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Abstract

This study intends to understand how disaster is related to countries’ production
efficiency using a sample of 137 countries over 1980–2011. We analyze the effect of the
number of man-made and natural disaster occurrences on countries’ technological
change (swift of the frontier) and technological catch-up (distribution of efficiencies).
The results reveal an inverted “U” shape relationship between countries’ technological
change and technological catch-up with disaster occurrences. This finding suggests
that the effect on countries’ production efficiency is positive for lower number of
disaster events; however, after a specific threshold value, the effect becomes negative.
The results also reveal that low-income countries are negatively affected much quicker
compared to high-income countries. Finally, it is evident that the negative effect of
disaster occurrences impacts first countries’ technological catch-up and then their
technology change.

JEL Classification: C14, D24, O47

Keywords: Disasters; Production efficiency; Conditional efficiency; Nonparametric
analysis
1 Background
Disaster mitigation and adaptation are important for sustainable economy in a society.

Macroeconomists and environmental economists have been studying on the economic

analysis of disasters. The economic impact from disasters and the mechanism alleviating

from disasters (such as insurance) has been well studied in the literature (see, e.g., Cavallo

et al. 2013; McDermott et al. 2014). There are cases indicating that more disasters are asso-

ciated with more GDP (Cavallo et al. 2013; Managi & Sharma 2015). As has been pointed

out by McDermott et al. (2014), mild shocks can stimulate reconstruction and therefore

can cause growth. However, there is a broader view in the literature that humanitarian and

climatic disasters have a direct negative effect on economic output (Raddatz 2007).

Often after a disaster event, an immediate request of an investment could be mis-

used. This is because recovery from disasters requires immediate decision making

which can result on less efficient use of investment to the economy. On the other

hand, unused capital or old infrastructure could be replaced by new investment. This

implies that there is a better chance of economic capitalization improvement, giving

opportunities to new industries, by replacing old infrastructure. In this case, we expect

that countries’ production efficiency will improve after the disaster. Furthermore, it

might be that the improvement in productivity is possible when disaster events are
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relatively small as recovery process is easily managed. In contrast when the disaster oc-

currences increase significantly, then there might be much less time for efficient deci-

sion making and as a consequence productivity decreases. If that is the case, an

inverted “U” shape relationship between productivity and disaster occurrences can be

observed. However, another possibility is that productivity can be increased by a cre-

ative reconstruction when there are significant damages to the economy after an in-

creased number of disaster occurrences. In addition, there is the possibility that for a

small number of disaster occurrences (as well as for small disaster impacts), productiv-

ity might decrease since it is expected that there will be no change in industrial com-

position. In this case, a “U” shape relationship between productivity and disaster

occurrences could be seen from the data. This paper aims to provide empirical evi-

dence examining such relationships in a global level. This is the first study which pre-

sents empirically the underline mechanism of how disaster is related to countries’

productive efficiency and consequent productivity change using global data.

Specifically, our study contributes to the existing literature by investigating for the

first time the effect of man-made and natural disaster occurrences on countries’ pro-

duction efficiency levels. Specifically, we apply time-dependent conditional efficiency

measures in a nonparametric framework (Mastromarco & Simar 2014). Then we utilize

a newly developed approach introduced by Bădin et al. (2012) to a sample of 137 coun-

tries over the period of 1980–2011. In that respect, our paper examines in a dynamic

framework the effect of disaster events on countries’ technological change (swift of the

frontier) and on countries’ technological catch-up (distribution of efficiencies). Finally,

our nonparametric framework does not assume any specific functional relationship of

countries’ production process and therefore provides us with the ability to reveal any

nonlinear relationships which may exist.

