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Threatening Thresholds?

The effect of disastrous regime shifts on the cooperative and
non-cooperative use of environmental goods and services.

Florian K Diekert∗

Abstract

This paper presents an analytically tractable dynamic game in which players jointly use a

resource. The resource replenishes fully but collapses should total use exceed a threshold in

any one period. The initial level of use is known to be safe. If it is at all optimal to increase

resource use, the consumption frontier is pushed once. Moreover, it is shown that the de-

gree of experimentation is decreasing in the safe value of resource use. Non-cooperative

agents can take advantage of this feature and coordinate on a “cautious” equilibrium. If

the status quo is sufficiently valuable, the threat of the regime shift induces the first-best.

If the status-quo is not sufficiently valuable, experimentation will be inefficiently risky.

But given that the threshold has not been crossed, the updated consumption frontier

will, ex post, be socially optimal. However, there is also an pareto-inferior, “aggressive”

equilibrium in which the resource is depleted immediately. Under some conditions, im-

mediate depletion is a self-fulfilling prophecy, although the social optimum is to sustain

the resource indefinitely. Closed-form solutions are provided for a specific example and it

is shown that the pareto-superior, “cautious” equilibrium is risk-dominant up to a high

probability that the opponents play an aggressive strategy. The result that the threat of

a disastrous regime shift allows the agents to coordinate on a pareto-superior equilibrium,

because it only pays to search for the location of the threshold once, is robust to extensions

that account for more general resource dynamics. [244 words]
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1 Introduction

Everyday-experience painfully teaches that many things tolerate some stress, but if this is

driven too far or for too long, they break. Not surprisingly, regime shifts, thresholds, or

tipping points are a popular topic in the scientific literature. In this paper, I investigate

whether and how the existence of a catastrophic threshold may be beneficial in the sense that

it enables non-cooperative agents to coordinate their actions, thereby improving welfare over

a situation where this tipping point is not present or ignored. To this end, I develop a generic

model of using a productive asset that loses (some or all) its productivity upon crossing some

(potentially unknown) threshold. I show that learning in this model is only affirmative. Thus,

any experimentation is – if at all – undertaken in the first period. Moreover, the degree of

experimentation is decreasing in the value of current use, which is known to be safe.

The model is applicable to many different settings of non-cooperative learning about the

location of a threshold, but I would like to think of it broadly in terms of ecosystem services.

Prime examples are the eutrophication of lakes, the bleaching of coral reefs, or saltwater

intrusion (Scheffer et al., 2001; Tsur and Zemel, 1995). On a larger scale, the collapses of

the North Atlantic cod stocks off the coast of Canada, or the capelin stock in the Barents

Sea can – at least in part – be attributed to overfishing (Frank et al., 2005; Hjermann et al.,

2004). The most important application may however be the climate system, where potential

drivers of a disastrous regime shift could be a disintegration of the West-Antartic ice sheet, a

shutdown of the thermohaline circulation, or a melting of Permafrost (Lenton et al., 2008).

A key feature of these examples is that the exact location of the tipping point is unknown.

Most previous studies translate the uncertainty about the location of the threshold in state

space into uncertainty about the occurrence of the event in time. This allows for a convenient

hazard-rate formulation (where the hazard rate could be exogenous or endogenous), but it has

the problematic feature that, eventually, the event occurs with probability 1. In other words,

even if we were to totally stop extracting/polluting, the disastrous regime shift could not be

avoided. Arguably, it is more realistic to model the regime shift in such a way that when

it has not occurred up to some level, the players can avoid the event by staying at or below

that level. I therefore follow the modeling approach of e.g. Tsur and Zemel (1994, 1995);

Nævdal (2001); Lemoine and Traeger (2014) where – figuratively speaking – the threshold is

interpreted as the edge of a cliff and the policy question is whether, when, and where to stop

walking. This modeling approach leads, under certain conditions, to a socially optimal “safe

minimum standard of conservation” as pointed out by Mitra and Roy (2006).

In order to isolate the effect of a catastrophic threshold on the ability to cooperate, I

abstract – as a first step – from the dynamic common pool aspect of non-cooperative resource

use. This allows me to obtain tractable analytic solutions and feedback Nash-equilibria for

general utility functions and general continuous probability distributions. In section 3.1,

I discuss the case when the location of the threshold is known to expose the underlying

strategic structure of the game. I show that there is a Nash equilibrium where the resource

is conserved indefinitely and a Nash equilibrium where the resource is depleted immediately.

When the location of the threshold is unknown, any experimentation is undertaken in the
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first period only (both in the social optimum, section 3.3, and in the non-cooperative game,

section 3.4). Agents can coordinate on the first-best if the socially optimal action is to use

the environmental good at its current level, and if this status quo is sufficiently valuable. If

preserving the status quo is not sufficiently valuable, the players may still coordinate on not

depleting the resource for sure, but they will increase their consumption by an inefficiently high

amount. However, provided that the increase in consumption has not caused the disastrous

regime shift, the players can coordinate on keeping to the updated level of consumption, which

is, ex post, socially optimal.

The dynamic structure of this problem is stunted because learning is only affirmative.

That is, given that the agents know that the current state is safe, and they expand the

current state, they will only learn whether the future state is safe or not. The agents will not

obtain any new information on how much closer they have come to the threshold. Empiricists

will agree that there is no learning without experiencing.

In simple words, it is pitch-dark when the agents walk towards the cliff. Consequently,

there is no point to split any given distance in several steps. This basic feature of resource use

under the threat of a disastrous threshold is robust to several extensions that are explored in

section 4. While the threat of the threshold may may no longer induce coordination on the

first-best when the common-pool externality relates to both the (endogenous) risk of passing

the threshold and resource itself, the threshold still encourages coordination on an extraction

path that is pareto-superior compared to the Nash equilibrium without a threshold.

Section 5 concludes the paper and points to important future applications of the modeling

framework. All proofs are collected in the Appendix.

Relation to the literature

Advancing our understanding of how to optimally learn about the location of an irreversible

threshold and how this is constrained by the strategic interactions of non-cooperative players

is one of the main contributions of this paper. There are two papers that discuss optimal

search in a similar modeling structure: Rob (1991) studies optimal and competitive capacity

expansion when market demand is unknown. In contrast to the results that I present here,

Rob finds that learning will take place over several periods and socially optimal learning is

faster than competitive search. Costello and Karp (2004) investigate optimal pollution quotas

when abatement costs are unknown. In line with the current paper, they find that learning

takes place in the first period only.

The difference between Rob’s model on the one hand and Costello and Karp (2004) and

my results on the other hand is the following: In Rob (1991), the information gained by an

additional unit of installed capital is small, but so is the cost. Over-shooting market demand

by a lot is very costly compared to under-shooting several times. Consequently, learning takes

place gradually. In the non-cooperative equilibrium, learning is even slower due to the private

nature of search costs but the public nature of information. In Costello and Karp (2004),

the information gain from an additional unit of quota is small as well, but search costs are

very high in the beginning and then decline. In fact, the costs are zero once the quota is
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non-binding. Thus, although the costs of shooting are high, there is no additional harm in

over-shooting and it is therefore optimal to search only once. In my model, the marginal gain

from search is bounded above and decreasing, but the marginal costs from search increase.

The disastrous regime shift occurs when the threshold is crossed, irrespective of how far the

agents have stepped over it. As in Costello and Karp (2004), there is thus no additional harm

in over-shooting (but the costs of shooting are increasing in my model), and it is therefore

optimal to search only once. I show that non-cooperative learning is more aggressive than

socially optimal because costs of search are public while the immediate gains are private.1

Moreover, I highlight how the effect of a threatening threshold depends on the initial safe

value. In particular, I show that experimentation is deceasing in this state value: The more

the players know that they can safely consume, the less will they be willing to risk triggering

the regime shift by enlarging the set of consumption opportunities. This aspect has, to the

best of my knowledge, not yet been appreciated.

The pioneering contribution analyzing the economics of regime shifts in an environmental

context was by Cropper (1976). There are by now a good dozen papers on the optimal

management of renewable resources under the threat of a irreversible regime shift. Recently,

Polasky et al. (2011) have summarized and characterized the literature at hand of a simple

fishery model. They contrast whether the regime shift implies a collapse of the resource or

merely a reduction of its renewability, and whether probability of crossing the threshold is

exogenous or depends on the state of the system (i.e. it is endogenous). They show that

resource extraction should be more cautious when crossing the threshold implies a loss of

renewability and the probability of crossing the threshold depends on the state of the system.

In contrast, exploitation should be more aggressive when a regime shift implies a collapse of

the resource and the probability of crossing the threshold cannot be influenced. There is no

change in optimal extraction for the loss-of-renewability/exogenous-probability case and the

results are ambiguous for the collapse/endogenous-probability case.

Until now the literature has been predominantly occupied with optimal management,

leaving aside the central question of how agent’s strategic considerations influence and are

influenced by the potential to trigger a disastrous regime shift. Still, there are a few notable

exceptions: Crépin and Lindahl (2009) analyze the classical “tragedy of the commons” in

a grazing game with complex feedbacks, focussing on open-loop strategies. They find that,

depending on the productivity of the rangeland, under- or overexploitation might occur. Kos-

sioris et al. (2008) focus on feedback equilibria and analyze, with help of numerical methods,

non-cooperative pollution of a “shallow lake”. They show that, as in most differential games

with renewable resources, the outcome of the feedback Nash equilibrium is in general worse

than the open-loop equilibrium or the social optimum. However, they highlight that for some

combinations of parameter values, a regime shift can be avoided in a feedback Nash equi-

librium (although the value of the game is still substantially lower than in the first-best).

1Incidentally, Costello and Karp (2004) conjecture that sequential learning might be optimal in their model
if they do away with their assumption that a myopic quota is binding for sure. In the current application, it
follows naturally that the probability of crossing the threshold is zero when no step is being taken. An avenue
for future research is to investigate whether both the fixed initial costs of searching and no additional harm
from overshooting are necessary elements of the model to arrive at this immediate learning structure of search.
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Fesselmeyer and Santugini (2013) introduce an exogenous event risk into a non-cooperative

renewable resource game à la Levhari and Mirman (1980). As in the optimal management

problem with an exogenous probability of a regime shift, the impact of shifted resource dy-

namics is ambiguous: On the one hand, the threat of a less productive resource induces a

conservation motive for all players, but on the other hand, it exacerbates the tragedy of the

commons as the players do not take the risk externality into account. Finally, Sakamoto (2014)

has, by combining analytical and numerical methods, analyzed a non-cooperative game with

an endogenous regime shift hazard. He shows that this setting may lead to more precaution-

ary management, also in a strategic setting. Taken together, these studies and the current

paper show that the effect of a regime shift pulls in the same direction in a non-cooperative

setting as under optimal management.

