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Abstract 
 
We develop a model of vertical innovation in which firms incur a market entry cost and choose 
a unique level of quality. Once established, firms compete for market shares, selling to 
consumers with heterogeneous tastes for quality. The equilibrium of the pricing game exists and 
is unique within our setup. Exogenous productivity growth induces firms to enter the market 
sequentially at the top end of the quality spectrum. A central feature of the model is that 
optimization problems of consecutive entrants are self-similar so that new firms enter in 
constant time-intervals and choose qualities that are a constant fraction higher than incumbent 
qualities. The asymmetries of quality choice, which inevitably arise because the quality 
spectrum has top and a bottom, is thus overcome by sequential entry. Our main contribution lies 
in handling these asymmetries. 
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1 Introduction

Quality is one of the main dimensions through which firms differentiate their products.1

An important feature of such differentiation in quality – or vertical differentiation – is that

all individuals agree on the ranking of varieties. This feature of individual demand has

important effects for the equilibrium market structure: supply is naturally concentrated to

a small set of firms under a wide set of specifications. The existing literature has therefore

focused on cases where either natural monopolies (Shaked and Sutton (1984) and Sutton

(2007a and 2007b)) or duopolies prevail (Mussa and Rosen (1978), Gabszewicz and Thisse

(1979), Anderson et al. (1989), Champsaur and Rochet (1989) and Motta (1993)) or where

oligopolies arise with a bounded number of active firms (Shaked and Sutton (1983 and

1987), Gabszewicz and Thisse (1980) and Lahmandi-Ayed (2000 and 2004)).2

Complementing the existing literature, the main interest of the present paper lies in

analyzing markets with ‘long quality ladders’, i.e., markets in which many different quality

levels are simultaneously supplied. We thus analyze a setup in which markets accommodate

a potentially unbounded number of active firms. In particular, we analyze endogenous

quality choice under costly entry in vertically differentiated markets, where each quality is

consumed by a different set of consumers according to their valuation of quality. Exogenous

productivity growth makes ever-higher qualities affordable so that firms enter the market

sequentially at the top end of the quality spectrum. We specify the conditions under which

the entry problem of each new entrant is replicated. Our central result is that new qualities

improve upon existing qualities by a fixed proportion.

The building block of our analysis is a framework based on Mussa and Rosen (1978),

Gabszewicz and Thisse (1979), Bresnahan (1980), and Shaked and Sutton (1982). The

model features heterogeneous consumers and a potentially unbounded number of firms,

each of which holds the blueprint of a unique quality of an otherwise homogeneous good.

All consumers appreciate quality but differ in the degree of this valuation and, thus, in

1Bils and Klenow (2001) and Broda and Romalis (2009) show empirically that quality differentiation is
prevalent in most categories of goods and that for these categories, households of different income consume
goods of different quality. The international trade literature has also documented that most industries are
characterized by a high degree of vertical specialization. Richer countries both export and import goods of
higher quality (see Schott (2004), Hummels and Klenow (2005), Hallak (2006), Hallak and Schott (2011),
and Khandewal (2010)).

2See Chapter 8 in Anderson et al. (1992) for a comprehensive review of the earlier part of the literature.
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their willingness to pay for quality. A key assumption concerning technology is that the

marginal production cost is convex in quality, which guarantees the survival of many firms.3

In the unique equilibrium, the market is perfectly segmented: the top-quality (bottom) firm

supplies consumers with the highest (lowest) valuations, and intermediate firms supply

consumers with intermediate valuations accordingly.

Our analysis proceeds in two steps. The first focuses on Bertrand-type price competition

for given qualities of an arbitrary number of firms. The prior literature has shown the

existence and uniqueness of the Bertrand-type price game. In addition, we provide closed

form solutions for firms’ prices and profits under a specific, regular distribution of qualities,

which is shown to emerge in equilibrium in the second step of our analysis.

The second and main step of our analysis endogenizes firms’ quality choices. Firms

can incur a fixed cost to improve upon existing qualities, in which case they are granted a

perpetual patent to produce their particular quality. Exogenously growing productivities

reduce entry and production costs at equal rates. We prove that in this setup, there is

a dynamic equilibrium in which each new entrant chooses a quality that is a constant

percentage higher than the incumbent technology leader. We then analyze the resulting

degree of product market competition as a function of market size and production costs.

Specifically, larger markets and lower entry costs induce more frequent firm entry and more-

densely supplied qualities because sales and profits lead to a more rapid recovery of setup

costs. Surprisingly, an equal percentage increase in the marginal cost of production for all

firms is associated with a more densely supplied market. This result holds because markups

are proportional to costs. Thus, when production costs rise for all firms, profits actually

increase for any given quality spacing. Because excess profits cannot exist in equilibrium,

the market must exhibit denser quality spacing and tougher competition.

We regard the main contribution of this paper as technical in that it solves the entry

game for the case of monopolistic competition in vertically differentiated markets. The

technical difficulties of endogenous quality choice are solved by analyzing a dynamic setup

with sequential entry. While sequential market entry of firms obviously generates technical

3We are not the first to note that a globally convex marginal cost schedule with respect to quality
guarantees that a large number of firms can co-exist in equilibrium (see Bresnahan (1980 and 1987),
Gabszewicz and Thisse (1980), Shaked and Sutton (1982), and, in particular, the discussion in Anderson
et al. (1992)). Similar to the current paper is Zweimüller and Brunner (2005), who study innovation
incentives in a model that features many firms supplying different qualities.
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difficulties, it also enables us to overcome the problems that unavoidably arise when the

choice of quality is endogenous: the quality spectrum has a top end and a bottom end

and the respective border conditions generate asymmetries among firms. Handling these

resulting analytical difficulties constitutes our main technical contribution.

More specifically, we establish the existence of a quasi-stationary, periodic equilibrium

in which each firm enters the industry as the technological leader and successively transits

through the product cycle as it becomes superseded by further innovators. The advantage

of such a dynamic entry game is that we only have to analyze the entry problem of one

firm at a time, since the quality choice and product cycle of all subsequent entrants are

isomorphic. We thus circumvent problems that arise in a simultaneous-entry game (see,

e.g. Vogel (2008) for the case of horizontal differentiation).

We argue that the case of a large number of competitors in vertically differentiated

industries is empirically important, and this case is the particular focus of our paper. For

example, empirical studies in the field of international trade document that most manufac-

turing industries are characterized by many coexisting firms that supply the same good at

different levels of quality.4 Moreover, given the prominence of quality and non-homothetic

preferences in many applied fields such as economic growth (e.g., see Aghion and Howitt

(1992)), international trade (e.g., see Fajgelbaum et al. (2011)), or international macroeco-

nomics (e.g., see Bems and Di Giovanni (2014)), we believe that rigorously modeling how

firms compete monopolistically in quality constitutes value added per se.

By incorporating consumer heterogeneity as a key feature, our model also relates to

the literature on income disparity and quality differentiation. For example, Auer, Chaney

and Sauré (2014) apply the setup developed in the current paper to examine how income

disparities affect pricing to market decisions and endogenous markups for goods that are

differentiated by quality. Our setup is also related to the literature on the connection

between income disparity and innovation.5

In addition, we argue that our methodological approach of analyzing firm entry in a

dynamically evolving environment opens a novel perspective on some of the central ques-

4See, in particular, Khandelwal (2010) and Kugler and Verhoogen (2010), but also Baldwin and Harrigan
(2011), Johnson (2012), Verhoogen (2008), and Hallak and Schott (2009). In addition, industry-level studies
document the frequent coexistence of a technological leader and multiple lagging firms (see, for example,
Aizcorbe and Kortum (2005)).

5See Foellmi and Zweimueller (2006) for a contribution and a literature review.
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tions in industrial organization, such as the relation between market size and markups (e.g.,

see Zhelobodko et al. (2012)) or the optimality of the number of firms in a decentralized

economy (see, for example, Lancaster (1966), Dixit and Stiglitz (1977), Vives (2001), and

Dhingra and Morrow (2014)). The present paper offers a tool to analyze these important

questions from a dynamic perspective. As such, our approach adds to models that have an

intrinsically dynamic aspect, e.g., those models analyzing efficiency under sequential entry

(e.g., see Vives (1988) or Anderson and Engers (2001)).

On the technical side, our analysis adds to the sizeable literature on quality competi-

tion based on Gabszewicz and Thisse (1979), Mussa and Rosen (1978), Bresnahan (1980),

and Shaked and Sutton (1982 and 1983). Most of this literature focuses on vertically

differentiated markets in which natural oligopolies prevail (for a survey of this literature,

see Anderson et al. (1992)). A key assumption in these previous contributions is that

the marginal production costs increase only moderately with quality, which enables high-

quality firms to price low-quality competitors out of the market. Our work, in contrast,

complements the literature of setups with the potential to accommodate larger numbers of

firms (Bresnahan (1980, 1987), Gabszewicz and Thisse (1980), Shaked and Sutton (1982),

Lahmandi-Ayed (2000 and 2004)) by analyzing endogenous quality choice under costly

entry.

The remainder of this paper is structured as follows. In Section 2, we develop a the-

oretical model of competition in quality and examine firms’ pricing behavior. We then

characterize free entry decisions and quasi-stationary equilibria in Section 3, which we

analyze in Section 4. Finally, Section 5 concludes.

2 A Model of Monopolistic Competition in the Qual-

ity Space

In this section, we analyze how firms compete monopolistically in the quality space for

given locations. We adopt a setup in the spirit of Mussa and Rosen (1978), Gabszewicz

and Thisse (1979), Bresnahan (1980) and Shaked and Sutton (1982), in which consumers

value quality at a linear rate. We assume that the marginal cost of production increases

sufficiently with quality so that in equilibrium, lower-valuation consumers prefer to buy

goods other than those of the current technological leader. Within this framework, we
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analyze the static determinants of prices and profits for a given quality spacing.

2.1 Preferences

There are two goods: a homogeneous good D and a good Q that is differentiated in quality

and supplied at different quality levels indexed by n (qn). Individuals derive utility from

consumption of the two goods. Their utility is linear in the quantity of the homogeneous

good. Each individual consumes either one or zero units of the differentiated good Q.

Apart from this binary decision, the consumer can choose among different qualities q of

this good. The individual’s utility function is defined as:6

uv (q, d) = v · q + d (1)

where v is a parameter that determines the desire to consume quality (and the willingness

to pay for it). In the following, we will therefore call v the valuation of quality, or simply

the valuation. Note that no consumption of good Q is equivalent to a consumption of

quality zero at price zero.

The total number of individuals equals L. Individuals value quality differently, i.e., they

have different values of v. We define the resulting cumulative density function of valuations

within the total population as

G (v) : [0,∞)→ [0, 1] (2)

which is assumed to have bounded support, i.e., supp(G) = [v
¯
,v̄], where 0 ≤v

¯
<v̄<∞.

2.2 Production

Good D is produced competitively with constant returns to scale and labor as the only

factor. Normalizing its price makes good D the numéraire. The production technology of

the Q-type goods depends on the good’s level of quality. A firm that enters the Q-market

to produce the good of quality q ∈ (0,∞) must acquire a blueprint at the fixed cost

F (q) = φqθ θ > 1 (3)

6We take this preference structure from Mussa and Rosen (1978). This structure is also similar to the
formulation of Shaked and Sutton (1982), who assume a multiplicative structure between the homogeneous
and the differentiated good.
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labor units. We thus assume that blueprints for higher qualities are always more expensive.

Having acquired a blueprint for quality q, the firm can produce its quality of good Q

at constant marginal cost

c(q) = ϕqθ (4)

labor units. The parameters φ, ϕ > 0 govern production costs. We explicitly assume that

the fixed cost of entry and the marginal cost are proportional to one another (the parameter

θ is the same for both) and that both are increasing and convex in quality.

