
Perea, Andrés; Kets, Willemien

Working Paper

When do types induce the same belief hierarchy?

Discussion Paper, No. 1586

Provided in Cooperation with:
Kellogg School of Management - Center for Mathematical Studies in Economics and Management
Science, Northwestern University

Suggested Citation: Perea, Andrés; Kets, Willemien (2015) : When do types induce the same belief
hierarchy?, Discussion Paper, No. 1586, Northwestern University, Kellogg School of Management,
Center for Mathematical Studies in Economics and Management Science, Evanston, IL

This Version is available at:
https://hdl.handle.net/10419/146989

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/146989
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


CMS-EMS 
Center for Mathematical Studies in Economics 

And Management Science 

Discussion Paper #1586

"When Do Types Induce the Same Belief Hierarchy?"

  Andres Perea and Willemien Kets

Northwestern University 

December 13, 2015



When Do Types Induce the Same Belief Hierarchy?∗

Andrés Perea† Willemien Kets‡

First version: January 2014

This version: December 13, 2015

Abstract

Type structures are a simple device to describe higher-order beliefs. But how can we

check whether two types generate the same belief hierarchy? This paper generalizes the

concept of a type morphism and shows that one type structure is contained in another if and

only if the former can be mapped into the other using a generalized type morphism. Hence,

every generalized type morphism is a hierarchy morphism and vice versa. Importantly,

generalized type morphisms do not make reference to belief hierarchies. We use our results

to characterize the conditions under which types generate the same belief hierarchy.

JEL Classification: C72

Keywords: Types, belief hierarchies, epistemic game theory, morphisms.

∗This paper is a substantially revised version of an earlier paper with the same title by Andrés Perea. We

would like to thank Pierpaolo Battigalli, Eddie Dekel, Amanda Friedenberg, Christian Nauerz, Miklós Pintér and

Elias Tsakas for very useful comments on the earlier version.
†EpiCenter and Department of Quantitative Economics, Maastricht University. E-mail:

a.perea@maastrichtuniversity.nl. Web: http://www.epicenter.name/Perea/
‡MEDS, Kellogg School of Management, Northwestern University. E-mail: w-kets@kellogg.northwestern.edu.

Web: http://wkets.org

1



1 Introduction

Higher-order beliefs play a central role in game theory. Whether a player is willing to invest

in a project, for example, may depend on what he thinks that his opponent thinks about the

economic fundamentals, what he thinks that his opponent thinks that he thinks, and so on, up

to arbitrarily high order (e.g. Carlsson and van Damme, 1993). Higher-order beliefs can also

affect economic conclusions in settings ranging from bargaining (Feinberg and Skrzypacz, 2005;

Friedenberg, 2014) and speculative trade (Geanakoplos and Polemarchakis, 1982) to mechanism

design (Neeman, 2004). Higher-order beliefs about actions are central to epistemic character-

izations, for example, of rationalizability (Brandenburger and Dekel, 1987; Tan and Werlang,

1988), Nash equilibrium (Aumann and Brandenburger, 1995; Perea, 2007) and forward induction

reasoning (Battigalli and Siniscalchi, 2002). In principle, higher-order beliefs can be modeled

explicitly, using belief hierarchies. For applications, the type structures introduced by Harsanyi

(1967) provide a simple, tractable modeling device to represent players’ higher-order beliefs.

While type structures provide a convenient way to represent higher-order beliefs, it may be

difficult to check whether types generate the same belief hierarchy. The literature has considered

the following question: given two type structures, T and T ′, is it the case that for every type in

T , there is a type in T ′ that generates the same belief hierarchy? That is, is the type structure T
contained in T ′? The literature has considered two different tests to address this question, one

based on hierarchy morphisms, and one based on type morphisms. Hierarchy morphisms can be

used to give a complete answer to this question: a type structure T is contained in T ′ if and only

if there is a hierarchy morphism from the former to the latter. A problem with this test is that

hierarchy morphisms make reference to belief hierarchies, as we shall see. So, this test requires

us to go outside the purview of type structures. The second test uses type morphisms. Type

morphisms are defined solely in terms of the properties of the type structures. However, the test

based on type morphisms only provides a sufficient condition: if there is a type morphism from

T to T ′, then T is contained in T ′ (Heifetz and Samet, 1998b). But, as shown by Friedenberg

and Meier (2011), the condition is not necessary: it may be that T ′ contains T , yet there is no

type morphism from T to T ′. Friedenberg and Meier also provide a range of conditions under

which the condition is both necessary and sufficient. However, they do not directly address

the question whether there might be an alternate test (which provides conditions that are both

necessary and sufficient) that does not require us to describe the belief hierarchies explicitly.

This paper provides such a test, by generalizing the notion of a type morphism. We show

that a type structure is contained in another if and only if there is a generalized type morphism

from the former to the latter. So, a generalized type morphism is a hierarchy morphism and vice

2



versa. Unlike the definition of hierarchy morphisms, the definition of generalized type morphisms

does not make reference to belief hierarchies. So, this test can be carried out without leaving

the purview of type structures. Using this result, it is straightforward to verify whether two

types generate the same belief hierarchy, as we show.

