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Abstract

We propose a two-stage procedure for �nding realistic benchmarks for nonparamet-

ric e�ciency analysis. On the �rst stage the e�cient DMUs are �gured out by a free

disposal hull approach. These benchmarks are directly targeted by directional dis-

tance functions and the extent of ine�ciency is measured along the direction towards

an existing DMU. Two variants for �nding the closest or the furthest benchmark are

proposed. With this approach there is no need to use linear combinations of existing

DMUs as benchmarks which may not be achievable in reality and also no need to

accept slacks which are not re�ected by the e�ciency measure.

JEL classi�cation: C14, D24
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1 Introduction

Nonparametric methods for e�ciency analysis such as data envelopment analysis (DEA)
developed by Charnes et al. (1978) and Banker et al. (1984) as well as free disposal hull
(FDH) due to Deprins et al. (1984) and Tulkens (1993) measure the e�ciency of decision
making units (DMUs) against the benchmark of a piece-wise linear (in the case of DEA)
or a step-wise linear (in the case of FDH) frontier function. In both cases one has to
choose between input orientation, leading to a point on the frontier function with less
input usage at constant output levels, or output orientation, leading to a frontier point
with more output at constant input levels. With either orientation these frontier points
usually are targets constructed by linear combinations of existing DMUs (in the case of
DEA) or targets which are only weakly e�cient since they are associated with slacks (in
the case of FDH). Those linear combinations need not be achievable for real production
processes with slacks as forms of ine�ciency which are not re�ected in the radial e�ciency
measure. Only by chance (and with probability zero in the case of continuous inputs and
outputs) is a benchmark point on the frontier function identical to an existing e�cient
DMU.

In the literature, approaches for dealing with this targeting problem are proposed for both
oriented models (Coelli (1998), Cherchye and Van Puyenbroeck (2001)) and non-oriented
models (Frei and Harker (1999), Golany et al. (1993) and Portela et al. (2003)) to identify
the closest targets. In this work we stick to the non-oriented type of models which permit
an uneven reduction of inputs jointly with the uneven enhancement of outputs. González
and Álvarez (2001) compute input-speci�c contractions to �nd the shortest path to the
frontier and to identify the relevant benchmarks. Frei and Harker (1999) propose an
algorithm to �nd the shortest projection to the frontier to identify more similar e�cient
DMUs in terms of input and output quantities. The benchmark point may be an existing
DMU but may also be a convex combination of existing DMUs. Portela et al. (2003)
is probably closest to the motivation of the approach suggested here. They propose a
procedure for identifying the closest targets based on the identi�cation of all e�cient facets
of the frontier function from FDH (non-convex) as well as DEA (convex) technologies. We
deem that our approach is more straightforward and also computationally less demanding.
In addition, further restrictions on the inputs and outputs can easily be introduced in the
programs discussed subsequently. Other approaches for target setting models require
the formulation of preferences in the form of user-supplied weights (Thanassoulis and
Dyson (1992), Zhu (1996)). See Thanassoulis et al. (2008, sect. 3.9) for a comprehensive
summary.

In this paper we propose an approach based on the concept of directional distance func-
tions (DDF) developed by Chambers et al. (1996) for the direct choice of an e�cient
benchmark DMU on the frontier function. This target may be the closest existing DMU
(which is more realistic in the sense of easier to achieve) or the farthest existing DMU
(which leads to a greater e�ciency improvement but is more di�cult to achieve). The
targets are independent of the orientation of the e�ciency measurement and are computed
by a DDF with endogenously chosen directions. As for DEA and FDH the generalization
to an arbitrary number of inputs and outputs is straightforward. More speci�cally, the
procedure is based on two stages with identifying the strongly e�cient DMUs (in the
sense of Koopmans (1951)) on the FDH frontier on the �rst stage followed by computing
the optimal distances towards these DMUs on the second stage. This approach is related
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to Briec (2000) with its intention to select the direction towards a strongly e�cient part
of the frontier function.

