. First, we replace sf by sf = uf-sf\/ieM, see Nauss [9], where sf is limited 
by 0 < sf <uf V i G M. Now, all continuous variables sf as well as s^ are substituted by 
binary coding: sf = J2kleD+ with Dt = {1. • • •»df} and s~ = £k.eDr with 

D± = {!,... ,dt~}, ieM. Here again, the determination of the needed values has to ensure 
requirements i t o iii, see section 3.3. Now, the problem can be stated as: 

2] 4 ut + min Ci^ ci eihVih ~EEC'+ (30) 
»€M ieM jCN ieM ki€D~ i£M kieDf 

s.t. Y^avxij+ E ezrÄ+ Ys ^kiVtki < bi + ut Vi GM (31) 
je# ki&D-r kieDf 

£>« = 1 (32) 
ieM 
Xij G {0,1} v i G M, V j G N (33) 

y-, G {0,1} v i G M, V ki G DT (34) 

E{0,1} Vie M, VteDf (35) 

This again can be transferred to an equivalent Standard GAP, which enables us to use Standard 
approaches. 
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By adding several additional variables for extending or reducing the capacity with different cost 
and profits, we can model a cascaded cost function for the adjustment. Of course the values 
for the cost have to be chosen such that a generation of profit by buying and selling capacities 
at the same time is prevented. For such a problem formulation, of course, our binary coding 
can be used, too. A real life example can be found at capital markets, where the interest rate 
increases if the budget is extended more than a fixed value as the risk increases. 

If we aim for a balanced capacity consumption for all agents, we get a modification of the 
deGAP. Now, each unit of unused capacity for each i e M, causes costs. Thus, we 
strictly need equality in constraint (25), as otherwise s~ would always be at its lower bound 
0i e M. A related work can be found in Nauss [9]. Certainly, for this problem, the binary 
coding of the adjustments can be used, too. But, due to equality in constraint (25), we do 
not get a Standard GAP. To our knowledge, the best Solution method so far is an improved 
branch-and-bound algorithms, developed by Nauss [9]. Note, even if Standard lagrangean 
relaxations are used on (26) for obtaining lower bounds on the objective, the resulting problem 
can not be decomposed into Standard knapsack problems as it can be done for the GAP, see 
e.g. Yagiura et al. [17]. Due to equality in (25), the algorithms, developed by Volgenant and 
Marsman [13], Kaufman et al. [5] or Ram and Sarin [11] have to be used, which are more 
expensive regarding the computational efforts than e.g. the combo aIgorithm for the Standard 
knapsack problem by Martello et al. [6]. 

5 Computational Results 

After giving the theoretical background in the previous sections, we now present some compu
tational results to show the efficiency of the developed reformulations with the binary coding 
of the adjustments. The algorithms are coded in C++ and executed on an Intel Pentium D 
processor with 1GB RAM and 2.80 GHz clockpulse using the operating system Windows XP. 
In o rder to compare the different formulations, continuous variables vs. binary representation, 
we used the commercial solver ILOG CPLEX 10.1 with Standard settings. 

There are five well-known types of benchmark instances for the GAP, called types A, B, C, D, 
and E, see Yagiura et al. [16]. These have been modified to eGAP according to Nauss [9] and 
solved once with continuous variables (eGAP) and once with the binary coding (eGAPM„). 
The adjustments are only limited by lower bounds U = 0 for each i £ M. We set three 
different timelimits: 60s, 600s and 3600s, respectively, to compare the obtained bounds for 
the objectives of the different formulations. The results can be found in table 1 to 3. Note, 
that all coefficients for the capacity consumption are integer numbers for these instances, thus 
solving the binary reformulation can always deliver an optimal Solution. 

In table 1, the first column represents the instance type, where altogether 57 instances have 
been tested, split into 6-6-15-15-15 according to types A-B-C-D-E. For the next columns, 
eGAP and eGAP%n identify which formulation has been used. The values in the table give the 
percentage of the instances, that were proven to be solved optimally by CPLEX. Obviously, 
instances of type A are too easy and instances of type D too difficult to see any differences. 
But for all other types, the reformulation with binary coding of the adjustment is more often 
solved optimally. 

