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Abstract 
 
This paper builds on the work of Acemoglu et al. (2012) and considers a production network 
with unobserved common technological factor and establishes general conditions under which 
the network structure contributes to aggregate fluctuations. It introduces the notions of strongly 
and weakly dominant units, and shows that at most a finite number of units in the network can 
be strongly dominant, while the number of weakly dominant units can rise with N (the cross 
section dimension). This paper further establishes the equivalence between the highest degree of 
dominance in a network and the inverse of the shape parameter of the power law. A new 
extremum estimator for the degree of pervasiveness of individual units in the network is 
proposed, and is shown to be robust to the choice of the underlying distribution. Using Monte 
Carlo techniques, the proposed estimator is shown to have satisfactory small sample properties. 
Empirical applications to US input-output tables suggest the presence of production sectors with 
a high degree of pervasiveness, but their effects are not sufficiently pervasive to be considered 
as strongly dominant. 
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1 Introduction

Following the seminal contribution of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012), there has been considerable interest in production networks and the role that
individual production units (firms/sectors) can play in propagation of shocks across the
economy. (Horvath (1998, 2000), Gabaix (2011), Acemoglu, Akcigit, and Kerr (2016),
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2016), and Siavash (2016)). One important
issue in this literature relates to conditions under which sector-specific shocks are likely
to have lasting aggregate (macro) effects. Similar issues arise in financial networks where
it is of interest to ascertain if an individual bank can be considered as “too big to fail”.
Recent reviews are provided by Carvalho (2014) and Acemoglu, Ozdaglar and Tahbaz-
Salehi (2016).
In this paper we consider production and price networks with unobserved common

technological factor and establish conditions under which the network structure con-
tributes to aggregate fluctuations. We show that sector-specific shocks have aggregate
effects if there are “dominant”sectors in the sense that their outdegrees are not bounded
in the number of production units, N , in the economy. The outdegree of a sector is defined
as the share of that sector’s output used as intermediate inputs by all other sectors in
the economy. The degree of dominance (or pervasiveness) of a sector is measured by the
exponent δ that controls the rate at which the outdegree of the sector in question rises
with the total number of sectors. This measure turns out to be the same as the exponent
of cross-sectional dependence introduced in Bailey et al. (2016), for the analysis of cross-
section dependence in panel data models with large cross-section and time dimensions.
We also show that the largest δ, denoted by δ(1), is the inverse of β, the shape parameter
of the Pareto distribution, the form assumed by Acemoglu et al. (2012) and others in the
literature.
Our approach differs from Acemoglu et al. (2012) in three important respects. First,

we provide a more general setting that allows for unobserved common factors and derive a
spatial model in sectoral prices that can be taken directly to the data. We establish a one-
to-one relationship between the pervasiveness of price shocks and aggregate output shocks.
Second, Acemoglu et al. (2012) derive only a lower bound on the decay rate of sector-
specific shocks on aggregate outcomes and consider the first- and second-order effects,
and acknowledge that ignoring higher-order interconnections might bias the results. In
contrast, the present paper provides an exact expression for the effects of sector-specific
shocks on aggregate fluctuations, and shows that its rate of decay only depends on the
extent to which the dominant unit (sector) is pervasive, namely the one with the highest δ
(abstracting from unobserved common shocks). We derive upper as well as lower bounds
for the rate of convergence of the variability of aggregate output in terms of N , and
show that these bounds converge at the same rate, and thus establish an exact rate
of convergence for aggregate output variability. Finally, Acemoglu et al. (2012) do not
identify the dominant unit(s). Instead, they approximate the tail distribution, for some
given cut-off value, of the outdegrees by a power law distribution and provide estimates
for the shape parameters. By contrast, we propose a nonparametric approach, which
is applicable irrespective of whether the outdegrees are Pareto distributed, and does not
require knowing the cut-offvalue above which the Pareto tail behavior begins. The inverse
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of the proposed estimator of δ(1) is an extremum estimator of the shape parameter of the
Pareto distribution, β, as it depends on the largest outdegree which is adjusted by cross-
sectional averages. In addition, our approach also allows us to estimate the degrees of
dominance, δi, for a given sector i so long as δ(i) > 1/2.
Small sample properties of the extremum estimator are investigated by Monte Carlo

techniques and are shown to be satisfactory. A comparison of the estimates of the shape
parameter β based on Pareto distribution with the estimates based on the inverse of
the extremum estimator of δ(1), shows that the latter performs much better, particularly
when N is large (300+). Furthermore, the extremum estimator is shown to perform well
even under a Pareto tail distribution, whereas the commonly used estimators of the shape
parameter, β, display substantial biases if the true underlying distribution is non—Pareto.
Application of our estimation procedure to US input-output tables over the period

1972-2002 yields yearly estimates of the highest δ lying between 0.77 and 0.82. Our
results are by and large close to the inverse of the estimates of the shape parameter β
considered in Acemoglu et al. (2012) when a 20% cut-off value is used, although the latter
procedure produces varying results under different cut-off points and different orders of
interconnections assumed. To provide more reliable estimates, we also conduct panel
estimation and find that the highest δ is about 0.76 for the sub-sample covering 1972-
1992 and 0.72 for the sub-sample covering 1997-2007. Quite remarkably, we find that both
the estimates of δ and the identities of the pervasive sectors are rather stable throughout
the whole period from 1972 to 2007, with the wholesale trade sector identified repeatedly
as the most dominant sector for almost all years and for the pooled sample periods as
well. Most importantly, our results suggest that no sector in the US economy is strongly
dominant, which requires the value of δ to be close to unity, whilst we obtain at most
0.76 with a standard error of 0.037. Overall, our estimates and analyses support the view
that sector-specific shocks have some macro effects, but we do not find such effects to be
suffi ciently strong to be long-lasting.
The rest of the paper is organized as follows. Section 2 presents an economic model

of production and price networks that generalizes the model by Acemoglu et al. (2012).
Section 3 introduces the concept of the degree of dominance, characterizes its proper-
ties in a network, and derives exact conditions under which micro (sectoral) shocks can
lead to aggregate fluctuations in the framework of spatial models. Section 4 introduces
the extremum estimator for the degree of dominance in the context of balanced and un-
balanced panels, and derives its asymptotic distribution. It also compares the proposed
estimator with the inverse of the estimator of the shape parameter of the power law distri-
bution. Section 5 sets up the Monte Carlo experiments and discusses the results. Section
6 presents the empirical application to the US production network, and finally Section 7
concludes. Some of the mathematical details and a brief discussion of data sources and
transformations are provided in the appendix.

Notations

The total number of cross section units (sectors) in the economy is denoted byN , which
is then decomposed into m dominant units and n non-dominant units. The number of
dominant units is also decomposed into strongly dominant units and weakly dominant
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units. (See Definition 1). If {fN}∞N=1 is any real sequence and {gN}
∞
N=1 is a sequences

of positive real numbers, then fN = O(gN) if there exists a positive finite constant K
such that |fN | /gN ≤ K for all N . fN = o(gN) if fN/gN → 0 as N → ∞. If {fN}∞N=1
and {gN}∞N=1 are both positive sequences of real numbers, then fN = 	 (gN) if there
exists N0 ≥ 1 and positive finite constants K0 and K1, such that infN≥N0 (fN/gN) ≥ K0,
and supN≥N0 (fN/gN) ≤ K1. %(A) is the spectral radius of the N ×N matrix A = (aij),
defined as %(A) = max {|λi| , i = 1, 2, ..., N}, where λi is an eigenvalue of A and |λ1(A)| ≥
|λ2(A)| ≥ · · · ≥ |λN(A)|. ‖A‖∞ = max

1≤i≤N

∑N
j=1 |aij| and ‖A‖1 = max

1≤j≤N

∑N
i=1 |aij| are the

maximum row sum norm and the maximum column sum norm of matrix A, respectively.
K is used for a generic finite positive constant not depending on N . δi denotes the
degree of dominance (or pervasiveness) of unit i in a network, where i = 1, 2, ..., N and
0 ≤ δi ≤ 1.

2 Production and price networks

To show how the two strands of literature on production networks and cross-sectional de-
pendence are related, we begin with a panel version of the input-output model developed
in Acemoglu et al. (2012). We assume that production of sector i at time t, qit, is deter-
mined by the following Cobb-Douglas production function subject to constant returns to
scale

qit = eαuitlαit

N∏
j=1

q
(1−α)wij
ij,t , for i = 1, 2, . . . , N ; t = 1, 2, ..., T, (1)

where uit is the productivity shock composed of a sector-specific shock, εit, and a common
technological factor, ft. Specifically,

uit = εit + γift,

where γi denotes the extent to which the common factor influences sector i, and is known
as a factor loading. The factor loading, γi, measures the importance of technological
change on sector i. Following Bailey et al. (2016), we denote the cross-section exponent
of the factor loadings by δγ, defined by the value of δγ that ensures

lim
N→∞

N−δγ
N∑
i=1

|γi| = cγ > 0, (2)

where cγ is a finite constant, bounded in N . The standard factor model sets δγ = 1, and
treats the common factor as ‘strong’or ‘pervasive’, in the sense that changes in ft affects
all sectors of the economy. But in what follows we shall also consider cases where δγ < 1.
In the case where the factor loadings are random we shall assume that E(γi) = γ 6= 0,
and V ar(γi) = σ2γ > 0.
In line with Acemoglu et al. (2012), we shall assume that the sector-specific shocks are

cross-sectionally independent with zero means and finite variances, V ar(εit) = σ2i , such
that 0 < σ2 < σ2i < σ̄2 < K < ∞. We also assume that εit are serially uncorrelated,

3



although this is not essential for our main theoretical results, and without loss of generality
we assume that common and sector-specific shocks are uncorrelated.
Returning to the other factors in the production function, lit denotes the labor input,

qij,t is the amount of output of sector j used in production of sector i, αwij, denotes the
share of labor, and (1− α)wij is the share of jth output in the ith sector. The amount of
final goods, cit, are defined by

cit = qit −
N∑
j=1

qji,t, i = 1, 2, . . . , N, (3)

which are consumed by a representative household with the Cobb-Douglas preferences

u (c1t,c2t, . . . , cNt) = A
N∏
i=1

c
1/N
it , A > 0. (4)

We further assume that the aggregate labor supply, lt, is given exogenously and labor
markets clear

lt =
N∑
i=1

lit. (5)

The competitive equilibrium solution of the economy for given sector prices, P1t, P2t, . . . , PNt,
and the wage rate, wt, is given by

qij,t =
(1− α)wijPitqit

Pjt
, (6)

and

lit =
αPitqit
Wt

. (7)

Substituting the above results in (1) and simplifying yields

pit = (1− α)
N∑
j=1

wijpjt + αwt − bi − α (γift + εit) , (8)

where pit = log (Pit), wt = log (Wt), and

bi = α log (α) + (1− α) log (1− α) + (1− α)

N∑
j=1

wij log(wij), (9)

for i = 1, 2, . . . , N . In cases where wij = 0, we set wij log (wij) = 0 as well. A dual to the
price equation in (8) can also be obtained using (6) in (3) to obtain

Sit = (1− α)

N∑
j=1

wjiSjt + Cit, (10)

where Cit = Pitcit, and Sit = Pitqit is the sales of sector i.
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In matrix notation the ‘price’system, (8), can be written as

pt = (1− α) Wpt + αwtτN − (b + αγft + αεt) , (11)

where pt = (p1t, p2t, . . . , pNt)
′, W is an N ×N matrix W = (wij), τN is an N × 1 vector

of ones, γ = (γ1, γ2, . . . , γN)′, b = (b1, b2, . . . , bN)′, and εt = (ε1t, ε2t, . . . , εNt)
′. The dual

of the price equation, the sales equation, (10), can also be written as

St = (1− α) W′St + Ct, (12)

where St = (S1t, S2t, . . . , SNt)
′ and Ct = (C1t, C2t, . . . , CNt)

′. Note that W enters as its
transpose, W′, in (12) as compared to the price equations in (11).
Finally, aggregating (7) over i, we have

Wt

N∑
i=1

lit = α
N∑
i=1

Pitqit,

or

ltWt = α
N∑
i=1

Sit = ατ ′NSt. (13)

Also using (12)
St = [IN − (1− α) W′]

−1
Ct, (14)

where [IN − (1− α) W′]−1 is known as the Leontief inverse.1 Using this result in (13)
now yields the following expression for the total wage bill,

ltWt = ατ ′N [IN − (1− α) W′]
−1

Ct. (15)

Similarly, solving (11) for the log-price vector, pt, and using Lemma 1 in Appendix A
again we have

pt = αwt [IN − (1− α) W]−1 τN

+ α [IN − (1− α) W]−1
(
−α−1b− γft − εt

)
.

(16)

Let

pt = N−1
N∑
i=1

pit = N−1τ ′Npt, (17)

be the aggregate log price index, and use (16) to obtain

pt =
{ α
N
τ ′N [IN − (1− α) W]−1 τN

}
wt

− α

N
τ ′N [IN − (1− α) W]−1 ξt,

(18)

1A proof that the Leontief matrix is invertible even in the presence of dominant units is provided in
Lemma 1 of Appendix A.
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where ξt = α−1b + γft + εt. But since wij ≥ 0, WτN = τN , and 0 < α < 1, then
[IN − (1− α) W]−1 τN = τN/α, and hence (18) can also be written as

wt − pt = υ′ξt, (19)

where
υ =

α

N
[IN − (1− α) W′]

−1
τN . (20)

Acemoglu et al. (2012) refer to υ = (υ1, υ2, . . . , υN)′ as the ‘influence vector’(their equa-
tion (4)), and show that υi ≥ 0, and τ ′Nυ = 1. Writing (19) in terms of the common and
sector-specific shocks we now have

wt − pt = α−1 (υ′b) + (υ′γ) ft + υ′εt, (21)

where, using (9),

υ′b = α log (α) + (1− α) log (1− α) + (1− α)
N∑
i=1

N∑
j=1

υiwij log (wij) .

The above (log) real-wage equation, (21), generalizes equation (3) in Acemoglu et al.
(2012) by allowing for time variations in prices and technologies.
Equations (15) and (21) are dual of each other. (15) gives the total wage bill in terms of

a weighted sum of consumption expenditures, with the weights given by α [IN − (1− α) W]−1 τN .
Whilst (21) gives the log of the real wage rate in terms of the common and aggregate
sectoral shocks, namely ft and υ′εt. The key issue is how much of the cyclical fluctua-
tions in (log) real wages is due to common shocks (υ′γ)2 V ar (ft) and how much is due
to the sectoral shocks, V ar (υ′εt). Recall that common and sectoral shocks are assumed
to be uncorrelated. Acemoglu et al. (2012) focus on the asymptotic properties of υ′εt, as
N →∞. Since V ar (υ′εt) = υ′V ar (εt)υ, then it follows that

σ̄2 (υ′υ) ≥ V ar (υ′εt) ≥ σ2 (υ′υ) ,

and the asymptotic properties of V ar (υ′εt) is governed by that of υ′υ. Acemoglu et al.
(2012, p.2009) show that2

υ′υ ≥ kα,0N
−1 + kα,1N

−2
N∑
j=1

d2j , (22)

where kα,0 and kα,1 are finite constants that depend on α, and dj is defined by

dj =
N∑
i=1

wij, (23)

which is the jth column sum of W. Therefore, to analyze the limiting behavior of
V ar (υ′εt), it is suffi cient to consider the limiting behavior of N−2

∑N
j=1 d

2
j . This analysis

is carried out in some detail by Acemoglu et al. (2012). But as we shall see it is also
important to consider the limiting behavior of individual column sums of W, and in par-
ticular to identify the ones that rise with N , as distinguished from those that are bounded
in N .

2These authors also consider higher-order interconnection terms which they include on the right-hand-
side of υ′υ, but these terms are dominated by N−2

∑N
j=1 d

2
j .
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3 A spatial representation of the price network

In this section we consider the price network equation system given by (11) and write it
more generally as

xt = ρWxt − b(ρ,W)− (1− ρ) (γft + εt) , (24)

where
xt = pt − wtτN , (25)

ρ = 1− α, and the ith element of the N × 1 vector b(ρ,W) is given by (9), which can be
written as

bi(ρ,W) = (1− ρ) log (1− ρ) + ρ log (ρ) + ρ
N∑
j=1

wij log(wij), for i = 1, 2, ..., N. (26)

Equation (24) represents a first-order spatial autoregressive (SAR(1)) model with an
unobserved common factor, where the price-specific intercepts, bi, depend on ρ and the
weight matrix W. This model can also be used to derive an expression for wt − p̄t which
is taken as a measure of GDP in the literature. Averaging (25) and using (17) we have

xN,t =
1

N
τ ′Nxt = − (wt − p̄t) .