The paper proceeds by �rst explaining the endogenous choice of optimal directions in
section 2. This is followed by the presentation of the two-stage approach in section 3.
The approach is illustrated and its virtues are discussed with the help of a numerical
example in section 4. Section 5 concludes.

2 Optimal Directions

Instead of sticking to a pure input-orientation or a pure output-orientation as in the
cases of DEA and FDH the approach of directional distance functions as introduced
by Chambers et al. (1996) allows for a more �exible speci�cation of the direction in
which ine�ciency is measured. This approach is based within nonparametric e�ciency
measurement with the technology set T = {(x,y) ∈ Rp+q

+ : x ≥ 0 can produce y ≥ 0}
de�ning the set of feasible input-output combinations with the input quantities collected
in the p-vector x and the output quantities in the q-vector y. The directional distance
function DDF (x,y; gx, gy) = sup{δ ≥ 0 : (x− δgx,y+ δgy) ∈ T} measures the distance
towards the boundary of the technology set from the input-output point (x,y) in the
direction gx ≥ 0, gy ≥ 0.

To compute the DDF with real data let the p × n matrix X contain the data for the
p inputs of the n DMUs with the ith column xi comprising the input values of DMU i
and likewise the q × n matrix Y contain the data for the q outputs with the ith column
yi comprising the output values of DMU i. Then the DDF can be computed as the
solution of the linear programming problem for an exogenously given vector of directions
(g′x, g

′
y)

′ ≥ 0 as stated in (1):

max
δ,λ

δ

s.t. xi − δgx ≥ Xλ
yi + δgy ≤ Y λ

1′λ = 1
λ ≥ 0

(1)

The constraint 1′λ = 1 (with 1 as a conformable vector of ones) allows for variable returns
to scale.

In a proposal to endogenize the computation of the direction vector we adopt the idea of
Hampf and Krüger (2015) developed in an environmental e�ciency context to specify:1

max
δ,αx,αy ,λ

δ

s.t. xi − δαx � xi ≥ Xλ
yi + δαy � yi ≤ Y λ

1′αx + 1′αy = 1
1′λ = 1
λ,αx,αy ≥ 0

(2)

1See also Färe et al. (2013) for a related proposal to compute endogenous directions in the case of a
slacks-based directional measure.
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where '�' denotes the (direct) Hadamard product. Here, the direction vectors αx � xi
and αy � yi are computed along with δ to �nd the direction of the maximum distance
towards the boundary of the technology set which is given by the frontier function. The
additional constraint 1′αx + 1′αy = 1 permits the identi�cation of δ as a units-invariant
measure. The solution value for δ is equal to zero for e�cient DMUs and larger than zero
for ine�cient DMUs, thus measuring the extent of ine�ciency.

The optimization problem (2) is nonlinear but can be easily transformed to a linear
programming problem by substituting γx = δαx and γy = δαy which leads to the linear
program (3)

max
γx,γy ,λ

1′γx + 1′γy

s.t. xi − γx � xi ≥ Xλ
yi + γy � yi ≤ Y λ

1′λ = 1
λ,γx,γy ≥ 0

(3)

In this program the objective function is now 1′γx+1′γy = δ(1′αx+1′αy) which is equal
to δ once the constraint 1′αx+1′αy = 1 in (2) is invoked. For practical purposes program
(3) can be solved by the ordinary simplex algorithm and the solution values for δ, αx and
αy can be backed out from γx and γy by δ = 1′γx + 1′γy, αx = γx/δ and αy = γy/δ.
Note that the particular speci�cation of the direction vectors here also lets the e�ciency
measure be invariant with respect to units of measurement.

3 Direct Targeting

Our two-stage approach uses variants of DDF with optimal direction choice on both
stages. On the �rst stage, DDF is used to identify the strongly e�cient DMUs on the
FDH frontier. This subset of DMUs is used on the second stage for directly targeting
a strongly e�cient DMU as a benchmark. As we will explain in more detail in the
discussion of the numerical example in the next section neither DEA (because of DMU D
in the example) nor FDH (because of DMU E there) is su�cient on the �rst stage.