2.3 Optimal Pricing

Our aim is to characterize an equilibrium in which firms enter the industry at the op-

timal quality level and subsequently engage in monopolistic pricing. The equilibrium is

solved using backward induction: we first determine the prices at given quality levels and

subsequently analyze entry decisions.

We begin by characterizing the general pricing solution for an arbitrary distribution of

a countable set of qualities.7 The price of quality qi is denoted by p(qi). For notational

simplicity, we set pn = p (qn) and cn = c (qn), where qn is the quality level produced by firm

n. We index firms by n ∈ {0,−1,−2, ...,−N} and order firms by their quality level so that

firm 0 produces the highest quality level q0, and all other quality levels satisfy qn−1 < qn.

Firms compete in prices, i.e., each firm sets the price for its quality to maximize its

operating profits, while taking other firms’ prices as given. Under preferences (1), a con-

sumer with valuation v is indifferent between two goods qn and qn+1 if and only if their

prices pn and pn+1 are such that vqn+1− pn+1 = vqn− pn holds. Thus, given G(v) from (2)

and given the prices {pn}n≤0, the nth firm sells to all consumers with valuations v in the

interval [vn, vn+1], where

vn =


v̄ if n = 1
pn − pn−1

qn − qn−1

if n < 1

v
¯

if n = −N
, (5)

with N ≥ 0 being the (potentially infinite) number of active firms. Firm n’s market share

is thus [vn, vn+1], and the market is partitioned as shown in Figure 1: higher-valuation

7By assuming that set of firms is countable, we anticipate that, in the equilibrium of the subsequent
entry game, firms must recoup their setup costs with monopoly rents. Under Bertrand competition and
positive setup cost, this assumption implies that firms must be located at positive distances from one
another. Thus, the number of firms is necessarily countable.
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consumers tend to buy from high-quality producers. Each firm (except for the top and

bottom quality producers) has two direct competitors and sells to a range of consumers

who value quality sufficiently to buy from this firm rather than from its lower quality direct

competitor, but they do not value quality highly enough to buy from its higher-quality

direct competitor.

Figure 1: Segmentation of the consumer/valuation space by quality levels.

Consumer Valuations

Firm Quality

maxvminv

q-3 q-2 q-1 q0

Because each consumer with valuation v ∈ [vn, vn+1] demands one unit of the variety

produced by firm n, firm n sells G(vn+1) − G(vn) units of its good and solves the maxi-

mization problem:

max
pn

(pn − cn) [G (vn+1)−G (vn)]L s.t. (5) (6)

The optimality condition of this problem is

G (vn+1)−G (vn)− (pn − cn)

[
G′ (vn+1)

qn+1 − qn
+

G′ (vn)

qn − qn−1

]
= 0 (7)

where expressions (5) apply. At v
¯

and v̄ (the constant limits of the distribution of valua-

tions), the derivatives in (7) are defined to be zero (G′(v
¯
) ≡ 0; G′(v̄) ≡ 0).

Previous work has established the existence and uniqueness of the pricing game for

a given set of qualities under uniform distributions G.8 To avoid complications arising

8Our model is a special case of the setup treated in Caplin and Nalebuff (1991). We also note that
Bresnahan (1980) proves existence and uniqueness in a related setup. For the interested reader, the working
paper version of this paper provides a proof of uniqueness for our specific setup.
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from non-existence or multiplicity of equilibria, we will therefore concentrate on the case

of uniformly distributed valuations in our below analysis of the entry game. Nevertheless,

we do formulate some of the following intermediate results for the general case of arbitrary

distributions G.

As emphasized in Bresnahan (1980, 1987), existence and uniqueness constitute strong

results when compared to corresponding findings in setups with a horizontally differentiated

market à la Hotelling. Indeed, D’Aspremont et al. (1979) show that the pricing stage of

Hotelling’s location game is plagued by the non-existence of equilibria in pure strategies.9

To the contrary, vertically differentiated markets sustain a pure strategy pricing equilibrium

under uniform distributions of valuations.

With (6) and (7), the operating profits can be written as

πn = (pn − cn)2

[
G′ (vn+1)

qn+1 − qn
+

G′ (vn)

qn − qn−1

]
L (8)

These operating profits, in turn, exhibit the following important regularity.

Lemma 1 Let {qn}n≤0, (4), (5) and (7) define a system with equilibrium prices {pn}n≤0

and profits {πn}n≤0. For a given χ > 0, consider the transformed system defined by q′n =

χqn, ϕ′n = χ1−θϕn, (4), (5) and (7). This transformed system has the solution {p′n}n≤0 ,

and the corresponding {p′n}n≤0 and {π′n}n≤0 satisfy

p′n = χpn and π′n = χπn ∀n.

Proof. The thus-defined prices p′n solve the transformed optimality conditions (7). The

relation for π′n follows from (4), (5) and (8).

The lemma states that if all quality levels and marginal productivities are scaled in

suitable proportions, and thus affect marginal production costs according to (4), then

equilibrium prices and profits constitute a constant proportion of the marginal production

costs. This specific scaling property will be important for the entry game, leading to a

particular regularity in the endogenous location pattern, as shown below.

9The authors write that ”no [pure-strategy] equilibrium price solution will exist when both sellers are
not far enough from each other.” This specific result derives from a discontinuity in profits that arises
when firms undercut the adjacent competitor and take over its entire market. As a result, profits are not
quasi-concave and standard theorems for existence and uniqueness do not apply. It is worth emphasizing
that in this classical model, this pathological outcome also affects the model under a uniform distribution
of consumers.
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While Lemma 4 applies to general distributions G, we will restrict the setup to the

case of uniformly distributed valuations for the remainder of the paper. Formally, the

distribution G is

G (v) =


0 if v < v

¯
(v − v

¯
)/(v̄− v

¯
) if v ∈ [v

¯
,v̄]

1 if v > v̄
. (9)

which guarantees the existence of a unique price equilibrium.

Before turning to the actual entry game, we below take a moment to look at the equi-

librium prices under uniformly distributed valuations and a specific, regular spacing of

qualities qn.

2.4 Pricing with Equal Relative Spacing

In this subsection, we solve the equilibrium prices under two restrictions. The first condition

is that the minimum consumer valuation is zero (v̄= 0).10 Our second condition is that

qualities exhibit a particularly regular pattern, which we will call the equal relative spacing

property.

γqn−1 = qn ∀ n. (10)

Condition (10) may seem arbitrary at first but will later prove to be important. It implies

that each quality is a constant fraction higher than the immediately preceding quality. It

implies that each quality is a constant fraction higher than the immediately preceding one.

Our focus on this special case is motivated in the subsequent section 3, which establishes

how endogenous firm entry generates exactly the entry pattern that is assumed in (10).

In the case of uniformly distributed valuations and equal relative spacing, the system

(7) becomes

pn =


1
2

[
c0 +

(
1− 1

γ

)
q0v̄ + p−1

]
if n = 0

1
2

[
cn + 1

γ+1
pn+1 + γ

γ+1
pn−1

]
if n < 0

(11)

In this case, the equilibrium prices of firms can be solved explicitly, and we formulate the

following lemma.

10This condition mainly saves notation; in the Online Appendix, we compute equilibrium prices and
provide comparative statics for the case of uniform distributions on [v

¯
,v̄] with v

¯
> 0.
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Lemma 2 Assume that the cost structure (4) and equal relative spacing in quality, i.e.

(10), hold and v̄ = 0. Then prices are

pn = λnA+ αcn ∀ ∞ ≤ n ≤ 0 (12)

where

α =
γ + 1

2(γ + 1)− γθ − γ1−θ (13)

λ = γ + 1 +
√
γ2 + γ + 1 (14)

A =
λ

2λ− 1

([
1− α

(
2− γ−θ

)]
c0 +

γ − 1

γ
q0v̄

)
. (15)

Proof. Substituting un = pn − αcn into (11) yields the second-order recursive series

2 [un + αcn] = cn +
1

γ + 1
[un+1 + αcn+1] +

γ

γ + 1
[un−1 + αcn−1] (16)

for n > 1. With α from (13), equation (16) becomes 2(γ + 1)un = un+1 + γun−1. Now

notice that the type of equation

X2 − 2(γ + 1)X + γ = 0 (17)

has two roots, λ =
[
γ + 1 +

√
γ2 + γ + 1

]
larger than unity and µ =

[
γ + 1−

√
γ2 + γ + 1

]
,

smaller than unity. The general solution to the recursive series (16) is thus

pn = Aλn +Bµn + αcn. (18)

Since limn→−∞ pn must be finite and non-negative, B = 0. Equation (18) for n = 0 is

2p0 = c0 + (q0 − q−1)v̄+p−1 and, in combination with equation (18) for n = −1 implies

2 (A+ αc0) = c0 + (q0 − q−1) v̄ + (A/λ+ αc−1)

Solving for A proves the claim.

Lemma 2 shows that the equilibrium price of firm n under equal relative spacing (12)

features a constant markup term α and an auxiliary term λnA. This auxiliary term may

be of either sign. This term derives from the fact that the first-order condition for firm 0

is different from the first-order condition of all other firms because firm 0 faces only one

11



competitor instead of two (G′(v0+1) = 0 in (7)). The sign and size of A depends on the

relative scarcity of quality compared to valuations. In particular, if v̄ is relatively small

and close to v0, firm 0 sells its top quality only to a small set of consumers, which implies

that its demand elasticity is relatively large, since small price decreases induce losses of

large fractions of its market. Consequently, the markup of the top quality firm is relatively

small, which is reflected A being small and potentially negative. Conversely, if v̄ is very

large, then the top firm serves a large market segment, faces a low demand elasticity and

charges high markups. In this case, the corresponding value A in (15) is positive and large.

Of course, for equation (12) to characterize equilibrium prices, the relative markups

pn/cn − 1 = (λ/γθ)nA+ α− 1 must be positive, which is indeed the case, as the following

argument shows. For parameter values that imply A < 1 − α, the firm producing the

top quality cannot operate profitably and thus exits the market. This implies that (after

shifting indices) the quality of the active top firm, q0, drops such that, by (4) and (15), A

increases. Thus, all top firms exit the market until A ≥ 1 − α holds. It also holds that

A ≥ 1−α is a sufficient condition for markups of all firms to be positive. The formal proof

of this statement is relegated to the Appendix.

Lemma 2 has shown that the price schedule (12) decomposes into two components – a

constant markup over production costs and an auxiliary term stemming from the border

condition. Taken together, they constitute an example of variable markups – variable in

the dimension of quality and depending on the model parameters. The comparative statics

of prices are therefore non-trivial, and we formulate them in the following lemma.

Lemma 3 Assume that (4) and (10) hold and v̄ = 0. Then,

(i) prices pn, markups pn/cn and the slope of the pricing schedule (pn+1 − pn) are increasing

in v for all n.

(ii) prices pn are increasing in ϕ and in q0 for all n.

(iii) markups pn/cn are decreasing in ϕ for all n.

Proof. See Appendix.

Part (i) of the lemma describes the effects of an upward shift of the range of valuations,

which shifts demand toward the top qualities. Under this shift, the firm producing the

top quality serves a larger market segment, which translates into a less elastic demand

and results in an increased markup. This price increase of the top-quality firm increases all
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prices (pn) and all relative markups (pn/cn) in the market, but the upward shift in valuations

benefits high-quality firms relatively more, such that the pricing schedule steepens (all

pn+1 − pn increase).11

Part (ii) describes the effect of an increase in q0 at constant γ, which is equivalent to an

equal percentage increase of all qualities supplied. Just as in the case of upward-shifting

demand, firms react to this shift in the set of qualities with price increases. However, the

nature of the shift in q0 on prices is different in this case: the increases in prices simply reflect

the increases in production costs that firms must pass on to consumers. A similar effect

materializes when production costs increase proportionally. In this case, prices increase

without a quality upgrade .