The structure of our paper is as follows. Section 2 describes data and methodology

while Section 3 presents the results. Finally, the last section concludes the paper.
2 Methods
2.1 Data description

For our methodological framework, we are using as countries’ input factors capital

stock at current PPPs (in millions 2005US$) and labor force (in millions), whereas, our

single output is the output-side real GDP at chained PPPs (in millions 2005US$). Our

data sample contains 137 countries (38 high-income, 24 upper-middle-income, 35

lower-middle-income, and 40 lower-income countries)1 over the period 1980–2011 (see

“Appendix” for details). The input and output variables have been extracted from Penn

World Table v8.0 (Feenstra et al. 2013).2

Moreover, the external variable affecting countries’ production process is the number

of man-made and natural disasters.3 The data on countries’ disasters as a unit of disas-

ter event number in each country are obtained from the Emergency Events Database

(EM-DAT) from the Centre for Research on the Epidemiology of Disasters (CRED).4 Fi-

nally, Table 1 below provides diachronically the descriptive statistics of the variables

used. CRED collected each event for many countries over the long periods. As data col-

lection starts from different year by country, it is unbalanced panel data. We choose

our study periods to create balanced panel data to measure productivity. The database



Table 1 Descriptive statistics of the variables used

Year Statistics Total employment Capital stock GDP Disasters Year Statistics Total employment Capital stock GDP Disasters

1980 Mean 11.778 454,155.924 168,126.344 1.285 1996 Mean 16.480 800,107.820 293,405.006 3.029

std 47.038 1,739,488.751 569,685.039 2.755 std 67.353 2,638,400.956 959,456.060 5.725

1981 Mean 12.127 471,044.931 169,846.094 1.197 1997 Mean 16.740 823,545.680 302,636.873 3.234

std 48.979 1,804,086.629 580,843.148 2.265 std 68.243 2,725,033.235 998,472.927 7.221

1982 Mean 12.426 481,561.559 169,356.021 1.270 1998 Mean 16.995 848,505.233 306,063.612 3.606

std 50.617 1,842,351.213 570,649.219 2.858 std 69.108 2,830,602.354 1,028,573.363 7.180

1983 Mean 12.683 468,443.433 173,061.125 1.635 1999 Mean 17.260 874,721.487 317,639.343 4.577

std 51.961 1,787,124.221 591,469.221 2.807 std 69.926 2,945,857.958 1,074,286.878 7.804

1984 Mean 12.999 468,281.630 181,575.919 1.409 2000 Mean 17.558 910,560.729 334,719.195 5.628

std 53.319 1,794,357.103 634,239.635 2.977 std 70.826 3,079,126.069 1,126,005.233 10.032

1985 Mean 13.334 474,792.230 187,269.560 1.628 2001 Mean 17.841 942,183.470 340,233.218 4.978

std 54.678 1,823,285.219 658,474.221 3.506 std 71.793 3,216,026.326 1,143,081.335 9.617

1986 Mean 13.671 496,725.367 194,929.618 1.752 2002 Mean 18.117 972,784.272 348,121.142 5.606

std 55.936 1,890,802.076 682,741.112 3.925 std 72.788 3,344,003.740 1,165,718.655 10.043

1987 Mean 14.000 517,069.651 203,732.140 2.438 2003 Mean 18.432 1,025,260.303 358,278.790 4.599

std 57.065 1,950,505.109 707,574.290 4.794 std 73.714 3,505,394.653 1,205,161.938 9.295

1988 Mean 14.343 542,888.825 212,644.927 2.482 2004 Mean 18.809 1,115,236.401 376,384.210 4.635

std 58.494 2,024,926.264 737,002.408 5.775 std 74.864 3,765,697.494 1,258,918.758 9.762

1989 Mean 14.701 567,677.451 219,678.706 2.569 2005 Mean 19.101 1,228,107.151 398,768.660 5.328

std 60.361 2,092,597.704 761,853.568 5.488 std 75.649 4,114,511.020 1,317,702.953 11.114

1990 Mean 15.062 598,391.882 228,252.970 3.204 2006 Mean 19.449 1,362,797.584 414,236.223 4.737

std 62.023 2,153,172.393 780,555.343 6.204 std 76.563 4,509,109.447 1,370,650.023 9.209

1991 Mean 15.321 616,338.768 233,729.672 3.241 2007 Mean 19.802 1,462,579.240 433,107.615 4.467

std 63.383 2,183,997.256 787,548.430 6.268 std 77.473 4,770,668.327 1,425,377.191 7.398
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Table 1 Descriptive statistics of the variables used (Continued)

1992 Mean 15.549 635,992.718 244,081.059 2.343 2008 Mean 20.095 1,552,115.359 440,736.543 4.248

std 64.249 2,216,966.358 818,800.869 4.806 std 78.203 5,019,146.147 1,444,895.526 7.040