On the �rst stage, we establish the e�cient DMUs by computing the mixed-integer pro-
grams (4) for each DMU i ∈ {1, ..., n}

max
γx,γy ,λ

1′γx + 1′γy

s.t. xi − γx � xi ≥ Xλ
yi + γy � yi ≤ Y λ

1′λ = 1
λj, j = 1, ..., n ∈ {0, 1}
γx,γy ≥ 0

(4)

Program (4) is just program 3 with the additional binary restrictions for the λ-factors.
DMUs with 1′γx + 1′γy = 0 are strongly e�cient since the endogenous choice of the
direction vector eliminates the possibility of weakly e�cient DMUs which would be pos-
sible in the FDH approach. These strongly e�cient DMUs are recorded and serve as the
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benchmarks for the other DMUs. Which of these benchmarks is chosen for a particular
DMU i is determined on the second stage. If we could measure all inputs and outputs
as strictly continuous variables weakly e�cient observations would occur with probability
zero and FDH would be su�cient on the �rst stage. But in usual real data situations we
are not in this position.

On the second stage, the mixed-integer linear programs are computed for each DMU
i ∈ {1, ..., n}

max |min
γx,γy ,λ

1′γx + 1′γy

s.t. xi − γx � xi = X̄λ
yi + γy � yi = Ȳ λ

1′λ = 1
λj, j = 1, ..., n ∈ {0, 1}
γx,γy ≥ 0

(5)

where the matrices X̄ and Ȳ are the reduced matrices X and Y containing only the
strongly e�cient observations (i.e. those columns with solution value of zero for the
target function on the �rst stage).

Program (5) is a further modi�cation of the linear DDF program with endogenous di-
rections (3). The equality restrictions for the inputs and the outputs, together with the
restrictions on the λ values, guarantee that one and only one strongly e�cient DMU is
directly targeted as the benchmark for the e�ciency measurement for the DMU i under
consideration. The restrictions furthermore assure that the solutions for γx and γy lead
to permissible directions in the sense of reducing inputs and increasing outputs.

The measure of ine�ciency is computed as δ = 1′γx + 1′γy with the respective solution
values for DMU i and has the usual interpretation as a DDF e�ciency measure. It is
equal to zero for the e�cient DMUs and the larger for a larger distance towards the
chosen benchmark DMU.

The benchmark determined in this way can be the furthest e�cient DMU when program
(5) is solved as a maximization problem or the closest e�cient DMU when it is solved
as a minimization problem, indicated by the shortcut notation 'max |min' in program
(5). This is indicated by the shortcut notation max |min in program 5. The furthest
benchmark is associated with a large e�ciency improvement but is probably much more
di�cult to reach in practice. The closest benchmark is more likely to be achievable but
may only be associated with a small e�ciency improvement. The two-stage procedure
outlined above is only required if minimization is chosen on the second stage.2

In related work, Briec (2000) also covers the binary constraint on the λ-values as one
possibility for the admissible set of aggregation weights. However, Briec does not explicitly
point out the practical consequences for the selection of a direct benchmark. This gap is
�lled here. In addition, Briec only treats the maximization case, whereas we show here
that minimization also makes sense in this setting.

2Note that in the case of maximization on the second stage, we obtain the same solutions as on the
�rst stage. This is quite natural here, since X̄ and Ȳ are just contain those observations which are found
e�cient on the �rst stage.
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4 Numerical Example

Now we turn to the illustration of the two-stage approach by means of a numerical example
with 7 DMUs named A to G which use a single input to produce a single output. The
input quantities are given by X = (2, 4, 8, 3, 2, 7, 9) and the output quantities by Y =
(2, 6, 8, 3, 1, 3, 7).3

Figure 1: DEA and FDH Projections
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Figure 1 shows the positions of the DMUs as well as the FDH frontier function as the
solid step-wise line and the DEA frontier as the dashed extensions between DMUs A,
B and C, originating from the convexity assumption. The solid gray vertical arrows
show the output-oriented directions for the e�ciency measurement towards the DEA
frontier with circles indicating the intersections with the FDH frontier. Likewise, the
dashed gray horizontal arrows show the input-oriented directions. It is evident that the
benchmark points on the frontier functions are either linear combinations of the e�cient
DMUs or are associated with slacks. The numerical results for the e�ciency measures
and the associated λ-values are reported in panels I and II of table 1 for DEA and FDH,
respectively.