Hierarchy morphisms are used in a number of different settings. For example, they can be

used to check whether types have the same rationalizable actions (Dekel et al., 2007), and play

an important role in the literature on the robustness to misspecifying the parameter set more

generally; see, e.g., Ely and Peski (2006) and Liu (2009). Hierarchy morphisms are also used to

study the robustness of Bayesian-Nash equilibria to misspecifications of players’ belief hierarchies

(Friedenberg and Meier, 2007; Yildiz, 2009) and in epistemic game theory. The current results

make it possible to study these issues without describing players’ belief hierarchies explicitly,

using that every hierarchy morphism is a generalized type morphism and conversely.

A critical ingredient in the definition of a generalized type morphism is the σ-algebra on

a player’s type set which separates his types if and only if they differ in the belief hierarchy

that they generate. Mertens and Zamir (1985, p. 6) use this σ-algebra to define nonredundant

type structures, and this σ-algebra also plays an important role in the work of Friedenberg and

Meier (2011), where it is used to characterize the conditions under which hierarchy morphisms

and type morphisms coincide. Mertens and Zamir provide a nonconstructive definition of this

σ-algebra, and Friedenberg and Meier show that the σ-algebra defined by Mertens and Zamir

is the σ-algebra generated by the functions that map types into belief hierarchies. We provide

a constructive definition of this σ-algebra, by means of a type partitioning procedure, that does

not make reference to belief hierarchies.

While many of the ingredients that underlie our results are known in some form or another,

we view the contribution of this paper as combining these ideas in a new way to generalize the

concept of a type morphism so that it provides a necessary and sufficient condition for a type

structure to be contained in another that does not refer to belief hierarchies.

A number of papers has shown that the measurable structure associated with type struc-

tures can impose restrictions on reasoning (Brandenburger and Keisler, 2006; Friedenberg, 2010;

Friedenberg and Meier, 2011; Kets, 2011; Friedenberg and Keisler, 2011). This paper contributes

to that literature in two ways. First, we elucidate the connection by constructing the measur-

able structure on type sets that is generated by players’ higher-order beliefs. Second, we provide

tools to easily go from the domain of type structures to the domain of belief hierarchies and vice

versa.

The outline of this paper is as follows. The next section introduces basic concepts. Section

3



3 discusses type morphisms and hierarchy morphisms. Section 4 defines our generalization of

a type morphism, and proves the main result. Section 5 applies this result to characterize the

conditions under which types generate the same belief hierarchy. Section 6 considers the special

case where players have finitely many types. Proofs are relegated to the appendix.

2 Belief Hierarchies and Types

In this section we show how belief hierarchies can be encoded by means of a type structure, and

how every type within a type structure can be “decoded” by deriving a full belief hierarchy from

it.

2.1 Encoding Belief Hierarchies by Type Structures

Consider a finite set of players I. Assume that each player i faces a basic space of uncertainty

(Xi,Σi) where Xi is a set and Σi a σ-algebra on Xi. That is, Xi = (Xi,Σi) is a measurable space.

We assume that Xi is countably generated: there is a countable collection of subsets Eni ⊆ Xi,

n = 1, 2, . . ., such that Σi is the coarsest σ-algebra that contains these subsets. Examples of

countably generated σ-algebras include the discrete σ-algebra on a finite or countable set and the

Borel σ-algebra on a finite-dimensional Euclidean space. The combination X = (Xi,Σi)i∈I of

basic uncertainty spaces is called a multi-agent uncertainty space. The basic space of uncertainty

for player i could, for instance, be the set of opponents’ choice combinations, or the set of

parameters determining the utility functions of the players, or even a combination of the two.

A belief hierarchy for player i specifies a probability measure on Xi – the first-order belief,

a probability measure on Xi and the opponents’ possible first-order beliefs – the second-order

belief, and so on. As is standard, we encode such infinite belief hierarchies by means of type

structures.

For any measurable space (Y, Σ̂), we denote by ∆(Y, Σ̂) the set of probability measures on

(Y, Σ̂). We endow ∆(Y, Σ̂) with the coarsest σ-algebra that contains the sets

{µ ∈ ∆(Y, Σ̂) | µ(E) ≥ p} : E ∈ Σ̂, p ∈ [0, 1].

This is the σ-algebra used in Heifetz and Samet (1998b) and many subsequent papers; it co-

incides with the Borel σ-algebra on ∆(Y, Σ̂) (induced by the weak convergence topology) if Y

is metrizable and Σ̂ is the Borel σ-algebra. Product spaces are endowed with the product σ-

algebra. Given a collection of measurable spaces (Yi,Yi), i ∈ I, write Y for the product σ-algebra⊗
j∈I Yj and Y−i for the product σ-algebra

⊗
j 6=i Yj , where i ∈ I.

4



Definition 2.1. [Type Structure] Consider a multi-agent uncertainty space X = (Xi,Σi)i∈I .