Also using (21)
−xN,t = α−1 (υ′b) + (υ′γ) ft + υ′εt.

Therefore, one can derive the limiting properties of υ′εt, which has been the subject of
intensive investigation by Acemoglu et al. (2012), using the SAR model (24).
There are two advantages in directly focusing on the SAR model. First, it allows us

to relate to the network and spatial econometrics literature, and derive conditions under
which α, γ and σ2i can be estimated from panel data on wage rate and prices. The direct
use of the SAR model also enables us to provide exact bounds on V ar (wt − p̄t) rather
than the different lower bounds obtained by Acemoglu et al. (2012) for different degrees
of higher-order interconnections. Instead, by considering the SAR model explicitly we are
able to show that at most only a few sectors can have significant aggregate effects, and
these sectors are those with outdegrees that rise with N . The rate at which the outdegrees
rise with N could very well differ across sectors and it is important that such sectors are
identified and their empirical contribution to aggregate fluctuations evaluated.
We also face a number of challenges in the empirical analysis of the SAR model given

by (24). Estimation of this model can be carried out using standard techniques, such as
ML or GMM, only when the spatial weight matrix, W, has bounded row and column
norms, namely if

‖W‖∞ < K <∞, and ‖W‖1 < K <∞.
Since W is row-standardized then it follows that ‖W‖∞ ≤ 1, and we only need to
consider the behavior of the column norm of W. The presence of the common factor, ft,
also complicates the estimation problem but does not pose significant diffi culties if W is
row and column bounded. See the recent contributions of Bai and Li (2013) and Yang
(2016) on estimation of SAR models with unobserved common factors.
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3.1 Characterization of networks in terms of strongly and weakly
dominant units

Suppose now that ‖W‖1 is not bounded in N , but continue to assume that W is row-
standardized and wij ≥ 0, for all i and j. Denote the jth column of W by w·j and the
associated column sum by dj = τ ′Nw·j, also defined by (23). In the network literature
dj is known as the weighted outdegree of unit j, which is proportional to the number of
units in the network that connect to unit j. We rule out units with zero outdegrees and
assume throughout that dj > 0, for all j.

Definition 1. (δ-dominant) We shall refer to unit j as δj-dominant if its weighted out-
degree, dj, is of order N δj , or more specifically if

dj = κjN
δj , for j = 1, 2, ..., N, (27)

for κj > 0 and 0 ≤ δj ≤ 1. In particular, the unit j is said to be strongly dominant if
δj = 1, weakly dominant if 0 < δj < 1, and non-dominant if δj = 0. We refer to δj as the
degree of dominance (or pervasiveness) of unit j in the network.3

In the standard case where the column norm of W is bounded we must have δj = 0
for all j, that is, all units are non-dominant. W will have an unbounded column norm if
δj > 0 for at least one j. But due to the bounded nature of the rows ofW, not all columns
ofW can be δ-dominant with δj > 0 for all j. To see this, let d = (d1, d2, ..., dN)′ = W

′
τN ,

and note that
τ ′Nd = τ ′NW

′
τN = N. (28)

Hence, there must exist ∞ > K > κj > 0 for j = 1, 2, ..., N such that

N∑
j=1

κjN
δj = N, (29)

for a fixed N and as N →∞. Let

SN = N−1
N∑
j=1

κjN
δj , (30)

and note that SN must converge to 1, and it is therefore necessary that SN > 0 and is
bounded in N from above. In Appendix B we show that

SN ≤ κmax

(
1 +

N − 1

N

N∑
i=1

δi

)
,

and since κmax < K, it then follows that SN will be bounded in N if the following sum-
mability condition is met

N∑
j=1

δj < K <∞. (31)

3δj can also be viewed as the power exponent of the outdegree of unit j in the network.
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To ensure that SN > 0 for all N and as N → ∞, let κmin = min (κ1, κ2, ..., κN), and
δmin = min (δ1, δ2, ..., δN), and note that since by assumption κmin > 0, then we must also
have

N =
N∑
j=1

κjN
δj > NκminN

δmin ,

which in turn implies
κminN

δmin < 1. (32)

It is clear that this condition cannot be satisfied for all values of N , unless δmin = 0,
which establishes that not all units in a given network can be dominant. We refer to this
latter condition as the min condition and summarize the above findings in the following
proposition.

Proposition 1. Consider the network represented byW = (wij ≥ 0), and assume that W

is row-standardized. Suppose that the outdegrees of the network, dj =
∑N

i=1wij, are non-
zero (dj > 0) and follow that power function, (27), with δj being the degree of dominance
of unit j in the network. Then {δj} must be summable, and not all units of the network
can be δ-dominant, with δj > 0 for all j.

Consider now the case where a finite number of units, say m, are δ-dominant (with
δj > 0) and the rest are non-dominant (namely with δj = 0). In this case we have

N =
m∑
j=1

κjN
δj +

N∑
j=m+1

κj ≥ mκminN
δm,min + (N −m)κmin,

and it follows that
mN δm,min−1 − m

N
≤1− κmin

κmin
. (33)

This condition is satisfied for all values of 0 ≤ δm,min≤ 1, and the m dominant units can
be strongly or weakly dominant. To summarize, it is possible for the network to contain
many weakly dominant units so long as the degrees of pervasiveness of the units satisfy
the summability and min conditions given by (31) and (32), respectively.
In the case where m is allowed to rise with N , it is clear from Proposition 1 that m

can not rise at the same rate as N . Let

m = cN ε, 0 ≤ ε < 1, and c > 0. (34)

Then condition (33) can be written as

N δm,min+ε−1 −N ε−1 ≤ 1−κmin
cκmin

,

which is met for all values of N (and as N → ∞) if δm,min + ε ≤ 1, since ε < 1. Note
that we must have ε = 0 if δm,min = 1, which re-iterates that the number of strongly
dominant units must be fixed and cannot rise with N . If δm,min < 1, then the number of
weakly dominant units could rise with N but at a slower rate such that ε ≤ 1 − δm,min
is satisfied. Notice that the greater the value of δm,min, the lower the rate at which the
number of weakly dominant units can expand with N . The next proposition summarizes
these findings.
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Proposition 2. Consider the network represented by W, and assume that W is row-
standardized, wij ≥ 0, and no unit has zero outdegree. Then the number of strongly
dominant units must be fixed and cannot rise with N . The number of weakly dominant
units can rise with N at a rate of ε as long as 0 ≤ ε ≤ 1 − δm,min holds, where δm,min =
min(δ1, δ2, ..., δm) < 1, and δj is the degree of dominance of unit j in the network. (see
Definition 1).

Remark 1. Propositions 1 and 2 imply that there are three possible network structures in
terms of δ-dominance. The first one is a network consisting of a fixed number of strongly
dominant units and the remaining units are non-dominant. The second possibility is that
there exist a (large) number of weakly dominant units, the number of which could increase
with N but at a slower rate, and the rest are non-dominant units. The third scenario is
a combination of the first two. For example, one could have a fixed number of strongly
dominant units, and a large number of weakly dominant units with degrees of dominance,
δj, that decay exponentially.

Remark 2. Analogous results have also been found in Chudik, Pesaran, and Tosetti
(2011) regarding the possible number of strong factors, and in Chudik and Pesaran (2013)
on the number of dominant units in large dimensional vector autoregressions.

3.2 The relationship between the two measures of dominance

The exponent δmax is related to β, the shape parameter of the power law assumed by
Acemoglu et al. (2012, Definition 2) for the outdegree sequence, {d1, d2, ..., dN}. To see
this we first use the specification of the outdegrees given by (27) in (22) to obtain

υ′υ ≥ kα,0N
−1 + kα,1N

−2
m∑
j=1

κ2jN
2δj + kα,1

N −m
N2

(
N∑

j=m+1

κ2j/ (N −m)

)
,

where (N −m)−1
∑N

j=m+1 κ
2
j = O(1). Also, recall that m = cN ε and

N−2
m∑
j=1

κ2jN
2δj ≤ cκ2maxN

2(δmax−1)+ε,

where as before δmax = max (δ1, δ2, ..., δN), and κmax = max (κ1, κ2, ..., κN).
Then the limiting behavior of υ′υ will be determined by N2(δmax−1)+ε, namely the cross

section exponent of the strongest of the dominant units, δmax. For the production network
to affect macro economic fluctuations we need δmax > 1/2. But to make sure that υ′υ
does not converge to zero as N → ∞, the much stronger condition, namely δmax = 1, is
required. It is clear that the same result follows if W has one strongly dominant unit
with δ = 1. The remaining dominant units either behave similarly, or will be dominated
by the leading dominant unit, with δmax.
Consider now Corollary 1 of Acemoglu et al. (2012), where it is established that

V ar (xN,t) behaves asymptotically as N−2(β−1)/β−2εβ , for some small εβ > 0 and β ∈ (1, 2).
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Matching this rate of expansion with N2(δmax−1)+ε established as a lower bound for υ′υ,
we have

2 (δmax − 1) + ε ≥ −2(β − 1)/β − 2εβ,

or δmax ≥ 1/β − ε̃, where ε̃ = εβ + ε/2 > 0.
It also follows that δmax ≥ 1/ς − ε̃ς , where ε̃ς > 0, and ς is the shape parameter of the

power law assumed by Acemoglu et al. (2012, Corollary 2) for the second-order degree
sequences (based on the second-order interactions in the network). Other shape para-
meters are also considered by Acemoglu et al. (2012) for higher-order degree sequences.
But clearly these shape parameters are closely related, and as we shall see are not needed
since it is possible to derive an exact rate for the asymptotic behavior of υ′υ.

3.3 Derivation of an exact measure of dominance

In what follows we shall derive an exact expression for V ar (xN,t) that captures first- and
higher-order network interconnections and from which a universal value for δmax can be
derived. Suppose as before the network contains a total of N units, of which m units are
dominant and n units are non-dominant. Here to simplify the exposition we confine our
analysis to networks with one dominant unit, that is, m = 1 and n = N − 1. We provide
derivations for networks with multiple dominant units in Appendix C.
Consider the SAR model, (24), and without loss of generality assume that the first

element of xt, namely x1t, is the dominant unit. Accordingly, we write (24) in partitioned
form as (setting w11 = 0)(

x1t
x2t

)
=

(
0 ρw′12

ρw21 ρW22

)(
x1t
x2t

)
+

(
g1t
g2t

)
, (35)

where x2t = (x2t, x3t, ..., xNt)
′,w12 = (w12, w13, ..., w1N)′,w21 = (w21, w31, ..., wN1)

′,W22 is
the n×n weight matrix associated with the n non-dominant units, g2t = (g2t, g3t, ..., gNt)

′,
and

git = −bi − (1− ρ)(γift + εit), (36)

for i = 1, 2, ..., N . Furthermore, note that since

WτN=

(
0 w′12

w21 W22

)(
1
τ n

)
=

(
1
τ n

)
,

then w′12τ n = 1, and τ n − w21 = W22τ n. The latter result states that the ith row sum
of W22 is given by 1 − wi1 < 1, and considering that 0 ≤ wi1 < 1, then we must have
‖W22‖∞ ≤ 1, which also establishes that %(W22) ≤ 1, where %(A) denotes the spectral
radius of matrix A. Under the assumption that |ρ| < 1, by Lemma 1 in Appendix A the
system of equations (35) has a unique solution given by(

x1t
x2t

)
=

(
1 −ρw′12

−ρw21 In − ρW22

)−1(
g1t
g2t

)
(37)

= S−1(ρ)gt.
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For future reference also note that the (1, 1)th element of S−1(ρ) is given by φ−11 , where

φ1 = 1− ρ2w′12 (In − ρW22)
−1 w21 6= 0. (38)

Finally, to allow unit 1 to be δ-dominant we consider the following exponent formulation

d1 =
N∑
i=2

wi1 = κ1N
δ1 , (39)

where d1 is allowed to rise with N , with κ1 > 0 and 0 < δ1 ≤ 1. In more general settings
where wij can also take negative values one could use

d1 =

N∑
i=2

|wi1| = κ1N
δ1 , (40)

which also implies that

||w21||2 =

(
N∑
i=2

w2i1

) 1
2

≤ d
1/2
1 = κ

1/2
1 N δ1/2. (41)

The above exponent formulation is to be contrasted to the power law specification which
has been used in the literature. Further discussion is provided in Section 4.
The system of equations (35) can now be solved for x2t in terms of x1t , namely (note

that |%(ρW22)| < 1, since |ρ| < 1)

x2t = (In − ρW22)
−1(ρw21x1t + g2t), (42)

and4

x1t = φ−11
[
g1t + ρw′12 (In − ρW22)

−1 g2t
]
. (43)

Using the above in (42), we now have

x2t = (ρ/φ1)
[
g1t + ρw′12 (In − ρW22)

−1 g2t
]

(In − ρW22)
−1 w21 + (In − ρW22)

−1 g2t.
(44)

The first term of x1t refers to the direct and indirect effects of the dominant unit, and the
second term relates to the network dependence of the (non-dominant) units.
Consider now the aggregate effects defined as the simple cross-section average of xit,

xN,t =
x1t +

∑N
i=2 xit

N
=
x1t + τ ′nx2t

N
.

Using (42) and (43)

xN,t =
x1t + τ ′n (In − ρW22)

−1 [ρw21x1t − b2 − (1− ρ)ε2t − (1− ρ)γ2ft]

N
,

4In deriving (44), it is required that φ1 6= 0. This condition is met since the N × N matrix on the
right-hand-side of (37) is non-singular.
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where b2 = (b2, b3, ..., bN)′ and γ2 = (γ2, γ3, ..., γN)′. Hence

xN,t = −aN + θNx1t − (1− ρ)ψNft − (1− ρ)v′Nε2t, (45)

where
aN = N−1τ ′n (In − ρW22)

−1 b2,

θN = N−1
[
1 + ρτ ′n (In − ρW22)

−1 w21

]
, (46)

ψN = N−1τ ′n (In − ρW22)
−1 γ2, (47)

and
v′N = N−1τ ′n (In − ρW22)

−1 . (48)

The first term of (45), aN , is an intercept which is bounded in N . To see this, recall that
‖W22‖∞ ≤ 1, |ρ| < 1, and W22 is column bounded, then it follows from Lemma 2 in
Appendix A that (In − ρW22)

−1 has bounded row and column norms. The second term
captures the effect of the dominant unit. The third term is due to the common factor,
ft, and the final term represents the average effects of the micro productivity shocks. vN
is the influence vector associated with the non-dominant units. It is analogous to the
influence vector defined by (20) which applies to all units. Taking these terms in turn we
have

V ar (v′Nε2t) = N−2τ ′nH22τ n,

where H22 = (In − ρW22)
−1 V22,ε (In − ρW′

22)
−1 and V22,ε = diag (σ22, σ

2
3, ..., σ

2
N). Notice

that (
N − 1

N2

)
λn (H22) ≤ V ar (v′Nε2t) ≤

(
N − 1

N2

)
λ1 (H22) , (49)

where λ1 (H22) and λn (H22) denote the largest and smallest eigenvalue of H22, respec-
tively. We first demonstrate that λ1 (H22) < K < ∞. Since sup

i
(σ2i ) < K < ∞, and we

have shown that (In − ρW22)
−1 has bounded row and column norms, then

‖H22‖∞ ≤
∥∥(In − ρW22)

−1∥∥
∞ ‖V22,ε‖∞

∥∥(In − ρW22)
−1∥∥

1
< K <∞,

and likewise ‖H22‖1 < K < ∞. Hence, λ1 (H22) ≤ min (‖H22‖∞ , ‖H22‖1) < K < ∞.
Next, it is easily seen that λn (H22) > 0, as V22,ε is positive definite and (In − ρW22)

−1 is
nonsingular. Using these results in (49), we establish that V ar (v′Nε2t) is bounded both
above and below by N−1 asymptotically, and thus

V ar (v′Nε2t) = 	
(
N−1

)
. (50)

Therefore, the effects of the idiosyncratic shocks from the non-dominant sectors on xN,t
vanish as N →∞. It is worth noting that we establish the rate of convergence, denoted
by 	 (·), by showing that the upper and lower bounds are identical asymptotically in
terms of N , and the symbol 	 (·) should be distinguished from the O (·) notation, which
provides only an upper bound on the growth rate of a function.
Using (43) we also have

Cov (x1t,v
′
Nε2t) = −(1− ρ)ρφ−11 N−1w′12H22τ n, (51)
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and
Cov (x1t, ft) = −(1− ρ)

[
φ−11 γ1 + ρφ−11 h2

]
V ar (ft) , (52)

where
h2 = γ ′2 (In − ρW22)

−1 w12.