Considering DMU F as an example we see that this DMU is compared to a combination of
A and B in the case of an input-oriented DEA analysis and with a combination of B and
C in the case of an output-oriented DEA analysis. The circled projection points on the
FDH frontier show that F has a relatively large input slack with respect to its benchmark

3The computations are programmed in R using the package 'lpSolve' for the mixed-integer linear
programs and the package 'Benchmarking' (accompanying Bogetoft and Otto (2011)) for the preparation
of the �gures.
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B in an output-oriented analysis whereas no slack appears in an input-oriented analysis
where the benchmark is D. An input-oriented DEA analysis of DMU G shows that this is
compared to a �fty-�fty mixture of B and C while G is only compared to C with output
orientation and in this case has an additional input slack. In the case of a FDH analysis
of G slacks would arise with both orientations. As can be easily imagined from adding
further ine�cient DMUs to the �gure that in most occasions linear combinations or points
associated with slacks will be chosen as benchmark points by DEA and FDH.

A rather special case is DMU D which is ine�cient when evaluated against die DEA
frontier while being part of the FDH frontier. Cases like D are the reason for the reliance
on the FDH frontier since there is no existing DMU in the north-west of D which could
be used as benchmark for direct targeting. The second special case is DMU E which is
positioned as a weakly e�cient point on the vertical part of the frontier function. Here, an
input-oriented FDH analysis would result in E being indicated as e�cient but having an
output slack with respect to A. This particular case shows that simply using FDH on the
�rst stage would not be su�cient for selecting the strongly e�cient DMUs as benchmark
candidates for the second stage of the procedure.4

Figure 2: DDF Direct Targeting
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The results of the second stage of the two-step procedure for the numerical example are
depicted in �gure 2. In the �gure, the dashed arrows indicate the direction to the closest
DMU (min in program (5)) and the solid arrows the direction to the furthest DMU (max
in program (5)).

In the case of the ine�cient DMU F there is DMU D acting as the closest and B as
the furthest benchmark DMU. Thus, the minimum distance is in the direction to D

4I am grateful to Benny Hampf for spotting this possibility and indicating its solution.
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whereas the maximum distance points to B. For DMU G there is only one DMU eligible
as a benchmark and this is DMU C for both minimization and maximization. Here, the
direction to B would be associated with a decreasing input but also a decreasing output
quantity (as indicated by the dotted arrow) and therefore is not permissible. The weakly
ine�cient DMU E gets assigned A as its unique benchmark.

The numerical results for the two-stage direct targeting approach are shown in panel III
of table 1 for the maximization on the left side and for the minimization on the right
side. Here, the directions are presented in form of α-values adding up to unity which are
backed out from the solution for the γ-values and the ine�ciency measure by αx = γx/δ
and αy = γy/δ (with δ = γx + γy). From the solution values for λ out of {0, 1} we can
directly identify the respective benchmark DMUs. We also observe that the ine�ciency
measures on the �rst stage are exactly equal to those obtained by maximization on the
second stage as explained above.

5 Concluding Remarks

In this paper we develop a two-stage procedure for selecting suitable existing strongly
e�cient DMUs as benchmarks for the e�ciency evaluation of ine�cient DMUs. The
procedure uses a speci�c variant of DDF with endogenous direction choice on the �rst
stage for �nding the strongly e�cient DMUs and then computes optimal directions for
targeting the closest or furthest DMU with the aid of another modi�ed DDF model on the
second stage. This procedure can improve the decision support derived from the results of
a nonparametric e�ciency analysis since the benchmark points chosen in this way are real
in the sense of being neither constructed from linear combinations nor are associated with
slacks. Thus, both forms of technical ine�ciency are jointly re�ected by the (in)e�ciency
measure relative to the benchmark of an existing DMU.
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