1993 Mean 15.750 671,855.674 254,104.209 2.723 2009 Mean 20.265 1,579,023.191 441,339.897 3.839

std 65.083 2,309,684.885 850,061.215 6.276 std 78.840 5,115,717.649 1,436,698.346 6.545

1994 Mean 16.011 714,960.881 266,518.840 2.781 2010 Mean 20.570 1,623,685.784 463,966.400 4.088

std 65.862 2,421,837.193 889,099.612 5.620 std 79.588 5,287,237.525 1,507,251.764 6.901

1995 Mean 16.210 767,889.398 280,462.926 2.766 2011 Mean 20.873 1,713,752.560 479,023.024 3.898

std 66.541 2,565,239.496 923,961.730 4.837 std 80.302 5,658,061.263 1,567,260.611 6.750
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is part of our comprehensive database called World Resource Table (WRT) (see

Miyama & Managi 2014; Managi 2015). WRT includes all related data and intends to

update once new version available (Yang et al. 2015).

2.2 Methodology

In order to measure a country’s production efficiency, let X∈ℜp
þ and Y∈ℜq

þ be the in-

put and output vectors, representing total labor force and capital stock the inputs and

GDP the outputs. Furthermore, let Z ∈ℜd be the vector of the environmental variable

(the number of man-made and natural disaster occurrences). We can define the uncon-

ditional attainable set as:

Ψ ¼ x; yð Þ∈ℜpþq
þ

� ��x can produce yg; ð1Þ

which according to Daraio and Simar (2005; 2007a) can also be characterized as:

Ψ = {(x, y)|HX,Y(x, y) > 0} where

HX;Y x; yð Þ ¼ Prob X≤x;Y≥yð Þ: ð2Þ

Then the output oriented Farell-Debreu technical efficiency can be defined as:

λ x; yð Þ ¼ sup λð jx; λyf Þ∈Ψg ¼ sup λf jSY jX λyð jxÞ > 0g; ð3Þ

where SY|X(y|x) = Prob(Y ≥ y|X ≤ x). Mastromarco and Simar (2014) suggested that dynamic

effects can be captured when incorporating time T as an extra conditional variable along

side with Z (i.e., the number of man-made and natural disaster occurrences). Then the at-

tainable set can be defined as Ψ z
t⊆Ψ t⊂ℜpþq

þ , and its distribution can be characterized as:

Ht
X;Y jZ x; yð jzÞ ¼ Prob X≤x;Y≥yð jZ ¼ z;T ¼ tÞ: ð4Þ

Then a country’s conditional output oriented technical efficiency level x; yð Þ∈Ψ z
t at

time t facing the effect of disasters z can be defined as:

λt x; yð jzÞ ¼ sup λf jStY jX;Z λyð jx; zÞ > 0g: ð5Þ

Moreover, based on Daouia and Simar (2007), the robust versions of the production
efficiency estimates can be calculated (known as Order-α quantile efficiency measure)

for any α ∈ (0, 1) as:

λα x; yð Þ ¼ sup λf jSY jX λyð jxÞ > 1−αg: ð6Þ

Then the time-dependent conditional Order-α quantile efficiency measure can be de-
fined as:

λt;α x; yð jzÞ ¼ sup λf jStY jX;Z λyð jx; zÞ > 1−αg; ð7Þ

where StY jX;Z yð jx; zÞ ¼ Prob Y≥yð jX≤x;Z ¼ z;T ¼ tÞ . According to Daraio and Simar

(2007b), robust efficiency measures are not so sensitive to outliers and they are not suffer-

ing from the curse of dimensionality. Furthermore, the conditional efficiency measures5

presented in (5) and (6) assume that the separability condition between the inputs, out-

puts, the time, and the disasters does not hold, implying that time and the number of dis-

aster occurrences influence directly the shape (the boundary) of the attainable set.6

In order to calculate the original and the time-dependent conditional efficiency

scores, we apply data envelopment analysis (DEA) estimators. In Equations 1 and 3, we
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assume variable returns to scale (VRS) to account for size differences among countries.

