Vodova, Pavla

Article
Determinants of commercial bank liquidity in Hungary

e-Finanse: Financial Internet Quarterly

Provided in Cooperation with:
University of Information Technology and Management, Rzeszów

Suggested Citation: Vodova, Pavla (2013) : Determinants of commercial bank liquidity in Hungary, e-Finanse: Financial Internet Quarterly, ISSN 1734-039X, University of Information Technology and Management, Rzeszów, Vol. 9, Iss. 3, pp. 64-71

This Version is available at:
http://hdl.handle.net/10419/147078

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
DETERMINANTS OF COMMERCIAL BANK LIQUIDITY IN HUNGARY

PAVLA VODOVA*

Abstract
This paper aims to identify determinants of liquidity among Hungarian commercial banks. The data cover the period from 2001 to 2010. Results of panel data regression analysis show that bank liquidity is positively related to capital adequacy of banks, interest rate on loans and bank profitability and negatively related to the size of the bank, interest margin, monetary policy interest rate and the interest rate on interbank transactions. The relation between the growth rate of GDP and bank liquidity is ambiguous.

JEL Classification: C23, G01, G21
Keywords: liquidity risk, liquidity ratio, panel data regression analysis

Received: 18.09.2013
Accepted: 20.11.2013

INTRODUCTION
During the global financial crisis, many banks struggled to maintain adequate liquidity. In order to sustain the financial system, unprecedented levels of liquidity support were required from central banks. Even with such extensive support, a number of banks failed, were forced into mergers or required resolution (Bank for International Settlement [BIS], 2009; Teplý, 2011). The crisis showed the importance of adequate liquidity risk measurement and management.

It is evident that liquidity and liquidity risk is a very up-to-date and important topic. The aim of this paper is therefore to identify determinants of the liquidity of Hungarian commercial banks. The structure of the paper is as follows: the first section characterizes methods of bank liquidity measurement, the following sections describe the methodology and data used and contains results of the analysis. The last section provides concluding remarks.

METHODS OF BANK LIQUIDITY MEASUREMENT
Liquidity is the ability of a bank to fund increases in assets and meet obligations as they come due, without incurring unacceptable losses (BIS, 2008). Liquidity risk arises from the fundamental role of banks in the maturity transformation of short-term deposits into long-term loans. It includes two types of risk: funding liquidity risk and market liquidity risk. Funding liquidity risk is the risk that the bank will not be able to meet efficiently both expected and unexpected current and future cash flow and collateral needs without affecting either daily operations or the financial condition of the firm. Market liquidity risk is the risk that a bank cannot easily offset or eliminate a position at the market price because of inadequate market depth or market disruption. According to Aspachs, Nier and Tiesset (2005), there are three mechanisms that banks can use to insure against liquidity crises: (i) Banks hold a buffer of liquid assets on the asset side of the balance sheet. A large enough buffer of assets such as cash, balances with central banks and other banks, debt securities issued by governments and similar securities or reverse repo trades reduce the probability that liquidity demands can threaten the viability of the bank. (ii) The second strategy is connected with the liability side of the balance sheet. Banks can rely on the interbank market where they borrow from other banks in case of liquidity demand. However, this strategy is strongly linked with market liquidity risk. (iii) The last strategy concerns the liability side of the balance sheet, as well. The central bank typically acts as a Lender of Last Resort to provide emergency liquidity assistance to particular illiquid institutions and to provide aggregate liquidity in case of a systemic wide shortage.

Liquidity risk can be measured by two main methods: liquidity gap and liquidity ratios. The liquidity gap is the difference between assets and liabilities at both present and future dates. At any date, a positive gap between assets and liabilities is equivalent to a deficit (Bessis, 2009). The great drawback of this method is the fact that only a few banks publish their liquidity gaps in annual reports. A comparison among a larger number of banks is usually therefore not possible. Liquidity ratios are various balance sheet ratios which should identify the main liquidity trends. These ratios reflect the fact that a bank should be sure that appropriate, low-cost funding is available in a short time. This might involve holding a portfolio of assets that can be easily sold (cash reserves, minimum required reserves or government securities), holding significant volumes of stable liabilities (especially deposits from retail depositors) or maintaining credit lines with other financial institutions.