Part (iii) of Lemma 3 shows how marginal productivity impacts relative markups. Not

surprisingly, a uniform increase in the marginal production costs of all firms increases the

prices of all firms. This increase in prices induces consumers to substitute towards lower

qualities. Thus, the market share of the top-quality firm shrinks and its market power falls,

inducing the top firm to charge lower markups. This increase in competition at the top

end of qualities, in turn, propagates downward and lowers all prices.

We highlight that these comparative statics are very different from those in horizontally

differentiated markets. Thus, in the classical Hotelling model (for a given supply of vari-

eties), a uniform change in the cost parameter leaves markups unaltered because it does

not affect the relative trade-off between varieties. The key reason for the differences in

the impact of the parameters on equilibrium prices is that in our setup with a vertically

differentiated market, the border condition of the top firm – and thus all relative prices –

is affected.12 Concurrently, we note that, parallel to Hotelling’s setup, the overall market

size L does not impact firms’ prices (or, hence, their market segments), since the recursive

pricing formula (11) and, indeed, the generic optimality condition (7) are independent of

L.

Of course, the price changes described in Lemma 3 have an impact on market shares,

11In the appendix, we document a similar comparative static for the lower bound of the distribution of
the valuations: increasing the lowest valuation decreases all prices and decreases the slope of the pricing
schedule. We empirically examine the importance of the support of income distributions on markups in a
model of how quality is priced to market in Auer et al. (2014).

12By contrast, in Vogel (2008) transportation costs do impact markups for a given number of entrants due
to their effect on the equilibrium spacing: specifically, higher transportation costs mitigate the importance
of heterogeneity in productivity and thus the equilibrium degree of isolation between firms.
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i.e., the cutoff valuations. These are formulated in the following corollary.

Corollary 1 Assume that (4) and (10) hold and v̄ = 0. Then, each of the equilibrium

cutoff-valuations vn is increasing in v̄.

Proof. This follows directly from (5) and Lemma 3 (i).

Corollary 1 shows that an exogenous expansion of demand for top qualities through the

’arrival’ of consumers with a high valuation for quality (v̄ increases) crowds down other

consumers: the arrival of high-valuation consumers increases all prices but the prices of

high-quality firms increase the most. Consequently, cutoffs move up, i.e., the pre-existing

set of consumers (weakly) downgrade their quality choices.

Finally, we can assess the impact of entry of an additional firm on the markups of

existing ones and on consumers’ equilibrium quality choice. The pricing rule allows us to

make an intuitive and simple statement regarding the effect of entry on the markups of

existing firms.

Lemma 4 Assume that (4) and (10) hold and v̄ = 0. The entry of an additional firm at

the top end of the quality spectrum at q1 = γq0

(i) weakly decreases the markup of each established firm,

(ii) weakly flattens the pricing schedule (pn+1 − pn), and

(iii) weakly decreases cutoff valuations vn.

Proof. See Appendix.

This lemma shows that entry of a new technological leader increases competition and

lowers prices. For given a v̄, the new technological leader faces a smaller market segment

and therefore a higher demand elasticity than the previous technological leader did before

entry.13

13Technically, entry at the top reduces the constant from A to Ã. The incumbent technological leader
becomes firm −1 and is thus ”isolated” from the new constant. If the constant is negative, this isolation
might be considered beneficial for the firm. However, Lemma 4 documents that the total effect is always
such that prices (and thus markups) of pre-existing firms weakly decrease once entry occurs. In addition,
note that the Lemma covers two cases. First, the additional firm engages in production and affects the
whole market by depressing markups. Second, in the case of preemptive entry, it does not pay for the
additional firm to produce and sell its goods, and consequently, it leaves the market unaffected. Since this
second case may indeed occur, the entry of additional firms decreases the markup of any preexisting firm
only weakly.
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Lemma 4 also establishes that entry weakly flattens the pricing schedule (pn+1 − pn)

and decreases the cutoff valuations vn. By lowering the consumer prices of all goods, but

in particular those of high-quality goods, the entry of a new technological leader (weakly)

increases the equilibrium cutoff valuations vn for all consumers.

This section has established comparative statics of prices for given entry and analyzed

the impact of entry by an additional firm on prices. In all cases, we have considered the

special case of equal relative spacing. We did not, of course, choose the special case of equal

relative spacing by accident: endogenous firm entry generates exactly the pattern described

in (10). We now turn to the entry game and the resulting endogenous quality spacing.

3 Endogenous Spacing with Exogenous Growth

This section analyzes firms’ endogenous choice of qualities. The general equilibrium concept

is fairly standard: we assume that there is an unbounded pool of ex-ante identical entrants

that face deterministic entry costs (3). A firm enters if and only if the net present value

of future operating profits covers these entry costs. The future profits accrue under the

rationally anticipated unique price equilibria.14 Firms make an endogenous quality choice

when entering, which pins down the firm’s quality permanently. Firms choose their quality,

taking the qualities of all established firms as given but endogenizing the impact of their

choice on the timing and quality choice of all future entrants.

The less-standard feature of our setup is the introduction of a dynamic dimension.

Specifically, we assume that time is continuous and that productivity in the Q-sector grows

at the constant rate a, which is exogenously given. Indexing the cost parameters ϕ and φ

with time subscripts, we have

ϕt = e−atϕ and φt = e−atφ. (19)

Our main contribution in this paper is showing that in this dynamic setup, free entry

supports equilibria with equal relative spacing of firms, endogenously generating quality

levels that satisfy (10). In other words, our analysis focuses on a periodic, quasi-stationary

14Recall that we assume that valuations are distributed uniformly on the interval [v
¯
,v̄] according to (9).

We also note that price equilibria do not need to be unique for firms to compute expected profits and entry
decisions. In fact, the results of the current section may be be generalized when conveniently defining
expectations about future price equilibria. However, we focus on uniform distributions of valuations for
the sake of simplicity and to avoid unnecessary discussions regarding these expectations.
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equilibrium in which each firm enters the industry as the technological leader and succes-

sively transits through the product cycle as it becomes superseded by subsequent innovators.

The key advantage of studying the entry game in such a dynamic setting is that this

choice makes the inherently asymmetric entry problem – with a top quality end as an upper

bound – effectively symmetric. Specifically, we first analyze the entry problem separately

for a single firm and then show that under the adequate initial conditions, the new entrant’s

quality satisfies the regular pattern of equal relative spacing (10). In the second step, we

observe that the optimization problems of all consecutive entrants are identical up to a

scaling factor and hence replicate (10). Thus, the series of problems is self-similar, or

effectively symmetric.15 The infinite sequential entry problem thus collapses to one of a

single firm, avoiding problems that typically arise in simultaneous-entry games with an

asymmetric setup (e.g., as in Vogel (2008)).16

We begin the technical part of the analysis with the situation described in the previous

section: the set of active firms is {0,−1,−2, ...}, and the firms are ranked in ascending

order by quality so that a higher firm index corresponds to a firm producing higher quality

q ∈ {qn}n≤0. Moreover, all established qualities qn are assumed to satisfy (10).

We assume that a plant established to produce quality qm automatically holds the

blueprints for all qualities between qm−1 and qm, where qm−1 is the next-lowest quality

level. This assumption restricts the entry of additional firms to quality levels above the

pre-existing ones (qm+1 ≥ qm).17

Firms that gradually establish themselves at the top end of the quality spectrum are

indexed by m ≥ 1. Let tm be the entry date of the mth additional firm (implying 0 ≤
t1 ≤ t2 ≤ ..). Further, let qm denote its quality level (q0 ≤ q1 ≤ q2 ≤ ..). It will prove

15This strong property relies on the assumptions that we make on production costs (3) and (4) and,
importantly, on the fact that both fall at the same rate a, as specified in (19).

16In fact, the resulting complications would be substantial in our setup, because the clear ranking of the
quality line prevents us from using the symmetry properties that arise in models such as Salop (1979), who
assumes that the space is represented by a circle. In a quality setup, any attempt to “close the circle” fails,
since it would amount to identifying the highest-quality good with the lowest-quality good.

17We note that this is a strong assumption. In an unrestricted entry game, we cannot exclude a priori
that an entrant would choose a quality below that of the technological leader. However, we focus on
the case of top quality entry only, since in international patent law, entrants are granted a patent only
if an innovation contains an element of novelty that improves upon existing technology. Patents thereby
also grant current technology leaders protection from future entry by lower-quality competitors (see World
Intellectual Property Organization (2004)). Chor and Lai (2013) label this the “inventive step requirement”
and theoretically examine its welfare-maximizing level in a model of Schumpeterian growth following Aghion
and Howitt (1992).
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convenient to express the quality choice of the mth entrant relative to the highest quality

of all incumbents (qm−1) as

γm = qm/qm−1 m ≥ 1.

At time τ ∈ [tm+k, tm+k+1), the set of quality levels available to the market is {qn}n≤m+k.

Current prices are determined by equation (7) and depend on all currently produced quality

levels and on productivities evolving according to equation (19). Consequently, at time

τ ∈ [tm+k, tm+k+1), the operating profit of the mth additional firm, given by equation (8), is

a function of the qualities {qn}n≤m+k and time τ . Note that for a given set of competitors,

profits depend on time only through productivity ϕe−at and we thus conveniently express

the operating profits of firm m at time τ as18

πm
(
ϕe−aτ , qm+k, γm+k, γm+k−1, γm+k−2, ..., γ1, γ

)
τ ∈ [tm+k, tm+k+1).

When defining the product

Γm,k =
∏k

j=1
γm+j (20)

we have qm+k = Γm,kqm so that at time tm, the present value of the flow of operating profits

for a potential entrant is equal to

Π(γm, tm) =
∑
k≥0

∫ tm+k+1

tm+k

e−r(τ−tm)πm
(
ϕe−aτ ,Γm,kγmΓ0,m−1q0, γm+k, γm+k−1, ..., γ1, γ

)
dτ,

(21)

where the parameter r is the constant rate at which firms discount future profits.

With these definitions, we can formulate the entry decision. The mth firm chooses its

entry date (tm) and its location on the quality line (γm). With the choice of γm, the firm

maximizes the present value of profits at time tm (21) net of its entry costs (3). Given the

existing spacing γm−1, γm−2, ..., γ1, γ, and conditional on the entry date tm, the mth optimal

quality choice is

γ̂m (γm−1, ..., γ1, γ) = arg max
γ̃≥1

{∑
k≥0

∫ t̃m+k+1

t̃m+k

e−r(τ−tm)πm

(
ϕe−at, Γ̃m,kγ̃Γ0,m−1q0, γ̂n+k, ...

... γ̂n+k−1, γ̂n+1, γ̃, γn−1, ..., γ1, γ

)
dτ − φe−atm(γ̃Γ0,m−1q0)θ

}
(22)

18Note that prices and profits πm are unique under assumption (9).
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Here, Γ̃m,k denotes, in parallel to (20), the product of the k future optimal relative spacing

parameters, given that the mth-entrant plays γ̃:

Γ̃m,k =
∏k

j=1
γ̂m+j (γ̂m+j−1, γ̂m+j−2, ...γ̃m, γm−1, .., γ1, γ) .