Whereas for the robust frontiers (Equations 4 and 5), we follow the suggestion made

by Bădin et al. (2012) and we apply a median quartile (α = 0.5) rather than the extreme

quartiles (α = 0.9, α = 0.95). This in turn will enable us to investigate the effect of time

and the number of disaster occurrences on the distribution of inefficiencies. In con-

trast, the analysis with the full frontiers enables us to investigate the effect of time and

the number of disaster occurrences on the frontier.7

Finally, by following Bădin et al. (2012), we construct two ratios from the efficiencies

calculated from the full and the partial frontiers as:

Q ¼ λt x; yð jzÞ
λ x; yð Þ ; ð8Þ

Qα ¼
λt;α x; yð jzÞ
λα x; yð Þ : ð9Þ

Then by applying a local constant nonparametric regression on the above ratios, we
can determine the effect of time and the number of disaster occurrences on the

boundary-swift of the frontier (for the case of full frontier: Q) and on the distributions

of countries’ efficiencies (for the case of partial frontier: Qα). For our analysis, we are

using local constant techniques, and for bandwidth selection, we apply the least squares

cross-validation (LSCV) criterion as described in (Hall et al. 2004; Li & Racine 2007).

An increasing regression line indicates a positive effect on countries’ technological

change (shift on the frontier) and on the distribution of their efficiencies (technological

catch-up). However, the opposite indicates an unfavorable effect.

3 Results and discussion
Figure 1 illustrates graphically countries’ production efficiency curves both for condi-

tional and unconditional cases over the period 1980–2011.8 The results presented are

based on countries’ income classification and are obtained under the assumption of

variable returns to scale (VRS).9 Figure 1a examines the original production efficiency

scores over the examined period. It indicates that there was a trend towards similar

levels of production efficiencies for high-income and upper-medium-income countries

over the period 1980 to 1996.
a)

c)

b)

d)

Fig. 1 a–d Countries’ mean production efficiency estimates for 1980–2011 based on income levels
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However, after this point, there is evidence that countries’ production efficiency levels

divert. A similar phenomenon is also observed for the larger period for lower-medium-

and lower-income countries. However, after 2007, it appears that there is a trend to-

wards similar efficiency levels. Figure 1c presents countries’ the original production

efficiency estimates of the Order-α frontier. Since these estimates are not bounded by

1, then we observe extremely high efficiency scores compared to the full frontiers (i.e.,

VRS frontier in our case).

The results show that high-income countries have steadily increased their efficiency

estimates over the years with a production efficiency stabilization period from 2007 to

2011. This might be attributed due to the initiation of Global Financial Crisis. Further-

more, as can be observed, there is a trend of similar production efficiency levels for

upper-medium and lower-medium income countries (especially over the period 2006–

2011), whereas lower-income countries appear to increase their production efficiency

levels over the years but with lower estimated efficiency scores compared to the other

three income groups.

Furthermore, Fig. 1b, d presents diachronically countries’ efficiency curves when ac-

counting both for the number of disaster occurrences and time (i.e., time-dependent

conditional efficiency estimates). For the case of full frontiers (Fig. 1b), we can find that

high-income countries have greater efficiency scores compared to the other three

groups. It is also observed that under the effect of time and the number of disaster oc-

currences, lower-medium and lower-income countries’ production efficiencies have

similar trend from 1980s to early 1990s. However, after that point, a trend of similar ef-

ficiency levels is observed between upper-medium- and lower-medium- income coun-

tries, whereas the group of lower-income countries seems to divert in terms of their

production efficiency levels. For the case of robust measures (Fig. 1d), again it is ob-

served that the group of high-income countries has significant higher time-dependent

conditional efficiency scores compared to the other three groups. Finally, when examin-

ing the group of high-income countries both for the full (Fig. 1b) and partial frontier

(Fig. 1d), we observe that during the 1990s, their efficiency levels have decreased. This

phenomenon is more pronounced when looking the conditional robust estimators.

Since these two graphs account directly for the effect of time (alongside with the effect

of the number of disaster events), our finding supports the findings by Marone (2009)

that during the 1990s, high-income countries have decreased their growth rates. This

in turn reflects upon their conditional efficiency estimates. Regardless, the efficiency

gap between high-income countries and the other groups remains. Furthermore, the

trend of similar levels of production efficiencies is observed between lower-medium-

and lower-income countries. Clearly we can observe from Fig. 1 that when we account

both for the effect of time and disasters, countries’ production efficiency curves seem

to be highly fluctuated, this is especially more intense for the case of high-income

countries.