Various authors such as Andries (2009), Aspachs et al. (2005), Bunda & Desquilbet (2008), Ghosh (2010), Jiménez, Ongena, Peydró and Saurina (2010), Maechler, Mitra and Worrell (2007), Moore (2010), Praet & Hffectberg (2008), Rychtářik (2009) or Tamasini and Igan (2008) provide various liquidity ratios. For the purpose of this research we will use for evaluation of liquidity positions of Hungarian commercial banks following three different liquidity ratios (1) – (3):

\[
\begin{align*}
L_1 &= \frac{\text{liquid assets}}{\text{total assets}} \times 100(\%) \quad (1) \\
L_2 &= \frac{\text{liquid assets}}{\text{deposits + short-term borrowing}} \times 100(\%) \quad (2) \\
L_3 &= \frac{\text{liquid assets}}{\text{deposits}} \times 100(\%) \quad (3)
\end{align*}
\]

The liquidity ratio L1 should give us information about the general liquidity shock absorption capacity of a bank. Cash, balances with central banks and other banks, debt securities issued by governments and similar securities or reverse repo trades belong to liquid assets. As a general rule, the higher the share of liquid assets in total assets, the higher the capacity to absorb liquidity shock, given that market liquidity is the same for all banks in the sample. Nevertheless, a high value of this ratio may be also interpreted as inefficiency. Since liquid assets yield lower income liquidity bears high opportunity costs for the bank. Therefore it is necessary to optimize the relation between liquidity and profitability.

The liquidity ratio L2 uses the concept of liquid assets as well. However, this ratio is more focused on the bank’s sensitivity to selected types of funding (we included deposits of households, enterprises, and banks and other financial institutions and funds from debt securities issued by the bank). The ratio L2 should therefore capture the bank’s vulnerability related to these funding sources. The higher the value of the ratio, the higher the capacity to absorb liquidity shock.

The liquidity ratio L3 is very similar to the liquidity ratio L2. However, it includes only deposits to households and enterprises. In contrast to the ratio L2, the ratio L3 measures the liquidity of a bank assuming that the bank cannot borrow from other banks in case of liquidity need. This is a relatively strict measure of liquidity but it enables us to capture at least part of the market liquidity risk. The bank is able to meet its obligations in terms of funding (the volume of liquid assets is high enough to cover volatile funding) if the value of this ratio is 100% or more. A lower value indicates a bank’s increased sensitivity related to deposit withdrawals.

The disadvantage of these liquidity ratios lies in the fact that they do not always capture all, or any of liquidity risk. However, there are still in common use. It is possible to calculate them only on the basis of
publicly available data from bank balance sheets and it is easy to interpret their values.

Methodology and data

As in the case of our previous studies about determinants of liquidity of Czech and Slovak commercial banks (Vodová, 2001, 2012), in order to identify determinants of liquidity of Hungarian commercial banks we use panel data regression analysis. For each liquidity ratio, we estimate equation (4):

\[
L_{it} = \alpha + \beta'X_{it} + \delta_i + \epsilon_{it}
\]

where

- \(L_{it} \) = one of liquidity ratios (L1 – L3) for bank \(i \) in time \(t \)
- \(X_{it} \) = vector of explanatory variables for bank \(i \) in time \(t \)
- \(\alpha \) = constant
- \(\beta' \) = coefficient which represents the slope of variables
- \(\delta_i \) = fixed effects in bank \(i \)
- \(\epsilon_{it} \) = error term.

It is evident that the most important task is to choose the appropriate explanatory variables. Although liquidity problems of some banks during the global financial crisis re-emphasized the fact that liquidity is very important for functioning of financial markets and the banking sector, an important gap still exists in the empirical literature about liquidity and its measurement. Only a few studies have aimed to identify determinants of liquidity.

