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Abstract

We consider a multi-period facility location problem that takes into account changing
trends in customer demands and costs. To this end, new facilities can be established
at pre-specified potential locations and initially existing facilities can be closed over a
planning horizon. Furthermore, facilities operate with modular capacities that can be ex-
panded or contracted over multiple periods. A distinctive feature of our problem is that
two customer segments are considered with different sensitivity to delivery lead times.
Customers in the first segment require timely demand satisfaction, whereas customers in
the second segment tolerate late deliveries. A tardiness penalty cost is incurred to each
unit of demand that is satisfied with delay. We propose two alternative mixed-integer lin-
ear formulations to redesign the facility network over the time horizon at minimum cost.
Additional inequalities are developed to enhance the original formulations. A computa-
tional study is performed with randomly generated instances and using a general-purpose
solver. Useful insights are derived from analyzing the impact of several parameters on
network redesign decisions and on the overall cost, such as different demand patterns
and varying values for the maximum delivery delay tolerated by individual customers.

Keywords: Facility location, multi-period, capacity expansion and contraction, delivery
lateness, mixed-integer linear models

1 Introduction

In today’s globally competitive market, firms are faced with an increasing need to improve

their flexibility, reliability, and responsiveness to satisfy the demands of their customers. In

∗Corresponding author. E-mail address : isc@fct.unl.pt
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order to meet these challenges, it is crucial for firms to be able to adjust the configuration

of their facility networks to changing market conditions. Important enablers include opening

new facilities in markets with high demand growth and closing facilities in regions with demand

decline. In addition, capacity scalability, i.e. adding or removing capacity to/from facilities, is

also a meaningful strategy to adequately respond to fluctuations in the level of market demand.

In this study, we address a facility network that needs to be redesigned in order to effectively

serve predicted variations in demand over time. To this end, gradual changes in the network

structure and in the capacities of the facilities are considered over a planning horizon which

is assumed to be finite and divided into several periods. The objective is to determine the

minimal cost schedule for facility opening, facility closure, capacity expansion, and capacity

contraction, and to allocate customer demands to operating facilities over time. A distinctive

feature of the problem that we study is that customers are differentiated according to their

sensitivity to delivery lead times. Customers having zero lead times require their demands

to be satisfied in the time period they occur. Customers tolerating late deliveries specify a

positive maximum delivery lead time. Delivery after the preferred due date and not beyond the

latest acceptable time period is permitted, but incurs a tardiness penalty cost that depends on

the length of delay. Customer segmentation on the basis of preferred delivery lead times can

be encountered in various industries. Wang et al. [36] describe the case of a semiconductor

equipment manufacturer that provides a two-class service policy for repairable parts. Customers

with emergency demand pay a premium price to have their returned defective parts promptly

repaired. Non-emergency service is provided to all other customers who accept a longer repair

time in exchange for a lower price. This type of policy is also termed “demand postponement”

by Wu and Wu [39] because the firm decides upon the actual delivery time for orders committed

to customers who are less sensitive to lead times.

Integrated planning for facility location and capacity sizing under flexible conditions for de-

mand fulfillment gives firms a framework to handle dynamic situations when significant changes

in demand (and costs) over time are anticipated. Our work makes an important contribution

toward the development of mathematical models to support the underlying decision-making

process. From an economic viewpoint, the temporary adjustment of the capacity of an existing

facility, either through expansion or contraction, may be more advantageous than installing a

new facility in some other location or even closing the existing facility. However, trade-offs

must be made between investments on facility location, capacity scalability, distribution costs,

and tardiness costs for delayed demand satisfaction. We note that our problem arises in the
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context of sizing decisions being reversible in the medium term. This is the case, for example,

when space and equipment can be rented or leased.

The contribution of our study is threefold. First, we address a new multi-period facility

location problem which extends a particular case recently examined by Correia and Melo [8].

Second, we develop two mixed-integer linear programming (MILP) formulations: one is a natu-

ral way of formulating the problem and the other is inspired by a modeling framework recently

introduced by Jena et al. [19]. We also describe various enhancements to the base models

to improve the bound provided by their linear relaxation. In recent years, general-purpose

MILP solvers have become an effective and reliable tool for solving many (real-world) problems.

However, the capability of a solver to produce good, potentially optimal, solutions within ac-

ceptable computing time greatly depends on the selection of the right model. Therefore, the

third contribution of our work is to perform a comparative analysis of the proposed formulations

by using a state-of-the-art MILP solver. For this purpose, a large set of instances was randomly

generated exhibiting different demand patterns. Important managerial insights will be provided

on how delivery lead time restrictions affect the configuration of an existing facility system, the

overall cost of redesign decisions, and the capacity usage of operating facilities.

The remainder of this paper is organized as follows. Section 2 gives a brief review of related

literature. In Section 3, the problem that we study is formally described and two alternative

MILP formulations are proposed. Various classes of additional inequalities are introduced in

Section 4 for both formulations. The results of an extensive computational study are discussed

in Section 5. Finally, Section 6 presents concluding remarks and outlines opportunities for

further research.

2 Related research

In the multi-period (or “dynamic”) facility location problem (MFLP), the objective is to de-

termine the spatial distribution of facilities at each time period of a finite planning horizon

so as to minimize the total fixed and variable costs for meeting customer demands over time.

This natural extension of the single period or static version of the discrete location problem is

particularly suited to handle situations with predicted changes in the parameters of the problem.

If a network is already in place with a number of facilities being operated at fixed locations then

location decisions also comprise the phase-out of initially existing facilities. Jacobsen [18] and,

more recently, Nickel and Saldanha da Gama [29], discuss basic modeling aspects and address
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several variants of the MFLP.

Multi-period facility location has been a field of recurring interest as demonstrated by the

surveys by Arabani and Farahani [3], Klose and Drexl [23], and Owen and Daskin [30]. Moreover,

a number of models have been developed for a wide range of applications in many areas,

both in the private and public sectors, including telecommunication network design (Chardaire

et al. [6], Gourdin and Klopfenstein [15]), production-distribution system design (Canel et al.

[5], Hinojosa et al. [16]), supply chain network design (Cortinhal et al. [10], Thanh et al. [33]),

and public facility planning (Antunes and Peeters [2], Delmelle et al. [11]).

When market demand growth is anticipated and the capacities of existing facilities will not

be sufficient to handle future customer requirements, firms face decisions about where and how

to expand their capacities. This form of capacity scalability was addressed by Lee and Luss

[24] and, more recently, by Julka et al. [22] and Mart́ınez-Costa et al. [26]. Although in earlier

works the location of facilities was not included in the decision set, the importance of integrating

capacity acquisition decisions with facility location decisions has been widely recognized. In this

case, the choice of the amount of capacity to be installed at a particular facility is often made

by selecting a capacity level from a finite set of options. As argued by Correia and Captivo [7],

this is an assumption with practical relevance since capacity is often purchased in the form of

equipment which is only available in a few discrete sizes. Moreover, fixed and operating facility

costs are frequently subject to economies of scale that depend on the capacity choices.

The MFLP with modular capacity expansion has been addressed by various authors. Syam

[32] analyzes facility location and sizing decisions for an international firm and considers three

levels of capacity expansion. At each location, capacity can be increased over successive time

periods within the planning horizon. In the context of the forestry industry, Troncoso and

Garrido [34] developed a mathematical model to determine the optimal location of a sawmill.

The initially installed capacity for timber production can be gradually increased over a multi-

period horizon provided that the total number of added modules does not exceed a given limit.

Gourdin and Klopfenstein [15] also examined the problem of progressively expanding an existing

telecommunications network through installing modular equipment over time. Delmelle et al.

[11] proposed a model for redesigning a network of educational facilities through opening new

schools and closing existing schools. The latter decision can be made on the condition that

the school has reached a certain age. The student capacity of a school can also be raised by

installing additional mobile units, each having the same size, for which leasing costs are incurred.

Location and capacity acquisition decisions are constrained by an available total school budget
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over the planning horizon. Recently, Correia et al. [9] described a MILP model for the design of

a two-echelon network. New facilities are established in the upper and intermediate echelons of

the network and their capacities are gradually extended through the installation of storage areas

dedicated to families of products. In particular, the same type of storage area can be selected

more than once for a given family over the time horizon. Cortinhal et al. [10] also studied

a multi-stage supply chain network redesign problem with location and capacity decisions.

Modular capacity expansions can occur at a particular location as long as the overall capacity

does not exceed a pre-specified global size. The problem examined by Shulman [31] differs

from the works discussed before in that multiple facilities of different types can be established

at a given location. At each time period, at most one facility of each type can be selected at

a particular site but several facilities can be opened if they are of different types. This scheme

is employed to gradually adjust the operating capacity of the facility network.

In a multi-period setting it may also be meaningful to dispose of capacity during periods

of declining demand (Mart́ınez-Costa et al. [26]). Therefore, capacity scalability does not only

focus on expanding capacity but also involves removing capacity from operating facilities. A few

authors have addressed both forms of capacity adjustments. The recent review by Mart́ınez-

Costa et al. [26] is devoted to mathematical programming models that deal with alternative

capacity sizing strategies (including the two described above) in a manufacturing environment.

To meet demographic trends and enrollment variations, Antunes and Peeters [2] suggested a

MILP model that allows opening new educational facilities and closing existing locations, as well

as expanding and contracting capacity. Over the planning horizon, the capacity of a particular

school can be expanded or reduced, but not both. In the modeling framework proposed by Melo

et al. [27] this feature is also adopted in the context of facility relocation. Capacity changes

range from continuous increments to modular adjustments. Vila et al. [35] describe a case

study from the lumber industry where strategic decisions on the configuration and size of the

facility network are implemented at the beginning of the planning horizon and tactical decisions

(e.g., for procurement, production, and demand allocation) are taken over the time horizon. To

handle demand and price fluctuations, previously installed capacity modules can be removed.