A type structure for X is a tuple T = (Ti,Σ
T
i , bi)i∈I where, for every player i,

(a) Ti is a set of types for player i, endowed with a σ-algebra ΣT
i , and

(b) bi : Ti → ∆(Xi × T−i, Σ̂i) is a measurable mapping that assigns to every type ti a proba-

bilistic belief bi(ti) ∈ ∆(Xi × T−i, Σ̂i) on its basic uncertainty space and the opponents’ type

combinations, where Σ̂i = Σi ⊗ ΣT
−i is the product σ-algebra on Xi × T−i.

Finally, if f : Y → (Y ′,Σ′) is a function from Y to the measurable space (Y ′,Σ′), then σ(f)

is the σ-algebra on Y generated by f , that is, it is the coarsest σ-algebra that contains the sets

{y ∈ Y : f(y) ∈ E} for E ∈ Σ′.

2.2 From Type Structures to Belief Hierarchies

In the previous subsection we have introduced a type structure as a way to encode belief hierar-

chies. We now show how to “decode” a type within a type structure, by deriving the full belief

hierarchy it induces.

Consider a type structure T = (Ti,Σ
T
i , bi)i∈I for X . Then, every type ti within T induces

an infinite belief hierarchy

hTi (ti) = (µT,1i (ti), µ
T,2
i (ti), . . .),

where µT,1i (ti) is the induced first-order belief, µT,2i (ti) is the induced second-order belief, and

so on. We will inductively define, for every n, the nth order beliefs induced by types ti in T ,

building upon the (n− 1)th order beliefs that have been defined in the preceding step.

We start by defining the first-order beliefs. For each player i, define

H1
i := ∆(Xi,Σi)

to be the set of beliefs about Xi, and for every type ti ∈ Ti, define its first-order belief µT,1i (ti)

by

µT,1i (ti)(Ei) := bi(ti)(Ei × T−i) for all Ei ∈ Σi.

Clearly, µT,1i (ti) ∈ ∆(Xi,Σi) for every type ti. Define hT,1i (ti) := µT,1i (ti). The mapping µT,1i

from Ti to H1
i is measurable by standard arguments. For n > 1, suppose the set Hn−1

i has been

defined and that the function hT,n−1i from Ti to Hn−1
i is measurable. Let Σ̂n−1

i be the product

σ-algebra on Xi ××j 6=iHn−1
j , and define

Hn
i := Hn−1

i ×∆(Xi ×Hn−1
−i , Σ̂n−1

i ).

5



For every type ti, define its n-th-order belief µT,ni (ti) by

for all E ∈ Σ̂n−1
i : µT,ni (ti)(E) = bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, hT,n−1−i (t−i)) ∈ E}),

with hT,n−1−i (t−i) = (hT,n−1j (tj))j 6=i. Since hT,n−1j is measurable for every player j, µT,ni is indeed

a probability measure on (Xi ×Hn−1
−i , Σ̂n−1

i ). Define hT,ni (ti) := (hT,n−1i (ti), µ
T,n
i (ti)). It follows

that hT,ni (ti) ∈ Hn
i . Moreover, hT,ni is measurable.

Finally, for every type ti ∈ Ti, we denote by

hTi (ti) := (µT,ni (ti))n∈N

the belief hierarchy induced by type ti in T . Also, define Hi to be the set ∆(Xi)××n≥1∆(Xi×
Hn
−i) of all belief hierarchies. We say that two types, ti and t′i, of player i generate the same belief

hierarchy if hTi (ti) = hTi (t′i). Types ti and t′i generate the same nth-order belief if µT,ni (ti) =

µT,ni (t′i).
1

3 Hierarchy and Type Morphisms

The literature has considered two concepts that map type structures into each other, type

morphisms and hierarchy morphisms. Throughout the remainder of the paper, fix two type

structures, T = (Ti,Σ
T
i , bi)i∈I and T ′ = (T ′i ,Σ

T ′
i , b

′
i)i∈I on X . The functions that map types

from T and T ′ into belief hierarchies are denoted by hTi and hT
′

i , respectively.

Definition 3.1. [Hierarchy Morphism] For each player i ∈ I, let ϕi be a function from Ti

to T ′i such that for every type ti ∈ Ti, hT
′

i (ϕi(ti)) = hTi (ti). Then, ϕi is a hierarchy morphism

(from T to T ′). With some abuse of notation, we refer to the profile (ϕi)i∈I as a hierarchy

morphism.

So, if there is a hierarchy morphism between T and T ′, then every type in T can be mapped

into a type in T ′ in a way that preserves belief hierarchies. We say that the type structure T ′

contains T if, and only if, there is a hierarchy morphism from T to T ′.
Type morphisms are mappings between type structures that preserve beliefs.

Definition 3.2. [Type Morphism] For each player i ∈ I, let ϕi be a function from Ti to T ′i
that is measurable with respect to ΣT

i and ΣT
′

i .2 Suppose that for each player i, type ti ∈ Ti,
1Clearly, ti and t′i generate the same nth-order belief if and only if hT,n

i (ti) = hT,n
i (t′i).

2That is, for each E ∈ ΣT ′
i , we have {ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT

i .

6



and E ∈ Σi ⊗ ΣT ′
−i,

bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, ϕ−i(t−i)) ∈ E}) = b′i(ϕi(ti))(E). (1)

Then, ϕ := (ϕi)i∈I is a type morphism (from T to T ′).