In addition to the previous finding, Fig. 2 examines both the time-dependent condi-

tional and unconditional efficiency estimates of the seven major economies (known also

as G7) both under the full and robust frontiers. Specifically under the full frontier

(Fig. 2a), USA is reported as the top performer. It seems that there was a similar level

of efficiencies with the GBR at early 2000s, but after that period, a diversion of efficien-

cies is reported. Furthermore, it seems that DEU, FRA, ITA, and GBR have similar



a) b)

c) d)

Fig. 2 a–d G7 Countries’ mean production efficiencies estimates for 1980–2011
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production efficiency levels especially during the beginning of Global Financial Crisis

(i.e., 2008 to 2011), with JPN to divert slightly from that group. Under the robust fron-

tier analysis (Fig. 2c), the results are different.

USA again outperforms the other countries with an increasing efficiency trend up to

the beginning of Global Financial Crisis. Then the second performer is JPN, whereas, it

appears the existence of similar efficiency levels among the European countries (DEU,

FRA, GBR, and ITA). Finally, the last performer is CAN which seems to divert from

the European group. Figure 2b, d is presented here only for the purpose of comparison

and to demonstrate how the effects of time and disasters influence the largest econ-

omies’ production efficiency curves. In both cases (i.e., for the full and robust frontiers)

and in comparison with the original estimates, it is observed that G7 countries’ effi-

ciency curves are highly fluctuated under the effect of time and disaster events present-

ing a highly nonlinear path.

There is only one exception and that is the case of the USA, which appears to have a

fairly steady increasing production efficiency path in the longer part of the examined

period. This indicates that the USA responds better to man-made and natural disasters

compare to the other economies (with the exception over the period 1980 to 1987).

In order to investigate the effect of time and disasters on countries’ production effi-

ciency, we follow the approach by Bădin et al. (2012) by presenting the three-

dimensional pictures of the joint effect. The left-hand side (Fig. 3a, c, e, g, and i) on Fig. 3

represents the effect of time and the number of disaster occurrences on countries’ techno-

logical change (shifts in the frontier), whereas the right-hand side (Fig. 3b, d, f, h, and j) rep-

resents the effect on countries’ efficiency levels (technological catch-up). The overall

picture suggests that there is a nonlinear relationship between the number of disaster oc-

currences and countries’ productive efficiency levels. Specifically, when examining the en-

tire sample (Fig. 3a, b), an inverted “U” shape between countries’ technological change and

technological catch-up with disasters is revealed.

This finding suggests that lower number of disasters tend to increase countries’

technological change and technological catch-up up to a certain point. After that point

(threshold number), the effect is negative. The positive effect maybe attribute to the

fact that for lower number of disasters, countries engage restructuring and investment,

which in turn accelerates both their technological change and technological catch-up

levels. In fact, this finding is in the same lines with Skidmore and Toya (2002) suggesting



Fig. 3 a–j The effect of disasters and time on countries’ production efficiency levels
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that the disaster occurrences are positively correlated with economic growth. Other studies

(McDermott et al. 2014; Raddatz 2007; Noy 2009) suggest that the overall effect of disasters

is negative; however, mild disaster shocks can stimulate reconstruction activity and can im-

pact positively countries’ economic growth. In our case, the negative influence maybe attri-

bute due to the fact that a large number of disaster occurrences or small number of

disasters with high impact can have a negative impact on countries’ production factors

which reflects on their technological change and technological catch-up levels. Also it must

be mentioned that the threshold value in which the influence from positive becomes nega-

tive is much lower for the case of technological catch-up (i.e., 15 disaster occurrences)

compared to technological change (i.e., 25 disaster occurrences). This suggests that the

negative influence of the number of disaster occurrences first affects countries’ production

efficiency and then their technological change levels. The effect of time is positive for the
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case of technological change indicated by an increasing nonparametric line. For the case of

technological catch-up, the effect is positive for the larger period; however, towards the

Global Financial Crisis, the effect becomes rather neutral on countries’ technological catch-

up levels. Finally, it must be emphasized that according to McDermott et al. (2014), the

combination of the type and severity of the events along side with countries’ socioeconomic

characteristics is very crucial and can shape the effect of disasters on countries’ efficiency

levels.10 In our case and in order to account for countries’ different economic characteris-

tics, we continue our analysis in a similar manner into four subsamples which are based on

their income characteristics (high-income countries (Fig. 3c, d); upper-middle-income

countries (Fig. 3e, f); lower-middle-income countries (Fig. 3g, h); lower-income countries

(Fig. 3i, j)).