Table 2 to 3 compare the best obtained lower and upper bound, respectively, using the same 
instances as before. Therefore, the first column represents again the instance type. Then, 
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Table 1: Optimality proven by CPLEX 
60s 600s 3600s 

eGAP eGAPWn eGAP eGAPbjjj eGAP eGAPWn 

A 100% 100% 100% 100% 100% 100% 
B 33% 83% 50% 83% 67% 100% 
C 7% 27% 13% 40% 20% 53% 
D 0% 0% 0% 0% 0% 0% 
E 7% 13% 20% 40% 27% 47% 

for all timelimits, there occur three columns: The first gives the percentage of identical 
bounds of both formulations. The second the percentage of instances, where the binary 
coding delivers a better bound and the third, where the original formulation provides the 
better bound. Regarding the results, we see again, that instances of type A are too easy. 
Note, for type A, although CPLEX has always proven optimality, the lower bound by eGAP%„ 
are sometimes higher. This is founded on the stopping criteria of the branch and bound 
aIgorithm implemented in CPLEX, the corresponding upper bounds are always identical. For 
the other instance types, the binary coding clearly outperforms the equivalent formulation 
with continuous variables in generating lower bounds. The same yields mostly for the upper 
bounds, too, only for the instances of type D, both formulations seem to be equivalent. 

Table 2: Best obtained lower bound 

ident 
60s 
bin con ident 

600s 
bin con ident 

3600s 
bin con 

A 83% 17% 0% 83% 17% 0% 83% 17% 0% 
B 33% 67% 0% 50% 50% 0% 50% 50% 0% 
C 13% 87% 0% 13% 80% 7% 20% 73% 7% 
D 20% 80% 0% 20% 80% 0% 20% 80% 0% 
E 0% 100% 0% 7% 93% 0% 7% 93% 0% 

Table 3: Best obtained upper jound 

ident 
60s 
bin con ident 

600s 
bin con ident 

3600s 
bin con 

A 100% 0% 0% 100% 0% 0% 100% 0% 0% 
B 83% 17% 0% 83% 17% 0% 83% 17% 0% 
C 13% 80% 7% 27% 73% 0% 40% 60% 0% 
D 0% 47% 53% 0% 67% 33% 7% 53% 40% 
E 7% 60% 33% 13% 67% 20% 13% 73% 13% 

Note that using the continuous variables, CPLEX ran in 51% out of memory, when a timelimit 
of 3600s was used. For the binary representation, the same occurs in only 23% of the instances. 

Knowing well, that the chosen instances are just a small sample, we notice: 

• For the given instances, the commercial server CPLEX can handle better the binary 
coding for producing lower bounds, probably due to the well implemented cut generation 
to strengthen the Ip-relaxation. 
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• Regarding the absolute values for the obtained lower bounds, they only increase a little 
bit for the binary coding, if the timelimit increases. But for most difficult instances, 
the obtained lower bounds of the eGAPwn using 60s are still better or equal than that 
obtained by eGAP using 3600s. 

• The used instances are in part quiet easy to solve given a timelimit of 3600s. Thus 
in future we will have to test different cost for the adjustment of the capacity and in 
general adjustments limited by lower as well as upper bounds. 

Summarizing, although the binary representation offers more variables in general, see sec
tion 3.3, the corresponding instances can be handled better by CPLEX regarding the compu-
tation times and obtained lower as well as upper bounds. 

6 Conclusions and Outlook 

In o ur previous work, see Büther and Briskorn [1], we proposed some useful reductions of the 
KPC to a Standard knapsack problem, amongst others by the binary representation of the 
continuous variable. In this work, we transferred this concept from the KPC to the eGAP. We 
proofed, that the resulting problem can be transferred to an equivalent Standard GAP. This 
is quite easy at the cost of getting only an heuristic Solution, which has an objective function 
value theoretically arbitrary near to the optimal one. In the future, we will combine the eGAP, 
using the binary representation, with state-of-the-art algorithms for the GAP to handle hard 
instances, where CPLEX fails due to the lack of memory, see section 5. Additionally, we will 
generate more eGAP instances to test, whether the trend holds on, that the integer problem 
outperforms the mixed integer formulation using Standard solvers. 

Obviously, the replacement of a continuous variable by several binary ones can be transferred 
to several other mixed integer problems, too, e.g. the elastic single source capacitated facility 
location problem, eSSCFLP for short. This problem consists in selecting plant sites from a 
finite set of potential sites and in allocating customer demands in such a way that the operating 
and transportation cost are minimized while regarding the adjusted capacities. Therefore, if 
the optimal facilities are selected, finding the optimal assignment of customers results into an 
eGAP. One economic Interpretation for the eSSCFLP is the optimal selection of employees. 
While regarding the (extended) working time for each employee, we have to ensure that all 
jobs are fulfilled: overtime cost vs cost for hiring new employees. 

Unfortunately, already for the eGAP, it was not possible to determine an optimal Solution 
straightforwardly, like it can be done for the KPC in some special cases, for further details 
we refer to Büther and Briskorn [1], For more complex problems, regarding the structure and 
number of the constraints as well as the structure of the objective function, probably the same 
yields, as long as the problem can be reduced to the eGAP. Thus, like presented for the eGAP, 
only the binary replacement of the continuous variables can be transferred to these mixed 
integer problems. 
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