In addition to this literature, the current paper is closely related to three articles that

discuss the role of uncertainty about the threshold’s location on whether a catastrophe can be

avoided. Barrett (2013) shows that players in a linear-quadratic game are in most cases able to

form self-enforcing agreements that avoid catastrophic climate change when the location of the

threshold is known but not when it is unknown. Similarly, Aflaki (2013) analyzes a model of

a common-pool resource problem that is, in its essence, the same as the stage-game developed

in section 3. He shows that an increase in uncertainty leads to increased consumption, but

that increased ambiguity may have the opposite effect. Bochet et al. (2013) confirm the

detrimental role of increased uncertainty in the stochastic variant of the Nash Demand Game:

Even though “cautious” and “dangerous” equilibria co-exist (as they do in my model), they

provide experimental evidence that participants in the lab are not able to coordinate on the

Pareto-dominant cautious equilibrium.2 However, the models in Aflaki (2013), Barrett (2013),

and Bochet et al. (2013) are all static and can therefore not address the prospects of learning.

Here, I show that the sharp distinction between known and unknown location of a threshold

vanishes in a dynamic context. More uncertainty still leads an increased consumption, but

this is now partly driven by the increased gain from experimentation.

Analyzing how strategic interactions shape the exploitation pattern of a renewable resource

under the threat of a disastrous regime shift is important beyond mere curiosity driven interest.

It is probably fair to say that international relations are basically characterized by an absence

of supranational enforcement mechanisms which would allow to make binding agreements.

But also locally, within the jurisdiction of a given nation, control is seldom complete and the

exploitation of many common pool resources is shaped by strategic considerations. Extending

our knowledge on the effect of looming regime shifts by taking non-cooperative behavior into

account is therefore a timely contribution to both the scientific literature and the current

policy debate.

2Bochet et al. (2013, p.1) conclude that a “risk-taking society may emerge from the decentralized actions
of risk-averse individuals”. Unfortunately, it is not clear from the description in their manuscript whether
the participants were able to communicate. The latter has shown to be a crucial factor for coordination in
threshold public goods experiments (Tavoni et al., 2011; Barrett and Dannenberg, 2012). Hence, it may be
that what they refer to as “societal risk taking” is simply the result of strategic uncertainty.
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2 Basic model

To repeat, I consider a situation where several agents share a productive asset. Each agent

obtains utility from using it and as long as total use is at or below a threshold, the asset

remains intact. Contrarily, if total use in any period exceeds the threshold, a disastrous

regime shift will occur. The players are unable to make binding agreements. In order to

expose the effect of a threatening regime shift on the cooperative and non-cooperative use of

environmental goods and services as clearly as possible, I consider a model where the common

pool externality applies only to the risk of triggering the regime shift. While this is clearly

a simplification, it allows for a tractable solution of a general dynamic model with minimal

requirements on the (concavity and boundedness) utility function or the distribution of the

threshold’s location (continuity).

Essentially, the players face the problem of sharing a magic pie: If they do not eat too

much today, they will tomorrow find the full pie replenished, to be shared again. Each player

however faces the temptation to eat a little more than what was eaten yesterday since he or

she will have that piece for himself, whereas the future consequences of his voracity will have

to be shared by all.

A literal example for this model could be whale-watching: Imagine a group of whales

coming to a certain spot to play and this sight is enjoyed by tourists. Boat operators know

that the current intensity of whale-watching is tolerated by the animals. Pondering whether to

offer more tours, they have to weigh the additional income against the fear that there may be

some intensity beyond which the whales get disturbed and avoid the area. A second example

could be saltwater intrusion: players can take fresh water from a reservoir and the water will

replenish. However, once the water pressure in the reservoir has dropped too low, saltwater

will enter and the reservoir will be spoiled. A third example could be giant sequoias: While

our current level of pollution allows us to still marvel at these millennia-old trees, there is a

risk that further pollution caused by increased consumption will irreversibly destroy the last

remaining groves.

Resource dynamics

• Time is discrete and indexed by t = 0, 1, 2, ....

• Each period, the players can in total consume up to the available amount of the resource.

There are two regimes: In the productive regime, the upper bound on the available

resource is given by R, and in the unproductive regime, the upper bound is given by r

(with r � R).

• The game starts in the productive regime and will stay in the productive regime as long

as total consumption does not exceed a threshold T . The threshold T is the same in all

periods, but it may be known or unknown.

• To highlight the effect of uncertainty about the threshold, I define a state variable st,

denoting the upper bound of the “safe consumption possibility set” at time t. That is,
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a total extraction up to st has not triggered a regime shift before and is hence known

to not trigger a regime shift in the future (i.e. Prob(T ≤ st) = 0).

Players, choices, and payoff

• Players derive utility from consuming the resource according to some general function

u(cit). I assume that this function is continuous and bounded below by u(0) = b and

above by u(R) = B with u′ > 0 and u′′ ≤ 0.

• Let cit be the consumption of player i at time t. For clarity, I split per-period consumption

in the productive regime in two parts: cit = αist + δit. This means:

1. The players consume a share αi of st (the amount of the resource that can be used

safely).

2. The players may choose to consume an amount δit more than αist, effectively push-

ing the boundary of the production possibility set at the risk of triggering the

regime shift.

• In other words, δit is the effective choice variable with δit ∈ [0, R− st− δ−it ], where δ−it is

the extension of the production set by all other players. I denote δ without superscript

i as the total extension of the safe set, i.e. δt =
∑N

i=1 δ
i
t.

• The objective of the players is to choose that sequence of extension decisions ∆i =

δi0, δ
i
1, ... which, for given strategies of the other players ∆−i, and for a given initial value

s0, maximizes the sum of expected per-period utilities, discounted by a common factor

β with β ∈ (0, 1). I concentrate on Markovian strategies.

The probability of triggering the regime shift

• Let the probability density of T on [0, A] be given by a continuous function f such that

the cumulative probability of triggering the regime shift is a priori given by F (x) =∫ x
0 f(τ)dτ .

• The variable A with R ≤ A ≤ ∞ denotes the upper bound of the support of T . When

R < A, there is some probability 1 − F (R) that extracting the entire amount of the

resource is actually safe and the presence of a critical threshold is immaterial. When

R = A extracting the entire amount of the resource will trigger the regime shift for sure.

Both R and A are known with certainty.

• Knowing that a given a given exploitation level s is save, the updated density of T on

[s,A] is given by fs(δ) = f(s+δ)
1−F (s) . The cumulative probability of triggering the regime
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shift when, so to say, taking a step of distance δ from the safe value s is:

Fs(δ) =

∫ δ

0
fs(τ)dτ =

1

1− F (s)

∫ δ

0
f(τ)dτ

=
1

1− F (s)

∫ δ

s
f(s+ ξ)dξ =

F (s+ δ)− F (s)

1− F (s)

(1)

So that Fs(δ) is the discrete version of the hazard function.

• The key expression that I use in the remainder of the paper is Ls(δ), which I call the

survival function. It denotes the probability that the threshold is not crossed when

taking a step δ, given that the event has not occurred up to s. Let L(x) = 1−F (x) and

Ls(δ) = 1− Fs(δ) =
1− F (s)− (F (s+ δ)− F (s))

1− F (s)
=
L(s+ δ)

L(s)
(2)

• The survival function has the following properties: Ls(δ) ∈
[

1−F (R)
1−F (s) ; 1

]
(it is bounded

below by the conditional probability that T is not in the interval [s,R]); ∂Ls(δ)
∂δ =

−f(s+δ)
1−F (s) < 0 (intuitively, the survival probability decreases as the step size increases);

and ∂Ls(δ)
∂s = −f(s+δ)(1−F (s))+(1−F (s+δ))f(s)

[1−F (s)]2
< 0 if 1−F (s+δ)

1−F (s) < f(s+δ)
f(s) (that is, the chances

of surviving a step δ decline with s when the density of T is non-decreasing on [0, R]).

Preliminary clarifications and tractability assumptions

• It is well known that the static non-cooperative game of sharing a given resource has

infinitely many equilibria. Here, I focus on symmetric pure-strategy equilibria and set

αi = 1
N . Moreover, the game requires a statement about the consequences when the

sum of players’ consumption plans exceed the total available resource. In this case, I

assume that the resource is rationed so that each players gets an equal share.

• I consider the disastrous regime shift to be irreversible.

• Without loss of generality, I set r = 0 and u(0) = 0. That is, the regime shift implies a

complete collapse of the resource, but it is not a “doomsday event”.

• For now, the model abstracts from the dynamic common pool problem in the sense that

the consumption decision of a player today has no effect on the consumption possibilities

tomorrow, except that a.) the set of safe consumption possibilities may have been

enlarged and b.) the disastrous regime shift may have been triggered.

• The simplicity of the resource dynamics allows to include the idea that the system is

the more likely to experience a disastrous regime shift the more of the stock has been

exploited via the cdf of the threshold location. However, the core model feature that a

safe state s is safe (no matter how far or close to the threshold), implies that the players

cannot learn about the potential proximity of the threshold by observing the current

state. That is, my model does not allow for “early warning signals”.
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3 Social optimum and non-cooperative equilibrium

In this main part of the paper, I will first expose the underlying strategic structure of the

game by analyzing the situation when the threshold is known (section 3.1). In section 3.2, I

provide a short non-technical overview of the implications of uncertainty about the threshold’s

location. I describe the socially optimal course of action in section 3.3. In particular, I will

show that any experimentation – if at all – is undertaken in the first period and that it is

decreasing with the value of the consumption level that is known to be safe. In section 3.4,

I then show that (in addition to the Nash equilibrium of immediate resource depletion) this

feature of learning may allow for a cautious equilibrium where either the resource is conserved

with probability 1 or the players experiment once. The amount of experimentation will be

sub-optimally large, but if they have not crossed the threshold, staying at the updated safe

level will – ex post – be socially optimal. In section 3.5, I provide an instructive specific

example for which closed-form solution can be obtained easily. Finally, I analyze how optimal

and non-cooperative resource use changes with changes in the parameters in section 3.6.