We stress that all future entry dates t̃m+j and location choices γ̂m+j (j ≥ 1), and hence

Γ̃m,j, are functions of firm m’s choice γ̃. This dependence is indicated by the tilde ”˜”. For

expositional purposes, however, the arguments γ̂m+j(γ̃), Γ̃m,j(γ̃), t̃m+j(γ̃) are suppressed in

(22) and in the equations further below. The mth firm’s entry date is determined by the

free entry condition, i.e., the requirement Π(γm, tm) ≥ F (γm, qm−1). Formally, we write

tm = inf

{
t ≥ tm−1

∣∣∣∣∣ sup
γ̃≥1

[∑
k≥0

∫ t̃m+k+1

t̃m+k

e−r(τ−tm)πm

(
ϕe−at, Γ̃m,kγ̃Γ∗0,m−1q0, γ̂m+k, γ̂m+k−1, ...

..., γ̂m+1, γ̃, γ
∗
m−1, γ

∗
m−2..., γ

∗
1 , γ

)
dτ − φe−atm(γ̃Γ0,m−1q0)θ

]
≥ 0

}
(23)

where the asterisk ∗ denotes the equilibrium locations:

γ∗1 = γ̂1 (γ) and γ∗k = γ̂k(γ
∗
k−1, γ

∗
k−2, ..., γ

∗
1 , γ) (24)

and Γ∗0,k is defined in parallel to (20) as the product of the equilibrium γ∗j

Γ∗0,k =
∏k

j=1
γ∗j .

Optimal quality choices (22) and the free entry conditions (23) for all m ≥ 1 determine

the equilibrium of the entry game. The first important result of this section concerns the

solution for the system (22) - (23) and is formulated in the following proposition.

Proposition 1 Let (θ, φ, ϕ, L, r, a) be a combination of positive parameters. Then,

(i) for a given qm and {γn}n≤m, the entry date t∗m+1 and the optimal location γ∗m+1 are

well-defined and unique. The choice γ∗m+1 does not depend on qm.

(ii) there is a γ̄(θ, φ, ϕ, L, r, a) > 1 such that, if γn = γ̄ for all n ≤ m, then

γ∗m+1 = γ̄

holds. In this case, time intervals between consecutive entries are constant:

t∗m+1 − t∗m = ∆ = ln(γ̄) (θ − 1) /a. (25)
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Proof. See Appendix.

Part (i) of the proposition states that there is a well-defined, unique equilibrium with

finite relative spacing γm = qm/qm−1 ∈ [1,∞). Notably, the relative spacing of the m+ 1th

firm does not depend on the level of previous qualities, {qn}n≤m, but only on their relative

spacing {γn}n≤m. This result is a reflection of Lemma 1 and is ultimately a result of the

model’s scaling property. A new entrant m + 1 compensates a proportional increase in

existing qualities qn (n ≤ m) by postponing the entry date, which lowers fixed entry costs

and marginal costs. The entry date is delayed, but location decisions are unaffected.

Part (ii) of Proposition 1 shows that a specific type of equilibria can arise that exhibit a

particularly convenient and regular spacing pattern: equal relative spacing γn = γ̄ applies

to the qualities of all incumbents as well as those of all future entrants. Note, however, that

part (ii) of the proposition does not involve uniqueness. In particular, the uniqueness of

the equilibrium from part (i) does not necessarily imply the uniqueness of the equilibrium

in part (ii).19

The lack of uniqueness of the equilibrium from part (ii) should not come as a surprise

and is well-known to arise in some models with strategic complementarity in entry. Many

comparable models of free entry to markets are subject to the same indeterminacy (see

Capozza and Van Order (1980) and, more recently, Vogel (2008)).20 In our current modeling

setup, a strategic complementarity would mean that a dense spacing of the existing qualities

would make it more attractive for new entrants to choose a small γ on their own (thus

replicating the dense spacing). At first sight, such an effect may seem counterintuitive.

However, considering the simultaneous choice of location and entry date, one objective of

the current entrant is to delay the entry of the next entrant. One way to accomplish this is

to commit to lower future prices. Such a commitment can be reached if preexisting qualities

are densely spaced, since the impact of the additional entrant on the incumbent top-firm’s

pricing rule is lower in this case. As long as the value of commitment rises with the density of

preexisting qualities relative to the loss in instantaneous profits, strategic complementarities

can potentially arise, thus giving rise to the possibility of multiple equilibria. In sum,

19This potential non-uniqueness is comparable to that in growth models in which unique investment
strategies – given a set of relevant state variables – do not guarantee unique steady states.

20More generally, strategic complementarities are typically involved when multiple equilibria arise (see
also Cooper and John (1988)).
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we cannot discard strategic complementarities in the quality choice and may thus face

multiplicity of equilibria with equal relative spacing in our model.

An equilibrium described in Proposition 1 (ii) that is characterized by γn = γ̄ for all

integers n, can be labeled an equal relative spacing equilibrium. In the following analysis

we focus on a specific one and apply the following definition.

Definition ERSE. For any given set of parameters, the Equal Relative Spacing Equi-

librium (ERSE) is an equal relative spacing equilibrium with the minimal spacing γ̄.

Note that under a preexisting spacing parameter equal to one (γ = 1), the optimal

spacing of the first entrant γ∗(γ) from (24) satisfies γ∗(γ) > γ for all γ ∈ (1, γ̄) (see the

proof of Proposition 1). Therefore, at the minimal symmetric γ̄, characterized by γ∗(γ̄) = γ̄,

the following inequality holds:
dγ∗(γ)

dγ

∣∣∣∣
γ=γ̄

< 1. (26)

We also point out that the ERSE is unique in the special case when the distribution

of valuations is sufficiently compressed (i.e., the ratio v̄/v
¯

is small). A sketch of a proof

runs as follows. Consider the choice of a representative new entrant, firm 1, under any set

of established qualities {q0, q−1, ...} . By Proposition 1 (i), the relative location choice of

firm 1, γ1, is independent of q0. In addition, at most two firms are simultaneously active

for v̄/v
¯

small enough.21 Therefore, γ1 is independent of {q−1, q−2, ...} as well. In sum, firm

1’s relative location choice γ1 is independent of all previous qualities qn (n ≤ 0) and is

therefore unique. Consequently, there is only one optimal γ for all entrants, which means

that the ERSE is the only equilibrium.22

This section has derived novel results about the regularity of firm spacing (Proposition

1). In the next section, we will discuss the ERSE and provide comparative statics.

21This is a version of the finiteness property in Shaked and Sutton (1982 and 1983). Using (7) and (9),
prices and profits are quickly computed for three firms n = 0,−1,−2. For v

¯
close to v̄, the firms’ qualities

(q0 = γ2q−2, q−1 = γq−2 and q−2) must be sufficiently close to one another for all firms to be active. In
particular, γ → 1 as v

¯
→v̄, which implies zero profits in the limit and contradicts free entry under any

φ > 0.
22Technically, the intertemporal links decouple and the dynamic system effectively becomes a static one:

the entrant’s problem of choosing the optimal γ is independent of the model’s state variables (q0, q−1, ...)
and is thus replicated for each new entrant.
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4 Properties of the ERSE

This section first summarizes and illustrates some of the results presented above and then

derives comparative statics of the ESRE.

4.1 Firm Dynamics in the ERSE

The assumption of constant technological progress in (19) introduces a dynamic dimension

to the model, which gives rise to the ERSE described in Proposition 1 (ii). With the help

of Lemma 2 and Lemma 4, we can illustrate how the dynamics of the equilibrium play out

in detail. The prices and profits of a firm producing quality q evolve as depicted by the blue

and green lines in Figure 2. Each continuous section represents prices and profits when no

innovation occurs. Innovations occur at regular intervals; these entry dates are marked by

the vertical dashed lines. These entry dates are equidistant according to Proposition 1. At

each of these dates, the firm’s relative markup – and thus its operating profit – drop by

a discrete amount because the new competitor reduces the incumbents’ market power and

its market share (compare Lemma 4 (i)).

The time profile of profit flows is shaped by two opposing forces. First, for a given set

of firms, the profit flow for the top-quality firm is increasing, since productivities increase

over time. These productivity gains reduce the cost of the production of all goods, spurring

demand for quality and thus increasing the market share of the top-quality firm. Second,

however, productivity growth also implies that firms enter the market and each existing

firm’s market segment narrows. In particular, as time passes, the firm serves consumers

with lower and lower valuations. It becomes squeezed to the bottom end of the quality

distribution, serving an ever smaller segment. Therefore, the profit flow drops to zero in

the limit.

In the equilibrium illustrated in Figure 2, an entrant immediately starts producing at

its entry date. However, if entry is sufficiently cheap relative to the marginal productivity,

the zero profit condition may also force firms to enter the industry preemptively: at the

entry date, the production of the top quality is too costly, such that there is no demand

for it even when sold at marginal costs.
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Figure 2: Life-cycle of a firm entering at t∗ = 0.
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The figure depicts the evolution of marginal production costs (thin black line), prices (fat black
line) and profits (fat grey line) of a firm that enters the market at t∗ = 0. Marginal production
costs fall exogenously according to (19). The firm’s prices also fall over time, largely following
marginal costs. The difference between prices and marginal costs is the markup. In addition to
the gradual reduction of production costs, prices drop according to Lemma 4 whenever a new
firm enters the market (entry dates indicated by the dashed vertical lines to the right). At these
dates, the increase in the set supplied qualities tightens competition and induces the discrete
drop in prices. Profits initially increase with time, because relative markups increase and the
market share of the top firm expands as production costs decrease. In the long run, a firm’s
market share becomes negligible and its profits approach zero.
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Figure 3 depicts such an equilibrium, where at the date of entry, a new firm’s marginal

cost is too high to profitably operate. In this equilibrium, entry is followed by a period

during which exogenous cost reductions occur that ultimately make production of the recent

entrant profitable. When productivities are just high enough to make the consumer with

the maximum valuation purchase the new quality at marginal costs, the firm enters the

market selling with zero markup to a negligible set of consumers. Thereafter, the profit

flow of the new firm increases steeply: its set of consumers grows along with productivity.

As it sells to a growing range of consumers, its demand becomes less and less elastic and

its markup increases. The vertical dotted lines in Figure 2 indicate the dates when new

firms start production, supplying better and better qualities. At each of these dates, the

increased competition reduces markups and profits of the incumbent firm. In the long run,

the firm’s market share converges to zero and its profit flow approaches zero.

We finally notice that a deadweight loss arises in the case of preemptive entry. This

deadweight loss is equal to the interest on entry costs accruing between the entry date and

the start of production and can be eliminated by an otherwise non-distortionary tax on

the entry cost φ. Specifically, a tax that marginally increases entry costs postpones entry

without altering the supply of qualities at any given point in time, thereby decreasing the

deadweight loss without distorting firms’ quality supply or prices.

To verify this statement, consider a situation with preemptive entry and a light tax that

delays entry (but marginally only so that entry is still preemptive). This delay is irrelevant

for supply of qualities in the period between the entry date without the tax and the entry

date with the tax: in either case production of the firm’s good is nil during this period.

More importantly, the firm faces essentially the same optimization problem in both cases:

an optimal location choice, the objective functions of which differ only by a discounting

factor. More formally, assume that a firm enters the market at date t∗ but begins selling

its product at t∗∗ > t∗. Its optimal quality level is q, so its entry cost at date t∗ is φt∗q
θ.