Heifetz and Samet (1998b) have shown that one type structure is contained in another

whenever there is a type morphism from the former to the latter.

Proposition 3.3. (Heifetz and Samet, 1998b, Prop. 5.1) If ϕ is a type morphism from

T to T ′, then it is a hierarchy morphism. So, if there is a type morphism from T to T ′, then

T ′ contains T .

Unlike hierarchy morphisms, type morphisms do not make reference to belief hierarchies.

So, to check whether there is a type morphism from one type structure to another, we need to

consider only the type structures. However, the condition that there be a type morphism from

one type structure to another provides only a sufficient condition for the former to be contained

in the latter. Indeed, Friedenberg and Meier (2011) show that the condition is not necessary:

there are type structures such that one is contained in the other, yet there is no type morphism

between the two.

4 Generalized Type Morphisms

Type morphisms require beliefs to be preserved for every event in the types’ σ-algebra. However,

for two types to generate the same belief hierarchy, it suffices that their beliefs are preserved

only for events that can be described in terms of players’ belief hierarchies. We use this insight

to define generalized type morphisms and show that a type structure contains another if and

only if there is a generalized type morphism from the latter to the former.

The first step is to define the relevant σ-algebra. Mertens and Zamir (1985, p. 6) provide

the relevant condition. We follow the presentation of Friedenberg and Meier (2011).

Definition 4.1. (Friedenberg and Meier, 2011, Def. 5.1) Fix a type structure T and fix

a sub-σ algebra Σ̃T
i ⊆ ΣT

i for each player i ∈ I. Then, the product σ-algebra Σ̃T is closed under

T if for each player i,

{ti ∈ Ti | bi(ti)(E) ≥ p} ∈ Σ̃T
i

for all E ∈ Σi ⊗ Σ̃T
−i and p ∈ [0, 1].

7



The coarsest (sub-)σ algebra that is closed under T is of special interest, and we denote it

by FT =
⊗

i∈I FTi . It is the intersection of all σ-algebras that are closed under T .3 Mertens

and Zamir use this σ-algebra to define nonredundant type spaces, and Friedenberg and Meier

use it to characterize the condition under which a hierarchy morphism is a type morphism.

Friedenberg and Meier (2011) provide a characterization of the σ-algebra FT in terms of the

hierarchy mappings. Recall that σ(hTi ) is the σ-algebra on Ti generated by the mapping hTi .

That is, σ(hTi ) is the coarsest σ-algebra that contains the sets

{ti ∈ Ti | hTi (ti) ∈ E} : E ⊆ Hi measurable.

Lemma 4.2. (Friedenberg and Meier, 2011, Lemma 6.4) Let the product σ-algebra FT

be the coarsest σ-algebra that is closed under T . Then, for each player i, FTi = σ(hTi ).

We are now ready to define generalized type morphisms.

Definition 4.3. [Generalized Type Morphism] For each player i ∈ I, let ϕi be a function

from Ti to T ′i that is measurable with respect to ΣT
i and FT ′i .4 Suppose that for each player i,

type ti ∈ Ti, and E ∈ Σi ⊗FT
′
−i,

bi(ti)({(xi, t−i) ∈ Xi × T−i | (xi, ϕ−i(t−i)) ∈ E}) = b′i(ϕi(ti))(E).

Then, ϕ := (ϕi)i∈I is a generalized type morphism (from T to T ′).

Like type morphisms, generalized type morphisms are defined using the language of type

structures alone; the definition does not make reference to belief hierarchies. The difference

between type morphisms and generalized type morphisms is that the former requires beliefs to

be preserved for all events in the σ-algebra Σi
⊗

ΣT ′
−i for player i, while the latter requires beliefs

to be preserved only for events in the σ-algebra Σi
⊗
FT ′−i, and this σ-algebra is a coarsening of

Σi
⊗

ΣT ′
−i (Definition 4.1 and Lemma 4.2).

Our main result states that one structure is contained in another if and only if there is a

generalized type morphism from the former to the latter.

Theorem 4.4. A mapping ϕ is a hierarchy morphism from T to T ′ if and only if it is a

generalized type morphism from T to T ′. Hence, a type structure T ′ contains T if and only if

there is a generalized type morphism from T to T ′.
3Since ΣT is closed under T (by measurability of the belief maps bi), the intersection is nonempty. It is easy

to verify that the intersection is a σ-algebra.
4That is, for each E ∈ FT ′

i , we have {ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT
i .

8



This result establishes an equivalence between generalized type morphisms and hierarchy

morphisms. It thus provides a test that can be used to verify whether one type structure is

contained in the other that does not refer to belief hierarchies.

While the characterization in Theorem 4.4 does not make reference to belief hierarchies, the

result may not be easy to apply directly. The σ-algebras FTi are defined as the intersection of

σ-algebras that are closed under T , and there can be (uncountably) many of those. We next

define a simple procedure to construct this σ-algebra.

Procedure 1. [Type Partitioning Procedure] Consider a multi-agent uncertainty space

X = (Xi,Σi)i∈I , and a type structure T = (Ti,Σ
T
i , bi)i∈I for X .