Overall (recalling that ft and εit are independently distributed), we have

V ar (xN,t) = θ2NV ar (x1t)− 2(1− ρ)θNCov (x1t,v
′
Nε2t) + (1− ρ)2V ar (v′Nε2t) (53)

+(1− ρ)2qNV ar (ft) ,

where
qN = ψ2N + 2ψNθNφ

−1
1 γ1 + 2ρψNθNφ

−1
1 h2.

Also, using (43) we have

V ar (x1t) = φ−21 (1− ρ)2
{[
γ21 + ρ2h22

]
V ar(ft) + σ21

}
+φ−21 ρ2(1− ρ)2w′12H22w21, (54)

which is easily seen to be bounded in N .
A number of results can now be obtained from (53). First, without a common factor

and a dominant unit, V ar (xN,t) = 	(N−1), and the effects of idiosyncratic shocks on xN,t
will vanish as N →∞.
In the case where there is no common factor but the network includes a dominant

unit, using (53) and (50) we have

V ar (xN,t) = θ2NV ar (x1t)− 2(1− ρ)θNCov (x1t,v
′
Nε2t) +O

(
N−1

)
. (55)

Recall that V ar(x1t) is bounded in N , and consider the limiting properties of θN de-
fined by (46). We first note that (In − ρW22)

−1 is row and column bounded, and
φ′n= τ ′n (In − ρW22)

−1, being the n × 1 vector of column sums of (In − ρW22)
−1 , will

also have bounded elements. Furthermore, since

φ′n = (φ2, φ3, ..., φN) = τ ′n + ρτ ′nW22 + ρ2τ ′nW
2
22 + ...,

recalling that ρ > 0 and wij ≥ 0, then φi > 1 for i = 2, 3, ..., N , and

N−1 + φminρN
−1d1 ≤ θN ≤ N−1 + φmaxρN

−1d1, (56)

where φmin = min(φ2, φ3, ..., φN) > 1, φmax = max(φ2, φ3, ..., φN) < K <∞, and τ ′nw21 =
N∑
j=2

wj1 = d1. Therefore, the asymptotic behavior of θN depends on the way the outdegree

of the dominant unit, namely d1, varies with N . Using the specification as before in (27),
d1 = κ1N

δ1 , it follows that

N−1 + φminρκ1N
δ1−1 ≤ θN ≤ N−1 + φmaxρκ1N

δ1−1, (57)

which leads to
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θN = 	(N δ1−1), 0 < δ1 ≤ 1. (58)

Finally, consider the second term of (55) and note from (51) that

|Cov (x1t,v
′
nε2t)| ≤

∣∣∣∣(1− ρ)ρ

φ1

∣∣∣∣N−1 ‖w′12‖∞ ∥∥(In − ρW22)
−1∥∥

∞ ‖V22,ε‖∞ ‖φn‖∞ = O
(
N−1

)
,

since ‖w′12‖∞ = ‖w12‖1 =
N∑
i=2

w1i = 1,
∥∥(In − ρW22)

−1∥∥
∞ < K, ‖V22,ε‖∞ = σ̄2 < K, and

‖φn‖∞ = φmax < K. Using the above results in (55) we now have

V ar (xN,t) = 	(N2δ1−2) +O(N δ1−2) +	
(
N−1

)
,

which simplifies to (since δ1 ≤ 1)

V ar (xN,t) = 	(N2δ1−2) +	
(
N−1

)
, (59)

and clearly,
V ar (xN,t) = 	(N2δ1−2), if δ1 ≥ 1/2. (60)

As noted earlier, this result is more general than the one established by Acemoglu et al.
(2012) who only provide a lower bound on the rate at which aggregate volatility changes
with N .
It is also instructive to relate θN to the first- and higher-order network connections

discussed in Acemoglu et al. (2012). Expanding the terms of the inverse (In − ρW22)
−1,

θN can also be written as

θN = N−1
[
1 + ρτ ′nw21 + ρ2τ ′nW22w21 + ρ3τ ′nW

2
22w21 + ...

]
,

where N−1ρτ ′nw21 = N−1ρd1 represents the effects of the first-order network connections
on θN , N−1ρ2τ ′nW22w21, the effects of the second-order network connections and so on.
But in view of (56) and (58) all these higher order interconnections (individually and
together) at most behave as O(N δ1−1).
Therefore, the rate at which micro shocks influence the macro economy depends on

δ1, which measures the strength of the dominant unit. But to ensure a non-vanishing
variance, V ar (xN,t) > 0, we need a value of δ1 = 1. For all other values of δ1 < 1,
V ar (xN,t) → 0, as N → ∞. Also for the dominant unit to have any impact over and
above the standard rates of diversification of micro shocks on xN,t, we need δ1 > 1/2.

Remark 3. It should be noted from (59) that δ1 can not be consistently estimated if
δ1 < 1/2. This finding is also related to the study by Bailey et al. (2016), who show
that the exponent of cross-sectional dependence, α, can only be identified and consistently
estimated for values of α > 1/2.

Suppose now that the network is subject to common shocks without a dominant unit.
In this case we have

V ar (xN,t) = (1− ρ)2ψ2NV ar (ft) +	
(
N−1

)
,
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and the rate of convergence of xN,t is determined by the strength of the factor as given
by ψ2N . Using (47) we have (recall that % (W22) ≤ 1),

ψN = N−1τ ′n (In − ρW22)
−1 γ2

= N−1
(
τ ′nγ2 + ρτ ′nW22γ2 + ρ2τ ′nW

2
22γ2 + ....

)
.

By a similar line of reasoning as before, it is then easily seen that ψN = 	
(
N δγ−1

)
,

where δγ (already defined by (2)) is the cross-section exponent of the factor loadings,
γi, and measures the degree to which the common factor is pervasive in its effects on
sector-specific productivity.
Finally, suppose that the production network is subject to a common factor as well as

the dominant unit. Then for δ1 > 1/2 and δγ > 1/2 we have5

V ar (xN,t) = 	
(
N2δ1−2

)
+	

(
N2δγ−2

)
+	

(
N−1

)
. (61)

It is clear that the relative importance of the dominant unit and the common factor
depends on the relative magnitudes of δ1 and δγ. We need estimates of these exponents
for a further understanding of the relative importance of macro and micro shocks in
business cycle analysis.
Allowing for multiple factors and multiple dominant units does not alter the main

results, and the general expression in (61) will continue to apply, with the difference that
δγ and δ1 in such a general setting will refer to the maximum of the exponents of the
factors and the dominant units, respectively.

4 Degrees of pervasiveness of units in a network: es-
timation and inference

In this section we consider the problem of estimating the degrees of pervasiveness of units
in a given network. We consider the power law approach employed in the literature as well
as a new method that we propose when the outdegrees follow the exponent specification
defined by (39). It is unclear if a power law specification for the outdegrees (above a given
cut-off value) is necessarily to be preferred to a specification which relates the outdegrees
directly to the size of the network, N , without the need to specify a cut-off value. The
exponent specification of outdegrees has the added advantage that it allows identification
of more than one dominant units in the network.

4.1 Power law type estimators

Suppose that we have observations on the outdegrees, dit, for i = 1, 2, ..., N and t =
1, 2, ...T . Denote the degree of dominance of unit i by δi, and the associated ordered
values by δ(i), where δ(1) ≥ δ(2) ≥ ... ≥ δ(N). The power law estimate of δ(1) is given
by 1/β̂, where β̂ is an estimator of the shape parameter of the power law distribution

5Note that for values of δ1 and δγ < 1/2 the third term in (61) will dominate the network and the
common factor effects.
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fitted to the outdegrees that lie above a given minimum cut-off value, dmin. (see Section
3.2). A random variable D is said to follow a power law distribution if its complementary
cumulative density function (CCDF), or tail distribution, satisfies

Pr (D ≥ d) ∝ d−β, (62)

where β > 0 is a constant known as the shape parameter, or the exponent, of the power
law, and ∝ denotes asymptotic equivalence.6 As the name suggests, the tail of the power
law distribution decays asymptotically at the power of β. It is readily seen that the
probability density function of D follows

fD (d) ∝ d−(β+1). (63)

A popular specific case of power laws is the Pareto distribution. Its CCDF is given by

Pr (D ≥ d) = (d/dmin)
−β , d ≥ dmin, (64)

for some shape parameter β > 0 and lower bound dmin > 0. The Pareto distribution has
been widely used to study the heavy-tailed phenomena in many fields including economics,
finance, geology, physics, just to name a few. Since our focus is on the estimation of the
shape parameter β, in what follows we briefly describe three approaches that are frequently
used in the literature.7

The first popular procedure is to run the following log-log regression (also known as
the rank-size regression or Zipf regression),

ln i = a− β ln d(i), i = 1, 2, ..., Nmin, (65)

where a is a constant, and d(1) ≥ d(2) ≥ ... ≥ d(Nmin) are the Nmin largest ordered ob-
servations on d such that d(Nmin) ≥ dmin. d in our case are the outdegrees of units in
a network. It can be shown that the ordinary least squares (OLS) estimator of β from
regression (65) converges in probability to the true β if Nmin is suffi ciently large. This
procedure, however, is fraught with two pitfalls. First, dmin, the lower bound above which
D obeys the Pareto distribution, is rarely known in practice, and hence the choice of Nmin,
i.e., the number of cut-off observations used in the regression, is often made by graphical
inspection or decided arbitrarily by the investigator, which may lead to unreliable results.
Second, both the estimate of β and its standard error are subject to small sample bias
(Goldstein, Morris, and Yen, 2004; Gabaix and Ioannides, 2004). Thus, to correct this
bias, Gabaix and Ibragimov (2011) advocate shifting the rank by 1/2 and estimating β
using the following regression

ln (i− 1/2) = a− β ln d(i), i = 1, 2, ..., Nmin. (66)

6In a broader definition, the power law distributions take the form Pr (D ≥ d) ∝ L(d)d−β , where L(d)
is some slowly varying function, which satisfies limd→∞ L (rd) /L (d) = 1 for any d > 0.

7More sophisticated techniques are reviewed in, among others, Beirlant et al. (2006), and are beyond
the scope of this paper.
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Hereafter, we refer to the estimator of β from (66) as β̂LL, or the log-log regression
estimator with Gabaix and Ibragimov (2011) correction. The standard error of β̂LL can
be estimated by

σ̂
(
β̂LL

)
=

√
2

Nmin
β̂LL. (67)

Another often-used estimator of β is the maximum likelihood estimator (MLE), de-
noted by β̂MLE, which is also the well-known Hill estimator (Hill, 1975). It can be easily
verified that8

β̂MLE =
Nmin∑Nmin

i=1 ln d(i) −Nmin ln d(Nmin)
, (68)

and its standard error can be estimated by

σ̂
(
β̂MLE

)
=

β̂MLE√
Nmin

, (69)

if Nmin is large. This estimator would be the most effi cient one if the underlying dis-
tribution is indeed Pareto and if dmin is known. Otherwise, it may be less robust than
the log-log regression, and also suffers from small sample bias and the same problem of
sensitivity to the choice of Nmin.
Rather than estimating β based on some arbitrarily chosen value ofNmin, some authors

have proposed joint estimation of β and dmin. Among them a notable contribution is
by Clauset, Shalzi and Newman (2009, CSN), who demonstrate the importance of d̂min
(the estimated dmin) by showing that β̂MLE greatly underestimates β if d̂min < dmin and
slightly overestimates β if d̂min > dmin. They recommend estimating dmin by minimizing
the Kolmogorov-Smirnov or KS statistics, which is the maximum distance between the
empirical cumulative distribution function (CDF) of the sample, S (d), and the CDF of
the reference distribution, F (d), namely,

TKS = max
d≥dmin

|S (d)− F (d)| .

Here F (d) is the CDF of the Pareto distribution that best fits the data for d ≥ dmin and is
obtained by the maximum likelihood estimation. The MLE in (68) is then computed using
the estimated value of dmin. Hereafter, we call this estimator feasible maximum likelihood
estimator and denote it by β̂CSN .

9 It should be noted that this method relies on the
assumption that the true distribution above dmin is exactly Pareto. Other goodness-of-fit
measures can also be considered. (See Clauset, Shalzi and Newman, 2009, and references
therein.)
In the subsequent analysis, we examine how the inverse of β, which is estimated by the

three procedures discussed above, behave as an estimator of δ(1), and how these estimates
compare to the extremum estimator that we now consider.

8See, for example, Appendix B of Newman (2005).
9The code implementing this method can be downloaded from

http://tuvalu.santafe.edu/~aaronc/powerlaws/.
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4.2 Extremum type estimators

In this sub-section we propose an extremum estimator of δ(1) (or 1/β) which is applicable
more generally as compared to the power law type estimators. Specifically, it applies to
the general specification of the outdegrees given by (27). We begin with the following
balanced panel data model

dit = κN δi exp(υit), i = 1, 2, ..., N ; t = 1, 2, ..., T, (70)

where dit is the outdegree of unit i measured at time t, κ > 0, and δi measures the
degree of dominance of unit i. We also assume that υit are IID(0, σ2υ), and distributed
independently of δi, which we take as fixed constants. Furthermore, given the constraint
(28), we must have

κ
N∑
i=1

N δi exp(υit) = N,

which for N suffi ciently large yields (noting that υit and δi are by assumption indepen-
dently distributed)10

κ =
exp

(
−σ2v

2

)
limN→∞N−1

∑N
i=1N

δi
> 0, (71)

Taking the log transformation of (70) we have

ln dit = lnκ+ δi lnN + υit, i = 1, 2, ..., N ; t = 1, 2, ..., T. (72)

Averaging across i and t now yields

(TN)−1
T∑
t=1

N∑
i=1

ln dit = lnκ+

(
N−1

N∑
i=1

δi

)
lnN + (TN)−1

T∑
t=1

N∑
i=1

υit. (73)

But from the summability condition, (31), it follows that(
N−1

N∑
i=1

δi

)
lnN ≤ K

(
lnN

N

)
,

and hence (
N−1

N∑
i=1

δi

)
lnN → 0, as N →∞. (74)

This result holds irrespective of whether the number of δi’s that are non-zero, say m, is
fixed or rising with N , but at a slower rate than N (Propositions 1 and 2).
Furthermore, considering that by assumption υit are IID over i and t, then the last

term of (73) also tends to zero, and lnκ can be estimated by

l̂nκ = (TN)−1
T∑
t=1

N∑
i=1

ln dit. (75)

10Recall that under the summability condition (31), limN→∞N−1
∑N
i=1N

δi exists and is strictly pos-
itive.
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Now for each i, averaging (72) over t = 1, 2, ..., T , we can propose the following estimator
of δi:

δ̂i =
T−1

∑T
t=1 ln dit − (TN)−1

∑T
t=1

∑N
i=1 ln dit

lnN
. (76)

The largest of these estimates, which we refer as the extremum estimator, can be used as
the estimator of the degree of pervasiveness of the most dominant unit in the network, the
second largest as the estimator of the degree of pervasiveness of the second most dominant
unit and so on. Recall that only estimates of δ̂i > 1/2 should be considered, since any
unit with an estimate of δ below 1/2 will not have any network effects (see Remark 3).
It is worth noting that in the pure cross section case with T = 1, the extremum

estimator reduces to

δ̂(1) =
ln d(1) −N−1

∑N
i=1 ln di

lnN
, (77)

where d(1) denotes the largest value of di > 0. Recall that δ(1) is the inverse of the shape
parameter of the Pareto distribution, β, when N becomes large. The inverse of δ̂(1) serves
as an extremum type estimator of β, since it relies on the largest di, which is adjusted by
the sample mean. We will analyze how well δ̂(1) estimates 1/β in the next section. Also
note that our approach allows us to estimate δ(2), δ(3), ...δ(M) for an a priori given value of
M, such that δ(M) > 1/2. We refer to δ̂(i), for i = 1, 2, ...,M , as the extrema estimators.
To investigate the asymptotic properties of the extrema estimators, we first note that

under (72), l̂nκ and δ̂i can be written as

l̂nκ− lnκ = δ̄ lnN + ῡ, (78)

δ̂i − δi = δ̄ +
ῡi − ῡ
lnN

, (79)

where δ̄ = N−1
∑N

i=1 δi, and

ῡi = T−1
T∑
t=1

υit, ῡ = N−1
N∑
i=1

ῡi.