Bank-specific and macroeconomic determinants of liquidity of English banks were studied by Valla and Saes-Escorbiac (2008). They assumed that the liquidity of banks to nominal values of loans provided to customers (\(\gamma \)); the realization of a financial crisis, which could be caused by poor bank liquidity (\(\gamma \)); the exchange rate regime, where banks in countries with extreme regimes (the independently floating exchange rate regime and hard pegs) were more liquid than in countries with intermediate regimes.

The empirical analysis of the hypothesis that interest rates affect banks’ risk taking and the decision to hold liquidity across European countries is provided by Lucchetta (2007). The liquidity measured by different liquidity ratios should be influenced by: behaviour of the bank on the interbank market – the more liquid the bank is the more it lends in the interbank market (\(\gamma \)), interbank rate as a measure of incentives of banks to hold liquidity (\(\gamma \)), monetary policy interest rate as a measure of banks’ ability to provide loans to customers (\(\gamma \)); share of loans on total assets and share of loan loss provisions on net interest revenues, both as a measure of risk-taking behavior of the bank, where liquid banks should reduce the risk-taking behaviour (\(\gamma \)); bank size measured by a logarithm of total bank assets (\(\gamma \)).

The effects of the financial crisis on the liquidity of commercial banks in Latin America and Caribbean countries was investigated by Moore (2010). Liquidity should depend on: cash requirements of customers, captured by fluctuations in the cash-to-deposit ratio (\(\gamma \)); current macroeconomic situation, where a cyclical downturn should lower banks’ expected transaction demand for money and therefore lead to decreased liquidity (\(\gamma \)); money market interest rate as a measure of the opportunity costs of holding liquidity (\(\gamma \)).

Differences in liquidity risk of banks from emerging economies with panel data regression analysis were analysed by Bunda and Desquilbet (2008). The liquidity ratio as a measure of a bank’s liquidity was assumed to be dependent on the individual behaviour of banks, their market and macroeconomic environment and the exchange rate regime, i.e. on the following factors: total assets as a measure of the size of the bank (\(\gamma \)), the ratio of equity to assets as a measure of capital adequacy (\(\gamma \)); the presence of prudential regulation, which means the obligation for banks to be liquid enough (\(\gamma \)), the lending interest rate as a measure of lending profitability (\(\gamma \)), the share of public expenditures on gross domestic product as a measure of supply of relatively liquid assets (\(\gamma \)); the rate of inflation, which increases the vulnerability of banks to nominal values of loans provided to customers (\(\gamma \)); the realization of a financial crisis, which could be caused by poor bank liquidity (\(\gamma \)); the exchange rate regime, where banks in countries with extreme regimes (the independently floating exchange rate regime and hard pegs) were more liquid than in countries with intermediate regimes.