At any time t∗ + ∆t ∈ [t∗, t∗∗] would the firm reconsider its quality choice? The answer

to this question is obviously no: if q maximizes the net present value of future profits at

time t∗ (i.e., Π(q)−φt∗qθ), then q maximizes the net present value of future profits at time

t∗ + ∆t (i.e., er∆t
(
Π(q)− φt∗qθ

)
) as well. This latter observation, in turn, implies that the

same q is optimal if the firm were to enter the market at time t∗ + ∆t under a modified

entry cost parameter φ′ = er∆tea∆tφ – i.e. under a gross entry tax of e(r+a)∆t – since the
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modified objective function at date t∗ + ∆t is again er∆t
(
Π(q)− φt∗+∆tq

θ
)
. In this case,

the entering firm’s total profits are zero and its quality choice and its production start are

thus unchanged.23 Overall, we conclude that a tax of the gross rate e(r+a)(t∗∗−t∗) postpones

the entry date to t∗∗: in this case entry and the start of production coincide.

We also point out that the case of preemptive entry in the current setup thus parallels

the one of Anderson and Engers (2001), who analyze horizontally differentiated markets

in which firms can block a spot or location in a horizontally differentiated market by pre-

emptively incurring entry costs. Just as in Anderson and Engers (2001), under preemptive

entry, an entry tax postpones the excessively early entry of firms but leaves the spacing of

competition unchanged, thus strictly enhancing efficiency.

4.2 Comparative Statics of the ERSE

We now turn to the comparative statics of the ERSE. As the first step, we exploit the

model’s scaling properties to establish which parameter shifts do not impact equilibrium

spacing. These results are formulated in the following lemma.

Lemma 5 Let γ1 be the equilibrium choice of a new entrant. Then,

(i) γ1 depends on φ, ϕ and L only through the ratio φ/(ϕL), so that γ1(φ/(ϕL)).

(ii) the transformation (φ, ϕ)→ χ · (φ, ϕ) (χ > 0) postpones entry dates by ln(χ)/a.

(iii) γ1 is constant under the transformation (r′, a′, L′)→ χ · (r, a, L) with χ > 0.

(iv) the transformation (v
¯

,v̄) → χ−1 · (v
¯

,v̄) with χ > 0 preserves γ1 but postpones the

entry date by ln(χ)/a.

Proof. (i) Wlog, consider the first entrant, firm 1 in an ERSE. Its operating profits π

are linear in L, and its setup costs F are linear in φ. Replacing φ′ = φ/L, population L

factors out of the slanted brackets in (22) and the square brackets in (23). The solution γ1

23The same statement is also formally derived from equation (37) in the proof of Proposition 2 in the
Appendix where at entry date t∗ the operating profit and its derivative are trivially zero π(t∗) = πγ̂(t∗) = 0
under preemptive entry. Hence, dγ̄/dφ = 0 follows, i.e., the entry cost does not have an impact on the
spacing parameter γ̄ in this regime. For free entry (32) under (31) to hold at an unchanged distribution
of qualities, any marginal change in φ must induce a change in the entry time t∗ that leaves constant the
expression φet

∗
.
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Figure 3: Life-cycle of a firm entering at t∗0 under preemptive entry.
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The figure depicts the evolution of marginal production costs (thin black line), prices (fat black
line) and profits (fat gray line) of a firm that enters the market at t∗ = 0. At entry date, marginal
production costs are too high so the firm does not produce for a period until its production costs
have decreased sufficiently and the firm captures a non-zero market share. This happens at the
date indicated by the dashed vertical line to the left: at that date, the firm becomes active in
the market but serves only a negligible market share. Its markups are zero so that its marginal
cost coincides with its the price. As marginal costs decrease further, its market share grows and
its markup becomes positive. In parallel to the dynamics in Figure 2, the firm’s markups and
profits drop whenever a new entrant becomes active in the market (the dashed vertical lines to
the right). In the long run, the firm’s market share and profits become negligible.
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of the transformed problem is thus identical to the original one (22) - (24) and depends on

φ′ = φ/L only. This proves that φ and L affect γ1 only through the ratio φ/L.

Next, consider any transformation of φ and ϕ that preserves the ratio φ/ϕ, i.e., consider

(φ′, ϕ′) = χ · (φ, ϕ). By (19), a simultaneous transformation of time by t′ = t + a−1 ln(χ)

replicates the original problem and, thus, the equilibrium γ1. Hence, φ and ϕ affect γ1 only

through the ratio φ/ϕ. Together, this proves claim (i).

(ii) Follows from that fact that the transformation (φ′, ϕ′, t′) = (χφ, χϕ, t + a−1 ln(χ))

from part (i) replicates the original problem and its solution.

(iii) The transformation (r′, a′) = χ · (r, a) is equivalent to a transformation of the

time variable t′ = χt. According to the transformation formula, we have
∫ χt1
χto

f(t′)dt′ =∫ t1
to
f(χt)χdt for a generic function f . Normalizing to = 0 and rearranging, this implies∫ ∞

0

e−rχ(τ−t1)π1(χt)dt = χ−1

∫ ∞
0

π1(t′)dt′

with π1 as in (21). Under the simultaneous transformation L′ = χ · L, the expression on

the right hand side is multiplied by χ, since π1 is linear in L. This implies that the integral

in (21) is unchanged; the firm’s objective function is thus preserved and the equilibrium γ1

unchanged.

(iv) Note first, using (5) and (7), that the joint transformation (v
¯
,v̄) → χ · (v

¯
,v̄) and

(φ′, ϕ′) = χ(φ, ϕ) implies that optimal prices are transformed by the factor χ. Hence, the

net present value of firm profits (21) is transformed through multiplication by χ. The firm’s

objective function is thus unchanged except for the scaling factor χ and the equilibrium γ1

is consequently unaffected. Finally, the transformation (φ′, ϕ′) = χ(φ, ϕ) is equivalent to

the time shift t′ = t+ ln(1/χ)/a. This observation completes the proof.

Technically, part (i) of Lemma 5 shows that the density of spacing γ1 is affected by the

costs φ and ϕ and market size L only through the ratio φ/(ϕL). Intuitively, since prices

are independent of the market size L, the operating profits are proportional to L. Thus,

an increase in the fixed costs of market entry, φ, is offset by a corresponding percentage

increase in the market size and leaves the equilibrium unchanged. Specifically, this joint

transformation has no impact on equilibrium spacing. Similarly, an equiproportional in-

crease in market entry cost φ and marginal production cost ϕ by the factor χ does not

matter for optimal spacing. In this case, however, entrants simply wait until costs have
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dropped according to (19). Part (ii) of the lemma specifies that after a period of length

ln(1/χ)/a, the cost levels of the original problem are reached and the original entry problem

is replicated.

Lemma 5 (iii) can be understood by considering the choice of units of time. Propor-

tional changes in a and r are isomorphic to changes in time units, but the flow of profits is

”thinner” when doubling the units of time. When the thinner stream of profits is compen-

sated by a proportional increase in market size L, the total effect on the relative spacing of

qualities vanishes. This statement also shows that for a fixed ratio of r/a (e.g., if r = a),

the spacing property of γ1 depends on the ratio a/L only. Together with part (i) of the

lemma, we can write γ1(aφ/(ϕL)) in this case.

Finally, Lemma 5 (iv) shows that stretching or compressing the distribution of valua-

tions v does not affect equilibrium spacing. Stretching the distribution G (with χ > 1)

increases each consumer’s willingness to pay for quality and thus simply advances the en-

try of firms. Together with (i) and (ii), this statement can be reformulated intuitively as

an equivalence between the valuations v and costs φ and ϕ. A proportional increase in

consumers’ willingness to pay for quality and the costs of quality leaves the equilibrium

qualities unchanged, and the entry date of each given quality occurs earlier by ln(1/χ)/a

units of time.

We stress that Lemma 5 applies to the entry decision of any new entrant. It can thus

be applied to the particular case of the ERSE, where qn/qn−1 = γ̄ for all n ≤ 0 and γ1 = γ̄

holds. In particular, we can write the ERSE parameter as a function of the ratio φ/(ϕL)

γ̄. Our primary aim in this section is to conduct comparative statics with regard to this

ratio of parameters that is key to the model.

With these preparatory steps, and with some parameter restrictions, we can sign the

slope of the ERSE’s location, i.e., the function γ̄(φ).

Proposition 2 Assume that v
¯

= 0 and (θ, ϕ, L, r, a) is a combination of positive param-

eters. Then there is a φo > 0 such that γ̄(φ) is weakly increasing on [0, φo] and strictly

increasing for some φ ∈ [0, φo].

Proof. See Appendix.

Proposition 2 establishes the comparative statics of the equilibrium degree of spacing
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with regard to the entry cost.24 In combination with Proposition 1, it represents the main

result of our analysis.

The proposition shows (at least within a restricted range of setup costs) that higher

setup costs increase the relative spacing between quality levels. Intuitively, firms must be

compensated for increases in setup costs by increased profits. The rise in profits is due to

larger market shares, higher markups, and, ultimately, a wider spacing parameter γ̄.

Together with Lemma 2, Proposition 2 also determines the impact of market size (L)

and marginal production costs (ϕ) on the spacing γ̄ of the ERSE. In particular, increases in

L and ϕ have similar effects on γ̄ as reductions in setup costs: all of these changes decrease

the equilibrium spacing, γ̄. Clearly, a larger market induces, ceteris paribus, higher profits

and allows firms to generate more profit. Therefore, at given setup costs, larger markets

experience more-frequent entry of firms at closer distances, i.e., the competitive pressure

among firms rises.

Surprisingly, Proposition 2 suggests that higher productivity at the margin (a decrease

in marginal production costs ϕ) increases relative spacing. This adverse effect of marginal

productivity growth on competitive pressure may appear somewhat puzzling. To under-

stand the forces operating to this effect, observe that the preference specification developed

in this paper generates, just as with preferences featuring a constant elasticity of substi-

tution, relative firm markups pn/cn − 1 that are independent of costs (see prices (12)). In

other words, at a given relative spacing, operating profits constitute a constant share of

revenues. Hence, when quality levels are constant, an increase in marginal productivity

(or a drop in marginal costs) tends to curb revenues and thereby depresses operating prof-

its.25 However, because firms must cover their setup costs, the productivity gains that curb

profits per consumer must come about with increases in market share, i.e., with a wider

equilibrium spacing. Simultaneously, this widening of relative spacing increases relative

markups. Hence, competitive pressure decreases as marginal productivity grows.26

It would be premature to infer welfare consequences based on the parameter γ̄ alone

24The condition on the interest rate r establishes an upper bound for the instantaneous profits upon firm
entry and is a technical requirement for the proof of Proposition 2.

25This aggregate relationship does not, of course, mean that each single firm can raise its profits by
artificially decreasing its productivity.

26Note that this effect depends on the property of our model that demand does not react along an
intensive margin. In particular, consumers do not react to price changes by consuming more or less but
instead by switching to other firms.
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(and its impact on markups), conjecturing, e.g., that an equal increase in setup costs φ

and operating costs ϕ leaves the welfare levels of the economy unchanged. In fact, it

does not. Such a change in technology actually postpones innovation by Lemma 5 (ii) so

that more time elapses until a product of a given quality reaches the market. During this

delay, individuals purchase lower-quality goods, with obviously negative consequences for

consumer surplus.

5 Conclusion

In this paper, we analyze endogenous quality choice under costly entry into vertically

differentiated markets. We do so assuming that production technology is such that the

industry equilibrium can sustain a potentially unbounded number of active firms.