In the models developed by Wilhelm et al. [37] for a multi-echelon logistics network redesign

problem, the configuration of a facility can be changed more than once over the planning

horizon through adding or removing capacity. Dias et al. [12] designed a primal-dual heuristic

for a MFLP with modular capacity expansion and reduction. Expansion (reduction) is achieved

through locating (removing) multiple facilities at a particular location. In addition to facility
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opening and closing decisions, any facility can be reopened over the time horizon. This feature

contrasts with most of the contributions in the dynamic facility location field, where typically

one-time opening or closing of facilities is allowed. Recently, an extension of these settings

was addressed by Jena et al. [20]. Motivated by a practical situation arising in the forestry

industry, the authors studied a problem where different mechanisms for capacity sizing can be

used for locating logging camps. The size of a camp is determined by the number of trailers

it holds. Capacity adjustments take the form of adding or removing trailers and temporarily

closed capacity may be reopened. Furthermore, an entire camp can also be relocated from one

site to another. To solve this problem, Jena et al. [21] designed a hybrid heuristic based on the

Lagrangian relaxation of a new MILP formulation. The latter relies on a modeling technique

developed by the same authors that generalizes existing formulations for several variants of the

MFLP (Jena et al. [19]). A framework for capturing capacity changes between all possible

choices of capacity levels was proposed, which allows capacity scalability to be represented

through expansion, contraction, temporary facility closing, and facility reopening. The authors

show that the lower bound provided by the linear relaxation of their MILP model is stronger

than the lower bounds of the linear relaxations of existing formulations for special problem

variants.

The works discussed so far have in common the enforcement of demand satisfaction in

every period of the planning horizon through appropriate constraints that are included in the

associated MILP models. While the economic benefits of demand fulfillment flexibility have

been widely recognized in the field of production planning and inventory control (see e.g., Hung

et al. [17] and Merzifonluoğlu and Geunes [28]), this strategy has received far less attention in

discrete facility location studies as it will be shown in the remainder of this section.

Demand fulfillment flexibility involves selecting the quantity and setting the delivery timing

to meet individual customer demands (Geunes [14], Merzifonluoğlu and Geunes [28]). Hence,

some or all of a customer’s demand can be satisfied with delay. Gebennini et al. [13] examined

a variant of the MFLP where demand satisfaction can be delayed by at most one period.

This indicates that all customers have the same sensitivity to delays, which is an assumption

seldom observed in practice. In contrast, in the problems addressed by Liang et al. [25] and

Wilhelm et al. [37], no time limit is pre-specified on the maximum delay that a customer may

experience. Therefore, deliveries may occur well beyond the maximum delivery date tolerated by

the customer, even when very high tardiness or backorder costs are imposed. Recently, Correia

and Melo [8] incorporated demand fulfillment flexibility into the MFLP through assuming that
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each individual customer specifies a desired maximum delivery lead time. Shipments that take

place after the time period in which demand occurs but not later than the maximum lead

time are subject to tardiness penalty costs. We adopt this setting in the present paper and

extend the conditions under which facility location and capacity acquisition decisions can be

made. In particular, we exploit capacity scalability by allowing the capacity of any facility to

be expanded and/or reduced in multiple periods over the planning horizon. This extends the

problem studied by Correia and Melo [8] which did not account for gradual capacity adjustments

at each location.

As evidenced by the literature reviewed above, the integration of decisions related to dynamic

modular capacity adjustments and flexible demand fulfillment into the MFLP has not been

addressed so far. However, significant cost savings can often arise as a result of considering

these decisions simultaneously in the planning phase. Our contribution aims at studying this

important variant of the MFLP.

3 Problem statement and mathematical formulations

In this section, we state the problem settings that are considered and describe the assumptions

made. Two alternative MILP formulations for our problem will be proposed.

We consider a company that operates a set of facilities at fixed locations to serve the

demands of customers (or customer zones) for a single product (or product family). Due to

projected variations in customer demands (regarding quantity and spatial distribution), it is

anticipated that the company will not be able to provide adequate customer service in the

future with the capacity currently available at its facilities. Therefore, the company will be

compelled to modify the physical structure of its facility network. Over a strategic planning

phase, multiple options for network redesign are available and the least overall cost reconfigu-

ration is to be identified. Decisions include selecting locations from a given set of potential

sites to establish new facilities, closing existing facilities, and gradually adjusting the operating

capacity of the facility network over a given time horizon. Under these general settings, the

following assumptions are made:

• A finite planning horizon is considered, being partitioned into a set of consecutive and dis-

crete time periods. Strategic decisions related to facility location and capacity scalability

can only be made at selected time periods, hereafter called strategic periods. In contrast,
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tactical decisions regarding the commodity flow from operating facilities to customers can

be taken in any time period.

• Due to the sizeable investment associated with opening new facilities and closing existing

facilities, locations cannot be temporarily closed and reopened. Accordingly, when a new

facility is established at a potential site then it will be operational until the end of the

planning horizon. Analogously, if an initially existing facility is closed then it cannot be

reopened in a later time period. These assumptions are in line with existing literature on

discrete facility location (see e.g., Hinojosa et al. [16] and Nickel and Saldanha da Gama

[29]).

• The total capacity of a facility is the sum of the capacities of the modular units that the

facility holds. For the sake of simplicity, only one type of module with a pre-specified

size is considered. Examples of a modular unit include equipment and storage space.

Each site cannot hold more than a pre-defined number of modules at any time. At the

beginning of the planning horizon, the size of each existing facility is given by the number

of modular units available.

• If a new facility is opened at a candidate site in a particular time period then at least one

modular unit must be installed in the same period.

• Capacity scalability involves adding modular units to a location or removing modular units

from a site. Capacity expansion and contraction can take place more than once, both at

new and existing facilities over the time horizon.

• Facility location and capacity sizing costs are subject to economies of scale which favor

larger capacities. In addition, economies of scale are also present in the variable cost for

processing the product at each operating facility.

• Customers are distinguished on the basis of their sensitivity to delivery lead times. Cus-

tomers receiving preferred service have zero delivery lead time, i.e. their demands must

be satisfied in the time periods they occur. These customers typically contribute most to

the company’s sales revenue. Customers who are not averse to waiting for their demand

requirements to be satisfied specify a maximum allowed delivery delay. These customers

are compensated with a lower price which is translated into a tardiness penalty cost for

delayed deliveries to reflect the negative impact on the company’s profit margin.

8



• All relevant data (i.e. costs, demand requirements, and other parameters) are prepared

by using appropriate forecasting methods and company-specific analyzes.

The possibility of adjusting the capacity of operating facilities over the time horizon is

relevant when sizing decisions are reversible in the medium term. This is the case, for example,

when operations can be subcontracted, equipment and space can be rented or leased, or changes

in manpower requirements can be met. In this context, it is important to understand the trade-

off between the costs incurred by capacity expansion and contraction and the level of service

provided to the customers. For example, it may be economically attractive to invest in increasing

capacity temporarily to guarantee shorter delays in demand fulfillment.

We also note that different time scales for strategic and tactical decisions are considered.

This characteristic is also sometimes present in other problems that combine decisions at differ-

ent levels, e.g. the dynamic location-routing problem studied by Albareda-Sambola et al. [1] and

the multi-period logistics network design problem addressed by Badri et al. [4]. All strategic and

tactical decisions are assumed to be taken at the beginning of the corresponding time period.

3.1 Notation

In this section, we review and extend the notation introduced by Correia and Melo [8]. Table 1

presents all index sets, while Table 2 describes the parameters related to modular capacity and

customer demand.

Set Description
T Time periods in the planning horizon
TL ⊂ T Strategic time periods, i.e. periods in which location and capacity scala-

bility decisions can be made
Ie Existing facilities at the beginning of the planning horizon
In Candidate sites for locating new facilities
I = Ie ∪ In All facility locations
J0 Customers that receive preferred service (i.e. their demands must be sat-

isfied in the time periods they occur)
J1 Customers that tolerate delays in demand satisfaction
J = J0∪J1 All customers (J0 ∩ J1 = ∅)

Table 1: Index sets

The first (last) strategic time period for taking decisions related to opening/closing facilities

and expanding/removing capacity is denoted by ℓ = 1 (ℓmax). The configuration of a facility
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in time period ℓ ∈ TL is the outcome of the decisions made in that period. This configuration

remains unchanged over all periods up to the next strategic period, that is, up to period φ(ℓ)

with φ(ℓ) = max{t ∈ T : t < ℓ + 1} if ℓ < ℓmax, and φ(ℓ) = |T | otherwise (i.e. ℓ = ℓmax). In

other words, φ(ℓ) represents the tactical time period just before the next strategic period.

Symbol Description
Q Capacity of a modular unit
ni Maximum number of modular units that are available at location i in any

time period (i ∈ I)
qi Number of modular units available at the existing facility i, 1 ≤ qi ≤ ni

(i ∈ Ie) at the beginning of the time horizon
dtj Demand of customer j in time period t (j ∈ J ; t ∈ T )
ρj Maximum allowed delay (in number of time periods) to satisfy the demand

of customer j (j ∈ J)
φ(ℓ) Tactical time period just before the next strategic period ℓ+ 1

Table 2: Capacity and demand parameters

The capacity of an operating facility i can range from Q to niQ, in Q increments, at any

given period. The adoption of a base modular size (here: Q) is not uncommon in problems

involving capacity scalability decisions (see e.g. Delmelle et al. [11] and Gourdin and Klopfenstein

[15]).

The two customer segments introduced in Table 1 are distinguished by differing values for

parameter ρj . Accordingly, customers provided with preferred service impose ρj = 0 (j ∈ J0),

whereas customers tolerating late deliveries set ρj > 0 (j ∈ J1). The time lag for demand

satisfaction for customer j is also defined by ρj, namely demand for period t ∈ T must be filled

over periods t, t+1, . . . , t+ρj. In case t+ρj > |T |, then the last delivery must occur at period

|T |. This condition ensures that demand cannot be carried over to future periods beyond the

planning horizon.