The selection of variables was based on the above cited relevant studies. We considered whether the use of the particular variable makes economic sense in Hungarian conditions. For this reason, we excluded from the analysis variables such as political incidents of the impact of economic reforms. We also considered which other factors could influence the liquidity of Hungarian banks. The limiting factor then was the availability of some data. Table 1 shows a list of variables which we have used in regression analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Estim. eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP: share of equity on total assets of the bank</td>
<td>annual reports</td>
<td>+</td>
</tr>
<tr>
<td>NPL: share of non-performing loans on total volume of loans</td>
<td>annual reports</td>
<td>–</td>
</tr>
<tr>
<td>ROE: share of net profit on bank equity</td>
<td>annual reports</td>
<td>–</td>
</tr>
<tr>
<td>TOA: logarithm of total assets of the bank</td>
<td>annual reports</td>
<td>+/–</td>
</tr>
<tr>
<td>FIC: dummy variable for financial crisis</td>
<td>own</td>
<td>–</td>
</tr>
<tr>
<td>GDP: growth rate of gross domestic product</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>INF: inflation rate: (94461.XZF..CPI % change)</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>IRB: interest rate on interbank transactions: (94460.R.ZF..money market rate)</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>IRL: interest rate on loans: (94460.P.ZF..lending rate)</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>IRM: difference between interest rate on loans (94460.R.ZF) and interest rate on deposits (94460.ZF)</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>MIR: monetary policy interest rate: (94460..Z.F. discount rate)</td>
<td>IMF</td>
<td>–</td>
</tr>
<tr>
<td>UNF: unemployment rate: (94467.R.ZF..unemployment rate)</td>
<td>IMF</td>
<td>–</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations
We consider four bank specific factors and eight macroeconomic factors. As it can be seen from Table 1, we expect that three factors could have positive impact on bank liquidity, the remaining factors are expected to have negative impact on bank liquidity. Macroeconomic data were provided by International Financial Statistics of International Monetary Fund (IMF). Bank specific data were obtained from annual reports of Hungarian banks. We used unconsolidated balance sheet and profit and loss data over the period from 2001 to 2010. The panel is unbalanced as some of the banks do not report over the entire period. We have excluded specialized banks such as the Hungarian development bank and all building societies.

Table 2 shows more details of the sample. As it includes a substantial part of the Hungarian banking sector, we used fixed effects estimation. We estimated equation (4) separately for each of the four defined liquidity ratios. We gradually changed the content of the vector of explanatory variables \(X\). The aim is to find a model which has a high adjusted coefficient of determination and simultaneously the variables used are statistically significant. As it can be seen from following tables, results of the analysis suggest that different liquidity ratios are determined by different factors.

If we measure liquidity with ratio \(L_1\), we find determinants of liquidity in Table 3. The explanatory power of this model is very high and signs of coefficients correspond with our expectations. The impact of the size of the bank on its liquidity is negative: liquidity is decreasing with the size of the bank. It seems that big banks insure against liquidity crises mainly by passive strategies: they rely on the interbank market or on a liquidity assistance of the Lender of Last Resort. This finding fully corresponds to the well known “too big to fail” hypothesis. If big banks are seeing themselves as “too big to fail”, their motivation to hold liquid assets is limited.

The signs of two other coefficients correspond neither to our expectations nor to a standard economic theory. The results show the positive link between interest rate on loans and bank liquidity. Banks probably focus more on the interest margin or it can highlight the fact that higher lending rates do not encourage banks to lend more. This is consistent with the problem of credit crunch and credit rationing. The same can be true for the behavior of banks on the interbank market: the interest rate on interbank transactions is not the main factor which influences

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>St. deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-855527.1</td>
<td>558860.6</td>
</tr>
<tr>
<td>CAP</td>
<td>67775.52*</td>
<td>8275.516</td>
</tr>
<tr>
<td>IRB</td>
<td>-237152.3*</td>
<td>125729.8</td>
</tr>
<tr>
<td>IRL</td>
<td>-419523.6**</td>
<td>206619.8</td>
</tr>
<tr>
<td>IRM</td>
<td>-246708.2**</td>
<td>125712.0</td>
</tr>
<tr>
<td>MIR</td>
<td>-190938.5***</td>
<td>120554.8</td>
</tr>
</tbody>
</table>

Adjusted \(R^2\) 0.382408

Total observ. 245

The positive influence of the share of capital on total assets is consistent with the assumption that a bank with sufficient capital adequacy should be liquid as well. Although most studies assumed a negative link between business cycle and bank liquidity, the results show that the approach of Moore (2010) can be applied to the Hungarian banking sector. A positive sign of the coefficient signals that cyclical downturn should lower banks’ expected transaction demand for money and therefore lead to decreased liquidity: Moreover, during expansionary phases, companies (which have higher profits) and households (which have higher income) might prefer to rely more on internal sources of finance and reduce the relative proportion of external financing and might reduce their debt levels. In recessions, households and corporations may increase their demand for bank credit in order to smooth out the impact of lower income and profits.