Initial step. For every player i, let ST,0i = {Ti, ∅} be the trivial σ-algebra of his set of types Ti.

Inductive step. Suppose that n ≥ 1, and that the sub-σ algebra ST,n−1i on Ti has been defined

for every player i. Then, for every player i, let ST,ni be the coarsest σ-algebra that contains the

sets

{ti ∈ Ti | bi(ti)(E) ≥ p}

for all E ∈ Σi⊗ST,n−1−i and all p ∈ [0, 1]. Also, let ST,∞i be the σ-algebra generated by the union⋃
n S

T,n
i .

A simple inductive argument shows that ST,ni refines ST,n−1i for all players i and all n; clearly,

ST,∞i refines ST,ni for any n. The next result shows that the type partitioning procedure delivers

the σ-algebras that are generated by the hierarchy mappings.

Proposition 4.5. Fix a type structure T and let i ∈ I. Then, ST,∞i = σ(hTi ) and ST,ni = σ(hT,ni )

for all n ≥ 1. So, ST,∞i = FTi .

Hence, we can use the type partitioning procedure to construct the σ-algebras which we need

for our characterization result (Theorem 4.4). Heifetz and Samet (1998a) consider a similar

procedure in the context of knowledge spaces to show that a universal space does not exist

for that setting. The procedure also has connections with the construction in Kets (2011) of

type structures that describe the beliefs of players with a finite depth of reasoning. In the next

section, we use Theorem 4.4 and the type partitioning procedure to characterize the types that

generate the same belief hierarchies.

5 Characterizing Types With the Same Belief Hierarchy

We can use the results in the previous section to provide simple tests to determine whether two

types – from the same type structure or from different structures – generate the same belief

9



hierarchy. To state the result, recall that an atom of a σ-algebra Σ on a set Y is a set a ∈ Σ

such that Σ does not contain a nonempty proper subset of a. That is, for any a′ ∈ Σ such that

a′ ⊆ a, we have a′ = a or a′ = ∅.5

Lemma 5.1. Let i ∈ I and n ≥ 1. The σ-algebras ST,ni and ST,∞i are atomic. That is, for each

ti ∈ Ti, there are atoms ani (ti) and a∞i (ti) in ST,ni and ST,∞i , respectively, such that ti ∈ ani (ti)

and ti ∈ a∞i (ti).

This result motivates the name “type partitioning procedure”: the procedure constructs a

σ-algebra that partitions the type sets into atoms. Proposition 5.2 shows that these atoms

contain precisely the types that generate the same higher-order beliefs.

Proposition 5.2. For every player i, every n ≥ 1, and every two types ti, t
′
i ∈ Ti, we have that

(a) for every n ≥ 0, types ti and t′i generate the same nth-order belief if and only if there is an

atom ani ∈ Sni such that ti, t
′
i ∈ ani ;

(b) types ti and t′i generate the same belief hierarchy if and only if there is an atom a∞i ∈ S
T,∞
i

such that ti, t
′
i ∈ a∞i .

There is a connection between Proposition 5.2 and the work of Mertens and Zamir (1985).

Mertens and Zamir define a type structure T to be nonredundant if for every player i, the σ-

algebra FTi separates types; see Liu (2009, Prop. 2) for a result that shows that this definition

is equivalent to the requirement that there are no two types that generate the same belief

hierarchy. So, Mertens and Zamir already note the connection between the separating properties

of FT and the question whether types generate the same belief hierarchy. The contribution of

Proposition 5.2 is to provide a simple procedure to construct the σ-algebra FT , and to show

that the separating sets can be taken to be atoms (as long as the σ-algebra on Xi is countably

generated).

Proposition 5.2 can also be used to verify whether two types from different type structures

generate the same higher-order beliefs, by merging the two structures. Specifically, consider two

different type structures, T 1 = (T 1
i ,Σ

1
i , b

1
i )i∈I and T 2 = (T 2

i ,Σ
2
i , b

2
i )i∈I , for the same multi-agent

uncertainty space X = (Xi,Σi)i∈I . To check whether two types t1i ∈ T 1
i and t2i ∈ T 2

i induce the

same belief hierarchy, we can merge the two type structures into one large type structure, and

then run the type partitioning procedure on this larger type structure. That is, define the type

structure T ∗ = (T ∗i ,Σ
∗
i , b
∗
i )i∈I as follows. For each player i, let T ∗i := T 1

i ∪ T 2
i , and define the

5Clearly, for any y ∈ Y , if there is an atom a that contains y (i.e., y ∈ a), then this atom is unique.

10



σ-algebra Σ∗i on T ∗i by

E ∈ Σ∗i if and only if E ∩ T 1
i ∈ Σ1

i and E ∩ T 2
i ∈ Σ2

i .

Also, define b∗i by

b∗i (ti) :=

{
b1i (ti), if ti ∈ T 1

i

b2i (ti), if ti ∈ T 2
i

for all types ti ∈ Ti.6 Applying the type partitioning procedure on T ∗ gives a σ-algebra S∗,∞i
on T ∗i for each player i. If t1i ∈ T 1

i and t2i ∈ T 2
i belong to the same atom of S∗,∞i , then t1i and

t2i induce the same belief hierarchy. The converse also holds, and hence we obtain the following

result.