Table 3 presents the cost parameters. Economies of scale are reflected in all fixed cost

terms, namely for opening, closing, and maintaining facilities (resp. FOℓ
ik, FCℓ

ik, M
t
ik), and for

expanding or contracting the capacity of facilities (resp. FEℓ
ik, FRℓ

ik). Furthermore, variable

processing costs at the facilities (otik) are also subject to economies of scale. This feature will

impact the development of a mathematical formulation for the problem as it will be shown in

Section 3.2.
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Symbol Description

FOℓ
ik Fixed cost of opening a new facility at candidate site i with k modular units

in time period ℓ (i ∈ In; k = 1, . . . , ni; ℓ ∈ TL)
FCℓ

ik Fixed cost of closing the initially existing facility i with k modular units in
time period ℓ (i ∈ Ie; k = 1, . . . , ni; ℓ ∈ TL \ {1})

FEℓ
ik Fixed cost of expanding the capacity of facility i through installing k mod-

ular units (k = 1, . . . , ni−1) in time period ℓ; for an existing facility i ∈ Ie,
we consider ℓ ∈ TL; for a new facility i ∈ In, we take ℓ ∈ TL \ {1}

FRℓ
ik Fixed cost of removing k modular units (k = 1, . . . , ni−1) from facility i in

time period ℓ; for an existing facility i ∈ Ie, we consider ℓ ∈ TL; for a new

facility i ∈ In, we take ℓ ∈ TL \ {1}
M t

ik Fixed maintenance cost incurred by operating facility i with k modular
units in time period t (i ∈ I; k = 1, . . . , ni; t ∈ T )

otik Cost of processing one unit of product at facility i with k modular units in
time period t (i ∈ I; k = 1, . . . , ni; t ∈ T )

ctij Cost of distributing one unit of product from facility i to customer j in time
period t (i ∈ I; j ∈ J ; t ∈ T )

ptt
′

j Tardiness penalty cost for satisfying one unit of demand of customer j in
period t′ that was originally demanded in period t (j ∈ J1; t ∈ T ; t′ =
t, t+1, . . . ,min{t+ ρj , |T |}); in particular, for t′ = t, the tardiness penalty
cost is equal to zero

Table 3: Fixed and variable cost parameters
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3.2 Mixed-integer linear programming formulations

In this section, we propose two MILP formulations for our problem.

3.2.1 Model 1

For the problem variant without capacity scalability decisions, Correia and Melo [8] developed

two MILP models and concluded that one of the formulations was computationally more at-

tractive because of smaller optimality gaps and shorter computing times to identify optimal

solutions. Therefore, the first MILP formulation that we propose is based on these findings.

The following two sets of binary variables are defined to represent facility location decisions.

zℓik = 1 if a new facility is established with k modular units at candidate location i

in time period ℓ, 0 otherwise (i ∈ In; k = 1, . . . , ni; ℓ ∈ TL) (1)

zℓik = 1 if the initially existing facility i is closed in time period ℓ, holding k modular

units at the time of its closure, 0 otherwise (i ∈ Ie; k = 1, . . . , ni;

ℓ ∈ TL \ {1}) (2)

If a new facility is opened in time period ℓ then it will remain in operation in time periods

ℓ, . . . , |T |. Analogously, if an initially existing facility is removed at the beginning of period ℓ

then it was operational in periods 1, . . . , ℓ−1. We consider that in this case the facility cannot

be closed in the first time period (i.e. ℓ > 1). However, an existing facility can have its size

modified in the first strategic period either through capacity expansion or contraction.

Capacity scalability decisions are described by the following binary variables.

sℓik = 1 if a facility is operated at location i with k modular units at time period

ℓ, 0 otherwise (i ∈ I; k = 1, . . . , ni; ℓ ∈ TL) (3)

eℓik = 1 if the capacity of a facility in site i is expanded with k modular units at

time period ℓ, 0 otherwise; for an existing facility: i ∈ Ie; k = 1, . . . , ni − 1;

t ∈ TL; for a new facility: i ∈ In; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1} (4)

rℓik = 1 if the capacity of a facility in site i is reduced by removing k modular

units at time period ℓ, 0 otherwise; for an existing facility: i ∈ Ie;

k = 1, . . . , ni − 1; ℓ ∈ TL; for a new facility: i ∈ In; k = 1, . . . , ni − 1;
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ℓ ∈ TL \ {1} (5)

Tactical decisions on product flows are defined by continuous variables as follows.

xt
ij : Amount of product distributed from facility i to customer j in time period

t (i ∈ I; j ∈ J0; t ∈ T ) (6)

ytt
′

ij : Amount of product distributed from facility i to customer j in time period

t′ to (partially) satisfy demand of period t (i ∈ I; j ∈ J1; t ∈ T ;

t′ = t, t + 1, . . . ,min{t + ρj , |T |}) (7)

wt
ik : Total quantity of product handled by facility i operating with k modular

units in time period t (i ∈ I; k = 1, . . . , ni; t ∈ T ) (8)

Let (P1) denote the following MILP formulation.

Min
∑

ℓ∈TL

∑

i∈In

ni
∑

k=1

FOℓ
ik z

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈Ie

ni
∑

k=1

FCℓ
ik z

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈In

ni−1
∑

k=1

FEℓ
ik e

ℓ
ik +

∑

ℓ∈TL

∑

i∈Ie

ni−1
∑

k=1

FEℓ
ik e

ℓ
ik +

∑

ℓ∈TL\{1}

∑

i∈In

ni−1
∑

k=1

FRℓ
ik r

ℓ
ik +

∑

ℓ∈TL

∑

i∈Ie

ni−1
∑

k=1

FRℓ
ik r

ℓ
ik +

∑

ℓ∈TL

∑

i∈I

ni
∑

k=1

sℓik

φ(ℓ)
∑

t=ℓ

M t
ik +

∑

t∈T

∑

i∈I

ni
∑

k=1

otik w
t
ik +

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ij +

∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}
∑

t′=t

(

ct
′

ij + ptt
′

j

)

ytt
′

ij (9)

s.t.
∑

i∈I

xt
ij = dtj j ∈ J0, t ∈ T (10)

∑

i∈I

min{t+ρj , |T |}
∑

t′=t

ytt
′

ij = dtj j ∈ J1, t ∈ T (11)

∑

ℓ∈TL

ni
∑

k=1

zℓik ≤ 1 i ∈ In (12)

∑

ℓ∈TL\{1}

ni
∑

k=1

zℓik ≤ 1 i ∈ Ie (13)

ni
∑

k=1

sℓik =
∑

ℓ′∈TL: ℓ′≤ℓ

ni
∑

k=1

zℓ
′

ik i ∈ In, ℓ ∈ TL (14)

13



ni
∑

k=1

sℓik = 1 −
∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni
∑

k=1

zℓ
′

ik i ∈ Ie, ℓ ∈ TL (15)

ni−1
∑

k=1

eℓik +

ni−1
∑

k=1

rℓik ≤
∑

ℓ′∈TL: ℓ′<ℓ

ni
∑

k=1

zℓ
′

ik i ∈ In, ℓ ∈ TL \ {1} (16)

ni−1
∑

k=1

eℓik +

ni−1
∑

k=1

rℓik ≤ 1 −
∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni
∑

k=1

zℓ
′

ik i ∈ Ie, ℓ ∈ TL (17)

ni
∑

k=1

k sℓik =
∑

ℓ′∈TL: ℓ′≤ℓ

ni
∑

k=1

k zℓ
′

ik +

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni−1
∑

k=1

k eℓ
′

ik −
∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni−1
∑

k=1

k rℓ
′

ik i ∈ In, ℓ ∈ TL (18)

ni
∑

k=1

k sℓik ≥ qi +
∑

ℓ′∈TL: ℓ′≤ℓ

ni−1
∑

k=1

k eℓ
′

ik −

∑

ℓ′∈TL: ℓ′≤ℓ

ni−1
∑

k=1

k rℓ
′

ik − ni

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni
∑

k=1

zℓ
′

ik i ∈ Ie, ℓ ∈ TL (19)

ni
∑

k=1

k sℓik ≤ qi +
∑

ℓ′∈TL: ℓ′≤ℓ

ni−1
∑

k=1

k eℓ
′

ik −

∑

ℓ′∈TL: ℓ′≤ℓ

ni−1
∑

k=1

k rℓ
′

ik + ni

∑

ℓ′∈TL\{1}: ℓ′≤ℓ

ni
∑

k=1

zℓ
′

ik i ∈ Ie, ℓ ∈ TL (20)

ni
∑

k=1

k zℓik ≥
ni
∑

k=1

k sℓ−1
ik − ni

ni
∑

k=1

sℓik i ∈ Ie, ℓ ∈ TL \ {1} (21)

ni
∑

k=1

k zℓik ≤
ni
∑

k=1

k sℓ−1
ik + ni

ni
∑

k=1

sℓik i ∈ Ie, ℓ ∈ TL \ {1} (22)

wt
ik ≤ kQ sℓik i ∈ I, k = 1, . . . , ni, t ∈ T,

ℓ =max{ℓ′ ∈ TL : ℓ′ ≤ t} (23)

ni
∑

k=1

wt
ik =

∑

j∈J0

xt
ij +

∑

j∈J1

t
∑

t′=max{1, t−ρj}

yt
′t
ij i ∈ I, t ∈ T (24)

xt
ij ≥ 0 i ∈ I, j ∈ J0, t ∈ T (25)

ytt
′

ij ≥ 0 i ∈ I, j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj , |T |} (26)

wt
ik ≥ 0 i ∈ I, k = 1, . . . , ni, t ∈ T (27)

zℓik ∈ {0, 1} i ∈ In, k = 1, . . . , ni, ℓ ∈ TL (28)

zℓik ∈ {0, 1} i ∈ Ie, k = 1, . . . , ni, ℓ ∈ TL \ {1} (29)

sℓik ∈ {0, 1} i ∈ I, k = 1, . . . , ni, ℓ ∈ TL (30)

eℓik ∈ {0, 1} i ∈ In, k = 1, . . . , ni − 1, ℓ ∈ TL \ {1} (31)
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eℓik ∈ {0, 1} i ∈ Ie, k = 1, . . . , ni − 1, ℓ ∈ TL (32)

rℓik ∈ {0, 1} i ∈ In, k = 1, . . . , ni − 1, ℓ ∈ TL \ {1} (33)

rℓik ∈ {0, 1} i ∈ Ie, k = 1, . . . , ni − 1, ℓ ∈ TL (34)

The objective function (9) describes the aim of the decision-making process, namely to identify

the network reconfiguration with the least total cost. The first six terms account for all fixed

costs that are incurred for decisions taken in strategic periods, i.e. for opening new facilities,

closing existing facilities, and adjusting capacity through adding or removing modular units.