It is evident that regardless of countries’ different income levels, the effect of time

and the number of disasters on countries’ technological catch-up and technological

change is similar compared to our previous findings. However, an interesting observa-

tion is that the turning points (i.e., the threshold values) which the effect turns form

positive to negative both for countries’ technological catch-up and technological change

is based on countries’ income level. For instance, when examining the group of high-

income countries, we can observe that the turning point of the effect on technological

change (Fig. 3c) is 39 disaster occurrences, whereas, of the effect on technological

catch-up (Fig. 3d) is 20 disaster occurrences. However, for the upper-middle-income

countries (Fig. 3e, f ), the critical points are indicated for 12 and 10 disaster occurrences,

for lower-middle-income countries (Fig. 3g, h) for 20 and 17 disaster occurrences, and fi-

nally, for lower-income countries (Fig. 3i, j) for 20 and 8 disaster occurrences. This finding

suggests that higher-income countries have higher turning points compared to the rest of

the country groups. This can be attributed to the fact that lower-income countries’ are

not able to respond to disasters in the same way as high-income countries, and as a result,

the negative effect comes quicker for those countries. Noy (2009) provides evidence that

the disaster effects are more severe for countries with a weak financial sector. Therefore,

since high-income countries have stronger financial sectors compared to the lower-

income countries, the negative effect of disaster occurrences impacts first the lower-

income countries. Moreover, it is also evident that for all the country groups, the turning

points for the effect on technological catch-up are much lower compared to the turning

points of the effects on technological catch-up. This finding as has been mentioned previ-

ously implies that regardless of the income level of a country, the negative effect of disas-

ter occurrences impacts first country’s ability to catch-up and then its technology change.

Finally, when examining the effect of time, it is observed that in most of the cases,

the influence is positive but in a nonlinear manner. Two exceptions can be observed

for the case of upper-middle- and high-income countries’ technological catch-up

(Fig. 3f, d), in which the effect of time is neutral especially during the initiation period

of Global Financial Crisis.11
4 Conclusions
We examine the effect of the number of man-made and natural disaster occurrences

on countries’ production efficiency levels in a fully nonparametric framework to a

sample of 137 countries over the period 1980–2011. Specifically by applying the newly
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developed time-dependent conditional efficiency measures by Mastromarco and Simar

(2014) and the methodological approach by Bădin et al. (2012), we examine the effect

of disaster occurrences on countries’ technological change and technological catch-up.

To our knowledge, this is the first study that examines the relationship between disas-

ters and countries’ production efficiency in a fully nonparametric framework.

The empirical findings suggest that the relationship is nonlinear forming an inverted

“U” shape both with countries’ technological change and technological catch-up. Fur-

thermore, the results suggest that this inverted “U” shape relationship is revealed re-

gardless of countries’ income classification. Moreover, the results indicate that a lower

number of disaster occurrences have a positive influence on countries technological

change and technological catch-up due to possible stimulation of restructuring and in-

vestment policies imposed by governments as counteractions of those events.

However, it is also evident that after a certain threshold level (i.e., certain number of

disaster occurrences), the effect becomes negative influencing countries’ production

factors. Since the study investigates the effect of the number of disaster occurrences

(and not the effect generated by the specific type and severity of the disasters), when

the number of disaster occurrences increases, then the probability of having high im-

pact disasters within those occurrences also increases. This in turn indicates a clear

negative effect on countries’ technological change and technological catch-up levels.

Furthermore, our findings suggest that the turning points are much lower for lower-

income countries indicating that these countries suffer more from the negative impact

of disasters. Finally, it is also shown that regardless of countries’ income classification,

the negative effect of the number of disaster occurrences influences first countries’ effi-

ciency and then their technological change levels.