The firms’ entry game consists of two stages: an optimal location choice and a subse-

quent price game. Proceeding through backward induction, we first derive pricing decisions,

taking as given each firm’s location in the quality space and assuming that firms engage in

Bertrand competition. Our main contribution consists of the second step. Specifically, we

model firm’s costly entry and quality decisions in this industry. Exogenous productivity

growth makes ever higher qualities affordable for consumers, so that firms sequentially enter

the market at the top end of the quality spectrum. We specify the conditions under which

the entry problem of each new entrant is replicated, which implies that each new quality

level exceeds the current quality level by a fixed proportion. Although firms’ sequential

market entry introduces technical difficulties, this model overcomes the asymmetry of the

location problem that unavoidably arises in quality space: the quality spectrum has top

and bottom ends. Our technical contribution lies in handling these border conditions.
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A Appendix – Proofs

Proof that relative markups (λ/γθ)nA+ α− 1 from (12) are positive. Use (13) to

verify α > 0⇔ 2(γ + 1) > γθ + γ1−θ and (17) to check 2(γ + 1) = λ− γ/λ. Together, this

implies that the equivalence

α > 0⇔ λ > γθ (27)

holds.

Consider now the two cases α > 0 and α < 0. In first the case α > 0, α > 1 holds,

as can be quickly checked by taking derivatives of 1/α with respect to γ and evaluating α

at γ = 1. Hence, all relative markups are positive if A ≥ 0. Alternatively, if A < 0 the

relative markups (λ/γθ)nA + α − 1 decrease in n because of the equivalence (27). Hence,

all relative markups are positive if and only if A+ α− 1 > 0 holds.

Second, if α < 0, then (λ/γθ)n decreases in n and, again, all relative markups are

positive if A+ α− 1 > 0 holds.

It thus remains to show that A + α − 1 > 0 holds. But if this inequality does not

hold, the top firm exits the market and, the effective top quality, q0, would drop by 1/γ,

thus increasing A by (15) and (4). All the top firms exit the market up to the point when

A+ α− 1 > 0 holds.

Proof of Lemma 3. With (4), (13) and (15), rewrite (12) as

pn = λn
λ

2λ− 1

(
−γ

θ − γ−θ

γ + 1
αc0 +

γ − 1

γ
q0v̄

)
+ αcn (28)

where cn = ϕqθn = ϕγnθqθ0.

(i) Follows from expression (28) with γ > 1 and λ > 1.

(ii) Use (28) to compute

dpn
dϕ

=

[
−λn λ

2λ− 1

γθ − γ−θ

γ + 1
αc0 + αcn

]
1

ϕ
=

[
−
(
λ

γθ

)n
λ

2λ− 1

γθ − γ−θ

γ + 1
+ 1

]
cnα

ϕ
(29)

If λ > γθ, then the term in square brackets on the right hand side satisfies (recall n ≤ 0)

−
(
λ

γθ

)n
λ

2λ− 1

γθ − γ−θ

γ + 1
+ 1 ≥ − λ

2λ− 1

γθ − γ−θ

γ + 1
+ 1 > − λ

2λ− 1

λ− 1/λ

γ + 1
+ 1

Since λ solves (17), it satisfies λ2 = 2λ(γ + 1)− γ so that the expression on the right hand

side is

− 1

2λ− 1

λ2 − 1

γ + 1
+ 1 = − 1

2λ− 1

2λ(γ + 1)− γ − 1

γ + 1
+ 1 = − 1

2λ− 1

2λ− 1

1
+ 1 = 0
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If, instead, λ < γθ then

−
(
λ

γθ

)n
λ

2λ− 1

γθ − γ−θ

γ + 1
+ 1 ≤ − λ

2λ− 1

γθ − γ−θ

γ + 1
+ 1 < − λ

2λ− 1

λ− 1/λ

γ + 1
+ 1

The last expression is zero, as shown above.

By (27), α > 0 holds in the first case, while α < 0 in the second case. Hence, both cases

together with (29) imply dpn/dϕ ≥ 0.

Finally, observe with (12) and (15) that

dpn
dq0

=
dpn
dϕ

ϕθ

q0

+ λn
λ

2λ− 1

γ − 1

γ
v̄

This expression is positive because dpn/dϕ ≥ 0.

(iii) Follows directly from (28), (4) and γ > 1.

Proof of Lemma 4. First, denote the expression from (15) before (after) the entry

of the additional firm with A (Ã). If Ã + α ≤ 1, the new entrant does not produce and

there is no effect on prices. Thus, we assume wlog that Ã+ α > 1 holds.

The main part of the proof consists of showing that A− Ã/λ > 0 holds. To that aim,

set

a = −
[
1− α

(
2− γ−θ

)]
and b =

γ − 1

γ

q0

c0

v̄

Collecting terms from (15) before and after entry of firm n = 1, we need to show that

−a+ b > −aγθ/λ+ bγ/λ or

b > a
λ− γθ

λ− γ
holds. In order to prove this inequality, a lower bound on b is needed. To obtain it, observe

that Ã+αγθc0 ≥ γθc0 (firm 1’s markups cannot be negative), i.e. λ/(2λ−1)
[
−aγθ + bγ

]
≥

γθ(1− α) holds, or

b ≥ γθ−1

[
2λ− 1

λ
(1− α) + a

]
For claim A− Ã/λ to hold, it is thus sufficient to show

γθ−1 2λ− 1

λ
(1− α) + aγθ−1 > a

λ− γθ

λ− γ

or

γθ−1 2λ− 1

λ
(1− α) > aλ

1− γθ−1

λ− γ
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Observing that λ solves λ2 − 2(γ + 1)λ + γ = 0, we get λ2 − 2λ = (2λ − 1)γ so that the

above inequality can be rewritten as

γθ−1 (λ− 2) (1− α) > aλγ
1− γθ−1

λ− γ

With a = −
[
1− α

(
2− γ−θ

)]
as defined above, it is equivalent

γθ−1 (λ− 2) (λ− γ) (α− 1) <
[
1− α

(
2− γ−θ

)]
λγ
(
1− γθ−1

)
Notice that (λ− 2) (λ− γ) = [λ2 − 2(1 + γ)λ+ γ] + γ + γλ = γ(λ+ 1) so that we need to

show that

γθ−1(λ+ 1)(α− 1) <
[
α
(
2− γ−θ

)
− 1
]
λ
(
γθ−1 − 1

)
holds. After rearranging and using α from (13), this inequality becomes is equivalent to

0 <
(
γθ−1 + λ

) (
2(γ + 1)− γθ − γ1−θ)− (γ + 1)

{
γθ−1(λ+ 1) +

(
2− γ−θ

)
λ
(
1− γθ−1

)}
The expression of the right hand side is

... = λ
[
2(γ + 1)− γθ − γ1−θ − (γ + 1)

{
γθ−1 +

(
2− γ−θ

) (
1− γθ−1

)}]
+ ...

...+ γθ−1
(
(γ + 1)− γθ − γ1−θ)

= λ
[
γ
(
γθ + γ1−θ)− (γ + 1) /γ

]
− γθ−1

(
γθ + γ1−θ − (γ + 1)

)
=

(
λγ − γθ−1

) (
γθ + γ1−θ)− (γ + 1)

[
λ− γθ

]
/γ

Since λ > γθ−1 (from (27)) and γθ+γ1−θ > γ+1 (as quickly checked) the last term exceeds[(
λγ − γθ−1

)
−
[
λ− γθ

]
/γ
]

(γ + 1) = [λγ − λ/γ] (γ + 1)

and is thus positive. This proves that A− Ã/λ > 0.

(i) Denoting the price of firm k before and after entry of the additional firm with pk

and p̃k, respectively, we have

pk − p̃k = Aλk + αck −
(
Ãλk−1 + αck

)
= λk

(
A− Ã/λ

)
The term in brackets is positive as shown above, proving the claim.

(ii) We compute

(p̃k+1 − p̃k)− (pk+1 − pk) =
(
λk+1−1 − λk−1

)
Ã−

(
λk+1 − λk

)
A ≤ 0.
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where the last inequality follows as above.

(iii) This statement holds by (ii) and (5).

Proof of Proposition 1. (i) Without loss of generality, we consider the timing and

location choice of the entrant n = 1, given q0 and {γn}n≤0, where γn = qn/qn−1.

Consider first the re-normalization of time t′ = t + (θ − 1)a−1 ln(1/q0), which must

leave real choices unchanged. Check then with (19) that under this time re-normalization,

marginal and setup costs satisfy ϕt′ = ϕtq
θ−1
0 and φt′ = φtq

θ−1
0 . Hence, applying Lemma

1 to the specific transformation (q0, t) → (1, t′), the operating profit of all firms m satisfy

π′m = πm/q0. Moreover, entry costs under this transformation are φt′ = φtq
θ
0/q0, i.e. scaled

by the factor 1/q0, too. This implies that under the above transformation, the problem

of quality choice by potential entrants is scaled by the factor 1/q0 and the optimal γ1 is

independent of q0. Without loss of generality, we thus set q0 = 1.

Next, we show that the optimal entry date t1 is finite. Observe that firm 1’s profits are

bounded above by profits that accrue in the absence of any competitors. In this hypothetical

case the monopolist sells to the market segment [pmon/q,v̄], charging the optimal price

pmon = max{(v̄γ1 + c1)/2,v
¯
γ1} and receiving profits according to (8)

πmon(τ) = (max{0, pmon − c1})2L/(γ1(v̄− v
¯
))

Recalling (19), we define t
¯

as the finite t where pmon = c1 holds and notice that πmon(τ) = 0

if τ <t
¯
. The net present value of these profits for entry at time t1 is then

L

γ1(v̄− v
¯
)

∫ ∞
max(t1,t

¯
)

e−r(τ−t1)
(
max{(v̄γ1 + ϕe−aτγθ−1

1 )/2, v
¯
γ1} − ϕe−aτγθ−1

1

)2
dτ − φe−at1γθ1

The integral is zero at t1 → −∞ while entry costs φe−at1 grow unbounded. Thus, the entire

expression is negative, contradicting optimal entry. In sum, we have −∞ < t1 < ∞, and

t1 is unique by virtue of the infimum.

Next, we show the optimal choice γ satisfies γ ∈ (1,∞). Entry at γ1 = 1 is not optimal

since Bertrand competition would imply π1 = 0 so that firms do not recover positive entry

costs. To show that entry at γ1 → ∞ is not optimal, use again the fact that operating

profits are bounded above by those in absence of all competitors. Thus, using the expression

for πmon(τ) above and setting ϕ = 0, we compute an upper bound for firm 1’s net present

value of profits:

(max{v̄/2, v
¯
})2γ1L/(v̄− v

¯
)

∫ ∞
t1

e−rτdτ − φe−at1γθ1
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This expression is negative for γ1 → ∞. Thus, net profits are maximal for a γ1 ∈ (1,∞).

For given t1, the global maximum of net present value of profits global maximum in γ1 is

then unique except for knife-edge cases, as in generic maximization problems with finite

support.

(ii) The proof is done by induction through n. Assume that {qn}n≤0 satisfy (10) with

prevailing γ and consider the entry decision of firm m = 1. Observe that entry with γ1 = 1

is not optimal because, as shown in part (i) above, Bertrand competition would imply

Πt1(γ1) = 0 (regardless of t1) and thus violate the free entry condition. Hence, γ = 1

implies γ1 > γ.

Next, we show that γ1 < γ holds for γ large enough. Assume this is not the case: γ1 ≥ γ

for all γ ≥ 1, which implies γ1 → ∞ as γ → ∞. But γ1 → ∞ was shown in part (i) to

violate free entry. Consequently, γ1 < γ holds for γ large enough.

Writing now the first entrant’s relative location γ1 as a function of the pre-existing relative

location parameter γ, i.e., writing γ1(γ) we thus have γ1(γ) > γ for γ = 1 and γ1(γ) < γ

for γ large enough. Continuity then implies that there is a γ > 1 so that γ1 = γ. We

denote this value by γ̄. At γ = γ̄, the firm n = 1 locates in the quality space, extending

equal relative spacing (10) to all n ≤ 1.