3.1 Known threshold location

What is the first-best outcome in a situation when the threshold T is known? When T is

large, the first-best is to indefinitely use exactly that amount of the resource which does not

cause the regime shift. However, when T is small (so that a large part of the available resource

R must be foregone to ensure its continued existence) it will be socially optimal to cross the

threshold and deplete the resource immediately. How small T must be for depletion to be

optimal obviously depends on the discount factor β: the less one discounts the future, the

more willing one is to sacrifice today’s consumption to ensure consumption in the future.

The non-cooperative game then has two equilibria in pure strategies: Either the players

deplete the resource immediately, or they can coordinate on staying at the threshold. For a

given safe value of total consumption s, player i’s value function is:

V (s) = max
δi

{
u(s/N + δi) + I·βV (s)

}
, where

 I = 1 when s+ δi + δ−i ≤ T

I = 0 when s+ δi + δ−i > T
(3)

Due to the simplicity of the model structure, it is clear that if staying at the threshold

can be rationalized in any one period, it can be done so in every period. The payoff from

avoiding the regime shift is u(T/N)
1−β . Conversely, the payoff from deviating and immediately

depleting the resource when all other players’ policy is to stay at the threshold is given by

u
(
R− N−1

N T
)
. Staying at the threshold can thus be sustained as a Nash equilibrium whenever

u(T/N)
1−β ≥ u

(
R− N−1

N T
)
. Denote by β̄ the value of β for which this condition just so holds

with equality (i.e. β̄ is the lowest discount factor for which staying at the threshold can be

sustained for given values of N , T , and R). We have:

β̄ = 1− u(T/N)

u
(
R− N−1

N T
) (4)
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In fact, there will always be a parameter combination so that the first-best can be sup-

ported as a Nash-equilibrium of the game with a known threshold (Proposition 1). Given

these conditions, the game exhibits the structure of a coordination game. Here, as in the

static game from Barrett (2013, p.236), “[e]ssentially, nature herself enforces an agreement to

avoid catastrophe.”

Proposition 1. When the location of the threshold is known with certainty, then there exists,

for every combination of N , T , and R, a value of β̄ such that the first-best can be sustained

as a Nash-equilibrium when β ≥ β̄. The larger is N , or the closer T is to 0, the larger has to

be β.

Proof. The proof is placed in Appendix A.1

3.2 Unknown threshold location

I now turn to the case when the threshold’s location is unknown. In spite of the uncertainty

about T , the players do know that resource consumption up to the safe value s does not

trigger the disastrous regime shift. Hence, the threat of a disastrous regime shift can, in

principle, be eliminated by coordinating on consuming exactly the amount s. The flip-side

of this coin is that by consuming s, the players do not learn about what other consumption

levels would have been safe. Instead of staying at s, the players can also expand the set of

safe consumption possibilities by some amount δ. When deciding on the size of this step δ,

the gain from expanding the set of safe consumption possibilities to s′ = s + δ has to be

weighted against the probability of causing the disastrous regime shift. The effect of strategic

non-cooperative interaction will manifest itself in the classic way that each player realizes that

the gain from increased consumption is private while the cost in terms of a higher regime-shift

hazard are borne by all.

Both in the equilibrium of the non-cooperative game, and in the social optimum, exper-

imentation will be undertaken in the first period only. The reason is that learning is only

affirmative. Having expanded the set of consumption possibilities, it is revealed whether the

state s′ is safe or not, but no new knowledge about the relative probability that the threshold

is located at, say, s1 or s2 (with s1, s2 > s′) has been acquired. Therefore, it does not pay to

experiment a second time. If it were optimal to learn whether the threshold is located in the

realm beyond s′, it would have also been optimal to do so in the first period. It is this feature

of learning that opens for an equilibrium where the resource is not depleted immediately.

Moreover, the degree of experimentation is declining in s. The intuition for this effect is

clear: The more valuable my current outside option, the less I can gain from an increased

consumption set, but the more I can lose should the experiment trigger the regime shift. This

implies that the largest step is undertaken when s = 0, which is reminiscent Janis Joplin’s

dictum that “freedom is another word for nothing left to lose”.
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3.3 Social optimum when the location of T is unknown

Starting from a given safe value s, the social planner has in principle two options: She can

either stay at s (choose δ = 0), thereby ensuring the existence of the resource in the next

period (as Ls(0), the probability of not crossing the threshold, is 1). Alternatively, she can

take a positive step into unknown territory (choose δ > 0), potentially expanding the set of

safe extraction possibilities to s′ = s+ δ, albeit at the risk of a resource collapse (as Ls(δ) < 1

for δ > 0). The social planner’s “Bellmann equation” is thus:

V (s) = max
δ∈[0,R−s]

{
u(s+ δ) + βLs(δ)V (s+ δ)

}
(5)

The crux is, of course, that the value function V (s) is a priori not known. However, we do

know that once the planner has decided to not expand the set of safe extraction possibilities,

it cannot be optimal to do so at a later period: If δ = 0 is chosen in a given period, nothing

is learned for the future (s′ = s), so that the problem in the next period is identical to the

problem in the current period. If moving in the next period would increase the payoff, it

would increase the payoff even more when one would have made the move a period earlier (as

the future is discounted).

To introduce some notation, let s∗ be a value of s at which it is not socially optimal to

expand the set of safe extraction values (as the threat of a disastrous regime shift lures too

large) and let s∗ be the lowest member of this set of values. In Appendix A.2, I show that s∗

must exist, so that for s ≥ s∗, it is optimal to choose δ = 0. In this case, we know V (s), it is

given by V (s) = u(s)
1−β .

This leaves three possible paths when starting from values of s0 that are below s∗. The

social planner could

a.) make one step and then stay,

b.) make several, but finitely many steps and then stay,

c.) make infinitely many steps.

Suppose that a value at which it is socially optimal to remain standing is reached in finitely

many steps. This implies that there must be a last step. For this last step, we can explicitly

write down the objective function as we know that the continuation value of staying at s′

forever is u(s′)
1−β . Denote the social planner’s valuation of taking exactly one step δ from the

initial value s and then staying at s′ forevermore by ϕ(s) and denote by δ∗(s) the optimal

choice of the last step. Formally:

ϕ(δ; s) = u(s+ δ) + βLs(δ)
u(s+ δ)

1− β
. (6)

This yields the following first-order-condition for an interior solution:

ϕ′(δ; s) = u′(s+ δ) +
β

1− β
[
L′s(δ)u(s+ δ) + Ls(δ)u

′(s+ δ)
]

= 0. (7)
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Note that we need not have an interior solution so that δ∗(s) = 0 when ϕ′(δ; s) < 0 for all δ

and δ∗(s) = R− s when ϕ′(δ; s) > 0 for all δ. That is:

δ∗(s) = max
{

0; min {arg maxϕ(δ; s);R− s}
}
. (8)

With this explicit functional form in hand, I can show that it is better to traverse any

given distance before remaining standing in one step rather than two steps. A forteriori, this

holds for any finite sequence of steps. Also an infinite sequence of steps cannot yield a higher

payoff since the first step towards s∗ will be arbitrarily close to s∗ and concavity of the utility

function ensures that there is no gain from never actually reaching s∗.

The first-best consumption is summarized by the following proposition:

Proposition 2. The socially optimal total use of the resource is either s0 for all t or s0+δ∗(s0)

for t = 0 and, if the resource has not collapsed, s1 for all t ≥ 1. In other words, any

experimentation – if at all – is undertaken in the first period.

Proof. The proof is given in Appendix A.2.

The intuition is the following: Given that it is optimal to eventually stop at some s∗ ≥ s̄∗,
the probability that the threshold is located on the interval [s, s∗] is exogenous. Hence the

probability of triggering the regime shift when going from s to s∗ is the same whether the

distance is traversed in one step or in many steps. Due to discounting, the earlier the optimal

safe value s∗ is reached, the better. In other words, given that one has to walk out into the

dark, it is best to take a deep breath and get to it.

In short, the dynamics of the consumption pattern are stunted: For initial values of s

below some threshold s∗, it is optimal to make exactly one step and then stay at the updated

value s′ forever (provided T is not located between s and s′, of course). For initial values of

s above s∗, it is optimal to never expand the set of safe consumption possibilities.

Proposition 3 then shows that the more the social planner knows, the less she learns.

Proposition 3. The socially optimal step size δ∗(s) is decreasing in s.

Proof. The proof is placed in Appendix A.3.

3.4 Non-cooperative equilibrium when the location of T is unknown

The game has two equilibria in pure strategies: an “aggressive” equilibrium where the players

immediately deplete the resource, and a “cautious” equilibrium where there is a positive prob-

ability that the resource is maintained forever. In fact, there are two types of the “cautious”

equilibrium, depending on the initial value s. Similar to section 3.3, I define snc to be the

lowest member of the set of safe values at which a Nash equilibrium with the players choosing

δ = 0 can be supported. For s ≥ snc, the cautious equilibrium thus conserves the resource

with probability 1. I define snc to be the largest member of the set at which depletion is
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the only equilibrium. For values of s ∈ (snc, snc), the “cautious” equilibrium implies that the

players experiment once (and the regime shift thus occurs with positive probability).

In general, the “Bellman equation” of player i can (for a given strategy of the other players

∆−i) be expressed as:

V i(s,∆−i) = max
δi∈[0,R−s]

{
u(s+ δi) + βLs(δ

i + δ−i)V i(s+ δ,∆−i)
}

(9)

Also here, the crux is that V i is a priori unknown. Similar to above, I denote by φ the

value for player i to take exactly one step of size δi and then remain standing when the other

players’ strategy ∆−i = {δ−i, 0, 0, 0, ...} is to do the same:

φ(δi; δ−i, s) = u
( s
N

+ δi
)

+ βLs(δ
i + δ−i)

u
(
s+δi+δ−i

N

)
1− β

(10)

Let g(δ−i, s) be the interior solution to the first-order-condition of maximizing φ(δi; δ−i, s):

φ′(δi; δ−i, s) = u′
( s
N

+ δi
)

+
β

1− β

[
L′s(δ

i + δ−i)u

(
s+ δi + δ−i

N

)
+

1

N
Ls(δ

i + δ−i)u′
(
s+ δi + δ−i

N

)] (11)

The best-reply function for player i, δi∗(δ−i, s) is then given by

δi∗(δ−i, s) =


0 if s ≥ snc (12a)

g(δ−i, s) if s ∈ (snc, snc) (12b)

R− s− δ−i if s ≤ snc (12c)

For a symmetric step size δ−i = (N − 1)δi, we have:

φ′(δnc; s) = u′
( s
N

+ δnc
)

+
β

1− β

[
L′s(Nδ

nc)u

(
s+ δnc

N

)
+

1

N
Ls(Nδ

nc)u′
(
s+ δnc

N

)] (13)

Proposition 4. The set of Markov-strategies

0 if s ≥ snc

δnc(s) if s ∈ (snc, snc)
R−s
N if s ≤ snc

where δnc(s) is defined by the interior solution to (13), constitutes a feedback Nash equilibrium.