Proposition 5.3. Consider two type structures T 1 = (T 1
i ,Σ

1
i , b

1
i )i∈I and T 2 = (T 2

i ,Σ
2
i , b

2
i )i∈I .

Let T ∗ = (T ∗i ,Σ
∗
i , b
∗
i )i∈I be the large type structure defined above, obtained by merging the two

type structures, and let S∗,∞i , for a given player i, be the σ-algebra on T ∗i generated by the type

partitioning procedure. Then, two types t1i ∈ T 1
i and t2i ∈ T 2

i induce the same belief hierarchy,

if and only if, t1i and t2i belong to the same atom of S∗,∞i .

The type partitioning procedure is thus an easy and effective way to check whether two

types, from possibly different type structures, generate the same belief hierarchy or not.

We expect our main results to apply more broadly. The proofs can easily be modified so

that the main results extend to conditional probability systems in dynamic games (Battigalli

and Siniscalchi, 1999), lexicographic beliefs (Blume et al., 1991), beliefs of players with a finite

depth of reasoning (Kets, 2011; Heifetz and Kets, 2013), and the ∆-hierarchies introduced by

Ely and Peski (2006).

6 Finite Type Structures

When type structures are finite, our results take on a particularly simple and intuitive form.

Say that a type structure T is finite if the type set Ti is finite for every player i. For finite type

structures, we can replace σ-algebras by partitions.

We first define the type partitioning procedure for the case of finite type structures. A finite

partition of a set A is a finite collection P = {P1, . . . , PK} of nonempty subsets Pk ⊆ A such

6This is with some abuse of notation, since b∗i is defined on Xi × T ∗−i, while b1i and b2i are defined on Xi × T 1
−i

and Xi×T 2
−i, respectively. By defining the σ-algebra ΣT∗

j on T ∗j as above, the extension of b1i and b2i to the larger

domain is well-defined.

11



that
⋃K
k=1 Pk = A and Pk ∩ Pm = ∅ whenever k 6= m. We refer to the sets Pk as equivalence

classes. For an element a ∈ A, we denote by P(a) the equivalence class Pk to which a belongs.

The trivial partition of A is the partition P = {A} containing a single set – the full set A. For

two partitions P1 and P2 on A, we say that P1 is a refinement of P2 if for every set P 1 ∈ P1

there is a set P 2 ∈ P2 such that P 1 ⊆ P 2.

In the procedure we recursively partition the set of types of an agent into equivalence classes

– starting from the trivial partition, and refining the previous partition with every step – until

these partitions cannot be refined any further. We show that the equivalence classes produced

in round n contain exactly the types that induce the same n-th order belief. In particular,

the equivalence classes produced at the end contain precisely those types that induce the same

(infinite) belief hierarchy.

Procedure 2 (Type Partitioning Procedure (finite type structures)). Consider a multi-agent

uncertainty space X = (Xi,Σi)i∈I , and a finite type structure T = (Ti,Σ
T
i , bi)i∈I for X .

Initial step. For every agent i, let P0
i be the trivial partition of his set of types Ti.

Inductive step. Suppose that n ≥ 1, and that the partitions Pn−1i have been defined for every

agent i. Then, for every agent i, and every ti ∈ Ti,

Pni (ti) = {t′i ∈ Ti | bi(t′i)(Ei × Pn−1−i ) = bi(ti)(Ei × Pn−1−i ) (2)

for all Ei ∈ Σi, and all Pn−1−i ∈ P
n−1
−i }.

The procedure terminates at round n whenever Pni = Pn−1i for every agent i.

In this procedure, Pn−1−i is the partition of the set T−i induced by the partitions Pn−1j on Tj .

Again, it follows from a simple inductive argument that Pni is a refinement of Pn−1i for every

player i and every n. Note that if the total number of types, viz.,
∑

i∈I |Ti|, equals N , then

the procedure terminates in at most N steps. We now illustrate the procedure by means of an

example.

Example 1. Consider a multi-agent uncertainty space X = (Xi,Σi)i∈I where I = {1, 2},
X1 = {c, d}, X2 = {e, f}, and Σ1,Σ2 are the discrete σ-algebras on X1 and X2, respectively.

Consider the type structure T = (T1, T2,Σ1,Σ2, b1, b2) in Table 1.

Here, b1(t1) = 1
2(c, t2) + 1

2(d, t′2) means that type t1 assigns probability 1
2 to the pair

(c, t2) ∈ X1 × T2, and probability 1
2 to the pair (d, t′2) ∈ X1 × T2. Similarly for the other

types in the table. We will now run the Type Partitioning Procedure.

12



Type structure T = (T1, T2, b1, b2)

T1 = {t1, t′1, t′′1}, T2 = {t2, t′2, t′′2}

b1(t1) = 1
2(c, t2) + 1

2(d, t′2)

b1(t
′
1) = 1

6(c, t2) + 1
3(c, t′′2) + 1

2(d, t′2)

b1(t
′′
1) = 1

2(c, t′2) + 1
2(d, t′′2)

b2(t2) = 1
4(e, t1) + 1

2(e, t′1) + 1
4(f, t′′1)

b2(t
′
2) = 1

8(e, t1) + 1
8(e, t′1) + 3

4(f, t′′1)

b2(t
′′
2) = 3

8(e, t1) + 3
8(e, t′1) + 1

4(f, t′′1)

Table 1: The type structure from Example 1.