It is now easily seen that

Cov(δ̂i, δ̂j) = − 1

(lnN)2N

σ2υ
T
, for all i 6= j,

V ar
(
δ̂i

)
=

σ2υ
(lnN)2 T

(
1− 1

N

)
. (80)

Note that for any given i, V ar
(
δ̂i

)
→ 0 for a fixed T as N →∞, and if both N and

T →∞. But when T is fixed, the rate of convergence of V ar
(
δ̂i

)
is given by (lnN)−2 and

will be rather slow. Also, it is already established that δ̄ → 0, as N →∞, and as a result
δ̂i →p δi, which establishes that for any finite T ≥ 1, δ̂i is a lnN consistent estimator of
δ̂i. The estimators of δ for two different units (i, j), are asymptotically independent and
their covariance converges to zero at a fast rate of (lnN)−2N−1, even if T is fixed.
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Finally, for any given i we have (applying standard central limit theorem to ῡi − ῡ)(
δ̂i − δi − δ̄

)
[

σ2υ
(lnN)2T

(
1− 1

N

)]1/2 →d N(0, 1), as N →∞.

Ignoring lower order terms in N we now have

(lnN)
√
T
(
δ̂i − δi − δ̄

)
συ

→d N(0, 1), as N →∞.

To ensure that the above statistic does not depend on the nuisance parameter δ̄, we need

δ̄ (lnN)
√
T =

(
N∑
i=1

δi

)
(lnN)

√
T

N
→ 0, as N and T →∞.

But given the summability condition, (31), for the test to be free of the nuisance parameter
it is suffi cient that the following condition on the relative expansion rates of N and T
holds

(lnN)N−1
√
T → 0, (81)

as N, T → ∞, jointly. It is clear that this condition is met if T is fixed as N → ∞.
However, when T takes moderate to large values, N needs to be suffi ciently large relative
to T . It is clear that N and T can rise at the same rate. But by setting T = O

(
Nφ
)
, it

also follows that condition (81) will be satisfied so long as φ < 2, which allows T to rise
faster than N .
To obtain a consistent estimator of σ2υ, using (75) and (76) in (72) we have

υ̂it = ln dit − l̂nκ− δ̂i lnN (82)

= −
(

l̂nκ− lnκ
)
−
(
δ̂i − δi

)
lnN + υit.

Now using (78) and (79)

υ̂it = −2δ̄ lnN + υit − ῡi,

= υit − ῡi +O

(
m lnN

N

)
.

In view of this result, σ2υ can be consistently estimated by (for T > 1)

σ̂2υ =

∑N
i=1

∑T
t=1 υ̂

2
it

N (T − 1)
. (83)

A test of the null hypothesis that δ(1) = δ0(1), where δ
0
(1) > 1/2, can be based on the

statistic

D(1) =
(lnN)

(
δ̂(1) − δ0(1)

)
σ̂υ
(
1
T
− 1

TN

)1/2 , (84)
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where δ̂(1) = maxi

(
δ̂i

)
. It then follows that D(1) →d N(0, 1) as N → ∞, for a fixed

T > 1.
The test is also valid in cases where N and T are both large, if ln (N)

√
T/N → 0, as

N and T →∞. When T = 1, δi can still be consistently estimated by (76), but to obtain
its distribution we need to impose further restrictions on δi over i.

4.3 Misspecification analysis

The exponent specification of the outdegrees given in (70) is closely related to (27) in that
κj = κ exp(υit) > 0, and it is in line with the production network model derived from
a set of underlying economic relations. Nonetheless, in practice it is diffi cult to know if
the true data generating process follows the exponent or a power law type specification.
If the observations on outdegrees indeed follow a power law tail distribution with the
shape parameter, β, we can show that our proposed extremum estimator, δ̂(1), is still
consistent for δ(1) = 1/β in this case. More importantly, the extremum estimator of
β (given by 1/δ̂(1)), does not require specification of a cut-off value dmin, and is robust to
the distribution of dit below dmin.
To see this, suppose that the observations on the outdegrees, dit ≥ 0, for i = 1, 2, ..., N ,

t = 1, 2, ..., T , are independent draws from the following distribution

f(dit) ∝ d−1−βit , if dit ≥ dmin, (85)

∝ ψ(dit), if dit < dmin,

where dit > 0 and follows a Pareto distribution with the shape parameter β for values of
dit above dmin, and an arbitrary non-Pareto distribution, ψ(dit), for values of dit below
dmin. The constants of the proportionality for both branches of the distribution are set to
ensure that

∫∞
0
f(x)dx = 1, and that a given non-zero proportion of the observations fall

above dmin.
In what follows we focus on the pure cross section case where T = 1 and consider the

extremum estimator, δ̂(1), which can be written as

δ̂(1) =
ln d(1) −N−1

∑N
i=1 ln di

lnN
=
z(1) −N−1

∑N
i=1 zi

lnN
, (86)

where zi = ln(di/dmin), for all i, and z(i) = ln(d(i)/dmin), with d(i) being the ith largest
value of di > 0. Since dmin is a given constant and by assumption di are independently
distributed, it then follows that for zi ≥ 0, zi are independent draws from an exponential
distribution with parameter β, namely

fZ(z) = βe−βz, for z ≥ 0,

with E (z |z ≥ 0) = 1/β, and V ar (z |z ≥ 0) = 1/β2, for β > 0.11 We also assume
that E (zi |zi < 0) exists, which is a mild moment condition to impose on ψ(di) for

11It is worth noting that z has moments even if β ≤ 1, although the Pareto distribution has moments
only for β > 1.
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ln (di/dmin) < 0. The following proposition summarizes the consistency property of δ̂(1)
as an estimator of 1/β.

Proposition 3. Suppose that di, for i = 1, 2, ..., N , are independent draws from the
Pareto tail distribution given by (85) with the shape parameter β > 0, and assume that
zi = ln(di/dmin) has finite second order moments for all values of zi < 0. It then follows
that

lim
N→∞

E
(
δ̂(1)

)
= 1/β, and V ar

(
δ̂(1)

)
= O

[
1

(lnN)2

]
,

where δ̂(1) is defined by (86).

A proof is provided in Appendix D.

Remark 4. The convergence of δ̂(1) to δ = 1/β, is at the rate of 1/ lnN which is rather
slow. But it is obtained without making any assumptions about dmin or the shape of ψ(d),
the non-Pareto part of the distribution.

The above analysis can be readily extended to the case where T > 1, but it should
be emphasized that when T > 1, one should order di,t for each period t and then add up
ln d(i),t across t, that is,

δ̂(1) =
T−1

∑T
t=1 ln d(1),t − (TN)−1

∑T
t=1

∑N
i=1 ln d(i),t

lnN
. (87)

Notice that

l̂nκ = (TN)−1
T∑
t=1

N∑
i=1

ln d(i),t = (TN)−1
T∑
t=1

N∑
i=1

ln dit.

Assuming the mean of ln dit exists and is the same for all i and t, we have l̂nκ→p µd for
any fixed T as N →∞, or if N and T →∞, jointly.
Although the identities of the dominant units may change over time, δ̂(1) given by

(87) provides a systematic measure of the degree of pervasiveness of the network. If, on
the other hand, one is interested in identifying the dominant units, then estimating δ(i)
for each period t would be more suitable. The asymptotic distribution of δ̂(1) when the
underlying distribution takes the form of (85) is left for future research, but we conjecture
that it can be developed when N and T are large.
Conversely, if the true distribution of the outdegrees follows the exponent formulation

given in (70), but a researcher assumes a power law tail distribution and applies the
strategies we discussed in Section 4.1, then the estimators of δ(1) based on the inverse
of the estimated shape parameter β could be strongly biased. Monte Carlo evidence is
provided in the next section to support this claim.
To sum up, compared to the power law type estimators, the extremum estimator has

several advantages. First, it does not require knowing the true value of dmin, whereas the
estimates of the shape parameter may be highly sensitive to the choice of the cut-offvalue.
Although procedures such as the feasible MLE proposed by Clauset et al. (2009) estimate
dmin jointly with β, such estimates assume that the true distribution below and above
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dmin are known, whilst the extremum estimator is robust to any distribution assumption
below dmin, so long as ln(di/dmin) has second order moments. Granted that it may not be
as effi cient as MLE if the true distribution is indeed Pareto, one does not need to make
such strong assumptions on the entire distribution. Third, the extremum type estimators
can identify the dominant units besides the most dominant one, and estimate the degrees
of pervasiveness of each of the of the dominant units separately.

4.4 Extension of the extremum type estimators to unbalanced
panels

In empirical applications, production networks observed at different points in time might
not have the same units in common. As a result we are often faced with unbalanced panel
data sets. One approach would be to employ a suffi ciently high level of aggregation so
that we end up with a balanced panel. But this procedure is likely to be ineffi cient as we
end up with a smaller number of units in the network. Here we consider estimating δi
with the unbalanced panel, without any aggregation. We suppose that for each unit i we
have observations on its outdegrees for at least two time periods.
We denote the unbalanced panel of observations on the outdegrees by dit for t =

T 0i , T
0
i + 1, ..., T 1i , (T

1
i ≥ T 0i ), and i = 1, ..., N . Then using a similar line of reasoning as

above we have

δ̂i =
T−1i

∑T 1i
t=T 0i

ln dit −N−1
∑N

i=1

(
T−1i

∑T 1i
t=T 0i

ln dit

)
lnN

, (88)

where Ti = T 1i − T 0i + 1, and

V ar
(
δ̂i

)
=

σ2υ
(lnN)2

(
1

Ti
− 1

NTi

)
. (89)

The estimator of the most dominant unit is given by δ̂(1) = maxi

(
δ̂i

)
, and as in the

balanced panel case, the asymptotic distribution of δ̂(1) is given by

D(1) =
(lnN)

(
δ̂(1) − δ0(1)

)
σ̂υ

(
1
T(1)
− 1

NT(1)

)1/2 , (90)

where T(1) refers to the sample size of the most dominant unit, and

σ̂2υ =

∑N
i=1 (Ti − 1)−1

∑T 1i
t=T 0i

υ̂2it

N
. (91)

The distribution of the most dominant unit is well defined if T(1) > 1.
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5 Monte Carlo experiments

In this section, we investigate the small sample properties of the proposed extremum
estimator for balanced panels using Monte Carlo techniques, and compare its performance
with that of the power law method. We also investigate the small sample properties of
the extremum estimator for unbalanced panels. We consider two types of data generating
processes (DGPs) for the outdegrees (dit): a power law and an exponent specification.
The DGP for the exponent specification is given by

ln dit = lnκ+ δi lnN + υit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (92)

where υit, the idiosyncratic errors, are generated as υit ∼ IIDN(0, 1), with κ set as

κ =
exp

(
−1
2

)
N−1

∑N
i=1N

δi
> 0, (93)

to ensure that dit add up to N across i for each t. The following two sets of experiments
are carried out under this DGP assuming balanced panels.
Experiment A. In this experiment we consider networks with a finite number of

dominant units, and a large number of non-dominant units. Specifically, we consider

• A.1. One strongly dominant unit: δ(1) = 1, with δ(i) = 0 for i = 2, 3, ..., N.

• A.2. Two strongly dominant units: δ(1) = δ(2) = 1, with δ(i) = 0 for i = 3, 4, ..., N.

• A.3. One strongly dominant unit and one weakly dominant unit: δ(1) = 1 and
δ(2) = 0.75, with δ(i) = 0 for i = 3, 4, ..., N.

Experiment B. In this experiment we allow all units to be weakly dominant, and
ensure δ̄ → 0 at a suffi ciently fast rate by assuming that individual δi decays exponentially.
In particular we consider δ(i) = 0.9i, for i = 1, 2, ..., N .12

All experiments are replicated 2, 000 times for all combinations ofN = 100, 300, 500, 1, 000,
and T = 1, 2, 4, 6, 8, 10, 20, 50, 100. We also provide simulation results for a very large data
set with N = 450, 000, which can arise when using inter-firm level sales data.13 The M
largest estimates of δ considered by the investigator are denoted by δ̂(i), for i = 1, 2, ...,M ,
which are calculated according to (76). When T > 1, the variance of δ̂(i) is computed by
(80), with σ2υ estimated by (83).
Furthermore, as shown in Section 3.2, the largest value of δ in a network is related to

the inverse of β, the shape parameter of the Pareto distribution considered by Acemoglu
et al. (2012). We exploit this relationship and compare the inverse of the extremum
estimator of δ(1) with the estimator of β based on the Pareto distribution. Specifically,

12Note that for all the above experiments the denominator of (93), N−1
∑N
i=1N

δi , converges to a finite
positive constant. Also see Appendix B.
13For example, Carvalho et al. (2016) use a subset of data compiled by Tokyo Shoko Research Ltd that

contains information on inter-firm transactions of around one million firms across Japan. This data set
is proprietary and has not been made available to us.
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we report the average estimates of β and the inverse of δ̂(1), across 2, 000 replications for
Experiment A.1.
The second type of DGP that we consider takes the form of a power law tail distri-

bution.14 In the first step, random variable yit is drawn from the following distribution
that obeys an exact Pareto distribution above ymin and an exponential distribution below
ymin:

f(yit) =


Ct(yit/ymin,t)

−(β+1), for yit ≥ ymin,t

Cte
−(β+1)(yit/ymin,t−1), for yit < ymin,t

, (94)

for i = 1, 2, ..., N , t = 1, 2, ..., T , where Ct is given by

Ct =

[
ymin,t

(
eβ+1 − 1

)
β + 1

+
ymin,t
β

]−1
, (95)

which ensures that f(yit) integrates to 1 over its full support, yit > 0. Then, observations
on dit are generated as multiples of yit,

dit =
N∑N
i=1 yit

yit, (96)

so that the outdegrees add up to N . We denote the lower bound of the Pareto distribution
for dit as dmin,t, which is given by

dmin,t =
N∑N
i=1 yit

ymin,t. (97)

It is worth noting that under the distribution given by (94), the probability that dit is
greater than or equal to dmin,t is given by

Pr (dit ≥ dmin,t) = Pr (yit ≥ ymin,t) =
1

β

(
eβ+1 − 1

β + 1
+

1

β

)−1
, (98)

which is time-invariant and depends only on the value of β.
When T > 1, we construct a panel data assuming that all units maintain their relative

dominance over time, and therefore for each t we sort dit in a descending order.
The inverse transformation sampling method is used to generate yit such that its

distribution satisfies (94). To this end we first generate uit as IIDU [0, 1], i = 1, 2, ..., N ,
t = 1, 2, ..., T, and set

umin,t = Ct

(
ymin,t
β + 1

)(
eβ+1 − 1

)
, (99)

and then generate yit as

yit =



− ymin,t
β + 1

ln

[
1− (β + 1)uit

Cteβ+1ymin,t

]
, if uit < umin,t

[
β (ymin,t − uit) + Ctymin,t

Cty
β+1
min,t

]−1/β
, if uit ≥ umin,t

. (100)

14This DGP follows (3.10) in Clauset et al. (2009).
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Under the Pareto tail DGP given by (94), we carry out the following experiment.
Experiment C. We consider four values of β, β = 1.0, 1.1, 1.3, 1.5, and set ymin,t =

ymin = 15. The sample sizes are combinations of N = 100, 300, 500, 1, 000, 450, 000 and
T = 1, 4, and the number of replications for each experiment is R = 2, 000. We assess the
performance of four estimators of β in this experiment: the log-log regression estimator
(β̂LL) according to (66) for different given cut-off values, dmin,t, the maximum likelihood
estimator (β̂MLE) given by (68) for different dmin,t, the CSN estimator (β̂CSN) which es-
timates β jointly with the cut-off value, and the inverse of δ̂(1), the extremum estimator,
given by (76).
It is also of interest to see how the estimators of the shape parameter of the Pareto

distribution perform compared to the extremum estimator when the DGP follows the
exponent representation given by (92). For this purpose, we also apply the four estimation
methods just mentioned to the exponent DGP under the setup of Experiment A.1 and
Experiment B. (In Experiment B, we also consider δ(i) = 0.75i, for i = 1, 2, ..., N .)
Finally, we investigate the small sample properties of the extremum estimates of δ(1)

when the panel data under consideration is unbalanced. We focus on Experiment A and
generate an unbalanced panel where Ti (the number of time series observations for unit
i) lies between 2 and 4. To ensure that the most important dominant units are present
across the years, only units in the bottom 95th percentile of the distribution of δ were
subject to missing observations. In the case of these units, we dropped the first and the
last observations with a 50% probability. This randomization process is repeated for all
the 2, 000 replications. The estimates of δi are computed using (88), and their variances
(when T > 1) using (89).