That is, for s0 ≥ snc coordination to stay at s0 can be supported as a Nash equilibrium. For

s0 < snc taking one step and then staying at s1 = s0 + δnc can be supported as a Nash

equilibrium.

Proof. The proof is given in Appendix A.4
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Obviously, the best-reply for player i when all other players plan to expand the consump-

tion set by R − s is to chose R − s as well. This would ensure that the player at least gets

an equal share of R. I call this equilibrium in which the resource is immediately depleted

the “aggressive equilibrium” and the equilibrium described in Proposition 4 the “cautious

equilibrium”. Note that, for a given s, both the “cautious” and the “aggressive equilibrium”

are unique.3

In short, the game has the structure of a coordination problem where the immediate

depletion of the resource may become a self-fulfilling prophecy. Indeed, for s ≤ snc, the

immediate depletion of the resource cannot be avoided in a non-cooperative setting, despite

the fact that there is a range of initial values (s ∈ [s∗, snc]) for which it is optimal to conserve

the resource indefinitely with positive probability. For s ∈ [snc, snc], the strategic interactions

imply that experimentation is inefficiently large. However, should it turn out that s′ = s+Nδnc

is safe, this consumption pattern is ex-post socially optimal. Figure 1 illustrates the aggregate

expansion of the set of safe consumption possibilities in the cautious equilibrium and contrasts

it with the social optimum.

To
ta

l e
xt

ra
ct

io
n 

 δ
(s
)

Social Optimum
Non-cooperation

s* snc s* snc R

Initial safe value s

R-s

Figure 1: Illustration of policy function δ(s). The blue circles represent the socially optimal extension
δ of the safe consumption set s (on the y-axis) as a function of the safe consumption set on the x-axis
(where obviously s ≤ R and δ ∈ [0, R − s]). For values of s below s∗, it is optimal to consume the
entire resource (choose δ(s) = R−s). For values of s above s∗, it is optimal to remain standing (choose
δ(s) = 0). The red dashed line plots the cautious non-cooperative equilibrium, showing how s∗ ≤ snc

and s∗ ≤ snc (in some cases we may even have snc < s∗). It illustrates how even the “cautious”
experimentation under non-cooperation implies excessive risk-taking. The figure also shows that the
first-best and the non-cooperative outcome may coincide for very low and very high values of s.

3Uniqueness of the latter type of equilibrium simply follows from the assumption that in case of incompatible
demands, the resource is shared equally among the players. Uniqueness of the symmetric “cautious equilibrium”
(should it entail δnc(s) < R−s

N
) can be established by contradiction. Suppose all other players j 6= i choose to

expand the consumption set to a level at which – should the threshold have not been crossed – no player would
have an incentive to go further. Player i’s best-reply cannot be to choose δi = 0 in this situation as the gain
from making a small positive step (which are private) exceed the (public) cost of advancing a little further.
Hence, the only equilibrium at which the players expand the consumption set once is the symmetric one.
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Faced with this coordination problem, the question arises which of the two equilibria can

we expect to be selected. Clearly, the “cautious equilibrium” pareto-dominates the “aggres-

sive equilibrium”.4 With rational players and without strategic uncertainty, the cautious

equilibrium would thus be the outcome of the game. But what happens when the players are

uncertain about the other player’s behavior? As the disastrous regime shift is irreversible,

there is no room for dynamic processes that lead players to select the pareto-dominant equi-

librium (Kim, 1996). Therefore, I turn to the static concept of risk-dominance (Harsanyi and

Selten, 1988).

Since the game is symmetric, applying the criterium of risk-dominance for equilibrium

selection has the intuitive interpretation that the cautious equilibrium is selected if player i

prefers to play cautiously (i.e. by choosing δi(s) = δnc(s)) rather than playing aggressively

(i.e. choosing δi(s) = R − s) when the expected payoff from doing so exceeds the expected

payoff from playing aggressively when player i assigns probability p to the other players playing

aggressively. Obviously, whether the cautious or the aggressive equilibrium is risk-dominant

will depend both on this probability p as well as on the safe value s. We can, for a given

safe value s solve for the probability p∗ at which the player is just indifferent between playing

cautiously or aggressively:

p∗·π[all aggressive] + (1− p∗)·π[only i aggressive] = p∗·π[only i cautious] + (1− p∗)·π[all cautious]

⇔

p∗ =
π[all cautious] − π[only i aggressive]

(π[all cautious] − π[only i aggressive])− (π[only i cautious] − π[all aggressive])

In the above calculation, π[all aggressive] refers to the payoff of playing aggressive, when all other

players play aggressively, π[only i aggressive] refers to the payoff of playing aggressive, when all

other players play cautiously, etc. In order to explicitly solve for the value of p∗, we need to

put more structure on the problem. For the specific example developed in section 3.5 below,

we can calculate and plot p∗ as a function of s (see Figure 2). The grey area below the

line drawn by p∗ shows the set of values for which player i prefers to play the strategy that

pertains to the cautious equilibrium. Figure 2 illustrates how robust this equilibrium is: Even

when the players think that there is more than a 50% chance that all other players play the

aggressive strategy, it still pays to play the cautious strategy for a wide range of initial values

s. (Clearly, p∗ is not defined for s < snc when the cautious and the aggressive equilibrium

coincide.)

4This follows immediately from the fact that, by definition, δnc(s) is the interior solution to the symmetric
maximization problem (9) (with δ−i = (N −1)δnc) where the policy δ(s) = R− s was an admissible candidate.
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Figure 2: p∗ as a function of s for u(c) =
√
c, f = 1

A and β = 0.8, A = R = 1 and N = 10

3.5 Specific example

For a given utility function and a given probability distribution of the threshold’s location

it is then possible to determine δ∗(s), δnc(s) and calculate the value function V (s). Below,

I do this for u(c) =
√
c and a uniform probability distribution so that it is especially easy

to explicitly solve (7) and (13). When the social planner thinks that every value in [0, A] is

equally likely to be the threshold, i.e. f = 1
A , and accordingly Lδ(s) = A−s−δ

A−s , the optimal

extension of the set of safe extraction possibilities is given by:

δ∗ =
A− (1 + 2β)s

3β
(14)

There will only be an interior solution to (7) when s ∈ [s∗, s∗]. We have:5

s∗ = max

{
0,
A− 3βR

(1− β)

}

s∗ = min

{
A

1 + 2β
,R

}
Exploiting the fact that due to symmetry we have δ−i = (N − 1)δi, I solve (13) for an

interior equilibrium value δnc. Total non-cooperative expansion is then given by:

Nδnc =

(
(1− β)N + β

)
A−

(
(1− β)N + 3β

)
s

3β
(15)

5At s∗ it is optimal to consume the entire resource, so that s∗ is found by solving R − s = A−(1+2β)s
3β

. At

s∗ it is optimal to remain standing, so that s∗ is found by solving 0 = A−(1+2β)s
3β

.
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Again, there will only be an interior equilibrium for s ∈ [snc, snc], where:

snc = max

{
0,

(
(1− β)N + β

)
A− 3βR

(1− β)N

}

snc = min

{(
(1− β)N + β

)
A

(1− β)N + 3β
,R

}

From inspection of (15) it becomes clear that the total non-cooperative consumption is

increasing in N : ∂[Nδnc]
∂N = (1−β)(A−s)

3β > 0. This points to the “tragedy of the commons”: The

more players there are, the more aggressive the first-period expansion of the set of consumption

possibilities. Furthermore, one can find the combination of parameters that would ensure a

self-fulfilling prophecy of extirpation when staring from an initial value of s = 0 (no prior

knowledge of a safe level of extraction). It is namely given by N ≥ β
1−β (3R − A), hence

increasing in R and decreasing in β and A, as it is intuitive.

Figure 3 plots the value function for a uniform prior (with A = R = 1) and a discount

factor of β = 0.8, illustrating how it changes as the number of player increases. The more

players there are, the greater the distance of the non-cooperative value function (assuming

that the players coordinate on the Pareto-dominated equilibrium, plotted by the blue solid

diamonds) to the socially optimal value function (plotted by the black open circles). In

particular when N = 10, one sees the region (roughly from s = 0 to s = 0.2) where there

is no “cautious” equilibrium, and the large value of s̄nc (roughly 0.62) when it first becomes

individually rational to remain standing. All in all however, this example shows that the

threat of a irreversible regime shift is very effective when the common pool externality applies

only to the risk of crossing the threshold. (At least for this specific utility function and these

parameter values. Note that β = 0.8 implies a unreasonably high discount rate, but it was

chosen to magnify the effect of non-cooperation for a small number of players.)
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Figure 3: Illustration of cooperative and non-cooperative use of renewable resource: Value function
V (s) with u(c) =

√
c, β = 0.8, and A = R = 1 for N = 5 and N = 10.
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3.6 Comparative statics

In order to analyze how the extraction pattern changes with changes in the parameters, I first

note that δnc, the equilibrium expansion of the set of safe values, is monotonically decreasing

in s. (The argument is the same as in the proof of Proposition 3 when simply replacing δ∗(s)

with Nδnc(s) and is therefore omitted.) This implies that the aggregate extraction pattern as

a function of the prior knowledge about the set of safe consumption possibilities indeed looks

qualitatively as in Figure 1 (where it was plotted for the specific functional forms analyzed in

section 3.5). The effect of an increase in the fundamentals β, N , Ls(δ), and R can therefore

be analyzed by investigating changes to φ′(δnc, s).