The seventh term also represents fixed costs for maintaining facilities in all periods they are

operated. The remaining terms in (9) are associated with variable costs for processing the

product at operating facilities and distributing it to customers. In addition, tardiness penalty

costs are incurred for delayed deliveries.

Constraints (10), resp. (11), enforce the satisfaction of demands for customer segment J0,

resp. J1. According to constraints (12), resp. (13), opening a new facility, resp. closing an

initially existing facility, is limited to take place at most once over the time horizon. Equal-

ities (14)–(15) ensure that if a facility is operated then it must hold a positive number of

modular units, otherwise capacity cannot be available. Constraints (16)–(17) guarantee that

at most one type of capacity adjustment (either expansion or contraction) can occur at a lo-

cation and in a strategic period provided that a facility is operating in that site. The number

of available modular units at new facilities is described by equalities (18) for every time period.

This number is the outcome of the sizing choice made when the facility was opened and the

number of modular units that were added or removed afterward. Constraints (19)–(20) take

a similar role but for existing facilities. Observe that these inequalities are redundant in all

periods following a facility closure. Moreover, if an existing facility is closed at the beginning of

a strategic period then the number of modular units it held at that time point is determined by

constraints (21)–(22). This information is required to allocate the fixed closing costs correctly,

since they depend on the size of the facility upon its closure (see second term in (9)). Capacity

constraints are described by inequalities (23). Constraints (24) state that the total outflow

from a facility at a given time period is split into deliveries to customers that receive preferred

service and customers that accept delays in demand satisfaction. Finally, non-negativity and

binary conditions are set by (25)–(34).

15



3.2.2 Model 2

Recently, Jena et al. [19] proposed a new modeling framework that captures several variants

of the MFLP into a single formulation, including capacity expansion and reduction as well

as temporarily opening and closing of facilities. Interestingly, the authors showed that their

formulation provides stronger linear relaxation bounds than models that have been developed

specifically for certain variants of the problem. This has been accomplished by using binary

variables to represent capacity changes from one time period to the next at a particular location.

Inspired by the work of Jena et al. [19], we now describe an alternative formulation for our

problem. Instead of defining specific sets of variables to represent facility location and capacity

scalability decisions, as done in the previous section (recall (1)–(5)), we introduce the following

set of four-index binary variables:

uℓ
ik1k2

= 1 if a facility at site i has k2 modular units in time period ℓ knowing that

it held k1 modular units before, 0 otherwise (i ∈ I; k1, k2 = 0, . . . , ni; (35)

ℓ ∈ TL)

At the start of the time horizon (ℓ = 1), each existing facility i ∈ Ie has qi modular units

and therefore, a capacity transition from k1 = qi modules to k2 modules, with k2 > 0, can

take place. Furthermore, at each candidate site i ∈ In the initially available capacity is zero

(k1 = 0) and a transition to k2 modules, with k2 > 0, occurs when a new facility is established.

All decisions about opening new facilities, closing initially existing facilities, and expand-

ing or contracting capacities can be represented by the new binary variables for appropriate

combinations of the indices k1 and k2:

• If an existing facility i is closed at the beginning of a strategic period ℓ then k1 > 0 and

k2 = 0 and, therefore, uℓ
ik10

= 1. In this case, at the time point of closure, the facility

had a capacity of k1Q units.

• If a facility i is not available over two consecutive time periods then k1 = k2 = 0, meaning

that uℓ
i00 = 1.

• If the positive capacity of a facility does not change over two consecutive strategic time

periods then no capacity transition has occurred. Hence, k1 > 0 and k2 = k1.
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• Capacity expansion corresponds to having k1 > 0 and k2 > k1. In this case, the capacity

is increased by (k2 − k1)Q units.

• Capacity contraction is represented by k2 > 0 and k2 < k1. The capacity reduction

amounts to (k1 − k2)Q units.

Let F ℓ
ik1k2

denote the total fixed cost incurred at the beginning of time period ℓ ∈ TL due to

a capacity transition from k1 to k2 modular units for a facility at site i ∈ I. This parameter

results from aggregating particular fixed location, maintenance, and capacity transition costs

as follows:

F ℓ
ik1k2

=







































































































































































0 if i ∈ I; k1 = k2 = 0; ℓ ∈ TL

φ(ℓ)
∑

t=ℓ

M t
ik1

if i ∈ I; k1 = k2; k1, k2 = 1, . . . , ni;
ℓ ∈ TL

FOℓ
ik2

+
φ(ℓ)
∑

t=ℓ

M t
ik2

if i ∈ In; k1 = 0; k2 = 1, . . . , ni; ℓ ∈ TL

FCℓ
ik1

if i ∈ Ie; k1 = 1, . . . , ni; k2 = 0;
ℓ ∈ TL \ {1}

FEℓ
i(k2−k1)

+
φ(ℓ)
∑

t=ℓ

M t
ik2

if i ∈ In; k1 = 1, . . . , ni − 1;
k2 = k1 + 1, . . . , ni; ℓ ∈ TL \ {1}

FEℓ
i(k2−k1)

+
φ(ℓ)
∑

t=ℓ

M t
ik2

if i ∈ Ie; k1 = 1, . . . , ni − 1;
k2 = k1 + 1, . . . , ni; ℓ ∈ TL

FRℓ
i(k1−k2)

+
φ(ℓ)
∑

t=ℓ

M t
ik2

if i ∈ In; k1 = 1, . . . , ni;
k2 = 1, . . . , k1 − 1; ℓ ∈ TL \ {1}

FRℓ
i(k1−k2)

+
φ(ℓ)
∑

t=ℓ

M t
ik2

if i ∈ Ie; k1 = 1, . . . , ni;
k2 = 1, . . . , k1 − 1; ℓ ∈ TL

(36)

We now present an alternative formulation, denoted (P2), that uses the new binary vari-

ables uℓ
ik1k2

along with the flow variables xt
ij , y

tt′

ij , and wt
ik introduced in (6)–(8).

Min
∑

ℓ∈TL

∑

i∈I

ni
∑

k1=0

ni
∑

k2=0

F ℓ
ik1k2

uℓ
ik1k2

+
∑

t∈T

∑

i∈I

ni
∑

k=1

otik w
t
ik +

∑

t∈T

∑

i∈I

∑

j∈J0

ctij x
t
ij +
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+
∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}
∑

t′=t

(

ct
′

ij + ptt
′

j

)

ytt
′

ij (37)

s.t.

(10), (11), (25)− (27)

ni
∑

k=1

u1
iqik

= 1 i ∈ Ie (38)

ni
∑

k1=0,k1 6=qi

ni
∑

k2=0

u1
ik1k2

= 0 i ∈ Ie (39)

ni
∑

k=0

uℓ
ik0 ≤ uℓ+1

i00 i ∈ Ie, ℓ ∈ TL \ {ℓmax} (40)

ni
∑

k=0

u1
i0k = 1 i ∈ In (41)

ni
∑

k1=1

ni
∑

k2=0

u1
ik1k2

= 0 i ∈ In (42)

ni
∑

k=0

uℓ′

ik0 ≤ 1 −
ni
∑

k=1

uℓ
i0k i ∈ In, ℓ, ℓ′ ∈ TL, ℓ

′ > ℓ (43)

ni
∑

k1=0

uℓ−1
ik1k

=

ni
∑

k2=0

uℓ
ikk2

i ∈ I, k = 0, . . . , ni, ℓ ∈ TL \ {1} (44)

wt
ik ≤ Q

ni
∑

k1=0

k uℓ
ik1k

i ∈ I, k = 1, . . . , ni, t ∈ T, ℓ = max{ℓ′ ∈ TL : ℓ′ ≤ t} (45)

uℓ
ik1k2

∈ {0, 1} i ∈ I, k1, k2 = 0, . . . , ni, ℓ ∈ TL (46)

The objective function (37) minimizes the fixed network operating costs and the variable cus-

tomer distribution costs over all periods. Note that facility location and capacity scalability

costs are combined in the first cost term. Constraints (38)–(40) involve exclusively initially

existing facilities. Equalities (38) ensure that these facilities cannot be closed at the beginning

of the planning horizon, while equalities (39) state that any transition from an initial capacity

level other than qi modular units is not permitted. Constraints (40) prevent an existing fa-

cility that was previously closed from being reopened. Constraints (41)–(43) are relevant to

locating new facilities. Equalities (41) and (42) specify that only a given sub-set of capacity

transitions are allowed in the first time period, namely those from level k1 = 0 to level k2 ≥ 0.

Constraints (43) ensure that if a new facility is established at a candidate site then it must

be operational throughout the time horizon. Finally, feasible capacity transitions are imposed

by constraints (44) in any location, capacity constraints are described by inequalities (45), and

binary conditions for the transition variables are defined by constraints (46).
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The problem that we study is clearly NP-hard, since it includes the uncapacitated MFLP as a

particular case (Jacobsen [18]). Additionally, the proposed formulations can also be used when

the company does not employ customer segmentation. This is the case when every customer

must have his demand requirements satisfied in the time periods they occur (i.e. J1 = ∅,
J = J0) or when all customers tolerate late deliveries (i.e. J0 = ∅, J = J1). The particular

“greenfield” situation, in which no facilities are open at the beginning of the time horizon, is

also easily modeled by the proposed formulations. We decided to focus on the more general

case by taking an existing infrastructure as input, as it is often the case in practice.

3.3 Comparison of formulations

Formulation (P2) is more compact than formulation (P1) owing to the variable redefinition

(35). However, a closer look at the total number of variables and constraints in the two models

reveals significant differences. Table 4 displays the size of each formulation.

Formulation Number of variables Number of constraints
Binary Continuous

(P1) O
(

4n · |I| · |TL| − (n− 2) · |In| O

(

(n + |J0|) · |I| · |T | O
(

|J | · |T | + 3 |TL| · (|I| + |Ie|)

− (n + 2 |TL|) · |I|
)

+ (ρ + 1) ·

(

|T | −
ρ

2

)

· |I| · |J1|

)

+(1 + n) · |I| · |T | − |Ie|
)

(P2) O
(

(n + 1)2 · |I| · |TL|
)

O

(

(n + |J0|) · |I| · |T | O
(

|J | · |T | + 2 |I| + |Ie| · |TL|

+ (ρ + 1) ·

(

|T | −
ρ

2

)

· |I| · |J1|

)

+ |In| · |TL| ·
|TL| − 1

2

+ (n + 1) · |I| · (|TL| − 1)

+n · |I| · |T | − |Ie|
)

Table 4: Summary of total number of variables and constraints in the proposed formulations

It can be seen that the formulations strongly differ in the number of binary variables. For

a fixed number of facilities (|I|) and a fixed number of strategic periods (|TL|), model (P1)

has O(n) binary variables, whereas formulation (P2) has O(n2) binary variables, with n =

maxi∈I{ni}. Let us consider a problem instance of moderate size to illustrate this characteristic.