5.1 MC results

The results for Experiments A.1 to A.3 are summarized in Tables 1 and 2, in which bias
(×100) and root mean squared error (RMSE(×100)), as well as size (×100) and power
(×100) are reported. We first note that the bias and RMSE of the estimators decline as
N and/or T rises. The bias and RMSE reduction is particularly pronounced as T rises,
even by a few time periods. This is in line with the theoretical derivations which establish
that along the cross-sectional dimension the rate of convergent is of order 1/ ln(N), as
compared to T−1/2 along the time dimension. We also note that the empirical sizes of
the tests based on δ̂(1) and δ̂(2) are close to the assumed 5% nominal size in most cases.
There is some over-rejections in cases where T is much larger than N, and when there are
more than one dominant units. In practice, this is unlikely to be a real concern since N
is typically much larger than T . Seen from this perspective, it is particularly satisfying to
note that the extremum estimator has satisfactory performance even when N approaches
450, 000. The slow rate of convergence along the cross section dimension is, however,
important for the power of the test. For example, in the case of experiment A.1, the
power of detecting the strongly dominant unit (against the alternative that δ(1) = 0.90) is
around 9% for N = 100 and T = 2, and rises only slowly as N is increased. However, we
see a significant rise in power if T is increased to 6. For T = 6 the power rises from 17%
for N = 100 to 89% for N = 450, 000, twice as much as the values obtained for T = 2.
The power also rises as the number of strongly dominant units is raised from one to two.
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Similar results are obtained for Experiment B (Table 3). Recall that in the case of
this experiment, the degrees of dominance are assumed to decay exponentially across the
N units. This table provides results for the four largest values of δ, namely 0.9, 0.92, 0.93,
and 0.94. For other values of δ(i), for i = 5, 6, ..., N , the estimates fall below 1/2 and have
no consequence for the shock diffusion within the network. The results in Table 3 confirm
the validity of our theoretical derivations for the case where there are many dominant
units whose degrees of dominance decay exponentially.
Turning now to the results in Table 4, we find that the most dominant units can

almost always be correctly identified when there are a finite number of dominant units,
especially when T > 2. By contrast, the results in Table 5 show that the probability
of correct identification is lower when the network consists of a large number of weakly
dominant units whose degree of pervasiveness decay exponentially. As expected, the
more clustered are the degrees of pervasiveness across units, the more diffi cult it is to
differentiate one unit from another.
Our theoretical results suggest that β, the shape parameter of the Pareto distribution,

should be close to the inverse of δ(1). This is supported by the simulation results summa-
rized in Table 6 when N is not too large. Notice that as the network expands along the
cross-sectional dimension, β̂LL, which is obtained by the log-log regression (66) assuming
a 20% cut-off value (Nmin/N = 20%), deviates more and more from its true value, and
also from the inverse of δ̂(1). In particular, when N = 450, 000, the estimate of β is 2.11
(with a standard error of 0.01), which far exceeds the true value of 1. By contrast, the
inverse of δ̂(1) equals 1.00 for T ≥ 2.
Tables 7 to 10 summarize the results for Experiment C where the DGP exhibits the

Pareto tail behavior given by (85). For different values of β, the extremum estimator
demonstrates robustness to the model misspecification, although it converges to the true
value much more slowly than the other shape estimators under Pareto type distributions.
This finding is in line with our theoretical results provided in Section 4.3. It is also worth
noting that the log-log regression estimator (β̂LL) and the MLE (β̂MLE) are very sensitive
to the choice of the cut-off values.15 The feasible MLE, β̂CSN , performs better, but this
could be partly explained by the fact that it assumes a known distribution.16

However, when the DGP is given by (92), the exponent model, β̂LL, β̂MLE, and β̂CSN
estimators all show severe biases particularly for N large (see Tables 11 to 13). For
instance, the simulation mean of β̂LL is 2.39 assuming a 10% cut-off value when N =
450, 000 for Experiment A.1, as compared to its true value of 1. The maximum likelihood
estimates and the feasible MLE suffer from similar severe biases.
Finally, in the case of unbalanced panels, it can be seen from Table 14 that the

extremum estimator continues to perform well, and is reasonably robust to alternative
network structures under different specifications of the distribution of outdegrees. But in
the case of unbalanced panels, we need to assume that the outdegrees of the units with

15Similar Monte Carlo evidence illustrating the truncation sensitivity problem are reported in Table
1-4 of Gabaix and Ibragimov (2011). An interesting theoretical discussion can be found in Eeckhout
(2004).
16It is important to note that the validity of the feasible MLE procedure proposed by Clauset et al.

(2009) critically depends on how close is the assumed specification of the distribution of dit below dmin,t.to
the true underlying distribution.
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the highest degrees of dominance are observed for at least two periods.

6 Dominant units in US production networks

In this section we apply the proposed estimation strategy to identify the top five most
pervasive (dominant) sectors in the US economy. We also compare our results with the
estimates of β (the inverse of δ(1)) obtained by Acemoglu et al. (2012) for the most
dominant sector. We provide estimates based on the US input-ouput tables for single
years as well as when two or more input-output tables are pooled in an unbalanced panel.
Acemoglu et al. (2012) only consider the estimates of β based on single-year input-output
tables.
We begin with a re-examination of the data set used by Acemoglu et al. (2012) so that

we have a direct comparison of the estimates of β (or its inverse) based on the shape of
the power law, and the extremum estimates which is given by δ̂(1) = maxi(δ̂i), where δ̂i
is computed using (76). The Acemoglu et al. (2012) data set are based on the US input-
output accounts data over the period 1972-2002 compiled by the Bureau of Economic
Analysis (BEA) every five years. We first confirmed that we can replicate their estimates
of β, which we denote by β̂LL assuming a 20% cut-off value (the percentage above which
the degree sequences are assumed to follow the Pareto distribution). The estimates δ̂(1)
and the inverse of β̂ for the years 1972, 1977, 1982, 1987, 1992, 1997 and 2002 are given
in Tables 15 and 16. For the inverse of β̂, Tables 15 and 16 report estimates based on the
first-order and second-order interconnections, respectively.17 We estimate β by the three
approaches discussed above, namely the log-log regression with Gabaix and Ibragimov
(2011) correction (β̂LL) given by (66), the MLE (β̂MLE) given by (68), and the feasible
MLE (β̂CSN) estimator. For the log-log regression and MLE, we give estimates for the
cut-offvalues of 10%, 20%, and 30%. For the feasible MLE, we present both the estimates
of β and the estimated cut-off values.18

The results in Tables 15 and 16 show that the yearly estimates of δ̂(1) are clustered
within the narrow range of 0.77 to 0.82, covering a relatively long period of 30 years.
We can not provide standard errors for such yearly estimates, but given the small over-
time variations in these estimates we can confidently conclude that there is a high degree
of sectoral pervasiveness in the US economy, although these estimates do not support
the presence of a strongly dominant unit which requires δ̂(1) to be close to unity. In
contrast, the estimates of δ(1) based on the inverse of β̂ differ considerably depending on
the estimation methods, the choice of the cut-off value, and whether the first- or second-
order interconnections are considered. For example, for 1972, the estimates based on the
power law, inverse of β̂LL, range from 0.694 when the cut-off value is 10% and the first-

17The first-order degree of sector j is just its outdegree, dj , defined as before, while the second-order
degree of sector j is defined by dj,2 = d′w·j , where d = (d1, d2, ..., dN )′ is the vector of first-order degrees
and w·j is the jth column ofW.
18Acemoglu et al. (2012) estimated the shape parameter of the power law by the log-log regression

and non-parametric Nadaraya-Watson regression, taking the tail to correspond to the top 20% of the
samples for each year and did not try other cut-off values. They also estimated the shape parameter
by the feasible maximum likelihood method proposed by Clauset et al. (2009), but did not report the
estimates for each year or the estimated cut-off values.
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order interconnections are used, and rise to 1.035 when the second-order interconnections
are used with a 30% cut-off value. The estimates of δ based on the inverses of β̂LL and
β̂MLE, rise with the choice of cut-off values and with the order of interconnections, whilst
our estimator does not require making such choices. Recall that δ(1) provides an exact
measure of the rate at which the variance of aggregate output responds to sectoral shocks,
whilst β characterizes a lower bound if the first-order interconnections are used. A 20%
cut-off value, which is assumed by Acemoglu et al. (2012) seems reasonable, considering
the closeness between the estimates of δ̂(1) and the inverse of β̂LL, and given its similarity
to the estimated cut-off values by the feasible MLE. Nevertheless, the estimated cut-off
value based on the first-order interconnections for the year 1992 is only 9.5%, which is
markedly lower than that for the other years. Similar issues arise when the second-order
interconnections are used. The differences between δ̂(1) and inverse of β̂LL also vary across
the years. For example, using the second-order interconnections and a cut-off value of
20%, δ̂(1) and inverse of β̂LL are reasonably close for the years 1992, 1997 and 2002, but
diverge for the earlier years of 1972, 1977 and 1982.
The data sets provided by Acemoglu et al. (2012) do not give the identities of the

sectors, which is fine if one is only interested in β or δ(1). But, as noted earlier, our
estimation approach also allows us to identify the sectors with the highest degrees of
pervasiveness in the production network. With this in mind, we compiled our own W
matrices from the input-ouput tables downloaded from the BEA website.19 The top five
largest estimates of δ, denoted by δ̂(1) ≥ δ̂(2) ≥ ... ≥ δ̂(5), for each of the years 1972 to
2007 are given in Table 17. The identities of the associated sectors are given in Table 18.
We note that both the degrees of dominance and the identities of the pervasive sectors in
the US economy are relatively stable over the years. Consistent with the results in Table
15, no sector is strongly dominant. The highest δ̂(1) is 0.82, for the year 1992, with an
average estimate of around 0.78 over the sample. The wholesale trade sector turns out to
be the most dominant sector for all the years with the exception of 2002. In this year the
management of companies and enterprises is the most dominant sector with the wholesale
trade coming second.
But it is generally diffi cult to distinguish between the top two or three sectors as their

δ estimates are quite close to one another and we are not able to apply formal statistical
tests to their differences as standard errors can not be computed using outdegrees for one
single year.20 Accordingly, to provide more reliable estimates of δ(1), δ(2), ..., δ(5) and the
associated sectoral identities, we also give pooled estimates. However, there have been
major changes in the BEA industry classifications over the years, with the input-output
tables for the period 1972-1992 being based on the Standard Industrial Classification
(SIC) system, while starting from 1997 they are based on the North American Industry

19The W matrices for different years were computed from commodity-by-commodity direct require-
ments tables at the detailed level that cover around 400-500 US industries. The (i, j)th entry of such a
table shows the expenditure on commodity j per dollar of production of commodity i. As in Acemoglu
et al. (2012), the terms sector and commodity are used interchangeably to convey the same meaning.
These direct requirements tables can be derived from the total requirement tables at the detailed level,
which are compiled by the BEA every five years. Further details on the data description and transfor-
mations can be found in Appendix E.
20Acemoglu et al. (2012) are able to compute standard errors for their estimates of β because they

impose a Pareto distribution on the ordered outdegrees beyond a cut-off point, which they assume.
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Classification System (NAICS). Accordingly, we computed panel estimates of δ for the two
sub-samples separately. The results are summarized in Table 19, which also gives standard
errors in parentheses, computed using (89). It is interesting that despite changes to the
sectoral classifications, the wholesale trade sector is identified as the most dominant sector
in both sub-samples, with δ̂(1) = 0.763 (0.037) for the first sub-sample (1972-1992), and
δ̂(1) = 0.716 (0.045) for the second sub-sample (1997-2007). The estimates do not differ
significantly and identify the wholesale trade sector as the most dominant sector in the
US economy. Turning to the estimates of δ(2), δ(3), ..., δ(5), we find that these estimates
are also remarkably similar across the two sub-samples, ranging from 0.667 to 0.605 in
the first sub-sample, and 0.683 to 0.605 in the second sub-sample. What has changed
is the identity of the sectors across the two sub-samples. For example, the second most
dominant sector has been blast furnaces and steel mills over the first sub-sample (1972-
1992), whilst it is management companies and enterprises over the second sub-sample
(1997-2007).

7 Concluding remarks

This paper builds on the seminal contribution of Acemoglu et al. (2012) and derives exact
conditions under which micro (sectoral) shocks can have aggregate effects. The paper also
presents a simple nonparametric estimator of the degree of pervasiveness of micro shocks
that compares favorably with the parametric estimates based on Pareto distribution fitted
to the outdegrees. The paper also presents a simple test of the degree of pervasiveness of
the most dominant units in the network, which are shown to have satisfactory size and
power properties when N is large, even if T is quite small. The analysis of this paper
has been static, but the proposed statistical framework can be extended to allow for
dynamics, along similar lines as in Pesaran and Chudik (2014) who consider aggregation
of large dynamic panels.
Our empirical application to US input-output tables suggests some evidence of sector-

specific shock propagation, but such effects do not seem suffi ciently strong and long-
lasting, and are likely to be dominated by common technological effects. Similar empirical
evidence are also provided by Foerster, Sarte, andWatson (2011), who incorporate sectoral
linkages into multisector growth models producing an approximate factor model. Their
factor analytic approach, however, cannot distinguish dominant unit(s) from common
factors and therefore may underestimate the influence of input-output linkages.21 The
issue of the relative importance of internal network interactions and external common
shocks for macro economic fluctuations continues to be an open empirical question.

21The factor analysis also requires large N and T panels and is not applicable when T is small.
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Table 4: Frequencies with which the dominant units are jointly selected in Experiments
A.1, A.2 and A.3

Empirical frequency (percent)
Experiment A.1: One strongly dominant unit, Experiment A.2: Two strongly dominant units,

δ(1) = 1 δ(1) = δ(2) = 1
T\N 100 300 500 1,000 450,000 T\N 100 300 500 1,000 450,000
1 97.25 99.55 99.80 99.90 100.0 1 94.20 99.10 99.65 99.85 100.0
2 100.0 100.0 100.0 100.0 100.0 2 100.0 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0 100.0 4 100.0 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0 100.0 6 100.0 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0 100.0 8 100.0 100.0 100.0 100.0 100.0
10 100.0 100.0 100.0 100.0 100.0 10 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 20 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 50 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100 100.0 100.0 100.0 100.0 100.0

Experiment A.3: One strongly dominant unit and
one weakly dominant unit, δ(1) = 1, δ(2) = 0.75
T\N 100 300 500 1,000 450,000
1 61.55 75.90 79.70 85.45 98.75
2 86.30 91.90 93.65 95.65 100.0
4 94.90 97.75 98.40 99.20 100.0
6 97.75 99.10 99.50 99.85 100.0
8 99.10 99.90 99.95 99.95 100.0
10 99.65 99.95 100.0 100.0 100.0
20 99.95 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0

Notes: This table complements Tables 1 and 2 and reports the frequencies with which the dominant
units are jointly selected across 2, 000 replications. See also the notes to Tables 1 and 2.
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Table 5: Frequencies with which each of the top four dominant units are selected in
Experiment B

Empirical frequency (percent)
T\N 100 300 500 1,000 450,000

δ(1) = 0.9

1 40.40 48.40 51.85 56.15 78.05
2 54.00 60.65 64.00 68.00 87.65
4 65.85 72.70 75.25 79.00 95.20
6 72.20 80.20 83.30 86.50 97.85
8 76.20 83.90 86.50 89.35 99.25
10 79.60 85.85 88.25 90.85 99.80
20 89.95 94.85 95.85 97.25 99.95
50 98.35 99.65 99.95 100.0 100.0
100 99.90 100.0 100.0 100.0 100.0

δ(2) = 0.9
2 = 0.81

1 23.10 27.15 29.15 31.25 54.95
2 31.55 38.20 41.60 46.00 73.20
4 39.70 48.95 53.00 57.95 88.95
6 48.05 59.00 63.65 69.15 94.20
8 53.65 65.35 70.70 75.75 97.55
10 59.45 69.95 75.15 80.40 98.95
20 78.20 87.60 89.70 92.90 99.90
50 94.90 98.75 99.45 99.80 100.0
100 99.65 99.90 99.90 100.0 100.0