Finally, an extension of our work which is left for future research can be focused

on the examination of specific types of natural and man-made disasters on countries’ pro-

duction process controlling also for countries’ differences on their industrial compositions

and alongside with other country-specific characteristics (i.e., countries’ institutional qual-

ity). From the methodological point of view and in the framework of nonparametric fron-

tier analysis, the proposed future research can be approached either by double bootstrap

semi-parametric approaches (Simar & Wilson 2007) or by the more flexible conditional

directional distance functions (Simar & Vanhems 2012; Daraio & Simar 2014).
Endnotes
1The income classification is based on IMF, which is available from http://www.im-

f.org/external/pubs/ft/weo/2014/02/weodata/weoselgr.aspx
2According to (Johnson et al. 2013), the previous PWT versions have suffered from

valuation problems. However, according to (Feenstra et al. 2013), the new version of

PWT (v8.0) is more consistent over time and more transparent in its methods. The

data is available from www.ggdc.net/pwt.
3The events from natural disasters contain climatic disasters (i.e., drought, extreme

temperatures, floods, storms, mass movement wet and wild fire), geologic disasters (i.e.,

earthquakes and volcanic eruptions) and biologic disasters (i.e., epidemics disasters and

disasters derived from insects). The events from man-made disasters contain complex

disasters, industrial accidents, miscellaneous accidents, and transport accidents.
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4The data are available from http://www.emdat.be/database.
5Jeong et al. (Jeong et al. 2010) provide the asymptotic properties of conditional effi-

ciency measures.
6For details on the subject matter, see Simar and Wilson (2007).
7For in depth analysis regarding the smoothing techniques, bandwidth selection, ker-

nel choices, and LP programs, see the works of Daraio and Simar (2005; 2007a; 2007b),

Bădin et al., (2012; 2010) and Mastromarco and Simar (2014).
8Due to the enormous quantity of the results obtained, it is not feasible to present

the analytical (per country) efficiency estimates both for conditional and unconditional

frontiers both for full and their robust versions. However, all country estimates are

available upon request.
9The VRS assumption has been chosen in order to account in our analysis the scale

effects which are present between countries. Furthermore and in order to compare

countries' with similar characteristics, we have grouped our sample based on Worlds

Bank’s income classification levels. Therefore, in our analysis, we have four categories:

high-income countries, upper-medium-income countries, lower-medium-income coun-

tries, and lower-income countries.
10In our study, we do not account for the effect generated by the specific type and se-

verity of the disasters but only for the effect generated by the number of disaster occur-

rences. In that respect, the results presented must be interpreted with extra care.
11Similar results are also reported by Tzeremes (2014).

Appendix: Country list used in this study
High-income countries (38): AUS, AUT, BEL, BHR, BHS, BRB, BRN, CAN, CHE, CYP,

DEU, DNK, ESP, FIN, FRA, GBR, GRC, HKG, IRL, ISL, ISR, ITA, JPN, KOR, KWT,

LUX, MAC, MLT, NLD, NOR, NZL, PRT, QAT, SAU, SGP, SWE, TTO, USA

Upper-middle-income countries (24): ARG, BGR, BLZ, BRA, BWA, CHL, CRI, GAB,

GNQ, HUN, LBN, LCA, MEX, MUS, MYS, OMN, PAN, POL, TUR, TWN, URY, VCT,

VEN, ZAF.

Lower-middle-income countries (35): AGO, ALB, BOL, BTN, CHN, CMR, COD,

COL, CPV, DJI, DOM, ECU, EGY, FJI, GTM, HND, IDN, IRN, IRQ, JAM, JOR, LKA,

LSO, MAR, MDV, NAM, PER, PHL, PRY, SLV, SUR, SWZ, SYR, THA, TUN.

Lower-income countries (40): BDI, BEN, BFA, BGD, CAF, CIV, COG, COM, ETH,

GHA, GIN, GMB, GNB, IND, KEN, KHM, LAO, LBR, MDG, MLI, MNG, MOZ, MRT,

MWI, NER, NGA, NPL, PAK, RWA, SDN, SEN, SLE, STP, TCD, TGO, TZA, UGA,

VNM, ZMB, ZWE.
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