Suppose that the planning horizon is divided into 36 time periods and facility location and

capacity scalability decisions can be taken in 6 of these periods (i.e. |T | = 36 and |TL| = 6).

Moreover, there are 12 candidate sites for locating new facilities and 3 facilities are operating

at the start of the time horizon (i.e. |In| = 12 and |Ie| = 3). If any facility can hold at
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most ni = 5 (i ∈ I) modular units then model (P1), resp. (P2), has 1509, resp. 3240, binary

variables. Increasing the maximum number of modular units to ni = 10 yields 3174, resp. 10890,

binary variables. Despite some of these binary variables being fixed at zero by constraints (39)

and (42) in formulation (P2), the overall number is still noteworthy.

The same number of continuous variables is present in both formulations. Parameter ρ

that appears in the third column of Table 4 denotes the largest delivery lead time among all

customers in segment J1.

Regarding the number of constraints, there is not a striking difference between the two

models. Using the above example with ni = 5 (i ∈ I) and considering 150 customers, there are

8,961 and 8,775 constraints with formulation (P1) and (P2), respectively. When parameter ni

is increased to 10, (P1) has fewer constraints compared to (P2), namely 11,661 and 11,850,

respectively. Variations in other parameters, such as |TL| and |Ie|, produce a similar ratio

between the number of constraints of the two formulations.

Due to the significantly smaller number of binary variables, one may conjecture that it would

be favorable to use formulation (P1) to solve (large) problem instances using a state-of-the-art

MILP solver. The validity of this conjecture will be investigated through a computational study

that will be presented in Section 5. In addition, a comparison of the bounds provided by the

linear relaxations of the two models, (P1) and (P2), and the relative gaps between the optimal

LP solutions and the optimal integer solutions will also be examined. Recall that Jena et al.

[19] proved dominance relations between their formulation and specialized models for particular

cases of the MFLP, showing that binary variables of the type of (35) play a predominant part

in achieving stronger LP relaxation bounds.

4 Enhancing the mathematical formulations

In this section, we propose various ways of enhancing the mathematical formulations, (P1)

and (P2), with the purpose of improving the lower bounds provided by their linear relaxations.

Extensive computational experience on MILP models suggests that when the LP lower bounds

are tight, a state-of-the-art solver will most likely be computationally effective.
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4.1 Additional inequalities for (P1)

Since each initially existing facility i ∈ Ie has qi modules at the beginning of the time horizon,

it is clear that an expansion (contraction) of its capacity leading to more than ni (less than 1)

modular unit(s) is not permitted. This is stated by the following conditions.

ni−1
∑

k=ni−qi+1

e1ik = 0 i ∈ Ie (47)

ni−1
∑

k=qi

r1ik = 0 i ∈ Ie (48)

In addition, if a new facility is opened in the first strategic period with k modular units then

the following relationship between the binary variables z1ik and s1ik certainly holds.

s1ik = z1ik i ∈ In; k = 1, . . . , ni (49)

If a facility has its capacity expanded through the installation of k additional modular units

in a particular strategic period then it will operate with at least k + 1 modular units in that

period. This condition is ensured by the following inequalities.

eℓik ≤
ni
∑

k′=k+1

sℓik′ i ∈ Ie; k = 1, . . . , ni − 1; ℓ ∈ TL (50)

eℓik ≤
ni
∑

k′=k+1

sℓik′ i ∈ In; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1} (51)

Capacity reduction through removing k modular units from a facility at a particular strategic

period will result in a facility having at most ni − k modular units. This is expressed by

inequalities (52) and (53).

rℓik ≤
ni−k
∑

k′=1

sℓik′ i ∈ Ie; k = 1, . . . , ni − 1; ℓ ∈ TL (52)

rℓik ≤
ni−k
∑

k′=1

sℓik′ i ∈ In; k = 1, . . . , ni − 1; ℓ ∈ TL \ {1} (53)

Given the configuration of a facility at time period ℓ, not all options for capacity expansion

or contraction can be implemented in the next strategic period. The following inequalities make
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sure that certain capacity scalability choices are excluded in period ℓ+ 1.

ni−1
∑

k′=ni−k+1

eℓ+1
ik′ +

ni−1
∑

k′=k

rℓ+1
ik′ ≤ 1 − sℓik i ∈ I; k = 1, . . . , ni; ℓ ∈ TL \ {ℓmax} (54)

We illustrate these inequalities by means of a small example. We assume that the time horizon

spans 3 years with each year being divided into 12 months. Facility location and capacity

scalability decisions can be taken every six months. Hence, |T | = 36, TL = {1, 7, 13, 19, 25, 31}
and ℓmax = 31. Furthermore, a facility can hold up to 5 modular units (ni = 5, i ∈ I) at

any given period. Let us suppose that at time period 7 a particular facility i is operating with

2 modular units, i.e. s7i2 = 1, and that it will remain open in the next strategic period 13. If

the facility is expanded at ℓ = 13 then 1, 2 or 3 new modules can be installed. In the case

that capacity contraction takes place then only one module can be removed. All other options

for capacity expansion or reduction are not viable, hence e13i4 = r13i2 = r13i3 = r13i4 = 0. This is

ensured by inequalities (54).

Let us assume, without loss of generality, that |T | is a multiple of |TL|. The total number

of time periods between two consecutive strategic periods is thus given by τ = |T |/|TL|. For

the above example we obtain τ = 6. The minimum quantity of demand that must be served

over the time interval covering one strategic period and all subsequent periods (before the next

strategic period is reached) is given by

Dℓ =



















∑

j∈J0

ℓ+τ−1
∑

t=ℓ

dtj +
∑

j∈J1

ℓ+τ−ρj−1
∑

t=ℓ

dtj if ℓ ∈ TL and ℓ < ℓmax

∑

j∈J

|T |
∑

t=ℓ

dtj if ℓ = ℓmax

The above expression includes all demand requirements of the preferred customer segment J0 as

well as the minimum quantity that must be distributed to customers accepting delayed deliveries.

Since customer demand cannot be lost, in the last time interval (comprising all periods from

ℓmax through |T |), the demands of both customer segments must be fully satisfied.

Knowing that each capacity module has size Q, the minimum demand requirements Dℓ can

only be filled provided that at least Rℓ modular units are available in the facility network from

period ℓ through the next strategic period with

Rℓ =

⌈

Dℓ

Q

⌉

(55)
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and ⌈x⌉ denoting the smallest integer greater than or equal to x. Therefore, the following

inequalities are valid.

τ
∑

i∈I

ni
∑

k=1

k sℓik ≥ Rℓ ℓ ∈ TL

We now apply the Chvátal-Gomory rounding procedure a finite number of times (Wolsey [38])

and obtain the following set of valid inequalities.

∑

i∈I

ni
∑

k=1

⌈

τ k

p

⌉

sℓik ≥
⌈

Rℓ

p

⌉

ℓ ∈ TL; p = 1, . . . , τ max
i∈I

{ni} (56)

Observe that these inequalities are derived from

∑

i∈I

ni
∑

k=1

τk

p
sℓik ≥ Rℓ

p
ℓ ∈ TL; p = 1, . . . , τ max

i∈I
{ni}

Rounding up all coefficients on the left-hand side does not affect the validity of these inequalities.

Since the left-hand side must be integer we can also round up the right-hand side, thus obtaining

(56). When for a given ℓ and different values of p several inequalities (56) are obtained with the

same right-hand side, it is only needed to consider the inequality with the strongest left-hand

side.

4.2 Additional inequalities for (P2)

Due to the introduction of the transition variables uℓ
ik1k2

in (35), the conditions described by

(49)–(54) are implicitly present in formulation (P2). Thus, further inequalities do not need to

be imposed. Regarding the Chvátal-Gomory cuts, the counterpart of (56) is given by

∑

i∈In

ni
∑

k=1

⌈

τ k

p

⌉

u1
i0k +

∑

i∈Ie

ni
∑

k=1

⌈

τ k

p

⌉

u1
iqik

≥
⌈

R1

p

⌉

(57)

∑

i∈In

ni
∑

k1=0

ni
∑

k2=1

⌈

τ k2
p

⌉

uℓ
ik1k2

+
∑

i∈Ie

ni
∑

k1=1

ni
∑

k2=1

⌈

τ k2
p

⌉

uℓ
ik1k2

≥
⌈

Rℓ

p

⌉

ℓ ∈ TL \ {1} (58)

for p = 1, . . . , τ maxi∈I{ni} and Rℓ defined by (55). Again, we only consider the strongest

inequalities (57)–(58) for each ℓ ∈ TL.

Compared to model (P1), a smaller number of inequalities can be added to (P2). Hereafter,

23



the formulations strengthened with additional inequalities will be denoted by (P+
1 ) and (P+

2 ).

5 Computational study

In this section, we report on the computational experiments performed on randomly generated

instances to evaluate the performance of the proposed formulations, both with and without en-

forcing additional inequalities, using a commercial MILP solver. In addition, further insights into

the characteristics of the best solutions identified by the solver will be discussed in Section 5.3.

5.1 Characteristics of test instances

As benchmark instances are not available for the problem at hand, we randomly generated a

set of test instances by combining the values indicated in Table 5.

Parameter Value
|J | 100, 150
|J0| ⌈βJ |J |⌉ with βJ ∈ {0.25, 0.5, 0.75, 1}
|I| 0.1 |J |
|In| 0.8 |I|
|T | 36
|TL| 3, 6

Table 5: Cardinality of index sets

Observe that different interpretations can be given to a time period and thus to the length

of the planning horizon. For example, a time period could represent one month, two months

or one quarter. Taking |T | = 36, these choices correspond to a 3 year, 6 year or 9 year time

frame, respectively. Accordingly, TL = {1, 13, 25} (|TL| = 3) could be associated with annual,

biennial or triennial strategic periods. By taking |TL| = 6 with TL = {1, 7, 13, 19, 25, 31}, the
number of opportunities for making location and capacity scalability decisions would double.