Under γ = γ1 = γ̄, we call the spacing problem of the remaining additional firms (n =

2, 3, ...) the residual spacing problem. With the notation

γ′n = γn+1 (n ≥ 1) q′0 = γ̄q0 = q1 and τ ′ = τ + a−1(θ − 1) ln γ̄ (30)

the residual spacing problem solves the corresponding system (22) - (24) above, where the

relevant variables q′, τ ′, t′m and γ′ now bear a prime. An induction argument completes the

proof that γn ≡ γ̄ for all n ≥ 1.

Finally, (19) and the transformation (30) show that two consecutive entries occur at dates

satisfying φtn = γ̄1−θφtn . With (19), this is e−a(tn+1−tn) = γ̄1−θ and proves (25).

Proof of Proposition 2. We begin the proof by defining Ψ(γ̂, t, γ, φ) as the net

present value of profits of the first entrant (firm m = 1). This value is expressed as a

function of existing spacing γn = γ for all n ≤ 0, parameter φ of setup costs (19), entry

date t and location choice γ̂. Normalizing q0 = 1 we have

Ψ(γ̂, t, γ, φ) = Π(γ̂, t, γ)− φe−at (γ̂)θ (31)
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where Π(γ̂, t, γ) is as defined in (21). We will denote the partial derivatives of Ψ w.r.t

the four arguments as Ψγ̂, Ψt, Ψγ and Ψφ, respectively. Free entry implies that firm 1’s

equilibrium entry date and location, which we denote by t∗(γ) and γ∗(γ), satisfy

Ψ(γ∗(γ), t∗(γ), γ, φ) = 0. (32)

for all γ and φ. Optimality of the firm’s location choice implies

Ψγ̂(γ
∗(γ), t∗(γ), γ, φ) = 0. (33)

Taking derivatives of (32) w.r.t. γ and using (33) yields

Ψt
dt∗

dγ
+ Ψγ = 0. (34)

We now denote the relative spacing variable of the ERSE with γ̄(φ). Along the path of the

ERSEs, identity (32) holds, i.e., Ψ(γ̄(φ), t∗(γ̄(φ), φ), γ̄(φ), φ) = 0. Taking derivatives w.r.t.

φ and using (33) and (34) yields

0 =

[
Ψt
dt∗

dγ
+ Ψγ

]
dγ̄

dφ
+ Ψt

∂t∗

∂φ
+ Ψφ = Ψt

∂t∗

∂φ
+ Ψφ

where ∂t∗/∂φ is the partial derivative of the entry date w.r.t. entry costs, when existing

spacing is held constant (γn = γ̄) and dt∗/dγ is the derivative of the entry date w.r.t γ̄ the

parameter of existing spacing, when entry costs are held constant. With Ψφ = −e−at∗ γ̄θ,
the last equation implies

∂t∗

∂φ
=
e−at

∗
γ̄θ

Ψt

. (35)

Now, taking derivatives of (33) w.r.t. γ leads to

0 = Ψγ̂γ̂
dγ∗

dγ
+ Ψγ̂t

dt∗

dγ
+ Ψγ̂γ. (36)

Along the path of all ERSE, (33) applies, i.e., Ψγ̂(γ̄(φ), t∗(γ̄(φ), φ), γ̄(φ), φ) = 0. Taking

derivatives w.r.t. φ yields

0 =

[
Ψγ̂γ̂ + dΨγ̂t

dt∗

dγ
+ Ψγ̂γ

]
dγ̄

dφ
+ Ψγ̂t

∂t∗

∂φ
+ Ψγ̂φ

and with (36)

Ψγ̂γ̂

[
1− dγ∗

dγ

]
dγ̄

dφ
= −Ψγ̂t

∂t∗

∂φ
−Ψγ̂φ
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Equations (3), (19), (21) and (31) imply Ψt = rφe−at(γ)θ − π(t) + aφe−at(γ)θ and Ψγ̂t =

(a + r)φe−atθ(γ)θ−1 − πγ̂(t). Further, observe that Ψγ̂φ = −θe−at (γ)θ−1 holds. Combining

these expressions with (35) yields

Ψγ̂γ̂

[
1− dγ∗

dγ

]
dγ̄

dφ
= {πγ̂(t∗)− π(t∗)θ/γ̄} γ̄

θe−at
∗

Ψt

(37)

The second order condition of the firm’s optimization problem requires Ψγ̂γ̂ < 0, while

(26) implies that the term in the square brackets is positive. Moreover, by definition of t∗,

Ψt > 0 holds at equilibrium entry. Consequently, γ̄(φ) is increasing in φ if and only if the

expression in the slanted brackets on the right of (37) is negative. This condition can be

reformulated as
d

dq1

ln(π(t∗)) < θ/γ̄. (38)

We now use profits π1 = L(p1− c1)2/(v̄(q1−q0)) (compare (8) and (9), shifting indices),

to rewrite condition (38) as

2
ṗ1 − ċ1

p1 − c1

<
θ

q1

+
1

q1 − q0

(39)

where ẋ ≡ dx/dq1. To derive an expression of ṗ1, write the system (11) as
2 −1 0 0 ...

−(q0 − q−1) 2(q1 − q−1) −(q1 − q0) 0
0 −(q−1 − q−2) 2(q0 − q−2) ...
... 0 ... ... ...

 p =


c1 + (q1 − q0)v̄

(q1 − q−1)c0

(q0 − q−2)c−1

...

 (40)

where p ≡ (p1, p0, ...)
t. Taking derivatives w.r.t. q1 yields

2 −1 0 0
−(q0 − q−1) 2(q1 − q−1) −(q1 − q0) 0

0 −(q−1 − q−2) 2(q0 − q−2) ...
... 0 ... ...

 ṗ+


0 0 0 0 ...
0 2 −1 0
0 0 0 0
... ...

 p =


ċ1 + v̄
c0

0
...


Evaluating at the ERSE and setting q0 = 1 leads to

2 −1 0 0 ...
−1 2(γ + 1) −γ 0
0 −1 2(γ + 1) −γ
... 0 ... ... ...

 ṗ =


ċ1 + v̄

γ−2p0+p−1+c0
γ−1

0
...

 (41)

Replicating the proof of Lemma 2, we obtain that ṗn satisfies ṗn = λnṗ0 for n ≤ 0 with

λ = γ + 1 +
√
γ2 + γ + 1. Thus, the second row of (41) is

−ṗ1 + 2(γ + 1)ṗ0 − γλ−1ṗ0 = −ṗ1 + λṗ0 = γ
−2p0 + p−1 + c0

γ − 1
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where the first identity follows because λ solves (17). With the first row of (41) (2ṗ1− ṗ0 =

ċ1+v̄), this yields

(2λ− 1)ṗ1 = λ [ċ1 + v̄] + γ
−2p0 + p−1 + c0

q1 − q0

and after rearranging and using the second row of (40)

(2λ− 1) (ṗ1 − ċ1) = λ(v̄− ċ1) + ċ1 +
2p0 − p1 − c0

γ − 1
(42)

Now distinguish the two cases limφ→1 γ̄(φ) = 1 and limφ→1 γ̄(φ) > 1. In the first case, we

observe with γ̄(0) = 1 and γ̄(φ) > 1 for all φ > 0 that there is a φ0 so that γ̄(φ) is increasing

for φ < φo. In the second of the cases, we observe that γ̄(φ) > 0 implies π1(t) > 0 for t

large enough so that, in order for the free entry condition (32) to be satisfied, t1(φ)→ −∞
at φ→ 0 must hold. This, in turn, implies that γ̄(φ)v̄< c1(φ) = e−at1(φ) [γ̄(φ)]θ for φ small

enough so that demand is zero upon entry for these φ. We define the maximum of the

set of such φ as φo and observe that, by construction, γ̄(φo) and t∗(φo) satisfy conditions

(22) and (23) of optimal entry for firm 1, given γn = γ̄(φ) for all n ≤ 0. When defining

the entry date t∗(φ) = t∗(φo) + a−1 ln(φ/φo) and the location γ̄(φ) = γ̄(φo) for all φ ≤ φo,

these choices γ̄(φo) and t∗(φo) satisfy conditions (22) and (23) for firm 1 as well, given that

γn = γ̄(φ) for all n ≤ 0. Hence, γ̄(φ) = γ̄(φo) ≥ 1 for all φ ≤ φo holds. Now observe that

at φ = φo, p1 = c1 holds so that condition (39) becomes

ṗ1 − ċ1 < 0.

But p1 = c1 also implies v̄= v1 by (5) and (7), or v̄= (c1 − p0) / (γ − 1), so that we have

with (42)

(2λ− 1) (ṗ1 − ċ1) = (λ− 1)

(
c1 − p0

γ − 1
− ċ1

)
+
p0 − c0

γ − 1

= (λ− 1)

(
c1 − c0

γ − 1
− ċ1

)
+ (λ− 2)

(
c0 − p0

γ − 1

)
The last expression is negative, because λ > 2, p0 > c0 and, by concavity of c1 in γ,

ċ1 > (c1− c0)/(γ− 1). This implies that condition (38) is satisfied and hence that the right

hand side derivative of γ̄ at φo (limε→0(γ̄(|ε|)− γ̄(0))/|ε|) is strictly positive. By continuity

there is a δ > 0 so that γ̄(φ) is strictly increasing for φ ∈ [φ0, φ0 + δ]. This completes the

proof.
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Appendix: Not For Publication

B Appendix – Lower Cutoff

We here generalize the solution of equilibrium prices (12). Specifically, we assume that the

distribution of consumer valuations (2) is uniform on [v
¯
,v̄], i.e.

G (v) =


0 if v < v

¯
(v − v̄)/(v

¯
− v̄) if v ∈ [v

¯
,v̄]

1 if v > v̄
(43)

holds. In addition, we assume that (10) still holds , so that each quality is a constant

fraction higher than its immediately preceding one. In this case, the system (7) becomes

pn =



1
2

[
c0 +

(
1− 1

γ

)
q0v̄ + p−1

]
if n = 0

1
2

[
cn + 1

γ+1
pn+1 + γ

γ+1
pn−1

]
if −N < n < 0

1
2

[c−N + p−N+1 − (γ − 1) q−Nv] if n = −N

(44)

We can formulate the following proposition (noting that (λ− 2γ) = 3γ (2− λ−1)
−1

).

Proposition 3 Assume equal relative spacing in quality, i.e., (10) holds and marginal

production costs are as in (4). Then prices are

pn = λnAN + (γ/λ)N+nBN + αcn ∀ −N ≤ n ≤ 0 (45)

where

α =
γ + 1

2(γ + 1)− γθ − γ1−θ (46)

λ = γ + 1 +
√
γ2 + γ + 1 (47)

AN =
λ− 2γ

3γ

γa0 + (γ/λ)NbN
1− γNλ−2N

(48)

BN =
λ− 2

3γ

λ−Nγa0 + bN
1− γNλ−2N

(49)

a0 =
(
1−

(
2− γ−θ

)
α
)
c0 + (1− 1/γ) q0v̄ (50)

bN =
(
1−

(
2− γθ

)
α
)
c−N − (γ − 1) q−Nv (51)

and N is defined as

N = max
{
m | Bm + Am

(
λ/γθ

)−m
+ α > 1

}
.
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Proof. Substitution un = pn − αcn into (44) yields

2 [un + αcn] = cn +
1

γ + 1
[un+1 + αcn+1] +

γ

γ + 1
[un−1 + αcn−1]

for n > 1. With α = (1 + γ)/
[
2(1 + γ)− γθ − γ1−θ] this is 2(γ + 1)un = un+1 + γun−1.