Initial Step. Let P0
1 be the trivial partition of the set of types T1, and let P0

2 be the trivial

partition of the set of types T2. That is,

P0
1 = {{t1, t′1, t′′1}} and P0

2 = {{t2, t′2, t′′2}}.

Round 1. By equation (2),

P1
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × T2) = b1(t1)({c} × T2) = 1
2 ,

b1(τ1)({d} × T2) = b1(t1)({d} × T2) = 1
2}

= {t1, t′1, t′′1},

which implies that

P1
1 = P0

1 = {{t1, t′1, t′′1}}.

13



At the same time,

P1
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × T1) = b2(t2)({e} × T1) = 3
4 ,

b2(τ2)({f} × T1) = b2(t2)({f} × T1) = 1
4}

= {t2, t′′2}

which implies that P1
2 (t′2) = {t′2}, and hence

P1
2 = {{t2, t′′2}, {t′2}.

Round 2. By equation (2),

P2
1 (t1) = {τ1 ∈ T1 |

b1(τ1)({c} × {t2, t′′2}) = b1(t1)({c} × {t2, t′′2}) = 1
2 ,

b1(τ1)({c} × {t′2}) = b1(t1)({c} × {t′2}) = 0,

b1(τ1)({d} × {t2, t′′2}) = b1(t1)({d} × {t2, t′′2}) = 0,

b1(τ1)({d} × {t′2}) = b1(t1)({d} × {t′2}) = 1
2}

= {t1, t′1},

which implies that P2
1 (t′′1) = {t′′1}, and hence

P2
1 = {{t1, t′1}, {t′′1}}.

Since P1
1 = P0

1 , we may immediately conclude that

P2
2 = P1

2 = {{t2, t′′2}, {t′2}}.

Round 3. As P2
2 = P1

2 , we may immediately conclude that

P3
1 = P2

1 = {{t1, t′1}, {t′′1}}.

14



By equation (2),

P3
2 (t2) = {τ2 ∈ T2 |

b2(τ2)({e} × {t1, t′1}) = b2(t2)({e} × {t1, t′1}) = 3
4 ,

b2(τ2)({e} × {t′′1}) = b2(t2)({e} × {t′′1}) = 0,

b2(τ2)({f} × {t1, t′1}) = b2(t2)({f} × {t1, t′1}) = 0,

b2(τ2)({f} × {t′′1}) = b2(t2)({f} × {t′′1}) = 1
4}

= {t2, t′′2},

which implies that P3
2 (t′2) = {t′2}, and hence

P3
2 = {{t2, t′′2}, {t′2}} = P2

2 .

As P3
1 = P2

1 and P3
2 = P2

2 , the procedure terminates at round 3. The final partitions of the

types are thus given by

P∞1 = {{t1, t′1}, {t′′1}} and P∞2 = {{t2, t′′2}, {t′2}}.

The reader may check that all types within the same equivalence class indeed induce the same

belief hierarchy. That is, t1 induces the same belief hierarchy as t′1, and t2 induces the same

belief hierarchy as t′′2. Moreover, t1 and t′′1 induce different belief hierarchies, and so do t2 and

t′2. /

Our characterization result for the case of finite type structures states that the type par-

titioning procedure characterizes precisely those groups of types that induce the same belief

hierarchy. We actually prove a little more: we show that the partitions generated in round n of

the procedure characterize exactly those types that yield the same n-th order belief.

Proposition 6.1 (Characterization Result (finite type structures)). Consider a finite type struc-

ture T = (Ti,Σi, bi)i∈I , where Σi is the discrete σ-algebra on Ti for every player i. For every

agent i, every n ≥ 1, and every two types ti, t
′
i ∈ Ti, we have that

(a) hT,ni (ti) = hT,ni (t′i), if and only if, t′i ∈ Pni (ti);

(b) hTi (ti) = hTi (t′i), if and only if, t′i ∈ P∞i (ti).

The proof follows directly from Proposition 5.2, and is therefore omitted. As before, this

result can be used to verify whether two types from different type structures generate the

same belief hierarchies, by first merging the two type structures, and then running the type

partitioning procedure on this “large” type structure.

15



A Proofs

A.1 Proof of Theorem 4.4

By definition, T ′ contains T if and only if there is a hierarchy morphism from T to T ′. So, it

suffices to show that every generalized type morphism is a hierarchy morphism and vice versa.

Part I. Every hierarchy morphism is a generalized type morphism. To show that

every hierarchy morphism is a generalized type morphism, we need to show two things. First,

we need to show that any hierarchy morphism is measurable with respect to the appropriate

σ-algebra. Second, we need to show that beliefs are preserved for the relevant events.

Let us start with the measurability condition. Suppose ϕ is a hierarchy morphism. Let i ∈ I
and E ∈ FT ′i . We need to show that

{ti ∈ Ti | ϕi(ti) ∈ E} ∈ ΣT
i .