Three different demand scenarios were considered. In scenario 1, customer demand is

irregular, meaning that demand variations are allowed up to ±20% between two consecutive

time periods. Scenarios 2 and 3 are associated with trapezoidal shapes. Scenario 2 represents

a typical product life cycle with a growth stage followed by a maturity phase and ending with

gradual decline. In scenario 3, customer demand rates follow an inverted trapezoid, the latter

representing an economic downturn followed by market recovery. In this case, demand variations
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go through three phases, namely contraction, recession and growth. Each phase has a duration

of 12 periods. Table 6 describes these three scenarios. In scenarios 2 and 3, demand can

Scenario Demand Periods Coefficient
1,2,3 d1j = U [20, 100]
1 dtj = βt

d d
t−1
j t = 2, . . . , |T | βt

d ∈ U [0.8, 1.2]
2 dtj = βt

d d
t−1
j t = 2, . . . , 12 βt

d ∈ U [1.0, 1.2]
dtj = βt

d d
t−1
j t = 13, . . . , 24 βt

d ∈ U [0.99, 1.01]
dtj = βt

d d
t−1
j t = 25, . . . , 36 βt

d ∈ U [0.8, 1.0]
3 dtj = βt

d d
t−1
j t = 2, . . . , 12 βt

d ∈ U [0.8, 1.0]
dtj = βt

d d
t−1
j t = 13, . . . , 24 βt

d ∈ U [0.99, 1.01]
dtj = βt

d d
t−1
j t = 25, . . . , 36 βt

d ∈ U [1.0, 1.2]

Table 6: Demand parameters

increase or decrease by at most 20% between two consecutive time periods during the growth

and contraction phases. In the maturity (scenario 2) and recession (scenario 3) stages, small

changes in customer demand are assumed (±1%). Although these rates are not typical of all

situations, certain goods and services are known to have very high growth (or contraction) rates

in demand, particularly in industrializing countries. The consumer technology industry is such

an example.

Further details on the generation of the test instances are provided in the appendix. In

particular, a scheme for obtaining the cost parameters, some of them reflecting economies of

scale, is described.

For each demand scenario and each choice of |J |, six instances were generated, thus yielding
a total of 108 instances. Each one of these instances was then considered with three different

values for the maximum delay in demand fulfillment, namely ρ = ρj = 0, 1, 2 for every j ∈ J1.

Setting ρ = 0 corresponds to taking βJ = 1 (recall Table 5), which results in J0 = J and

J1 = ∅. Hence, in this case, we have the classical situation in facility location with all customers

having their demands satisfied in the time periods they occur.

5.2 Numerical results

Formulations (P1) and (P2), including their enhancements (P+
1 ) and (P

+
2 ), were coded in C++

using IBM ILOG Concert Technology and solved with IBM ILOG CPLEX 12.6. The experiments

were conducted on a workstation with a multi-core Intel Xeon E5-2650V3 processor (2.3 GHz,
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10 cores), 32 GB RAM and running Ubuntu operating system (64-bit). Since the problem

that we consider in this article has a strategic nature, fast solution times are not of paramount

importance. Therefore, we set a limit of 10 hours of CPU time for each solver run. Furthermore,

CPLEX was used with default settings under a deterministic parallel mode.

Table 7 provides a summary of the results obtained for the three demand scenarios (col-

umn 1) and different choices for the maximum allowed delay in demand fulfillment (column 2).

Columns 3-6 report the number of instances solved to optimality (# opt sol.) and the number

of instances not solved to proven optimality within the time limit (# non-opt sol.) for each of

the four models. For the latter instances, the corresponding minimum, average and maximum

optimality gaps reported by CPLEX are given for each type of formulation in columns 8-11

(MIP gap = (zUB − zLB)/zUB × 100%, where zUB denotes the value of the best feasible solu-

tion and zLB represents the best lower bound). Columns 13-16 display the minimum, average

and maximum computing times, in seconds (MIP CPU). The last row of each demand scenario

(’All’) contains information about all test instances in that scenario. Finally, the best average

values with respect to the evaluation criteria are shown in boldface.

The capability of CPLEX to identify an optimal solution within the time limit depends on

the demand scenario. While optimality is achieved in 75.9% (82.4%) of the test instances in

scenario 1 (scenario 2), optimality could only be proven in 52.8% of the instances with inverted

trapezoidal demand rates (scenario 3). Moreover, it seems that the enhanced formulation (P+
2 )

has the best average performance with respect to finding an optimal solution for each specific

demand class. For those instances that were not solved to proven optimality, small MIP gaps

were obtained with all demand patterns (4.3% was the largest MIP gap), despite the size of

the test instances. Observe that with formulation (P1), an instance has up to 1,509 binary

variables (average: 920) and 8,961 constraints (average: 7,400). In contrast, instances with

model (P2) contain at most 3,240 binary variables (average: 2,025) and 8,775 constraints

(average: 7,136). Both formulations have the same number of continuous variables, namely

not more than 199,620 variables (average: 88,830).

Although the enhancements proposed in Section 4 do not have a major impact in decreasing

the MIP gap, they are very useful for identifying optimal solutions (see columns 4 and 6 in

Table 7). Furthermore, formulation (P+
1 ) achieves on average lower MIP gaps for instances

with trapezoidal demand rates (scenario 2), while formulation (P+
2 ) provides better MIP gaps

for the other two classes of instances. The enhancements do not necessarily incur an additional

computational burden, as shown in Table 7. On average, shorter computing times are obtained
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Demand ρ # opt sol./# non-opt sol. MIP gap (%)∗ MIP CPU (sec.)

scenario (P1) (P+

1
) (P2) (P+

2
) (P1) (P+

1
) (P2) (P+

2
) (P1) (P+

1
) (P2) (P+

2
)

1 0 22/14 25/11 27/9 27/9 min 0.22 0.29 0.24 0.49 min 1361.7 848.6 235.5 431.6
avg 0.90 0.84 0.68 0.81 avg 19709.4 16875.0 15749.5 15654.7
max 2.18 2.17 1.04 1.34 max 36000.0 36000.0 36000.0 36000.0

1 24/12 26/10 26/10 26/10 min 0.51 0.30 0.30 0.29 min 105.0 119.4 271.9 128.6
avg 1.04 0.75 1.00 0.71 avg 18906.6 15405.3 18347.0 13906.9
max 2.01 1.86 1.62 1.68 max 36000.0 36000.0 36000.0 36000.0

2 28/8 29/7 27/9 29/7 min 0.35 0.30 0.34 0.25 min 85.8 141.2 99.2 81.8
avg 0.71 0.69 0.70 0.58 avg 12726.3 10082.5 11964.4 9588.3
max 1.33 1.49 1.63 1.18 max 36000.0 36000.0 36000.0 36000.0

All 74/34 80/28 80/28 82/26 avg 0.91 0.77 0.80 0.71 avg 17114.1 14121.0 15353.62 13050.0
2 0 20/16 23/13 25/11 30/6 min 0.49 0.13 0.18 0.32 min 107.9 44.9 106.4 58.9

avg 0.81 0.36 0.69 0.95 avg 22728.3 18381.2 20349.7 10935.9
max 1.91 1.00 1.50 1.49 max 36000.0 36000.0 36000.0 36000.0

1 29/7 30/6 29/7 30/6 min 0.31 0.11 0.38 0.33 min 88.5 108.3 221.2 148.3
avg 0.98 0.71 0.96 0.89 avg 9730.2 9812.5 11938.1 10557.2
max 1.41 1.34 1.25 1.26 max 36000.0 36000.0 36000.0 36000.0

2 31/5 31/5 29/7 29/7 min 0.61 0.46 0.34 0.31 min 79.5 113.0 176.2 145.2
avg 0.90 0.75 0.97 0.93 avg 7850.1 8660.3 10832.4 10520.8
max 1.15 0.94 1.33 1.26 max 36000.0 36000.0 36000.0 36000.0

All 80/28 84/24 83/25 89/19 avg 0.87 0.53 0.85 0.92 avg 13436.2 12284.7 14373.4 10671.3
3 0 10/26 11/25 15/21 14/22 min 0.11 0.14 0.07 0.16 min 179.6 531.2 342.5 441.4

avg 1.06 1.12 0.94 0.63 avg 29115.7 28968.7 25655.0 26644.3
max 4.30 4.11 2.44 1.77 max 36000.0 36000.0 36000.0 36000.0

1 9/27 9/27 13/23 14/22 min 0.12 0.13 0.26 0.09 min 4358.8 3407.1 2111.5 3602.8
avg 1.39 1.28 1.45 1.26 avg 32367.4 30781.2 28719.5 28807.6
max 3.13 3.01 3.00 2.66 max 36000.0 36000.0 36000.0 36000.0

2 25/11 28/8 27/9 29/7 min 0.17 0.11 0.15 0.30 min 494.1 372.3 167.8 508.3
avg 1.21 1.28 1.01 1.30 avg 18231.2 17135.2 18481.0 16100.8
max 2.53 3.72 2.03 2.10 max 36000.0 36000.0 36000.0 36000.0

All 44/64 48/60 55/53 57/51 avg 1.23 1.21 1.17 1.00 avg 26571.4 25628.4 24285.2 23850.9

Table 7: Summary of the results obtained under different demand scenarios and varying values for the maximum delivery
delay; ∗instances not solved to optimality within 10 hours
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with model (P+
2 ), mainly due to the fact that fewer instances reach the time limit when this

formulation is chosen.

The maximum allowed delay in demand fulfillment has a significant impact on the perfor-

mance of the four formulations. In particular, more challenging instances are obtained when all

customer demands must be satisfied without incurring lateness. This is reflected in the larger

number of instances not solved to proven optimality when ρ = 0 is imposed, compared to

instances with a positive delivery delay. Increasing the number of periods for satisfying the de-

mand of a customer results in more flexibility for redesigning the facility network, independently

of the demand scenario considered. This aspect will be analyzed in more detail in Section 5.3.