The first comparative static result conforms with basic intuition: The more impatient the

players are, the less they value the current safe consumption value, and the more aggressive

they are. The second result shows that an increase in the number players may exacerbate the

“tragedy of the commons”, but not necessarily in all case. There are two opposing effects: On

the one hand, the addition of one more players increases aggregate extraction if all players were

to choose the same consumption level as before. On the other hand, the addition of another

player leads all other players to decrease their individual consumption as they partly take the

increase in N into account. Proposition 5 gives a sufficient condition for when the former

dominates. The third comparative static result, that an increase risk of crossing the threshold

leads to a larger range of the cautious equilibrium is not related to the risk aversion of the

agents as such, but stems from the fact that the expected cost of experimentation increase,

while the gains stay the same. Finally, an increase in the upper bound of the consumption

possibility set, R, increases the range where a cautious equilibrium exists, in spite of the fact

that R neither affects the interior consumption choices directly, nor the value snc at which

the cautious equilibrium implies no further experimentation. The reason for the result is

the following: At the old value of snc, the equilibrium experimentation just coincides with

choosing R − s. Now when the R shifts outwards, say to R̃, equilibrium experimentation at

the old snc is strictly less than R̃− s.

Proposition 5. We then have the following comparative statics results:

(a) The boundaries snc and snc, and aggregate extraction for s ∈ [snc, snc], decrease with β.

(b) An increase in N leads to more aggressive extraction when N
N+1 > u′(RN )

/
u′( R

N+1).

(c) The more likely the regime shift (in terms of a first-order stochastic dominance), the

larger the range where a cautious Nash-equilibrium exists.

(d) The higher the maximum potential reward R, the larger the range where a cautious

Nash-equilibrium exists.

Proof. The proofs are given in Appendix A.5.
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4 Extensions

The paper’s main results do not rely on specific functional forms for utility or the probability

distribution of the threshold’s location. Tractability was achieved by considering extremely

simple resource dynamics, namely the resource remained intact and replenishes fully in the

next period as long as resource use in the current period has not exceeded T . In other words,

there was no common pool externality relating to the resource dynamics itself. Alternatively,

one could therefore interpret R as the upper bound of the consumption possibility set in the

productive regime and r being the upper bound of the consumption possibility set in the

unproductive regime. In this section, I explore to what extent the results of section 3 are

robust to more general resource dynamics.

4.1 Delay in the occurrence of the regime shift

Consider a situation where the players, in a given period, observe only with some probability

whether they have crossed the threshold. In fact, it is not unreasonable to model the true

process of the resource as hidden and that it will manifest itself only after some delay (see

Gerlagh and Liski (2014) for a recent paper that focusses on this effect in the context of

optimal climate policies). Hence, as time passes the players will update their beliefs whether

the threshold has been located on the interval [st, st + δt]. How does this learning affect the

optimal and non-cooperative strategies? This becomes an extremely difficult question as – due

to the delay – the problem is no longer Markovian. Yet, it is possible to show the following:

Proposition 6. Also when crossing the threshold at time t triggers the regime shift at some

(potentially uncertain) time τ > t, it is still socially and individually rational to experiment –

if at all – in the first period only.

Proof. The proof is given in Appendix A.6.

In other words, the fact that the learning dynamics are stunted is robust to a delay in

the occurrence of the regime-shift. This does of course not imply that the optimal decision

under the two different models will be the same. They almost surely will differ, as delaying

the consequences of crossing the threshold decreases the costs of experimentation. Yet, as

the players only learn that they have crossed the threshold when the disastrous regime shift

actually occurs, they cannot capitalize on this delay by trying to expand the set of safe

consumption possibilities several times.

4.2 Growing R

Previously, the upper bound of the resource, R has been treated as known and constant. In

this subsection, I shall depart from this assumption and consider the case when R increases

(but f and T remain unchanged). Formally, the resource dynamics can be expressed as:

Rt+1 =

 G(Rt) if
∑

i c
i
t ≤ T

0 if
∑

i c
i
t > T

(16)
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where G′(R) > 0.

In this situation, there is scope for a continued expansion of the set of safe consumption

possibilities, but only as long as the upper bound of the available resource at time t, Rt, is

binding. As Rt can, by construction, not exceed A and we know from the proofs of Proposition

2 and 4 that there will be some point at which it is neither socially optimal, nor a cautious

Nash equilibrium to further expand the set of safe consumption possibilities.

In other words, although a growing Rt may induce several periods where δt(st) = Rt− st,
once δt(st) < Rt−st for some t = τ , we have δt = 0 for all t > τ . The validity of this statement

can be easily checked by observing that the first-order conditions for the socially optimal and

individually rational choice of δt (equation (7) and (13), respectively) do not depend on R.

Note that this argument also shows that uncertainty about R is immaterial for the optimal

learning dynamics and the outcome of the game.

4.3 Non-renewable resource dynamics

The above results have been obtained by assuming that the resource replenishes fully every

period unless the thresholds has been crossed. In other words, the common-pool externality

related only to the risk of crossing the threshold. Here, I study the opposite case of a non-

renewable resource to analyze the effect of a disastrous regime shift when the common-pool

externality relates not only to the risk of crossing the threshold but also to the resource itself.

Specifically, I consider the following model of extraction from a known stock of a non-renewable

resource:

max
cit

∞∑
t=0

βtu(cit) subject to: Rt+1 =

 Rt −
∑

i c
i
t if

∑
i c
i
t ≤ T

0 if
∑

i c
i
t > T

(17)

I assume that the utility function is of such a form, that in a world without the threshold,

there is a pareto-dominant non-cooperative equilibrium in which positive extraction occurs in

several periods (though the players could empty the resource in one period, if they so wish).

Due to discounting, it is clear that the extraction level will decline as time passes, both in

the social optimum and in the non-cooperative equilibrium. Due to the stock externality, it

is clear that the extraction rate in the non-cooperative equilibrium is inefficiently large.

A simple interpretation of this model could be a mine from which several agents extract

a valuable resource. If aggregate extraction is too high in a given period, the structure of the

shafts may collapse, making the remainder of the resource inaccessible. In spite of this natural

interpretation, two things are rather peculiar about this model setup: First, any player can

extract any amount up to Rt. (The option to introduce a capacity constraint on current

extraction – though realistic – would come at the cost of significant clutter without yielding

any apparent benefit.) Second, the assumption that R0 is known and that T is constant means

that this is not a problem of eating a cake of unknown size. This problem has since long been

dealt with in the literature (see e.g. Kemp, 1976; Hoel, 1978) and is not considered here.

As in section 3, it is instructive to first discuss the case when the location of the threshold is
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known in order to expose the strategic structure that results from the potential for a disastrous

regime shift. Let c̃nc(Rt) be the total non-cooperative extraction level (as a function of the

resource stock Rt) in absence of the regime shift risk. Clearly, if T > c̃nc(R0) the whole

problem is not interesting, and I thus only consider the case when the known value of T

is below c̃nc(R0). The relevant question is therefore whether the agents can coordinate on

staying at the level T in the first period or not. If they can, they will stay at the level T for

an interval of time t = 0, 1, ..., τ , where τ is the time at which the resource stock has been

depleted to a level where the non-cooperative extraction path stays below T until the resource

is exhausted. That is Rτ is defined by c̃nc(Rτ ) = T .

The temptation to empty the resource in the first period, when all other players stay at

the threshold is given by u(R0− N−1
N T ) > u( TN )+βV (R0−T ). Whether this inequality holds

depends on the particular form of u and V and cannot be answered in general. Still, it is

possible to prove the following:

Proposition 7. In the game described by (17), a known threshold is crossed in the first period,

or never.

Proof. The proof is given in Appendix A.7.

Proposition 8 characterizes the case when the location of the threshold is unknown.

Proposition 8. In the game described by (17) when T is unknown, there exists, in addition

to the aggressive equilibrium in which the resource is exhausted in the initial period, a pareto

dominant equilibrium in which experimentation – if at all – is undertaken in the first period

only and s1 = s0 + δnc(s0) is an upper bound on aggregate extraction for the remainder of the

game.

Proof. The proof is given in Appendix A.8.

The intuition is the same as before. Because learning is only affirmative, it does not pay

to experiment in the second (or any later) period. If the threshold has not been crossed, the

extraction path will be constrained by s1 = s0 + δnc(s0) up to the period where the resource

stock has been depleted to a level where the non-cooperative extraction path stays below s1

until the resource is exhausted. As the players would never expand the set of safe extraction

possibilities beyond c̃nc(R0) in the cautious equilibrium, the threat of a disastrous regime

shift is welfare improving when the players coordinate. However, the cautious equilibrium

will coincide with the first-best only in the very special case that the initially safe value s0 is

binding in each period of the game and the social optimum.

4.4 Renewable resource dynamics

Finally, consider a generic renewable resource problem, where the objective of player i is:

max
cit

∞∑
T=0

βtu(cit, Rt) subject to: Rt+1 =

 G(Rt −
∑

i c
i
t) if

∑
i c
i
t ≤ T

0 if
∑

i c
i
t > T

(18)
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Note that the instantaneous utility function now directly depends on the resource stock

(with ∂u
∂R > 0). This could, for example, be due to stock dependent harvesting costs as

it is usual for fishery models. Suppose that without the threshold, there is a unique Nash

equilibrium with steady state resource stock Rnc∞ . Due to the negative stock externality, the

socially optimal steady state resource stock, Rso∞, is larger than Rnc∞ .

Parallel to section 4.3, the threshold applies to the total exploitation level in any given

period, and not to the stock as such. While this structure may seem peculiar at first sight, it

is without loss of generality here, because there is a one-to-one mapping between total harvest

and escapement for a given initial stock.

Assume that the initial resource stock R0, and the initial safe exploitation level, s0, are

above Rso∞. Assume furthermore that there are no capacity constraints to harvesting, so that

is any agent i can consume R0 −Rnc∞ in one period should he or she wish to do so. Although

we would need to put a lot more structure on this problem to solve it explicitly, we can make

the following statement:

Proposition 9. Unless δnc0 (s0) = R0−Rnc∞, the threat of a disastrous regime shift will strictly

improve welfare as players can coordinate on a steady-state resource stock above Rnc∞.

Proof. The argument is the same as the one for Proposition 8 and is omitted.

As in the case of non-renewable resource dynamics, the maximum extraction level that

is known to be safe puts an upper bound on extraction and thereby mitigates the negative

stock externality. If the initial value of s0 is relatively low the players will experiment once

and stay at the updated level, unless, of course, the players have crossed the threshold.