δ(3) = 0.9
3 = 0.729

1 14.80 18.85 21.80 25.25 48.30
2 21.90 28.55 31.75 35.35 65.45
4 34.55 42.55 46.60 52.30 84.95
6 40.40 50.80 55.15 61.00 90.90
8 47.70 58.90 64.10 70.70 95.20
10 54.95 65.40 70.95 76.50 97.70
20 73.20 83.50 86.75 90.75 99.95
50 92.30 97.20 98.45 99.35 100.0
100 99.00 99.85 99.85 99.95 100.0

δ(4) = 0.9
4 = 0.6561

1 10.90 14.50 17.05 18.80 41.80
2 17.75 23.85 25.90 28.80 59.80
4 29.65 36.20 39.80 45.15 79.35
6 37.30 47.50 51.55 56.55 87.80
8 43.35 54.15 59.00 65.65 92.45
10 50.80 60.65 65.55 71.30 95.75
20 68.00 78.00 82.30 87.15 99.85
50 89.05 94.60 96.20 97.75 100.0
100 97.50 99.40 99.75 99.90 100.0

Notes: This table complements Table 3 and reports the frequencies with which each of the top four
dominant units are selected across 2, 000 replications. The DGP is given by (92), where the true values
of δ are generated as δ(i) = 0.9i, for i = 1, 2, ..., N . See also the notes to Table 3.
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Table 6: Estimates of the shape parameter, β, of the power law and inverse of the expo-
nent, δ(1), across 2,000 Monte Carlo replications for Experiment A.1

T\ N 100 300 500 1, 000 450, 000

β̂LL Inverse β̂LL Inverse β̂LL Inverse β̂LL Inverse β̂LL Inverse
[20%] of δ̂(1) [20%] of δ̂(1) [20%] of δ̂(1) [20%] of δ̂(1) [20%] of δ̂(1)

1 1.11 1.06 1.28 1.04 1.39 1.03 1.54 1.02 2.11 1.01
(0.35) (N/A) (0.23) (N/A) (0.20) (N/A) (0.15) (N/A) (0.01) (N/A)

2 1.11 1.04 1.29 1.02 1.39 1.02 1.55 1.01 2.11 1.00
(0.25) (0.17) (0.17) (0.13) (0.14) (0.12) (0.11) (0.11) (0.01) (0.05)

4 1.12 1.03 1.30 1.01 1.40 1.01 1.55 1.01 2.11 1.00
(0.18) (0.12) (0.12) (0.09) (0.10) (0.08) (0.08) (0.07) (0.00) (0.04)

6 1.12 1.02 1.30 1.01 1.40 1.01 1.55 1.01 2.11 1.00
(0.14) (0.09) (0.10) (0.07) (0.08) (0.07) (0.06) (0.06) (0.00) (0.03)

8 1.13 1.02 1.30 1.01 1.40 1.01 1.55 1.01 2.11 1.00
(0.13) (0.08) (0.08) (0.06) (0.07) (0.06) (0.05) (0.05) (0.00) (0.03)

10 1.13 1.02 1.30 1.01 1.40 1.01 1.55 1.00 2.11 1.00
(0.11) (0.07) (0.08) (0.06) (0.06) (0.05) (0.05) (0.05) (0.00) (0.02)

20 1.13 1.01 1.30 1.01 1.40 1.00 1.55 1.00 2.11 1.00
(0.08) (0.05) (0.05) (0.04) (0.04) (0.04) (0.03) (0.03) (0.00) (0.02)

50 1.13 1.01 1.30 1.00 1.40 1.00 1.55 1.00 2.11 1.00
(0.05) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.00) (0.01)

100 1.13 1.01 1.30 1.00 1.40 1.00 1.55 1.00 2.11 1.00
(0.04) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.00) (0.01)

Notes: The DGP is given by (92). For Experiment A.1, the DGP includes one strongly dominant unit
and the rest are non-dominant: δ(1) = 1, with δ(i) = 0 for i = 2, 3, ..., N . β̂LL denotes the estimates of
the shape parameter of the Pareto distribution obtained by the log-log regression with Gabaix and
Ibragimov (2011) correction using the OLS regression defined by (66) assuming a 20% cut-off value
(Nmin/N = 20%) as in Acemoglu et al. (2012), which means that the Pareto tail is taken as the top
20% of all units. δ̂(1) = maxi(δ̂i), and δ̂i is calculated according to (76). All estimates are averaged
across 2, 000 replications. Standard errors are in parentheses. The standard errors for β̂LL and δ̂(1) are
computed by (67) and (80), respectively, and for the inverse of δ̂(1) by the delta method. (N/A)
indicates that the standard error of δ̂(1) cannot be computed when T = 1.
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Table 7: Estimates of the shape parameter, β, of the power law and inverse of the expo-
nent, δ(1), across 2,000 Monte Carlo replications for Experiment C (β = 1)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.11 1.02 1.01 1.00 1.00 1.13 1.05 1.03 1.02 1.00
(0.50) (0.26) (0.20) (0.14) (0.01) (0.25) (0.14) (0.10) (0.07) (0.00)

20% 1.04 1.01 1.00 1.00 1.00 1.08 1.03 1.02 1.01 1.00
(0.33) (0.18) (0.14) (0.10) (0.00) (0.17) (0.09) (0.07) (0.05) (0.00)

30% 1.02 1.00 1.00 1.00 1.00 1.05 1.02 1.01 1.00 1.00
(0.26) (0.15) (0.12) (0.08) (0.00) (0.14) (0.08) (0.06) (0.04) (0.00)

Infeasible Using true dmin,t
cut-off value 1.03 1.00 1.00 1.00 1.00 1.07 1.03 1.01 1.01 1.00

24% (0.30) (0.17) (0.13) (0.09) (0.00) (0.15) (0.09) (0.07) (0.05) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.24 1.07 1.04 1.02 1.00 1.11 1.04 1.02 1.01 1.00
(0.39) (0.20) (0.15) (0.10) (0.00) (0.18) (0.09) (0.07) (0.05) (0.00)

20% 1.11 1.03 1.02 1.01 1.00 1.05 1.02 1.01 1.00 1.00
(0.25) (0.13) (0.10) (0.07) (0.00) (0.12) (0.07) (0.05) (0.04) (0.00)

30% 1.06 1.01 1.01 1.00 1.00 1.00 0.98 0.98 0.98 0.99
(0.19) (0.11) (0.08) (0.06) (0.00) (0.09) (0.05) (0.04) (0.03) (0.00)

Infeasible Using true dmin,t
cut-off value 1.09 1.03 1.01 1.01 1.00 1.03 1.01 1.00 1.00 1.00

24% (0.23) (0.12) (0.09) (0.07) (0.00) (0.11) (0.06) (0.05) (0.03) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 44% 38% 37% 35% 24% 33% 29% 28% 26% 20%

1.02 1.00 1.00 1.00 1.00 1.02 1.01 1.00 1.00 1.00
(0.17) (0.10) (0.08) (0.06) (0.00) (0.10) (0.06) (0.04) (0.03) (0.00)

Inverse of δ̂(1)

1.04 1.03 1.02 1.02 1.00 1.00 1.00 0.99 1.00 1.00
(N/A) (N/A) (N/A) (N/A) (N/A) (0.06) (0.04) (0.04) (0.03) (0.01)

Notes: The DGP follows the Pareto tail distribution given by (85) with β = 1. dmin,t denotes the lower bound for
the Pareto distribution and is given by (97). The cut-off value refers to the percentage of the largest observations
(sorted in descending order) that are assumed to follow the Pareto distribution. The infeasible cut-off value is
computed by (98) assuming the true value of dmin,t is known. All estimates are averaged across 2, 000 replications.
Standard errors are in parentheses. β̂LL is obtained by running the log-log regression (66) with Gabaix and
Ibragimov (2011) correction. β̂MLE is computed by (68). β̂CSN is calculated by applying the joint MLE
procedure described in Clauset et al. (2009). δ̂(1) is computed according to (76), and its standard error by (80).
The standard error for the inverse of δ̂(1) is computed by the delta method. (N/A) indicates that the standard
error of δ̂(1) cannot be computed when T = 1.
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Table 8: Estimates of the shape parameter, β, of the power law and inverse of the expo-
nent, δ(1), across 2,000 Monte Carlo replications for Experiment C (β = 1.1)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.22 1.12 1.11 1.10 1.10 1.23 1.15 1.13 1.12 1.10
(0.55) (0.29) (0.22) (0.16) (0.01) (0.28) (0.15) (0.11) (0.08) (0.00)

20% 1.15 1.11 1.10 1.10 1.10 1.18 1.13 1.12 1.11 1.10
(0.36) (0.20) (0.16) (0.11) (0.01) (0.19) (0.10) (0.08) (0.06) (0.00)

30% 1.12 1.10 1.10 1.09 1.10 1.15 1.12 1.11 1.10 1.10
(0.29) (0.16) (0.13) (0.09) (0.00) (0.15) (0.08) (0.06) (0.04) (0.00)

Infeasible Using true dmin,t
cut-off value 1.14 1.10 1.10 1.10 1.10 1.17 1.13 1.12 1.11 1.10

21% (0.36) (0.20) (0.15) (0.11) (0.01) (0.18) (0.10) (0.08) (0.05) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.37 1.18 1.14 1.12 1.10 1.21 1.14 1.12 1.11 1.10
(0.43) (0.21) (0.16) (0.11) (0.01) (0.19) (0.10) (0.08) (0.06) (0.00)

20% 1.22 1.13 1.12 1.11 1.10 1.15 1.12 1.11 1.10 1.10
(0.27) (0.15) (0.11) (0.08) (0.00) (0.13) (0.07) (0.06) (0.04) (0.00)

30% 1.16 1.11 1.10 1.09 1.09 1.09 1.08 1.07 1.07 1.08
(0.21) (0.12) (0.09) (0.06) (0.00) (0.10) (0.06) (0.04) (0.03) (0.00)

Infeasible Using true dmin,t
cut-off value 1.22 1.13 1.12 1.11 1.10 1.14 1.11 1.11 1.10 1.10

21% (0.27) (0.14) (0.11) (0.08) (0.00) (0.12) (0.07) (0.05) (0.04) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 42% 36% 34% 32% 22% 31% 28% 27% 25% 19%

1.13 1.10 1.10 1.10 1.10 1.12 1.11 1.10 1.10 1.10
(0.19) (0.11) (0.09) (0.06) (0.00) (0.11) (0.06) (0.05) (0.04) (0.00)

Inverse of δ̂(1)

1.12 1.11 1.11 1.10 1.09 1.08 1.08 1.08 1.08 1.09
(N/A) (N/A) (N/A) (N/A) (N/A) (0.06) (0.04) (0.04) (0.03) (0.01)

Notes: The data are generated to follow the Pareto tail distribution given by (85) with β = 1.1. See
notes to Table 7 for other details.
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Table 9: Estimates of the shape parameter, β, of the power law and inverse of the expo-
nent, δ(1), across 2,000 Monte Carlo replications for Experiment C (β = 1.3)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.44 1.33 1.31 1.30 1.30 1.43 1.34 1.32 1.31 1.30
(0.65) (0.34) (0.26) (0.18) (0.01) (0.32) (0.17) (0.13) (0.09) (0.00)

20% 1.35 1.31 1.30 1.29 1.30 1.38 1.33 1.31 1.31 1.30
(0.43) (0.24) (0.18) (0.13) (0.01) (0.22) (0.12) (0.09) (0.07) (0.00)

30% 1.31 1.29 1.29 1.29 1.29 1.34 1.31 1.30 1.29 1.29
(0.34) (0.19) (0.15) (0.11) (0.00) (0.17) (0.10) (0.07) (0.05) (0.00)

Infeasible Using true dmin,t
cut-off value 1.37 1.31 1.30 1.30 1.30 1.39 1.33 1.32 1.31 1.30

16% (0.49) (0.27) (0.20) (0.14) (0.01) (0.24) (0.13) (0.10) (0.07) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.61 1.39 1.35 1.32 1.30 1.42 1.34 1.32 1.31 1.30
(0.51) (0.25) (0.19) (0.13) (0.01) (0.23) (0.12) (0.09) (0.07) (0.00)

20% 1.44 1.34 1.32 1.31 1.30 1.35 1.31 1.30 1.30 1.30
(0.32) (0.17) (0.13) (0.09) (0.00) (0.15) (0.08) (0.07) (0.05) (0.00)

30% 1.34 1.28 1.26 1.26 1.25 1.26 1.24 1.24 1.24 1.25
(0.24) (0.13) (0.10) (0.07) (0.00) (0.11) (0.07) (0.05) (0.04) (0.00)

Infeasible Using true dmin,t
cut-off value 1.49 1.35 1.33 1.31 1.30 1.36 1.32 1.31 1.30 1.30

16% (0.37) (0.19) (0.15) (0.10) (0.00) (0.17) (0.09) (0.07) (0.05) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 39% 32% 30% 28% 17% 29% 25% 24% 22% 16%

1.31 1.30 1.30 1.30 1.30 1.33 1.31 1.30 1.30 1.30
(0.23) (0.14) (0.11) (0.08) (0.00) (0.14) (0.08) (0.06) (0.05) (0.00)

Inverse of δ̂(1)

1.27 1.27 1.27 1.27 1.27 1.22 1.23 1.24 1.25 1.27
(N/A) (N/A) (N/A) (N/A) (N/A) (0.06) (0.04) (0.03) (0.02) (0.00)

Notes: The DGP follows the Pareto tail distribution given by (85) with β = 1.3. See the notes to Table
7 for other details.
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Table 10: Estimates of the shape parameter, β, of the power law and inverse of the
exponent, δ(1), across 2,000 Monte Carlo replications for Experiment C (β = 1.5)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.66 1.53 1.51 1.50 1.50 1.62 1.54 1.52 1.51 1.50
(0.74) (0.40) (0.30) (0.21) (0.01) (0.36) (0.20) (0.15) (0.11) (0.01)

20% 1.56 1.51 1.50 1.49 1.50 1.57 1.52 1.51 1.50 1.50
(0.49) (0.27) (0.21) (0.15) (0.01) (0.25) (0.14) (0.11) (0.08) (0.00)

30% 1.50 1.47 1.47 1.47 1.48 1.52 1.49 1.48 1.48 1.48
(0.39) (0.22) (0.17) (0.12) (0.01) (0.20) (0.11) (0.09) (0.06) (0.00)

Infeasible Using true dmin,t
cut-off value 1.63 1.52 1.51 1.50 1.50 1.60 1.53 1.52 1.51 1.50

13% (0.66) (0.35) (0.27) (0.19) (0.01) (0.32) (0.17) (0.13) (0.09) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.86 1.60 1.56 1.53 1.50 1.63 1.55 1.52 1.51 1.50
(0.59) (0.29) (0.22) (0.15) (0.01) (0.26) (0.14) (0.11) (0.08) (0.00)

20% 1.64 1.53 1.51 1.49 1.48 1.53 1.49 1.49 1.48 1.48
(0.37) (0.20) (0.15) (0.11) (0.00) (0.17) (0.10) (0.07) (0.05) (0.00)

30% 1.48 1.42 1.40 1.40 1.39 1.40 1.38 1.38 1.38 1.39
(0.27) (0.15) (0.11) (0.08) (0.00) (0.13) (0.07) (0.06) (0.04) (0.00)

Infeasible Using true dmin,t
cut-off value 1.80 1.58 1.55 1.52 1.50 1.59 1.53 1.52 1.51 1.50

13% (0.52) (0.25) (0.19) (0.13) (0.01) (0.22) (0.12) (0.09) (0.07) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 36% 29% 26% 24% 14% 26% 22% 21% 19% 13%

1.50 1.49 1.49 1.49 1.50 1.52 1.51 1.50 1.50 1.50
(0.28) (0.17) (0.14) (0.10) (0.01) (0.16) (0.10) (0.08) (0.06) (0.00)

Inverse of δ̂(1)

1.40 1.41 1.41 1.42 1.44 1.35 1.38 1.38 1.40 1.44
(N/A) (N/A) (N/A) (N/A) (N/A) (0.06) (0.04) (0.03) (0.02) (0.00)

Notes: The DGP follows the Pareto tail distribution given by (85) with β = 1.5. See the notes to Table
7 for other details.
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Table 11: Estimates of the shape parameter, β, of the power law and inverse of the
exponent, δ(1), across 2,000 Monte Carlo replications for Experiment A.1 (β = 1)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 0.98 1.10 1.20 1.36 2.39 0.97 1.11 1.21 1.37 2.39
(0.44) (0.29) (0.24) (0.19) (0.02) (0.22) (0.14) (0.12) (0.10) (0.01)