The results shown in Table 7 clearly indicate that instances with inverted trapezoidal demand

rates (scenario 3) are the most difficult to solve within the pre-specified time limit. This is

possibly explained by the need to make more adjustments in the system configuration when this

demand pattern occurs compared to other demand classes. To illustrate this characteristic, we

selected two instances, one from scenario 2 and one from scenario 3, for which the corresponding

optimal solutions are available. Table 8 presents the optimal schedules of facility openings,

facility closures, and capacity adjustments over six strategic periods.

No. of facilities Strategic time periods
Trapezoidal demand rate Inverted trapezoidal demand
(scenario 2) rate (scenario 3)
1 7 13 19 25 31 1 7 13 19 25 31

open 3 4 1 5 2 3
closed 1 1 1 2 1
expanded (new) 1
expanded (existing) 2 2
contracted (new) 3 1
contracted (existing) 1

Table 8: Optimal location and capacity scalability decisions in two instances with |J0| =
150, |J1| = ∅, |Ie| = 3, |In| = 12, and |TL| = 6

In both instances, at the beginning of the time horizon, the capacity available at the three

existing facilities is insufficient to meet the initial demand requirements. As a result, additional

capacity is installed through opening new facilities and expanding the capacity at two existing

locations. While in scenario 2 demand continues to grow until the end of time period 12,

and thus four new facilities are established, in scenario 3 the opposite occurs. This leads to

closing two existing facilities and reducing the capacity of an existing location in time period 7.

From periods 13 to 24, demand rates are relatively regular in both instances. In the instance
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belonging to scenario 3 this leads to a further reduction of the overall capacity in period 13. In

scenario 2, the facility network is also subjected to this type of capacity adjustment but later in

periods 25 and 31, to respond to the decrease in demand in the last phase of the time horizon.

To this end, two of the initially existing facilities are closed and three of the new facilities have

their capacities reduced. In contrast, the last twelve periods coincide with a demand recovery

phase in scenario 3. In this case, five new facilities are opened and the capacity of a previously

established facility is expanded. In total, 16 (18) facility adjustments take place in scenario 2

(scenario 3). It seems that the more configuration changes are required, the more challenging

the problem becomes for CPLEX.

The development of formulation (P2) was motivated by the modeling framework proposed by

Jena et al. [19]. For special variants of the MFLP, including those involving capacity expansion

and reduction, Jena et al. [19] proved that their formulation provides stronger linear relaxation

bounds than other existing models. We are now interested in analyzing if the same dominance

relationship also exists between our formulations (P1) and (P2) (as well as between (P+
1 ) and

(P+
2 )). Table 9 reports the LP gaps obtained for each demand scenario and different values

of ρ in columns 4-7. The LP gap is defined as the relative percentage deviation between the

LP-relaxation bound (zLP ) and the objective value of the best feasible solution available (zUB),

and is determined by (zUB − zLP )/zUB × 100%. Columns 9-12 give the minimum, average

and maximum computing times (in seconds) required by the LP-relaxations of all formulations

(LP CPU). Once again, the best average results with respect to the evaluation criteria are

highlighted in boldface.

As can be seen in Table 9, no dominance relationship can be established for our MFLP

with delayed demand satisfaction. Formulation (P+
1 ) provides the best LP-relaxation bound

for instances with irregular and trapezoidal demand patterns (scenarios 1 and 2), but it is

outperformed by model (P+
2 ) in the third class of instances. Table 9 further reveals that the

LP bounds are always improved with the model enhancements. Moreover, their magnitude is

insensitive to the choice of demand scenario and the length of the delivery delay. An additional

important characteristic of all formulations is that their linear relaxations provide tight lower

bounds. Hence, the LP-bound could be used to assess the quality of a feasible solution obtained,

for example, by a tailored heuristic algorithm. This would be particularly important for large

scale instances, when a near-optimal solution is not achieved within a reasonable time using

a state-of-the-art optimization solver. Regarding the computational effort needed to solve the

linear relaxation, it seems that instances with irregular demand patterns have slightly higher
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Demand ρ LP gap (%) LP CPU (sec.)

scenario (P1) (P+

1
) (P2) (P+

2
) (P1) (P+

1
) (P2) (P+

2
)

1 0 min 1.84 1.83 2.04 1.89 min 0.5 0.9 1.1 2.3
avg 2.96 2.77 3.21 3.05 avg 6.9 18.8 16.5 26.3
max 4.75 4.24 4.94 4.63 max 26.2 79.4 54.7 56.9

1 min 1.11 0.97 1.05 0.80 min 4.8 8.3 5.1 10.4
avg 2.65 2.14 2.68 2.16 avg 33.2 45.7 30.5 46.2
max 4.31 3.84 5.46 4.40 max 108.1 168.3 70.5 174.2

2 min 1.27 0.98 0.96 0.69 min 9.3 12.0 6.3 9.7
avg 2.21 1.81 2.20 1.80 avg 48.9 70.2 45.3 60.6
max 3.74 2.77 3.70 3.30 max 126.4 277.4 133.6 207.2

All avg 2.61 2.24 2.70 2.34 avg 29.7 44.9 30.8 44.4
2 0 min 1.66 1.32 1.23 1.10 min 0.7 0.8 1.7 0.9

avg 2.71 2.07 2.86 2.44 avg 6.3 9.7 15.3 21.3
max 4.12 2.87 4.58 3.73 max 24.1 37.4 36.1 63.4

1 min 0.76 0.71 0.91 0.91 min 6.4 7.4 5.4 8.9
avg 1.97 1.73 2.64 2.46 avg 27.8 41.3 28.9 40.1
max 3.83 3.79 4.64 4.35 max 110.7 111.7 68.7 103.5

2 min 0.75 0.74 1.00 1.00 min 7.5 3.2 6.3 11.0
avg 1.90 1.79 2.60 2.54 avg 48.8 64.6 47.6 69.0
max 3.93 3.84 4.57 4.40 max 129.5 188.8 123.1 172.2

All avg 2.19 1.86 2.70 2.48 avg 27.6 38.5 30.6 43.5
3 0 min 1.26 1.15 0.81 0.81 min 0.6 0.8 0.8 6.8

avg 3.21 3.09 2.91 2.90 avg 7.3 24.4 15.2 26.5
max 4.79 4.66 4.37 4.59 max 22.2 119.6 41.7 63.0

1 min 1.86 1.36 1.42 1.20 min 0.8 3.7 3.1 5.8
avg 3.56 3.14 3.20 2.87 avg 26.6 37.3 27.1 33.0
max 5.62 5.49 5.41 5.46 max 89.2 100.4 79.9 98.4

2 min 0.88 0.77 0.87 0.77 min 5.7 3.8 3.4 3.5
avg 2.69 2.35 2.29 2.07 avg 41.6 47.8 42.7 41.9
max 5.18 5.07 4.79 4.68 max 124.0 119.9 116.6 123.4

All avg 3.15 2.86 2.80 2.61 avg 25.2 36.5 28.3 33.8

Table 9: Performance of the linear relaxation under different demand scenarios and varying
values for the maximum delivery delay

time requirements than instances with trapezoidal demand scenarios. Nevertheless, the range

of CPU times obtained is not significant given the strategic nature of the problem.

Even though formulation (P+
2 ) did not always provide the best MIP gap across all demand

classes, it seems to outperform formulation (P+
1 ) since a larger number of optimal solutions

were obtained and less computing time was required on average (recall Table 7). However, the

differences between these two enhanced models are not so significant as it may appear at first

sight. Figure 1 illustrates the percentage of best solutions that were identified by CPLEX within

the specified time limit. In scenarios 1 and 2, the same high quality solutions are achieved with

both models in most instances. The superiority of formulation (P+
2 ) is only evident for some

instances in scenario 3, namely those with ρ ∈ {0, 1}.
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Inverted trapezoidal 

demand rate (scenario 3)

Irregular demand rate

(scenario 1)

Trapezoidal demand rate 

(scenario 2)

Figure 1: Percentage of instances with identified best solutions

5.3 Managerial implications

The aim of this section is to gain a broader insight into the characteristics of the best solutions

identified by CPLEX. The analysis will help decision-makers to better understand the impact of

permitting delays in demand fulfillment and the trade-offs derived from location and capacity

scalability decisions.

Figure 2 depicts the relative average cost savings that are achieved in each demand scenario

by taking ρ > 0 as opposed to ρ = 0. In each demand class, the average total cost was

determined by considering the objective value of the best feasible solution available for each

instance in that class. As expected, the total cost of redesigning the facility system decreases

as the number of time periods for satisfying the demand of customer segment J1 increases.

This is explained by the trade-off between the high tardiness cost incurred by delayed deliveries

and the lower requirement for location and capacity investments. Since CPLEX identified the

least number of optimal solutions in instances belonging to scenario 3, the actual relative cost

savings may be lower in this class than the values displayed in Figure 2. Interestingly, setting

ρ = 2 does not have a significant impact on the total cost benefit compared to ρ = 1 in

scenarios 1 and 2. Further insights on this characteristic are provided in Table 10, which

reports the relative contribution of different cost categories to the average total cost in each

demand class and for different values of parameter ρ. Relative fixed costs are given separately
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maximum allowed delay for demand satisfaction in customer segment J1 ( )

Figure 2: Average cost savings compared to base case (no delivery delay)

for new facilities (columns 4-6) and initially existing locations (columns 7-10). Moreover, the

relative contribution of the variable costs is also presented in columns 11-13. The last column

indicates the relative average amount of demand that is delivered with delay to customers in

segment J1.

When late deliveries are not allowed, the overall capacity available in a time period must

be sufficient to cover all customer orders occurring in that particular period. This results in

a larger relative spending on establishing new facilities and consequently, the relative cost of

operating the new facilities also increases. At the same time, the higher facility investment is

partly abated by a lower distribution cost since service is provided from more locations. This is

a typical trade-off that is made when a facility network is redesigned.

In the context of delivery delays (i.e. ρ > 0), more emphasis is given to adjusting the capacity

of operating facilities, especially at existing locations, rather than opening new facilities. This

strategy results in higher maintenance costs at existing facilities due to the expansion of their

capacities. Furthermore, the relative importance of the distribution cost also increases as

expected, since fewer locations are operational. Interestingly, expenditures incurred by facility

closures and capacity contractions are not significant. The total tardiness penalty cost also has

a small relative contribution to the overall cost (0.4-1.2%). Naturally, when the delivery lead

time increases for customers in segment J1, also more demand is satisfied with some delay.