For example, the North-Atlantic herring fishery suggests that threat of a stock collapse may

indeed be very policy relevant. For centuries, this fishery has been the economic centerpiece

for many communities in Northern Europe. However, this immense stock collapsed in the late

1960s, and in spite of a complete harvest moratorium it took almost 30 years to recover. By

the end of the 1990s the spawning stock biomass has reached levels above 6 million tons again,

but a changed distribution pattern in the early 2000s lead to strong disagreement among the

harvesting nations and severe overfishing. However, as Miller et al. (2013, p.325) conjecture,

the competing nations could restore cooperation when “staring into the abyss that yawned

before them.”
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5 Discussion and Conclusion

The effect of potential regime shifts on the cooperative and non-cooperative use of environ-

mental goods and services is polarizing. When the location of the threshold is known to be

low, or if it is sufficiently likely that even a low level of consumption causes catastrophe, the

game may exhibit prisoner-dilemma features: Although it would be optimal to sustain the

resource at its current level of use, the only non-cooperative equilibrium will be the imme-

diate extirpation of the resource.6 In contrast, when the threshold is known to be high, or

if it is sufficiently likely that the productive regime can be sustained even at a high level

of consumption, the game changes into a coordination-problem: The threat of loosing the

productive resource can effectively enforce the first-best consumption level. For intermediate

values, the equilibrium will neither be extirpation nor status-quo consumption, but rather a

one-time increase in consumption, expanding the set of safe consumption possibilities. This

expansions will be inefficiently large, but if it has not caused the regime shift, the players will

be able to coordinate on staying at the updated level. Staying at the updated level is ex post

socially optimal when the externality applies only to the risk of a regime shift (i.e. any given

level of safe consumption is efficiently shared among the agents). When the externality also

applies to the resource use itself, the threat of the threshold loses importance. Due to the

dynamic common-pool externality on the resource, non-cooperative extraction will be ineffi-

ciently high even in absence of any risk of a regime shift. This means that in particular when

the threshold is believed to be above the first-best consumption pattern, its threat cannot act

as a “commitment device” to ensure efficient extraction. Nevertheless, the threshold may still

dampen non-cooperative extraction.

These conclusions have been derived by using a general dynamic model that has placed only

minimal requirements on the utility function (concavity and boundedness) and the probability

distribution of the threshold (continuity). Nevertheless, there are a number of modeling

assumptions that warrant discussion.

First, a prominent aspect of this model is that the threshold itself is not stochastic. The

central motivation is that this allows concentrating on the effect of uncertainty about the

threshold’s location. This is arguably the core of the problem: we don’t know which level of

use triggers the regime shift. This modeling approach implies a clear demarcation between

a safe region and a risky region of the state space. In particular, it implies that the edge

of the cliff, figuratively speaking, is a safe – and in many cases optimal – place to be. The

alternative approach, modeling the risk of a regime shift by a hazard rate acknowledges that,

figuratively speaking, the edge of a cliff is often quite windy and not a particular safe place.

This however implies, that the regime shift will occur with certainty as time goes to infinity,

no matter how little of the resource is used; eventually there will be a gust of wind that is

strong enough to blow us over the edge, regardless of where we stand. This is of course not

very realistic either. But also on a deeper level one could argue that the non-stochasticity is in

effect not a flaw but a feature: Let me cite Lemoine and Traeger (2014, p.28) who argue that

6But note that extirpation is also the socially optimal course of action if the threshold is deemed to be very
low and the status quo consumption would be of little value compared to the resource potential.
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“we would not actually expect tipping to be stochastic. Instead, any such stochasticity would

serve to approximate a more complete model with uncertainty (and potentially learning) over

the precise trigger mechanism underlying the tipping point.” This being said, it would still

be interesting to investigate how the choice between a hazard-rate formulation (as in Polasky

et al., 2011 or Sakamoto, 2014) or a threshold formulation influences the outcome and policy

conclusions in an otherwise identical model.

Second, I have modeled the players to be identical. In the real world, players are rarely

identical. One dimension along which players could differ could be their valuation of the

future. However, prima facie it should not be difficult to show that any such differences could

be smoothed out by a contract that gives a larger share of the gains from cooperation to more

impatient players. One could also investigate the effect of heterogenous beliefs about the

existence and location of the threshold. Agbo (2014); Koulovatianos (2015) analyze this in

the framework of Levhari and Mirman (1980). In the current set-up such a heterogeneity could

lead to interesting dynamics and possible multiple equilibria, where some players rationally

do not want to learn about the probability distribution of T whereas other players do invest

in learning and experimentation. Another dimension along which players could differ is their

size or the degree to which they depend on the environmental goods or services in question.

As larger players are likely to be able to internalize a larger part of the externality than

smaller players, different sets of equilibria may emerge. Especially in light of the discussions

surrounding a possible climate treaty (Harstad, 2012; Nordhaus, 2015), it is topical to analyze

a situation where groups of players can form a coalition to ameliorate the negative effects of

non-cooperation in future applications.

Third, I have assumed the regime shift to be irreversible. This is obviously a considerable

simplification. Groeneveld et al. (2013) have analyzed the problem of how a social planner

would learn about the location of a flow-pollution threshold in a setting where repeated

crossings are allowed. In the current set-up, the introduction of several thresholds would

most likely not yield significant new insights but make the analysis a lot more cumbersome.

For example, if one presumes that crossing the threshold implies that one learns where it

is,7 the game turns into a repeated game. This may imply that cooperation is sustainable

for sufficiently patient players (van Damme, 1989). However there could also be cases where

irreversibility emerges “endogenously” when it is possible – but not an equilibrium – to move

out of a non-productive regime. Hence, a fruitful avenue is to utilize the tractability of the

current modeling approach to explore this issue.

A final, related, point is the fact that I have concentrated on Markovian strategies. When

the players are allowed to use history-dependent strategies, the threat of a threshold may

allow them to coordinate on the social optimum in all phases of the game. They could simply

agree on expand the set of safe consumption possibilities by the socially optimal amount and

threaten that if any player steps too far, this triggers the depletion of the resource in the

7Groeneveld et al. (2013) presume that crossing the threshold tells the social planner that the regime shift
has occurred, but not where. This is a little bit like sitting in a car, fixing the course to a destination and
then blindfolding oneself. Arguably conscious experimentation is more realistically described by saying that
the course is set, but the eyes remain open.
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next period. This obviously begs the question of renegotiation proofness, but it is plausible

that already a contract that is binding for two periods is sufficient to achieve the first-best.

The threat of a disastrous regime shift is a very strong coordinating device. This is true

irrespective of whether the threshold’s location is known or unknown, because the current

model of uncertainty implies that it is, loosely speaking, pitch dark when the players take a

step. It is only afterwards that they realize whether the disastrous regime shift has occurred

or not. Would the coordinating force of a catastrophic threshold diminish when the players

can learn about its location without risking to cross it? Importantly, an extension of the

model along these lines would speak to the recent debate on “early warning signals” (Scheffer

et al., 2009; Boettiger and Hastings, 2013) and is the task of future work.
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Appendix

A.1 Proof of Proposition 1

Recall that Proposition 1 states that when the location of the threshold is known with certainty, then there

exists, for every combination of N , T , and R, a value of β̄ such that the first-best can be sustained as a

Nash-equilibrium when β ≥ β̄. The larger is N , or the closer T is to 0, the larger has to be β.

For a given N , first note that dβ̄
dT

= −
(

[u
′

N
·u+ u·u′N−1

N
]/[u2]

)
< 0 so that the players need to be the less

patient the more valuable it is to stay below the threshold (i.e. as T grows). Second, note that for T → 0, the

last term of (4) approaches 0 so that the right-hand-side of (4) approaches 1. But since it approaches 1 from

below, we can always find some value of β that could still sustain the first-best. Finally, note that as N →∞,

u(T/N) → 0. Again, β̄ approaches 1 from below, allowing to find some value of β that could still sustain the

first-best.

A.2 Proof of Proposition 2

Recall that Proposition 2 states that the socially optimal total use of the resource is either s0 for all t or

s0 + δ∗(s0) for t = 0 and, if the resource has not collapsed, s1 for all t ≥ 1.

The proof consist of two parts: First, I show that there exists some values s∗ at which it is not optimal to

further expand the set of safe consumption possibilities. In the second part, I show that for any s 6= s∗ it is

better to make one step and then stay than to make two steps and then stay.

(1) There exists some values s∗ at which it is optimal to stay. At least one such a value exists because at

s = R there is no other choice but to remain standing. Furthermore, values of s∗ < R exist when the survival

function Ls(δ) is sufficiently small close to R. The intuition is that the marginal benefit from staying is strictly

increasing with s, but the marginal benefit from making a small step is then decreasing close to R: While

the potential reward is small (since the value function is bounded above by u(R)/(1 − β)), the likelihood of

triggering the regime shift becomes high. When it is known that there is a catastrophic threshold on [0, R], we

have Ls(δ)→ 0 as δ → R− s and there will always be values of s∗ < R. To show this more formally, compare

the value from staying at some value of s close to R, that is s = R− ε, to the value of making a step towards

R so that one stays at R− δ (with δ ∈ (0, ε]). I claim that for some ε, we have:

u(R− ε)
1− β ≥ u(R− δ) + βLs(δ)

u(R− δ)
1− β (A-1)

Clearly, limε→0

[
u(R−ε)

1−β

]
= u(R)

1−β but since δ ∈ (0, ε] and Ls(δ) → 0 as δ → R − s, we have that

limε→0

[
u(R− δ) + βLs(δ)

u(R−δ)
1−β

]
= u(R) < u(R)

1−β .

(2) For any s 6= s∗ it is better to make any one step and then stay than to make two steps and then stay.