20% 1.11 1.28 1.39 1.54 2.11 1.12 1.30 1.40 1.55 2.11
(0.35) (0.23) (0.20) (0.15) (0.01) (0.18) (0.12) (0.10) (0.08) (0.00)

30% 1.17 1.34 1.44 1.56 1.91 1.19 1.36 1.45 1.57 1.91
(0.30) (0.20) (0.17) (0.13) (0.01) (0.15) (0.10) (0.08) (0.06) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.53 1.74 1.84 1.95 2.11 1.39 1.69 1.80 1.92 2.11
(0.48) (0.32) (0.26) (0.19) (0.01) (0.22) (0.15) (0.13) (0.10) (0.00)

20% 1.52 1.64 1.68 1.73 1.79 1.43 1.61 1.66 1.71 1.79
(0.34) (0.21) (0.17) (0.12) (0.01) (0.16) (0.10) (0.08) (0.06) (0.00)

30% 1.42 1.49 1.51 1.54 1.58 1.36 1.47 1.50 1.53 1.58
(0.26) (0.16) (0.12) (0.09) (0.00) (0.12) (0.08) (0.06) (0.04) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 39% 29% 24% 18% 2% 34% 24% 20% 14% 1%

1.37 1.58 1.69 1.85 2.83 1.36 1.60 1.71 1.87 2.90
(0.24) (0.19) (0.17) (0.15) (0.04) (0.12) (0.10) (0.09) (0.08) (0.02)

Inverse of δ̂(1)

1.06 1.04 1.03 1.02 1.01 1.03 1.01 1.01 1.01 1.00
(N/A) (N/A) (N/A) (N/A) (N/A) (0.12) (0.09) (0.08) (0.07) (0.04)

Notes: The DGP is given by (92). There is one strongly dominant unit and the rest are non-dominant:
δ(1) = 1, with δ(i) = 0 for i = 2, 3, ..., N , where δ(i) denotes the ith largest δ. The true value of β is
β = 1. See the notes to Tables 6 and 7 for other details.
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Table 12: Estimates of the shape parameter, β, of the power law and inverse of the
exponent, δ(1), across 2,000 Monte Carlo replications for Experiment B where δ(i) = 0.9i

(β = 1/0.9 = 1.11)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.06 0.92 0.95 1.04 2.34 1.09 0.94 0.96 1.05 2.34
(0.48) (0.24) (0.19) (0.15) (0.02) (0.24) (0.12) (0.10) (0.07) (0.01)

20% 0.99 1.00 1.06 1.19 2.09 1.02 1.01 1.07 1.19 2.09
(0.31) (0.18) (0.15) (0.12) (0.01) (0.16) (0.09) (0.08) (0.06) (0.00)

30% 0.98 1.04 1.12 1.25 1.90 1.00 1.05 1.12 1.25 1.90
(0.25) (0.16) (0.13) (0.10) (0.01) (0.13) (0.08) (0.06) (0.05) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.13 1.10 1.22 1.44 2.11 1.01 1.06 1.20 1.42 2.11
(0.36) (0.20) (0.17) (0.14) (0.01) (0.16) (0.10) (0.08) (0.07) (0.00)

20% 1.04 1.18 1.29 1.45 1.79 0.99 1.16 1.28 1.43 1.79
(0.23) (0.15) (0.13) (0.10) (0.01) (0.11) (0.07) (0.06) (0.05) (0.00)

30% 1.01 1.16 1.25 1.36 1.57 0.97 1.15 1.24 1.36 1.57
(0.18) (0.12) (0.10) (0.08) (0.00) (0.09) (0.06) (0.05) (0.04) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 49% 39% 36% 30% 1% 42% 38% 35% 28% 1%

0.96 1.13 1.24 1.40 2.82 0.96 1.12 1.23 1.39 2.85
(0.15) (0.11) (0.10) (0.08) (0.04) (0.08) (0.05) (0.05) (0.04) (0.02)

Inverse of δ̂(1)

1.09 1.06 1.06 1.07 1.10 1.20 1.13 1.12 1.12 1.11
(N/A) (N/A) (N/A) (N/A) (N/A) (0.16) (0.11) (0.10) (0.09) (0.05)

Notes: The DGP is given by (92). The true values of δ are generated as δ(i) = 0.9i, for i = 1, 2, ..., N ,
where δ(i) denotes the ith largest δ. The true value of β is β = 1/0.9 = 1.11. See the notes to Tables 6
and 7 for other details.
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Table 13: Estimates of the shape parameter, β, of the power law and inverse of the
exponent, δ(1), across 2,000 Monte Carlo replications for Experiment B where δ(i) = 0.75i

(β = 1/0.75 = 1.33)

T = 1 T = 4
N 100 300 500 1,000 450,000 100 300 500 1,000 450,000

Assumed Log-log regression
(
β̂LL

)
cut-off value

10% 1.36 1.39 1.47 1.60 2.39 1.33 1.39 1.47 1.61 2.39
(0.61) (0.36) (0.29) (0.23) (0.02) (0.30) (0.18) (0.15) (0.11) (0.01)

20% 1.34 1.45 1.54 1.66 2.11 1.34 1.46 1.55 1.67 2.11
(0.42) (0.27) (0.22) (0.17) (0.01) (0.21) (0.13) (0.11) (0.08) (0.00)

30% 1.31 1.45 1.52 1.63 1.91 1.33 1.46 1.53 1.63 1.91
(0.34) (0.22) (0.18) (0.13) (0.01) (0.17) (0.11) (0.09) (0.07) (0.00)

Assumed Maximum Likelihood Estimation
(
β̂MLE

)
cut-off value

10% 1.61 1.67 1.75 1.86 2.11 1.42 1.61 1.71 1.84 2.11
(0.51) (0.30) (0.25) (0.19) (0.01) (0.22) (0.15) (0.12) (0.09) (0.00)

20% 1.46 1.56 1.61 1.68 1.79 1.37 1.53 1.59 1.66 1.79
(0.33) (0.20) (0.16) (0.12) (0.01) (0.15) (0.10) (0.08) (0.06) (0.00)

30% 1.35 1.43 1.47 1.51 1.58 1.29 1.41 1.45 1.50 1.58
(0.25) (0.15) (0.12) (0.09) (0.00) (0.12) (0.07) (0.06) (0.04) (0.00)

Estimated Feasible MLE
(
β̂CSN

)
cut-off value 41% 29% 24% 18% 1% 31% 22% 18% 14% 1%

1.31 1.52 1.62 1.78 2.83 1.33 1.55 1.65 1.81 2.89
(0.23) (0.18) (0.16) (0.14) (0.04) (0.13) (0.10) (0.09) (0.08) (0.02)

Inverse of δ̂(1)

1.32 1.33 1.33 1.34 1.34 1.40 1.37 1.36 1.35 1.34
(N/A) (N/A) (N/A) (N/A) (N/A) (0.22) (0.17) (0.15) (0.13) (0.07)

Notes: The DGP is given by (92). The true values of δ are generated as δ(i) = 0.75i, for i = 1, 2, ..., N ,
where δ(i) denotes the ith largest δ. The true value of β is β = 1/0.75 = 1.33. See the notes to Tables 6
and 7 for other details.
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Table 14: Bias, RMSE, size and power of the extremum estimator for the dominant units
in Experiments A.1, A.2 and A.3 for unbalanced panels

Experiment A.1: One strongly A.2: Two strongly A.3: One strongly and
dominant unit dominant units one weakly dominant units

δ(1) = 1 δ(1) = δ(2) = 1 δ(1) = 1, δ(2) = 0.75

N δ(1) = 1 δ(2) = 1 δ(1) = 1 δ(2) = 0.75

Bias 100 -1.25 3.87 -8.41 -1.64 -2.40
(×100) 300 -0.52 4.08 -5.83 -0.65 -0.94

500 -0.38 3.95 -5.15 -0.45 -0.64
1,000 -0.26 3.71 -4.47 -0.30 -0.41

450,000 -0.08 2.08 -2.27 -0.08 -0.10
RMSE 100 10.74 9.64 12.22 10.34 10.72
(×100) 300 8.65 8.27 9.25 8.46 8.71

500 7.94 7.69 8.37 7.81 8.03
1,000 7.14 7.01 7.43 7.06 7.24

450,000 3.79 3.78 3.88 3.79 3.87
Size 100 5.10 3.40 7.25 3.95 4.40
(×100) 300 4.55 3.85 5.55 3.80 4.55

500 4.25 4.15 5.20 3.90 4.60
1,000 4.15 4.05 4.65 3.75 4.30

450,000 4.25 4.40 4.55 4.25 4.70
Power 100 13.00 20.35 2.30 11.30 71.85
(×100) 300 18.80 33.30 3.75 18.00 83.90

500 22.65 38.85 5.35 22.10 88.80
1,000 26.50 45.65 7.20 26.10 94.35

450,000 73.75 93.10 53.80 73.75 100.00

Notes: The unbalanced panels are generated with Tmax = 4. For each Monte Carlo replication, the top
5% of the units in terms of the true degree of dominance do not have missing observations, whereas the
rest will have missing data for the first and the last periods with a 50% probability. The DGP is given
by (92). For Experiment A.1, the DGP includes one strongly dominant unit and the rest are
non-dominant: δ(1) = 1, with δ(i) = 0 for i = 2, 3, ..., N . For Experiment A.2, the DGP includes two
strongly dominant units and the rest are non-dominant: δ(1) = δ(2) = 1, with δ(i) = 0 for i = 3, 4, ..., N .
For Experiment A.3, the DGP includes one strongly dominant unit and one weakly dominant unit, and
the rest are non-dominant: δ(1) = 1 and δ(2) = 0.75, with δ(i) = 0 for i = 3, 4, ..., N . δ(1) and δ(2) denote
the largest and second-largest of δ respectively (δ(1) ≥ δ(2)), which are estimated by (88), and the
standard errors of δ̂(i) are computed by (89). The power is calculated at 0.9 if δ(1) = 1, and at 1 if
δ = 0.75. The number of replications used is 2, 000.
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Table 15: Yearly estimates of the degree of dominance, δ, and inverse of the shape pa-
rameter of power law, β, based on the first-order interconnections, using US input-ouput
tables compiled by Acemoglu et al. (2012)

δ̂(1) based on the inverse of β̂ using the first-order interconnections

Inverse of β̂LL Inverse of β̂MLE Inverse of β̂CSN
Assumed cut-off value Assumed cut-off value Estimated

Year N δ̂(1) 10% 20% 30% 10% 20% 30% cut-off value
1972 483 0.767 0.694 0.727 0.832 0.736 0.829 1.135 0.728 16.8%

(0.204) (0.144) (0.117) (0.144) (0.114) (0.128) (0.111)
1977 524 0.778 0.677 0.725 0.804 0.715 0.852 1.009 0.726 13.6%

(0.196) (0.138) (0.113) (0.139) (0.116) (0.113) (0.119)
1982 529 0.788 0.717 0.739 0.818 0.719 0.786 1.039 0.741 15.3%

(0.194) (0.137) (0.112) (0.137) (0.106) (0.115) (0.111)
1987 510 0.804 0.667 0.731 0.814 0.724 0.849 1.028 0.742 13.3%

(0.198) (0.140) (0.114) (0.140) (0.116) (0.115) (0.121)
1992 476 0.824 0.672 0.758 0.842 0.738 0.891 1.002 0.706 9.5%

(0.204) (0.145) (0.118) (0.144) (0.124) (0.113) (0.149)
1997a 474 0.778 0.625 0.698 0.791 0.617 0.909 0.982 0.670 13.1%

(0.206) (0.145) (0.119) (0.146) (0.151) (0.134) (0.127)
2002 417 0.765 0.639 0.687 0.759 0.685 0.756 0.930 0.730 19.4%

(0.218) (0.155) (0.126) (0.154) (0.121) (0.121) (0.111)

Notes: Estimates are obtained using the data sets provided by Acemoglu et al. (2012), which are based
on the US input-output account data by the Bureau of Economic Analysis (BEA). N is the total
number of sectors in a given year and the standard errors are in parentheses. δ̂(1) is the largest estimate
of δ computed using (76). The first-order degree sequence is used in the estimation of the shape
parameter of the power law, β. β̂LL is obtained by the log-log regression with Gabaix and Ibragimov
(2011) correction using the OLS regression defined by (66) and its standard error is calculated by (67).
β̂MLE is the maximum likelihood estimate (MLE) of β computed by (68) and its standard error by
(69). A 10% cut-off value, for example, means that the Pareto tail is taken to be the top 10% of all
sectors in terms of outdegrees in each year. Acemoglu et al. (2012) report β̂LL estimates only based on
a 20% cut-off point. β̂CSN is the feasible MLE proposed by Clauset et al. (2009) and its estimated
cut-off values are reported in the last column of the table.
a From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the earlier years they are based on the Standard
Industrial Classification (SIC) system.
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Table 16: Yearly estimates of the degree of dominance, δ, and inverse of the shape para-
meter of power law, β, based on the second-order interconnections, using US input-ouput
tables compiled by Acemoglu et al. (2012)

δ̂(1) based on the inverse of β̂ using the second-order interconnections

Inverse of β̂LL Inverse of β̂MLE Inverse of β̂CSN
Assumed cut-off value Assumed cut-off value Estimated

Year N δ̂(1) 10% 20% 30% 10% 20% 30% cut-off value
1972 483 0.767 0.719 0.880 1.035 0.873 1.126 1.353 0.973 15.7%

(0.204) (0.144) (0.117) (0.144) (0.131) (0.129) (0.115)
1977 524 0.778 0.718 0.870 1.008 0.821 1.058 1.351 0.750 9.4%

(0.196) (0.138) (0.113) (0.139) (0.126) (0.131) (0.143)
1982 529 0.788 0.773 0.913 1.013 0.885 1.028 1.329 1.088 23.6%

(0.194) (0.137) (0.112) (0.137) (0.113) (0.119) (0.089)
1987 510 0.804 0.686 0.879 1.031 0.883 1.070 1.325 1.110 22.9%

(0.198) (0.140) (0.114) (0.140) (0.120) (0.121) (0.092)
1992 476 0.824 0.661 0.869 1.012 0.750 1.014 1.277 0.818 12.2%

(0.204) (0.145) (0.118) (0.144) (0.139) (0.142) (0.131)
1997a 474 0.778 0.632 0.790 0.955 0.648 1.100 1.202 0.666 12.0%

(0.206) (0.145) (0.119) (0.146) (0.174) (0.156) (0.132)
2002 417 0.765 0.620 0.768 0.954 0.721 0.998 1.245 0.772 13.4%

(0.218) (0.155) (0.126) (0.154) (0.152) (0.154) (0.134)

Notes: This table differs from Table 15 in that the second-order degree sequence is used to produce the
estimates of β. See the notes to Table 15 for further details.
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Table 17: Yearly estimates of the degree of dominance, δ, for the top five pervasive sectors,
using US input-ouput tables (our data)

Year N δ̂(1) δ̂(2) δ̂(3) δ̂(4) δ̂(5)
1972 446 0.764 0.740 0.701 0.639 0.608
1977 468 0.774 0.704 0.628 0.608 0.590
1982 468 0.786 0.669 0.655 0.635 0.619
1987 457 0.802 0.669 0.657 0.633 0.633
1992 451 0.823 0.678 0.677 0.646 0.631
1997a 452 0.775 0.725 0.636 0.622 0.597
2002 408 0.758 0.743 0.640 0.564 0.560
2007 365 0.722 0.649 0607 0.591 0.551

Notes: Estimates are obtained using the input-output accounts data downloaded from the Bureau of
Economic Analysis (BEA) website. See Appendix E for details of the data sources and their
transformations. The table reports the five largest yearly estimates of δ, denoted by δ̂(1), δ̂(2), · · · , δ̂(5).
N is the number of sectors with non-zero outdegrees.
a From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the previous years they are based on the Standard
Industrial Classification (SIC) system.
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Table 18: Identities of the top five pervasive sectors based on the yearly estimates of δ

Year The top five pervasive sectors
1972 Wholesale trade

Blast furnaces and steel mills
Real estate
Miscellaneous business services
Motor freight transportation & warehousing

1977 Wholesale trade
Blast furnaces and steel mills
Real estate
Petroleum refining
Industrial inorganic & organic chemicals

1982 Wholesale trade
Blast furnaces and steel mills
Petroleum refining
Private electric services (utilities)
Advertising

1987 Wholesale trade
Blast furnaces and steel mills
Advertising
Motor freight transportation and warehousing
Electric services (utilities)