From a managerial perspective, information on the capacity utilization levels of operational

facilities is important since it gives insight on the overall slack capacity available. For each de-
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Demand ρ % of total cost % delayed
scenario New facilities Initially existing facilities Tardiness demand∗

Opening Maint. Expansion Contraction Closing Maint. Expansion Contraction Processing Distribution penalty
cost cost cost cost cost cost cost cost cost cost cost

1 0 4.1 25.6 - 0.1 0.3 8.7 0.5 - 24.9 35.7 - -
1 3.5 21.3 - 0.1 0.3 9.3 0.6 - 26.2 38.2 0.6 21.0
2 3.2 19.9 - - 0.3 9.9 0.6 - 26.4 38.6 1.0 30.8

2 0 3.1 21.0 - 0.1 0.2 8.2 0.4 - 21.7 45.2 - -
1 3.0 18.4 - 0.1 0.3 7.7 0.5 - 22.3 47.1 0.5 15.0
2 3.0 18.1 - 0.1 0.3 7.8 0.6 - 22.3 47.2 0.6 18.4

3 0 7.0 39.2 2.0 0.5 0.3 5.6 0.6 - 21.7 23.0 - -
1 7.0 34.4 1.4 0.3 0.3 6.4 0.8 0.1 23.7 25.3 0.4 19.8
2 7.1 31.8 1.0 0.2 0.3 6.9 0.9 0.1 24.3 26.1 1.2 32.4

Table 10: Average cost rates under different demand scenarios and varying values for the maximum delivery delay; ∗average
over demand of customer segment J1
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mand scenario, columns 3-8 in Table 11 indicate the minimum, average and maximum capacity

utilization rates at new facilities and existing locations that are associated with a specific value

for the maximum allowed delivery delay. In addition, Table 11 also presents the mean number

of new facilities (column 9), the mean number of closed facilities (column 10), and the mean

number of facilities that undergo capacity adjustments over the time horizon (columns 11-14).

The impact of a positive delivery lead time is reflected in a higher mean capacity usage. In all

demand classes, this situation follows from fewer facilities being opened and more operational

facilities having their capacity adjusted, either through expansion or contraction. However,

when predicted variations in demand are more pronounced, as is the case in scenarios 2 and 3,

it becomes increasingly more difficult to maintain a very high capacity utilization rate.

The highest level of slack capacity is achieved for ρ = 0. This is the price that must be paid

for not permitting lateness in demand fulfillment, especially when large demand fluctuations

occur over time (scenarios 2 and 3). Finally, Table 11 shows that redesigning a facility network

under inverted trapezoidal demand rates (scenario 3) calls for more changes in the choice of

facility locations and in their capacities in the course of the planning horizon. The examples

previously presented in Table 8 already indicated this feature, which also yields more challenging

instances.

6 Conclusions

In this article, we studied a problem that integrates three important network design decisions

over a finite planning horizon: the location of facilities, the adjustment of capacity at existing

sites and new locations, and the distribution of a product from operating facilities to customers

taking into account the sensitivity of each individual customer to delivery lead times. More-

over, different time scales for strategic decisions (i.e. location and capacity scalability) and

tactical decisions (i.e. demand allocation) were also considered. We proposed two MILP formu-

lations for this new and important variant of the MFLP and developed additional inequalities

to strengthen their linear relaxations. Computational testing on randomly generated instances

using CPLEX indicated that the performance of all formulations is impacted by the shape of the

demand distribution and the extent to which predicted demand variations occur over time. The

performance of one of the enhanced models seems to be slightly superior to the other models

since optimal solutions could be identified for more test instances and less computing time was

required. It is noteworthy, however, that when optimality could not be proven, a small MIP gap
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Demand ρ Capacity usage (%) No. of facilities No. of facilities with capacity adjustments
scenario new facilities existing facilities new closed new existing

min avg max min avg max expansion contraction expansion contraction
1 0 64.2 76.7 84.0 61.7 77.2 88.9 5.6 2.1 - 2.5 1.6 1.0

1 78.2 89.4 97.4 61.9 86.2 99.6 4.5 1.9 - 1.4 1.5 1.1
2 82.2 91.7 98.2 64.6 91.1 100.0 4.1 1.8 - 1.1 1.5 1.0

2 0 63.8 75.1 83.9 49.7 64.2 79.3 6.0 1.8 - 2.4 1.7 1.1
1 76.2 85.3 93.2 75.8 79.5 87.0 5.5 2.4 - 2.3 1.8 1.0
2 76.5 86.1 93.3 75.7 75.7 75.7 5.4 2.5 - 2.2 1.9 1.0

3 0 41.0 55.4 80.1 25.1 52.1 91.9 9.2 2.2 3.7 4.9 1.5 1.6
1 44.4 66.4 92.9 34.3 64.1 93.8 8.6 2.3 2.8 3.0 1.7 2.0
2 51.2 71.8 96.0 44.1 67.3 94.8 8.4 2.2 2.2 2.4 1.8 1.8

Table 11: Average capacity utilization rates and average number of facilities undergoing capacity adjustments
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was obtained with all formulations. Our empirical study also indicated that cost savings and

higher capacity utilization levels are achieved when delays in demand satisfaction are permitted.

In this case, gradual changes in the network configuration are mainly determined by dynamically

adjusting the capacities of operating facilities. The flexibility provided by positive delivery lead

times to redesign a facility network is also reflected in lower computational effort.

A future research venue would be to examine our problem within a stochastic environment

in order to explicitly account for the inherently uncertain nature of some parameters such as

future customer demands and costs. In this context, the expected value of perfect information

(EVPI) is an important measure of the gain obtained if complete and accurate information

on the future were available at the moment decisions are made. To obtain the EVPI it is

required to solve the deterministic counterpart for a finite set of scenarios. In that respect,

our study makes an important contribution towards developing a deeper understanding of the

deterministic problem.
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Appendix: Data generation

Test instances were generated using a random procedure based on that proposed by Correia

and Melo [8] for a particular case of the problem that we study. In what follows, we denote

by U [a, b] the generation of random numbers over the range [a, b] according to a continuous

uniform distribution. The generation of random integer values in the same interval is denoted

by I[a, b]. Table 12 describes how the capacity and demand parameters were obtained.

The generation of the variable costs relies on two random real numbers, β1 and β2, in the

range 1.01 to 1.03 (details are given next).
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Parameter Value
ρj 1, 2 j ∈ J1

ni 5 i ∈ I
qi I[1, ni] i ∈ Ie

Q
1

ni |I|
U [2, 3]

∑

j∈J

∑

t∈T dtj

|T | i ∈ In

Table 12: Selected parameters

• For i ∈ I and j ∈ J , the variable distribution costs are set according to

c1ij = U [5, 10]

ctij = c1ij t = 2, . . . , 12

ctij = β1 c
12
ij t = 13, . . . , 24

ctij = β2 c
24
ij t = 25, . . . , 36.

It is assumed that the distribution costs are constant over one year (12 time periods) but

they increase between 1% and 3% from one year to the next.

• The variable processing costs at the facilities are generated in order to reflect economies

of scale by considering the number of modular units that are available at a particular

location. Hence, the larger the capacity size, the lower the corresponding processing cost

per unit of product. For i ∈ I, we set

o1i1 = 100 /
√
Q t = 1, . . . , 12

otik = 0.9 otik−1 t = 1, . . . , 12; k = 2, . . . , ni

otik = β1 o
12
ik t = 13, . . . , 24; k = 1, . . . , ni

otik = β2 o
24
ik t = 25, . . . , 36; k = 1, . . . , ni.

Cost fluctuations follow a pattern similar to that of the variable distribution costs.

We now describe how the fixed cost parameters were obtained.

• The fixed costs of opening new facilities at candidate sites i ∈ In reflect economies of

scale by taking into account the number of modular units with which the facilities are

opened. In the first time period, these costs are set according to

FO1
ik = αi + γi

√
k Q αi ∈ [500, 1000]; γi ∈ [4000, 6000]; k = 1, . . . , ni.
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In the remaining strategic periods ℓ ∈ TL \ {1}, we take FOℓ
ik = β|TL| FOℓ−1

ik for every

k = 1, . . . , ni. For |TL| = 3, we set β|TL| = U [1.01, 1.03] and for |TL| = 6, we consider

β|TL| = U [
√
1.01,

√
1.03 ].

• By taking γi ∈ [4000, 6000], the fixed capacity expansion and contraction costs are

determined as follows.

FE1
ik = γi

√
k Q i ∈ I; k = 1, . . . , ni − 1

FR1
ik = 0.2 FE1

ik i ∈ I; k = 1, . . . , ni − 1.

Although capacity expansion or contraction is not permitted at a candidate site in the

first strategic period, we generate the corresponding fixed costs for this period since they

are required to obtain the costs in the following period. For all periods ℓ ∈ TL \ {1}, we
use the same procedure as described above for the generation of the fixed opening costs.

• Fixed closing costs at existing facilities correspond to 20% of the opening costs:

FCℓ
ik = 0.2 FOℓ

ik i ∈ Ie; k = 1, . . . , ni; ℓ ∈ TL \ {1}.

• Fixed facility maintenance costs correspond to 20% of the associated opening costs.

MCt
ik = 0.2 FOℓ

ik i ∈ I; k = 1, . . . , ni; ℓ ∈ TL;

t = ℓ, . . . , t′; t′ ∈ T : t′ < ℓ+ 1.

Finally, we adapt the procedure developed by Correia and Melo [8] to select the tardiness

penalty costs for orders delivered with delay to customers j ∈ J1. These variable cost param-

eters result from combining the average maintenance, distribution, and processing costs in the

following way:

ptt
′

j = 0.1 θtj (t
′ − t)2 t ∈ T ; t′ = t, . . . ,min{t+ ρj , |T |} (59)

with

θtj =

∑

i∈I

ni
∑

k=1

M t
ik

TDt |I|
∑

i∈I

ni

+

∑

i∈I

ctij

|I| +

∑

i∈I

ni
∑

k=1

otik

|I| ∑
i∈I

ni
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and TDt denoting the total quantity demanded in period t, that is, TDt =
∑

j∈J d
t
j.
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