Take any s and find δ∗ as defined in equation (8) above. I then show that at some s̃ below s (with s̃ = s− δ1)

the payoff from choosing δ2 = δ1 + δ∗ (i.e. taking one step) exceeds the payoff from first taking one step from

s̃ to s and then taking the second step δ∗:

u(s̃+ δ1 + δ∗) + βLs̃(δ1 + δ∗)
u(s̃+ δ1 + δ∗)

1− β

≥ u(s̃+ δ1) + βLs̃(δ1)
(
u(s̃+ δ1 + δ∗) + βLs̃+δ1(δ∗)

u(s̃+ δ1 + δ∗)

1− β

) (A-2)

The important thing to note at this stage is that: Ls̃(δ1)Ls̃+δ1(δ∗) = L(s̃+δ1)
L(s̃)

L(s̃+δ1+δ∗)
L(s̃+δ1)

= L(s̃+δ1+δ∗)
L(s̃)

=
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Ls̃(δ1 + δ∗). Hence, (A-2) can, upon inserting s̃ = s− δ1, be written as:

u(s+ δ∗) + β
L(s+ δ∗)

L(s− δ1)

u(s+ δ∗)

1− β ≥ u(s) + β
L(s)

L(s− δ1)
u(s+ δ∗) + β2L(s+ δ∗)

L(s− δ1)

u(s+ δ∗)

1− β

⇔

u(s+ δ∗)− β L(s)

L(s− δ1)
u(s+ δ∗) + β(1− β)

L(s+ δ∗)

L(s− δ1)

u(s+ δ∗)

1− β ≥ u(s)

⇔[
1 + β

L(s+ δ∗)− L(s)

L(s− δ1)

]
u(s+ δ∗) ≥ u(s) (A-2’)

Now by the definition of δ∗ we know that:

u(s+ δ∗) + βLs(δ
∗)
u(s+ δ∗)

1− β >
u(s)

1− β
⇔

(1− β)u(s+ δ∗) + βLs(δ
∗)u(s+ δ∗) > u(s)

⇔[
1− β + β

L(s+ δ∗)

L(s)

]
u(s+ δ∗) > u(s)

⇔[
1 + β

L(s+ δ∗)− L(s)

L(s)

]
u(s+ δ∗) > u(s) (A-3)

Since L′(s) < 0, we know that 0 > L(s+δ∗)−L(s)
L(s−δ1)

> L(s+δ∗)−L(s)
L(s)

. Therefore, combining (A-2’) and (A-3)

establishes the claim and completes the proof:[
1 + β

L(s+ δ∗)− L(s)

L(s− δ1)

]
u(s+ δ∗) >

[
1 + β

L(s+ δ∗)− L(s)

L(s)

]
u(s+ δ∗) > u(s)

A.3 Proof of Proposition 3.

Proposition 3 states that δ∗ is decreasing in s.

Recall that the payoff from starting at s, taking a step δ∗, and remaining standing thereafter is given by:

ϕ(δ∗; s) = u (s+ δ∗) + βLs(δ
∗)
u (s+ δ∗)

1− β (6)

Accordingly the equilibrium choice of a positive expansion δ∗(s) is the solution of ϕ′(δ∗; s) = 0 where ϕ′ is

given by (7):

ϕ′(δ∗; s) = u′ (s+ δ∗) +
β

1− β
[
L′s(δ

∗)u (s+ δ∗) + Ls(δ
∗)u′ (s+ δ∗)

]
(7)

with the second-order condition:

ϕ′′(δ∗; s) = u′′ +
β

1− β

(
L′′s (δ∗)u+ 2L′s(δ

∗)u′ + Ls(δ
∗)u′′

)
< 0 (A-4)

To show that δ∗ is declining in s, I need to show that:

dδ∗

ds
= −

∂
[
ϕ′(δ∗; s)

]
/∂s

∂
[
ϕ′(δ∗; s)

]
/∂δ∗

< 0
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Since the denominator is negative when the second-order condition is satisfied, we have that dδ∗

ds
< 0 when

∂[ϕ′(δ∗;s)]
∂s

< 0, so that the condition to check is (A-5):

∂[ϕ′(δ∗; s)]

∂s
= u′′ +

β

1− β

(
∂L′s(δ

∗)

∂s
u+ L′s(δ

∗)u′ +
∂Ls(δ

∗)

∂s
u′ + Ls(δ

∗)u′′
)
< 0 (A-5)

Noting the similarity of (A-5) to the second-order condition (A-4), and realizing that (A-4) can be decom-

posed into a part A and a part B and that (A-5) can be decomposed into a part A and a part C, a sufficient

condition for (A-5) to be satisfied is that B > C.[
u′′ +

β

1− β

(
L′s(δ

∗)u′ + Ls(δ
∗)u′′

)]
︸ ︷︷ ︸

A

+
β

1− β

(
L′′s (δ∗)u+ L′s(δ

∗)u′
)

︸ ︷︷ ︸
B

< 0 (A-4’)

[
u′′ +

β

1− β

(
L′s(δ

∗)u′ + Ls(δ
∗)u′′

)]
︸ ︷︷ ︸

A

+
β

1− β

(
∂L′s(δ

∗)

∂s
u+

∂Ls(δ
∗)

∂s
u′
)

︸ ︷︷ ︸
C

< 0 (A-5’)

In order to show that L′′s (δ)u+L′s(δ)u
′ >

∂L′s(δ)

∂s
u+ ∂Ls(δ)

∂s
u′, I use the first-order condition for an interior

solution from (7) to write u′ in terms of u:

u′ =
−L′s(δ)

1−β
β

+ 1
N
Ls(δ)

u

Upon inserting and canceling u, I need to show that:

L′′s (δ) + L′s(δ)

[
−L′s(δ)

1−β
β

+ Ls(δ)

]
>
∂L′s(δ)

∂s
+
∂Ls(δ)

∂s

[
−L′s(δ)

1−β
β

+ Ls(δ)

]
(A-6)

Recall that Ls(δ) = L(s+δ)
L(s)

and hence:

L′s(δ) =
L′(s+ δ)

L(s)

∂Ls(δ)

∂s
=
L′(s+ δ)L(s)− L(s+ δ)L′(s)

[L(s)]2

L′′s (δ) =
L′′(s+ δ)

L(s)

∂L′s(δ)

∂s
=
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

[L(s)]2

Tedious but straightforward calculations then show that (A-6) is indeed satisfied.

[
N

1− β
β

+
L(s+ δ)

L(s)

]
︸ ︷︷ ︸

a

L′′(s+ δ)

L(s)
−
[
L′(s+ δ)

L(s)

]2

>

[
N

1− β
β

+
L(s+ δ)

L(s)

]
︸ ︷︷ ︸

a

∂L′s(δ)

∂s
−
∂Ls(δ)

∂s
L′s(δ)

⇔

a
L′′(s+ δ)

L(s)
−
[
L′(s+ δ)

L(s)

]2

> a
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

[L(s)]2
−
∂Ls(δ)

∂s
L′s(δ)

⇔

aL(s) > L(s+ δ)

⇔[
N

1− β
β

+
L(s+ δ)

L(s)

]
L(s) > L(s+ δ)

⇔

N
1− β
β

L(s) > 0
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A.4 Proof of Proposition 4.

Recall that Proposition 4 states that for s0 ≥ snc coordination to stay at s0 can be supported as a Nash

equilibrium. For s0 < snc taking one step and then staying at s1 = s0 + δnc can be supported as a Nash

equilibrium.

First note that if it is a Nash equilibrium to stay at some s in any one period, it will be a Nash equilibrium

to stay at that s in all subsequent periods. Again, there will be some snc at which staying is a Nash equilibrium,

because at least at s = R, there is no other choice. But parallel to the argument in Proposition 2, there will

also be some snc < R when s close enough to R and Ls(δ) becomes sufficiently small. Also here, there will

always be values of snc < R when it is known that there is a catastrophic threshold on [0, R]. Suppose all other

players stay at s = R− ε, then for ε small, the value from staying at s = R− ε is at least as large as the value

of making a step towards R so that the updated value is R− δ (with δ ∈ (0, ε]):

u
(
R−ε
N

)
1− β ≥ u

(
R− ε
N

+ δ

)
+ βLs(δ)

u
(
R−δ
N

)
1− β (A-7)

Parallel to the social optimum we have limε→0

[
u((R−ε

N
)

1−β

]
= u(R/N)

1−β . Again, since δ ∈ (0, ε] and Ls(δ)→ 0 as

δ → R− s we have limε→0

[
u
(
R−ε
N

+ δ
)

+ βLs(δ)
u(R−δN )

1−β

]
= u(R/N) < u(R/N)

1−β .

Now, as there is some snc at which staying is a Nash equilibrium, there will be a last step at which this

value is reached. Take some value s at which staying is not a Nash equilibrium. Suppose the strategy of the

opponents is to take some step δ−i1 < δnc(s) and then some step δ−i∗2 (s+ δ−i1 + δi1). The following calculations

show that the best-reply from player i is to take only one step δi∗1 . Hence δ−i∗2 (s + δ−i1 + δi1) = 0 and the

equilibrium will be to reach a value at which staying is a Nash equilibrium in one step.

For player i the payoff from making one step δi∗1 = snc − s0 − δ−i1 exceeds the payoff from making two

steps δi1 < snc − s0 − δ−i1 and δi∗2 = snc − s1 − δ−i∗2 when:

u
(s0

N
+ δi∗1

)
+

β

1− βLs0(δi∗1 + δ−i1 )u

(
snc

N

)
≥ u

(s0

N
+ δi1

)
+ βLs0(δi1 + δ−i1 )

[
u
(s1

N
+ δi∗2

)
+

β

1− βLs1(δi∗2 )u

(
snc

N

)] (A-8)

As for the coordinated case, Ls0(s1 − s0)Ls1(snc − s1) = Ls0(snc − s0) so that (A-8) implies:

u
(s0

N
+ δi∗1

)
− u

(s0

N
+ δi1

)
≥ β

[
L(s1)

L(s0)
u
(s1

N
+ δi∗2

)
− L(snc)

L(s0)
u

(
snc

N

)]
(A-9)

For clarity, write this inequality as A − a ≥ B − b. This inequality holds because both A > B and a < b.

To see that A > B note that u is an increasing and concave function so that u( s0
N

+ δi∗1 ) > u( s1
N

+ δi∗2 ) when
s0
N

+δi∗1 > s1
N

+δi∗2 . Inserting δi∗1 = snc−s0−δ−i1 , δi∗2 = snc−s1−δ−i∗2 and s1 = s0 +δi1 +δ−i1 in this inequality

simplifies to (N − 1)(δi1 + δ−i1 ) > 0, which is true. By the same argument, a < b when s0
N

+ δi1 <
snc

N
. Re-write

this as Nδi1 < snc − s0. This inequality holds because it is implied by the definition that δi1 < snc − s0 − δ−i1

and δ−i1 < δnc(s).