1992 Wholesale trade
Real estate agents, managers, operators, and lessors
Blast furnaces and steel mills
Trucking and courier services, except air
Advertising

1997a Wholesale trade
Management of companies and enterprises
Real estate
Iron and steel mills
Truck transportation

2002 Management of companies and enterprises
Wholesale trade
Real estate
Electric power generation, transmission, and distribution
Iron and steel mills and ferroalloy manufacturing

2007 Wholesale trade
Management of companies and enterprises
Other real estate
Iron and steel mills and ferroalloy manufacturing
Petroleum refineries

Notes: This table complements Table 17 and reports the identities of those sectors corresponding to the
five largest estimates of δ (in descending order) for each year.
a From the year 1997 and thereafter, the BEA input-output tables are based on the North American
Industry Classification System (NAICS), while for the previous years they are based on the Standard
Industrial Classification (SIC) system.
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Table 19: Pooled panel estimates of the degree of dominance, δ, for the top five pervasive
sectors, using US input-output tables for the two sub-periods 1972 -1992 and 1997-2007

Sub-sample 1972-1992 Sub-sample 1997-2007

δ̂(1) 0.763 Wholesale trade 0.716 Wholesale trade
(0.037) (0.045)

δ̂(2) 0.667 Blast furnaces 0.683 Management of companies
(0.037) and steel mills (0.045) and enterprises

δ̂(3) 0.642 Real estate 0.610 Real estatea

(0.037) (0.045)

δ̂(4) 0.605 Trucking and courier 0.598 Iron and steel forging
(0.037) services, except air (0.045)

δ̂(5) 0.605 Miscellaneous business 0.595 Other real estatea

(0.037) services (0.045)

N 548 619

T 5 3

Notes: The pooled estimates for the years 1972, 1977, 1982, 1987 and 1992 are based on US
input-output data using the Bureau of Economic Analysis (BEA) industry codes, which are in turn
based on the Standard Industrial Classification (SIC). For the years 1997, 2002 and 2007, the sectoral
classifications are based on the BEA industry codes, which are based on the North American Industry
Classification System (NAICS). The table gives the five largest estimates of δ, denoted by
δ̂(1), δ̂(2), · · · , δ̂(5), and the identities of the associated sectors. The standard errors are given in
parentheses and computed using (89). N is the total number of sectors with non-zero outdegrees, and T
is the number of time periods in the panel.
a In the BEA industry classifications, the real estate sector was subdivided into housing and other real
estate sectors starting from 2007. Since the pooled estimates are based on unbalanced panels
constructed according to BEA codes, real estate and other real estate are considered as two sectors.
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A Appendix: Lemmas

Lemma 1. Let A be an N×N matrix whose entries are non-negative and each row sums
up to 1. Then λ1 (A) = 1, where λ1 (A) is the largest eigenvalue of A, and IN − ρA is
invertible given that |ρ| < 1.

Proof. The matrix A as described is known as a (right) stochastic matrix or transition
matrix. The proof of λ1 (A) = 1 can be found in, for example, Property 10.1.2 in Stewart
(2009). Given that |ρ| < 1 and λ1 (A) = 1, it is readily seen that all eigenvalues of
IN − ρA are positive in absolute value, and hence the invertibility follows.

Remark 5. It should be noted that this lemma holds irrespective of the column sums of
A being bounded or not. Also note that λ1 (A′) = 1 and IN − ρA′ is invertible, since a
matrix and its transpose always have the same set of eigenvalues.

Lemma 2. Suppose that A is an N × N matrix that satisfies ‖A‖∞ ≤ 1 and ‖A‖1 <
K < ∞, where K is a finite positive constant. Then B−1 has bounded row and column
norms, where B = IN − ρA and |ρ| < 1.

Proof. Given that ‖ρA‖∞ ≤ 1, B−1 can be expanded as22

B−1 =
∞∑
k=0

(ρA)k ,

and then ∥∥B−1∥∥∞ ≤
∥∥IN + ρA+ρ2A2 + · · ·

∥∥
∞

≤ 1 + |ρ| ‖A‖∞ + |ρ|2 ‖A‖2∞ + · · ·

=
1

1− |ρ| ‖A‖∞
< K <∞.

Similarly we can show that ‖B−1‖1 < K <∞.

B Appendix: Derivation of the summability condi-
tion

Since κi > 0 for all i, then using (30) we have

SN ≤ κmaxN
−1

N∑
i=1

N δi

= κmaxN
−1

N∑
i=1

eδi lnN , (B.1)

22See, for example, Horn and Johnson (2012) Corollary 5.6.16.
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where κmax = maxi(κi). Now using the Taylor series expansion of eδi lnN we have

N∑
i=1

eδi lnN =

N∑
i=1

[
1 +

∞∑
s=1

δsi (lnN)s

s!

]

= N +

∞∑
s=1

(lnN)s

s!

(
N∑
i=1

δsi

)
. (B.2)

As 0 ≤ δi < 1, it also follows that

N∑
i=1

δsi ≤
N∑
i=1

δi, for s ≥ 1. (B.3)

Using (B.2) and (B.3) in (B.1) we have

SN = N−1
N∑
i=1

κie
δi lnN ≤ κmax

[
1 +

(
N∑
i=1

δi

)
N−1

∞∑
s=1

(lnN)s

s!

]
.

However, since
∞∑
s=1

(lnN)s

s!
= exp (lnN)− 1 = N − 1,

it then follows that

SN ≤ κmax

(
1 +

N − 1

N

N∑
i=1

δi

)
, (B.4)

and SN is bounded in N if
∑N

i=1 δi is bounded in N , as required.

C Appendix: Multiple dominant units

This appendix extends the analysis in Section 3 to the scenario where there are more
than one dominant unit in the network. Specifically, we assume that the first m units
are dominant with degrees of dominance {δ1,δ2, ..., δm}, and the rest n units are non-
dominant. Let N = m + n denote the total number of units, and then the network
equation system,

xt = ρWxt + gt,

can be partitioned as(
x1t
x2t

)
=

(
ρW11 ρW12

ρW21 ρW22

)(
x1t
x2t

)
+

(
g1t
g2t

)
,

where x1t = (x1t, x2t, ..., xmt)
′, x2t = (xm+1,t, xm+2,t, ..., xNt)

′, W11 is the m × m weight
matrix associated with the dominant units, W22 is the n × n weight matrix associated
with the non-dominant units, and g1t = (g1t, g2t, ..., gmt)

′, g2t = (gm+1,t, gm+2,t, ..., gNt)
′,

where git is given by
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git = −bi − (1− ρ)(γift + εit),

for i = 1, 2, ..., N , as in (36). As %(W22) ≤ 1 and |ρ| < 1, we have

x2t = (In − ρW22)
−1 (ρW21x1t + g2t) . (C.1)

Substituting (C.1) into
x1t = ρW11x1t + ρW12x2t + g1t,

and rearranging yields
x1t = Φ−11 g1t + ρΦ−11 W12S

−1
22 g2t, (C.2)

where
Φ1 = Im − ρW11 − ρ2W12S

−1
22 W21, (C.3)

S−122 = (In − ρW22)
−1, and Φ1 is invertible as (IN − ρW) is nonsingular by Lemma 1 in

Appendix A.
Now consider the cross-section average of xit for i = 1, 2, ..., N ,

xNt = N−1 (τ ′mx1t + τ ′nx2t) .

Using (C.1) in the above equation gives

xNt = N−1
{(
τ ′m + ρτ ′nS

−1
22 W21

)
x1t + τ ′nS

−1
22 g2t

}
,

and by the definition of g1t we obtain

xNt = −aN + θ′Nx1t − (1− ρ)ψNft − (1− ρ)v′Nε2t,

where
aN = N−1τ ′nS

−1
22 b2,

θ′N = N−1
[
τ ′m + ρτ ′nS

−1
22 W21

]
,

ψN = N−1τ ′nS
−1
22 γ2,

v′N = N−1τ ′nS
−1
22 ,

with b2 = (bm+1, bm+2, ..., bN)′ and γ2 =
(
γm+1, γm+2, ..., γN

)′
.

We will derive V ar(xNt) and inspect its asymptotic order of magnitude as N → ∞
following similar steps to those in the main text. First, the same arguments apply for
aN = O(1) and

V ar (v′Nε2t) = N−1τ ′nS
−1
22 V22,εS

−1′
22 τ n = 	

(
N−1

)
,

where V22,ε = diag
(
σ2m+1, σ

2
m+2, ..., σ

2
N

)
. Then regarding the effects from the dominant

units, using (C.2) we have

Cov (x1t,v
′
Nε2t) = Cov

(
Φ−11 g1t + ρΦ−11 W12S

−1
22 g2t,v

′
Nε2t

)
(C.4)

= −N−1ρ(1− ρ)Φ−11 W12S
−1
22 V22,εS

−1′
22 τ n,
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Cov (x1t, ft) = −(1− ρ)V ar(ft)
{
Φ−11 γ1 + ρΦ−11 W12S

−1
22 γ1

}
,

and

V ar (x1t) = (1− ρ)2Φ−11 V11,εΦ
−1′
1 + (1− ρ)2ρ2Φ−11 W12S

−1
22 V22,εS

−1′
22 W′

12Φ
−1′
1 (C.5)

+(1− ρ)2V ar(ft)
(
Φ−11 γ1γ

′
1Φ
−1′
1 + ρ2Φ−11 W12S

−1
22 γ2γ

′
2S
−1′
22 W′

12Φ
−1′
1

)
,

where V11,ε = diag (σ21, σ
2
2, ..., σ

2
m) and γ1 = (γ1, γ2, ..., γm)′.

Now, we are ready to examine V ar(xNt), which is given by

V ar (xNt) = θ′NV ar(x1t)θN − 2(1− ρ)θ′NCov (x1t,v
′
Nε2t) + (1− ρ)2V ar (v′Nε2t)

+(1− ρ)2V ar(ft)
{
ψ2N + 2ψNθ

′
NΦ−11 γ1 + 2ρψNθ

′
NΦ−11 W12S

−1
22 γ2

}
.

In the case where the network contains m dominant units but is not subject to common
shocks, we have

V ar (xNt) = θ′NV ar(x1t)θN − 2(1− ρ)θ′NCov (x1t,v
′
Nε2t) +	(N−1). (C.6)

Consider the ith element of θN , θi,N , for i = 1, 2, ...,m, and suppose that m is fixed
and does not rise with N , then by definition,

θi,N = N−1
(
1 + ρτ ′nS

−1
22 w·i,21

)
,

where w·i,21 is the ith column of W21. Let φ
′
n= τ ′nS

−1
22 = (φm+1, φm+2, ..., φN), then

φmin

n∑
j=1

wji,21 ≤ φ′nw·i,21 ≤ φmax

n∑
j=1

wji,21,

where φmin = min(φm+1, φm+2, ..., φN) and φmax = max(φm+1, φm+2, ..., φN), and it follows
that

N−1 + φminN
−1

n∑
j=1

wji,21 ≤ θi,N ≤ N−1 + φmaxN
−1

n∑
j=1

wji,21. (C.7)

Repeating the same argument as for the case of a single dominant unit, we readily have

1 < φmin ≤ φmax < K <∞. Also note that w′·i,21τ n = 	(N δi), which immediately follows
from the definition

w′·i,21τ n + w′·i,11τm = di = κiN
δi ,

and m being fixed. Therefore, we establish by (C.7) that

θi,N = 	(N δi−1), for i = 1, 2, ...,m,

and then
θ′NθN = 	(N2δmax−2),
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where 0 < δmax = max (δ1, δ2, ..., δm) ≤ 1.
Further notice that

θ′NθNλm [V ar(x1t)] ≤ θ′NV ar(x1t)θN ≤ θ′NθNλ1 [V ar(x1t)] ,

where λ1 [V ar(x1t)] and λm [V ar(x1t)] denote the largest and smallest eigenvalue of V ar(x1t),
respectively, and 0 < λm [V ar(x1t)] ≤ λ1 [V ar(x1t)] < K <∞, hence we obtain

θ′NV ar(x1t)θN = 	(N2δmax−2).

Turning now to the jth element of the covariance term, for j = 1, 2, ...,m, we have

|Cov (xjt,v
′
Nε2t)| ≤ N−1 |ρ(1− ρ)|

∥∥Φ−1j.,1∥∥∞ ‖W12‖∞
∥∥S−122 ∥∥∞ ‖V22,ε‖∞ ‖φn‖∞ ,

where Φ−1j.,1 denotes the j
th row of Φ−11 , and using similar line of reasoning as in the main

text it is easily verified that

|Cov (xjt,v
′
Nε2t)| = O

(
N−1

)
,

and therefore

θ′NCov (x1t,v
′
Nε2t) = O(N δmax−2).

Consequently, in the absence of common shocks, we have demonstrated that

V ar (xNt) = 	(N2δmax−2) +	(N−1),

which clearly shows that the rate of convergence of xNt depends on the strongest dominant
unit in the network.
Finally, if the network is subject to both dominant units and a common factor, it

immediately follows from ψN = 	(N δγ−1) and similar arguments as before that

V ar (xNt) = 	(N2δmax−2) +	(N2δγ−2) +	(N−1),

which is a direct extension of (61) to the multiple-dominant-units network, and shows
that the relative magnitudes between δmax and δγ determines the limiting properties of
the aggregate effects.

D Appendix: Consistency of δ̂(1)

First we note that since zi are distributed independently with finite means and variances
then

E (z̄N) = N−1
N∑
i=1

E (zi) = β−1 Pr (z ≥ 0) + E (z |z < 0) [1− Pr (z ≥ 0)] ,

57



which is finite. Further using standard results for the moments of ordered random vari-
ables (see, for example, Section 4.6 of Arnold et al. (1992)) we have

E
(
z(i)
)

= (1/β)

(
N−i+1∑
j=1

1

j

)
, V ar(z(i)) = (1/β)2

(
N−i+1∑
j=1

1

j2

)
, for i = 1, 2, ..., N. (D.1)

Taking the expectation and variance of δ̂(1) given by (86), and making use of the above
results we now have

E
(
δ̂(1)

)
=
E
(
z(1)
)
− E (z̄N)

lnN
=

(1/β)
∑N

j=1 j
−1 − E (z̄N)

lnN
, (D.2)

V ar
(
δ̂(1)

)
=

V ar
(
z(1)
)

+N−2
∑N

i=1 V ar(zi)− 2N−1
∑N

i=1Cov(z(1), z(i))

(lnN)2

=
V ar

(
z(1)
)

+N−2
∑N

i=1 V ar(zi)− 2N−1
∑N

i=1 V ar(z(i))

(lnN)2
. (D.3)

Also using well known bounds to harmonic series (see, for example, Section 3.1 and 3.2
of Bonar et al. (2006)), we have

ln(N + 1) <

(
n∑
j=1

1

j

)
≤ 1 + lnN,

and hence

lim
N→∞

∑N
j=1 j

−1

lnN
= 1. (D.4)

Using (D.1) and (D.4) in (D.2) we now have

lim
N→∞

E
(
δ̂(1)

)
= 1/β.

Turning to the variance of δ̂(1), we note that

V ar
(
δ̂(1)

)
=

V ar
(
z(1)
)

+
(
1−2N
N2

)∑N
i=1 V ar(z(i))

(lnN)2
,

(lnN)−2 V ar
(
z(1)
)
≤ V ar

(
δ̂(1)

)
≤ (lnN)−2

[
V ar

(
z(1)
)

+

(
2N − 1

N2

)
NV ar

(
z(1)
)]
,

(lnN)−2 δ
2

(
N∑
j=1

1

j2

)
≤ V ar

(
δ̂(1)

)
≤ (lnN)−2

(
3N − 1

N

)
δ
2

(
N∑
j=1

1

j2

)
.

But
∑N

j=1
1
j2
≤ π2/6, and hence V ar

(
δ̂(1)

)
= O

[
(lnN)−2

]
.
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E Data appendix

The input-output accounts data are obtained from the Bureau of Economic Analysis
(BEA) website at http://www.bea.gov/industry/io_annual.htm. The input-output tables
at the finest level of disaggregation are compiled every five years, and the latest available
data are for year 2007. We derive the Commodity-by-Commodity Direct Requirements
(DR) table by applying the following formula:

DR = (TR− I) (TR)−1 ,

where I is an identity matrix, and TR denotes the Commodity-by-Commodity Total
Requirements table that is available from the BEA. The input-output matrix, W, is set
to the transpose of DR and row-standardized so that the intermediate input shares sum
to one for each sector. The sectors without any direct requirements and those with zero
outdegrees are excluded from W.
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