The signs of two other coefficients correspond neither to our expectations nor to a standard economic theory. The results show the positive link between interest rate on loans and bank liquidity. Banks probably focus more on the interest margin or it can highlight the fact that higher lending rates do not encourage banks to lend more. This is consistent with the problem of credit crunch and credit rationing. The same can be true for the behavior of banks on the interbank market: the interest rate on interbank transactions is not the main factor which influences
The incentives of banks to hold liquidity in the form of interbank deposits. The share of liquid assets on deposits and short term borrowing is determined only by two factors: by bank profitability and growth rate of GDP.

Table 5: Determinants of liquidity measured by L3

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>St. deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-85527.1</td>
<td>55860.6</td>
</tr>
<tr>
<td>CAP</td>
<td>67775.52*</td>
<td>8275.316</td>
</tr>
<tr>
<td>IRB</td>
<td>-237152.3**</td>
<td>12579.8</td>
</tr>
<tr>
<td>IRL</td>
<td>419523.6**</td>
<td>206619.8</td>
</tr>
<tr>
<td>IRM</td>
<td>-246708.2**</td>
<td>125712.0</td>
</tr>
<tr>
<td>MIR</td>
<td>-190038.5***</td>
<td>120554.8</td>
</tr>
<tr>
<td>Total R²</td>
<td>0.382408</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors' calculations

Note: The starred coefficient estimates are significant at the 1% (*), 5% (**) or 10% (***) level.

The results show the positive link between profitability and liquidity, which is again inconsistent with standard economic theory. However, this can be explained by the impact of financial crisis: due to the crisis, profitability of many banks declined quite substantially (mainly due to the reduction of their lending activity), liquidity remains almost at the same level or slightly decreased.

The relation between growth rate of GDP and bank liquidity in this model completely differs from that described in Table 3. The results of this last model is slightly higher than the previous.

Table 5 shows determinants of liquidity measured by the last liquidity ratio L3. The explanatory power of this last model is slightly higher than the previous.

The share of liquid assets on deposits and short term borrowing is determined only by two factors: by bank profitability and growth rate of GDP.

Conclusion

The aim of this paper was to identify determinants of liquidity among Hungarian commercial banks. We have used the panel data regression analysis for four liquidity ratios. We consider four bank specific factors and eight macroeconomic factors and nine of them were at least in some models statistically significant. The results of the models enable us to make the following conclusions:

Bank liquidity decreases with the size of the bank: big banks rely on the interbank market or on the liquidity assistance of the Lender of Last Resort, small and medium sized banks hold a buffer of liquid assets which is fully in accordance with the "too big to fail" hypothesis.

Liquidity is negatively influenced also by the interest margin and monetary policy interest rate. Both factors lead to higher lending activity of banks and thus reduce bank liquidity. The interest rate on interbank transaction has a negative impact on bank liquidity.

too, however, we came to the conclusion that the level of the interest rate is not the main factor which influences the incentives of banks to hold liquidity in the form of interbank deposits.

On the contrary, bank liquidity increases with the higher capital adequacy of banks, the higher interest rate on loans and higher bank profitability. As we have expected, solvent banks are liquid as well. However, the positive impact of interest rate on loans and bank profitability is very surprising and can be explained only by the fact that a simple increase in interest rate on loans may not have a direct impact on bank lending (and thus on bank liquidity) -- interest margin is more important. We should not take in consideration the identified positive relationship between liquidity and profitability; as we have mentioned, during the financial crisis the profitability of many banks declined quite substantially and liquidity remains almost at the same level or slightly decreased.

The relation between the growth rate of GDP and bank liquidity is ambiguous. We have also found that unemployment, share of nonperforming loans and financial crisis have no statistically significant effect on the liquidity of Hungarian commercial banks.

Acknowledgement

This paper was prepared with financial support of the Czech Science Foundation (Project GAČR P405/11/ P243: Liquidity risk of commercial banks in the Visegrad countries).

References