Recall that the best-reply function g(δ−i, s) in equation (12b) is therefore defined by the interior solution

to the first-order-condition of maximizing φ(δi; δ−i, s):

φ′(δi; δ−i, s) = u′
( s
N

+ δi + δ−i
)

+
β

1− β

[
L′s(δ

i + δ−i)u
( s
N

+ δi + δ−i
)

+
1

N
Ls(δ

i + δ−i)u′
( s
N

+ δi + δ−i
)]
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For a symmetric step size δ−i = (N − 1)δi, we have:

φ′(δnc; s) = u′
( s
N

+ δnc
)

+
β

1− β

[
L′s(Nδ

nc)u

(
s+ δnc

N

)
+

1

N
Ls(Nδ

nc)u′
(
s+ δnc

N

)]
The value of snc is defined by δnc = R−s

N
, which is the largest value of s at which equation (13) does not yet

have an interior solution but φ′(δ, s) > 0 for all δ ∈ [0, R− s). Similarly, the value of snc is defined by δnc = 0,

which is the smallest value of s at which equation (13) no longer has an interior solution but φ′(δ, s) < 0 for

all δ ∈ (0, R− s]

A.5 Proof of Proposition 5.

Let me repeat the comparative statics results here:

(a) The boundaries snc and snc, and aggregate extraction for s ∈ [snc, snc], decrease with β.

(b) An increase in N leads to more aggressive extraction when N
N+1

> u′(R
N

)
/
u′( R

N+1
).

(c) The more unlikely the regime shift (in terms of a first-degree stochastic dominance), the larger the range

where a cautious Nash-equilibrium exists.

(d) The higher the maximum potential reward R, the larger the range where a cautious Nash-equilibrium

exists.

First, as φ′ = 0 implicitly defines a monotonically decreasing function δnc(s) on [snc, snc] (which can be shown

by replacing δ∗(s) with Nδnc(s) in the proof of Proposition 3) and δnc(s) is bounded above by R−s and below

by 0, an increase in δnc will also lead to an increase in snc and snc respectively.

(a) To prove the proposition’s part with respect to β it is thus sufficient to analyze dφ′

dβ
. We have dφ′

dβ
=

2β[...]−β
(1−β)2

, where the term in the squared brackets [...] is term in the squared brackets of equation (13). We know

that this term must be negative for an interior solution because u′ > 0. Therefore: dφ′

dβ
= 2β[...]−β

(1−β)2
< 0.

(b) I now turn to the effect of increasing N . To provide a sufficient condition for when an increase in N

decreases the range where there is a cautious equilibrium, and therefore increases aggregate expansion, I make

the following argument: snc, the largest value at which immediate extirpation is the only Nash equilibrium

becomes larger when adding another player and N
N+1

> u′(R
N

)
/
u′( R

N+1
). For a given number of players N we

have at a given snc = ŝ that φ′(R−s
N

; ŝ) = 0 and I show that φ′(R−s
N+1

; ŝ) > 0 when N
N+1

>
u′(

R
N

)

u′(
R

N+1
)
:

φ′(R−s
N+1

; ŝ)− φ′(R−s
N

; ŝ) > 0

⇔

u′( R
N+1

)− u′(R
N

) +
β

1− β

[(
u( R

N+1
)− u(R

N
)
)
L′ŝ + Lŝ

(
1

N + 1
u′( R

N+1
)− 1

N
u′(R

N
)

)]
> 0

The first part of the last line is positive due to concavity of u, the first term in the squared bracket is

positive since L′s < 0 and u(R
N

) > u′( R
N+1

), and the last term in the squared bracket is positive whenever

N
N+1

>
u′(

R
N

)

u′(
R

N+1
)
.

(c) Consider the equation (13) at s = snc:

φ′
(
R− snc

N
; snc

)
= u′

(
R

N

)
+

β

1− β

[
L′s(R− snc)u

(
R

N

)
+

1

N
Ls(R− snc)u′

(
R

N

)]
= 0
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Now when the regime shift is more likely, we have L̃ < L and L̃′ < L′. The term in the squared brackets above

will therefore be smaller in absolute terms. As it is negative, it must mean that:

φ̃′
(
R− snc

N
; snc

)
= u′

(
R

N

)
+

β

1− β

[
L̃′s(R− snc)u

(
R

N

)
+

1

N
L̃s(R− snc)u′

(
R

N

)]
> 0

so that the range of values at which a cautious equilibrium exists is larger.

(d) Finally, to see the effect of an increase in R, note that this does not impact equation (13) directly, but

it does have an effect on the first value snc: As the diagonal line defining the upper bound of δ ∈ [0, R − s]
shifts outwards, and δnc(s) is a downward sloping function steeper than R− s, the first value at which it is not

optimal to extirpate the resource must be smaller.

A.6 Proof of Proposition 6

Recall that Proposition 6 states that Also when crossing the threshold at time t triggers the regime shift at

some (potentially uncertain) time τ > t, it is still socially and individually rational to experiment – if at all –

in the first period only.

The key is to realize that yesterday’s decisions are exogenous today. This means that threat of a regime

shift can be modeled as an exogenous hazard rate: Let ht be the probability that the regime shift, triggered

by events earlier than and including time t, occurs at time t (conditional on not having occurred prior to t, of

course). The player’s problem in this situation can be formulated as:

V i(s,∆−i) = max
δi∈[0,R−s]

{
u(s+ δi) + (1− ht)βLs(δi + δ−i)V i(s+ δ,∆−i)

}
(A-10)

The structure of (A-10) is identical to the one in equation (9), only the effective discount factor decreases by

(1− ht). Thus, the learning dynamics are unchanged.

A.7 Proof of Proposition 7

Proposition 7 states that a known threshold is crossed in the first period, or never.

I argue by contradiction. Suppose there is a Nash equilibrium where the threshold is not crossed up to

some period t and the resource (prematurely) exhausted at period t. This implies:

u(Rt −
N − 1

N
T ) > u(

T

N
) + βVt(Rt − T ) (A-11)

The gain from preempting all other players is given by:

u(Rt−1 −
N − 1

N
T )−

[
u(
T

N
) + βu(

Rt−1 − T
N

)

]
(A-12)

Equation (A-12) is positive if u(Rt−1− N−1
N

T ) > u( T
N

)+βu(
Rt−1−T

N
) = u( T

N
)+βu(Rt

N
). Now clearly u(Rt−1−

N−1
N

T ) > u(Rt − N−1
N

T ) (as Rt−1 > Rt) and because Vt(Rt − T ) > u(Rt
N

) (otherwise exhaustion at period t

would have been optimal), we know that:

u(Rt−1 −
N − 1

N
T ) > u(Rt −

N − 1

N
T ) > u(

T

N
) + βVt(Rt − T ) > u(

T

N
) + βu(

Rt−1 − T
N

) (A-13)

Thus, it cannot have been an equilibrium to conserve part of the resource stock up to period t.

A.8 Proof of Proposition 8

Recall that Proposition 8 states that in the game described by (17) when T is unknown, there exists, in

addition to the aggressive equilibrium in which the resource is exhausted in the initial period, a pareto dominant

equilibrium in which experimentation – if at all – is undertaken in the first period only and s1 = s0 + δnc(s0)

is an upper bound on aggregate extraction for the remainder of the game.
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The existence of the aggressive equilibrium is self-evident. The pareto superiority of the cautious equi-

librium is also obvious as – by assumption – there was a pareto-dominant equilibrium with several periods of

extraction in a world without the threshold. I now show that experimentation in the second period of the game

is not individually (and socially) optimal:

For a given safe value s1 and a given stock of the remaining resource R1 in the second period, the value of

the game for player i, when all other players share the extraction of the safe amount s1 equally, is given by:

V2(R1, s1) = max
δi

{
u( s1

N
+ δi) + βLs1(δi)V3

(
R1 − s1 − δi

)}
(A-14)

The first-order condition for an (interior) expansion of the set of safe values is given by:

u′( s1
N

+ δi) = −βL′s1(δi)V3

(
R1 − s1 − δi

)
+ βLs1(δi)V ′3

(
R1 − s1 − δi

)
(A-15)

Suppose that the first derivative of the objective function is declining in s in a neighborhood of δi∗ (this is

shown below). Then for large s the right-hand side of (A-15) is larger than the left-hand side (hence there is

no interior solution). Accordingly, the last value of s at which no expansion can be coordinated upon in the

second period of the game is defined by:

u′( s1
N

) = βV ′3 (R1 − s1)− βL′s1(δi)V3 (R1 − s1) (A-16)

Now in the first period, the corresponding value function for player i (again presuming that all other

players remain at s0) is:

V1(R0, s0) = max
δi

{
u( s0

N
+ δi) + βLs0(δi)V2(R0 − s0 − δi, s0 + δi)

}
(A-17)

The condition for the last value of s at which no expansion can be coordinated upon is given by:

u′( s0
N

) =
β

N

[
V i2
(
R0 − s0 − δi, s0 + δi

)]
∂s0

− βL′s0(δi)V i2

(
R0 − s0 − δi, s+ δi

)
(A-18)

Now consider the value of s at which (A-18) holds. At this level of s, equation (A-16) will not hold (but the right-

hand side will be larger than the left-hand side) as
∂[V i2 ]
∂s

> u′ and V2

(
R0 − s0 − δi, s+ δi

)
> V3

(
R1 − s0 − δi

)
.

This means that experimentation in the second period is no longer optimal but it is still optimal in the first

period. As ϕ is a continuous function of s, the same holds also for depletion (the other corner solution).

What remains to be shown is that the first derivative of the objective function is declining in s in a

neighborhood of the optimal expansion δi∗. To this end, denote the derivative of the objective function by ϕ.

We then have (omitting all sub and superscripts to avoid clutter):

∂ϕ

∂s
=

1

N
u′′ + β

(
L′′(s+ δ)L(s)− L′(s+ δ)L′(s)

[L(s)]2
u− 1

N

L′(s+ δ)

L(s)
u′
)

− β

N

(
L′(s+ δ)L(s)− L(s+ δ)L′(s)

[L(s)]2
u′ +

L(s+ δ)

L(s)
u′′
) (A-19)

Note that the second-order condition for a maximum at δi∗ requires:

∂ϕ

∂δ
=

1

N
u′′ + β

(
L′′(s+ δ)

L(s)
u− 1

N

L′(s+ δ)

L(s)
u′
)

− β

N

(
L′(s+ δ)L(s)− L(s+ δ)L′(s)

[L(s)]2
u′ +

L(s+ δ)

L(s)
u′′
) (A-20)

Equation (A-19) and (A-20) are similar. In fact, ∂ϕ
∂s

= ∂ϕ
∂δ
− L′(s+δ)L′(s)

[L(s)]2
. The term L′(s+δ)L′(s)

[L(s)]2
is positive as

L′(s+ δ) < 0 and L′(s) < 0. Hence equation (A-19) is negative when the second-order condition holds.

Thus experimentation in the second period is not optimal, and a forterori not in any later period.
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