The equation

X2 − 2(γ + 1)X + γ = 0 (52)

has two roots, λ =
[
γ + 1 +

√
γ2 + γ + 1

]
larger than unity and µ =

[
γ + 1−

√
γ2 + γ + 1

]
,

smaller than unity. The general solution to the second-order recursive series is thus

pn = Ãλn + B̃µn + αcn. (53)

Equation (44) for n = 0 is 2p0 = c0 + (q0 − q−1)v̄+p−1 and, in combination with equation

(53) for n = −1 implies

2
(
Ã+ B̃ + αc0

)
= c0 + (q0 − q−1) v̄ +

(
Ãλ−1 + B̃µ−1 + αc−1

)
,

while equation (44) for n = −N is 2p−N = c−N + p−N+1 − (γ − 1) q−Nv, in combination

with equation (53) for n = −N + 1 hence implying that

2
(
Ãλ−N + B̃µ−N + αc−N

)
=
(
c−N + Ãλ−N+1 + B̃µ−N+1 + αc−N+1 − (γ − 1) q−Nv

)
We can substitute µ using λµ = γ, which holds the solution by λ2 − 2(γ + 1)λ + γ = 0.

Finally, solving for Ã and B̃, replacing A = Ã and B = B̃µ−N proves (15).

Corollary 2 Assume that (10) holds. Then,

(i) prices pn, markups pn/cn and the slope of the pricing schedule (pn+1 − pn) are increasing

in v and decreasing in v for all n.

(ii) if γθ ≤ λ, the slope of the pricing schedule (pn+1 − pn) is increasing in ϕ for all n.

(iii) if γθ ≤ λ, the slope of the pricing schedule (pn+1 − pn) is increasing in q0 for all n.

(iv) if v̄ > v (λ/γ)N holds, markups pn/cn are decreasing in ϕ for all n.

Proof. (i) The statement for prices pn follows since γ > 1 implies with (50) and (51)

daN/dv̄ > 0, daN/dv = dbN/dv̄ = 0 and dbN/dv < 0 so that with (45) - (51) dpn/dv̄ > 0
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and dpn/dv < 0. The statement for markups pn/cn follows since dcn/dv̄ = dcn/dv = 0.

For the statement regarding (pn+1 − pn) compute with (45)

d (pn+1 − pn)

dv
= (λ− 1)λn

dAN
dv

+ (γ/λ− 1) (γ/λ)N+n dBN

dv

Using (48) - (51), check that

dAN
dv

=
λ− 2γ

3γ

γ

1− (γ/λ2)N
(1− 1/γ) q0 and

dBN

dv
=
λ− 2

3γ

λ−Nγ

1− (γ/λ2)N
(1− 1/γ) q0

By γ/λ2 < 1, d (pn+1 − pn) /dv is positive if and only if

[λ− 1] [λ− 2γ]λn − [1− γ/λ] [λ− 2] (γ/λ)N+n λ−N

is positive. Since λ > 2γ, all terms in squared brackets are positive so that the expression

above is increasing in n and hence minimal for n = −N . It is thus sufficient to show that

[λ− 1] [λ− 2γ]− [1− γ/λ] [λ− 2] > 0 (54)

holds. But this inequality is satisfied since λ solves the identity λ2 − (2γ + 1)λ + 2γ = 0

(see (52) in the proof of (45) in the appendix) so that the expression above equals

2γ + 2− 2γ/λ > 0

This proves that d (pn+1 − pn) /dv > 0.

Next, compute

d (pn+1 − pn)

dv
= (λ− 1)λn

dAN
dv

+ (γ/λ− 1) (γ/λ)N+n dBN

dv

Using (48) - (51), check that

dAN
dv

=
λ− 2γ

3γ

−(γ/λ)N

1− γNλ−2N
(γ − 1) q−N and

dBN

dv
=
λ− 2

3γ

−1

1− γNλ−2N
(γ − 1) q−N

so that d (pn+1 − pn) /dv is negative if and only if

− [λ− 1] [λ− 2γ] + [1− γ/λ] [λ− 2]
(
γ/λ2

)n
< 0

holds. Since all terms in squared brackets are positive and γ/λ2 < 1 this expression is

maximal at n = 0 so that the statement holds by (51) above.

(ii) First notice with (46), (50) and (51) that

a0 = −βc0 + (1− 1/γ) q0v̄ and bN = γβc−N − (γ − 1) q−Nv
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where

β =
γθ − γ−θ

2(γ + 1)− γθ − γ1−θ

and compute with (45) - (51)

d (pn+1 − pn)

dϕ
= λn (λ− 1)

∂AN
∂ϕ
−
(γ
λ

)N+n (
1− γ

λ

) ∂BN

∂ϕ
+ γθnα

(
γθ − 1

) c0

ϕ

=

−
λn (λ− 1) (λ− 2γ)

1−
(
γ1−θ

λ

)N
1−

(
γ
λ2

)N + ...

...+
(γ
λ

)N+n

(1− γ/λ) (λ− 2)λ−N
(γ

θ

λ
)−N − 1

1−
(
γ
λ2

)N
)
β

3
+ γθnα

(
γθ − 1

)] c0

ϕ

Using λ2 = 2(γ + 1)λ− γ from (52) we can substitute

(λ− 1) (λ− 2γ) = λ+ γ and (1− γ/λ) (λ− 2) = γ
λ+ 1

λ

so that

d (pn+1 − pn)

dϕ
=

−
(λ+ γ)

1−
(
γ1−θ

λ

)N
1−

(
γ
λ2

)N + ... (55)

...+
( γ
λ2

)n (γ
λ

)N
γ
λ+ 1

λ
λ−N

(
γθ

λ

)−N
− 1

1−
(
γ
λ2

)N
 β

3
+

(
γθ

λ

)n
α
(
γθ − 1

)λn c0

ϕ

To prove the claim, we will show that the expression in square brackets is positive. As a

first step, we look at the terms that depend on n:

( γ
λ2

)n −γλ+ 1

λ

( γ
λ2

)N (γθλ )−N − 1

1−
(
γ
λ2

)N (γθ − γ−θ)

+

(
γθ

λ

)n [
3(γ + 1)

(
γθ − 1

)]
(56)

at n = −N this expression equals

... = −γλ+ 1

λ

(λ/γθ)N − 1

1− γNλ−2N
(γθ − γ−θ) + 3

(
γθ

λ

)−N
(γ + 1)

(
γθ − 1

)
=

[
−γλ+ 1

λ

1− (λ/γθ)−N

1− γNλ−2N

γθ − γ−θ

γθ − 1
+ 3(γ + 1)

](
γθ

λ

)−N (
γθ − 1

)
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The expression in square brackets satisfies

−γλ+ 1

λ

1− (γθ/λ)N

1− (γ/λ2)N
γθ − γ−θ

γθ − 1
+ 3(γ + 1) > −γλ+ 1

λ

γθ − γ−θ

γθ − 1
+ 3(γ + 1)

> −γλ+ 1

λ
2 + 3(γ + 1) > 0

Thus we have shown that, in absolute terms, the positive expression in the second squared

brackets in (56) is larger than the negative term in the first. Thus, multiplying the negative

term by (γ/λ2) and the positive term by (γθ/λ) increases the sum of both. Hence the

expression in (56) is increasing in n and so is the expression in (55). Therefore it is

sufficient to show that the expression in (55) is positive for n = −N . To this aim, we set

n = −N in (55), multiply by
(
γθ/λ

)N
and show next that

−

(λ+ γ)

(
γθ

λ

)N
−
(
γ
λ2

)N
1−

(
γ
λ2

)N + γ
λ+ 1

λ

1−
(
γθ

λ

)N
1−

(
γ
λ2

)N
 (γθ − γ−θ) + 3(γ + 1)

(
γθ − 1

)

is positive. To do so, we use that
(γθ/λ)N − γNλ−2N

1− γNλ−2N
+

1− (γθ/λ)N

1− γNλ−2N
= 1 so that we can

rewrite the expression above as(
1− (γθ/λ)N

1− γNλ−2N

(
(λ+ γ)− γλ+ 1

λ

)
− (λ+ γ)

)(
γθ − γ−θ

)
+ 3 (1 + γ)

(
γθ − 1

)
Using now that

1− (γθ/λ)N

1− γNλ−2N
< 1 is increasing in N and N ≥ 1, we have

... ≥
(

1− γθ/λ
1− γ/λ2

(
(λ+ γ)− γλ+ 1

λ

)
− (λ+ γ)

)(
γθ − γ−θ

)
+ 3 (1 + γ)

(
γθ − 1

)
= −

(
γθ + γ

) (
γθ − γ−θ

)
+ 3 (1 + γ)

(
γθ − 1

)
To check that this last expression is positive, we divide by (1 + γ)

(
γθ − 1

)
and look at

−
(
γθ + γ

)
(1 + γ)

(
γθ − γ−θ

)
(γθ − 1)

+ 3 ≥ −(λ+ γ)

(1 + γ)

(λ− 1/λ)

(λ− 1)
+ 3

where we have used γθ ≤ λ. Simplifying further with λ2 = 2(γ+ 1)λ− γ from (52) leads to

−(λ+ γ)

(1 + γ)

(λ− 1/λ)

(λ− 1)
+ 3 = −λ

2 − 1 + γλ− γ/λ
(1 + γ) (λ− 1)

+ 3

= −2(γ + 1)λ− (γ + 1)

(1 + γ) (λ− 1)
− λ− 1/λ

(1 + γ) (λ− 1)
+ 3

> −2λ− 1

λ− 1
− γλ

γλ+ λ− (γ + 1)
+ 3 > −2− 1 + 3 = 0
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The last inequality holds by λ > (γ + 1) and proves the statement.

(iii) Notice with (45) - (51) that

d

dq0

(
pn+1 − pn

q0

)
=
d (pn+1 − pn)

dϕ

(
ϕ

q2
0

θ − 1

θ

)
Since furthermore,

d

dq0

(
pn+1 − pn

q0

)
=

1

q0

d (pn+1 − pn)

dq0

− pn+1 − pn
q2

0

we have

d (pn+1 − pn)

dq0

= q0
d

dq0

(
pn+1 − pn

q0

)
+
pn+1 − pn

q0

= q0
d (pn+1 − pn)

dϕ

(
ϕ

q2
0

θ − 1

θ

)
+
pn+1 − pn

q0

which is positive by (ii).

(iv) Compute with (45) - (51)

d(pn/cn)

dϕ
= λn

d(AN/cn)

dϕ
+ (γ/λ)N+n d(BN/cn)

dϕ

=
1

3γ (1− γNλ−2N)

{
λn(λ− 2γ)

[
γ
d(a0/cn)

dϕ
+ (γ/λ)N

d(bN/cn)

dϕ

]
+ ...

...+ (γ/λ)N+n (λ− 2)

[
λ−Nγ

d(a0/cn)

dϕ
+
d(bN/cn)

dϕ

]}
=

(γ − 1) /(ϕcn)

3γ (1− γNλ−2N)

{
λn(λ− 2γ)[−q0v̄ + (γ/λ)Nq−Nv] + ...

...+ (γ/λ)N+n (λ− 2)
[
−λ−Nq0v̄ + q−Nv

]}
Straight forward simplification with q−N = γ−Nq0 leads to

d(pn/cn)

dϕ
=
q0v (γ − 1) /(ϕcn)

3γ (1− γNλ−2N)

{
λn(λ− 2γ)

[
− v̄
v

+ λ−N
]

+ (γ/λ)N+n(λ− 2)

[
−λ−N v̄

v
+ γ−N

]}
Since v̄/v > 1 > λ−N holds always and v̄/v > (λ/γ)N by assumption, the term on the right

is negative, which proves the statement.
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