Recall that FT ′i = σ(hT
′

i ) (Lemma 4.2). So, there is a measurable subset B of the set Hi of

belief hierarchies such that

E = {t′i ∈ T ′i | hT
′

i (t′i) ∈ B}.

Hence,

{ti ∈ Ti | ϕi(ti) ∈ E} = {ti ∈ Ti | hT
′

i (ϕi(ti)) ∈ B}
= {ti ∈ Ti | hTi (ti) ∈ B},

where the second equality follows from the assumption that ϕ is a hierarchy morphism. By

Lemma 4.2, we have

{ti ∈ Ti | hTi (ti) ∈ B} ∈ FTi .

Since ΣT
i ⊇ FTi (Definition 4.1 and Lemma 4.2), the result follows.

We next ask whether hierarchy morphisms preserve beliefs for the relevant events. Again,

let ϕ be a hierarchy morphism. Let i ∈ I, ti ∈ Ti, and E′ ∈ Σi ⊗FT
′
−i. We need to show that

bi(ti) ◦ (IdXi , ϕ−i)
−1(E′) = b′i(ϕi(ti))(E

′),

where IdXi is the identity function on Xi, and where we have used the notation (f1, . . . , fm)

for the induced function that maps (x1, . . . , xm) into (f1(x1), . . . , fm(xm)), so that bi(ti) ◦

16



(IdXi , ϕ−i)
−1 is the image measure induced by (IdXi , ϕ−i). By a similar argument as before,

there is a measurable subset B′ of the set Xi ×H−i such that

E′ = {(xi, t′−i) ∈ Xi × T ′−i | (xi, hT
′
−i(t

′
−i)) ∈ B′}.

If E′ is an element of Σi ⊗
⊗

j 6=i{T ′j , ∅}, then the result follows directly from the definitions. So

suppose E′ 6∈ Σi ⊗
⊗

j 6=i{T ′j , ∅}. Then, for every n ≥ 1, define

Bn := {(xi, µ1−i, . . . , µn−i) ∈ Xi ×Hn
−i | (xi, µ1−i, . . . , µn−i, µn+1

−i , . . .) ∈ B
′

for some (µn+1
−i , µ

n+2
−i , . . .)}

and

En := {(xi, t′−i) ∈ Xi × T ′−i | (xi, h
T ′,n
−i (t′−i)) ∈ Bn}.

Then, En ⊇ E′ and En ↓ E. Also, we have En ∈ Σi ⊗
⊗

j 6=i σ(hT
′,n

j ) and thus En ∈ Σi ⊗ FT
′
−i

(Lemma 4.2). For every n,

bi(ti) ◦ (IdXi , ϕ−i)
−1(En−1) = bi(ti) ◦ (IdXi , ϕ−i)

−1 ◦ (IdXi , h
T ′,n−1
−i )−1(Bn−1)

= bi(ti) ◦ (IdXi , h
T ′,n−1
−i ◦ ϕ−i)−1(Bn−1)

= µT,ni (ti)(B
n−1)

= b′i(ϕ(ti)) ◦ (IdXi , h
T ′,n−1
−i )−1(Bn−1)

= b′i(ϕ(ti))(E
n−1),

where the penultimate equality uses the definition of a hierarchy morphism. By the continuity

of the probability measures bi(ti) and b′i(ϕi(ti)) (e.g., Aliprantis and Border, 2005, Thm. 10.8),

we have bi(ti) ◦ (IdXi , ϕ−i)
−1(E′) = b′i(ϕi(ti))(E

′), and the result follows.

Part II. Every generalized type morphism is a hierarchy morphism. For the other

direction, that is, to show that every generalized type morphism is a hierarchy morphism,

suppose that ϕ is a generalized type morphism from T = (Ti,Σ
T
i , bi)i∈I to T ′ = (T ′i ,Σ

T ′
i , b

′
i)i∈I .

We can use an inductive argument to show that it is a hierarchy morphism. Let i ∈ I and

ti ∈ Ti. Then, for all E ∈ Σi,

µT
′,1

i (ϕi(ti))(E) = b′i(ϕi(ti))(E × T ′−i)
= bi(ti)(E × T−i)
= µT,1i (ti),

17



where the first and the last equality use the definition of a first-order belief induced by a type,

and the second uses the definition of a generalized type morphism. So, µT,1i (ti) = µT
′,1

i (ϕi(ti))

and thus hT,1i (ti) = hT
′,1

i (ϕi(ti)) for each player i and every type ti ∈ Ti.
For n > 1, suppose that for each player i and every type ti ∈ Ti, we have hT,n−1i (ti) =

hT
′,n−1

i (ϕi(ti)). We will use the notation (f1, . . . , fm) for the induced function that maps

(x1, . . . , xm) into (f1(x1), . . . , fm(xm)), so that µ ◦ (f1, . . . , fm)−1 is the image measure induced

by a probability measure µ and (f1, . . . , fm).

Let E be a measurable subset of Xi × Hn
−i. By Lemma 4.2, we have FT ′j = σ(hT

′
j ); and,

clearly, σ(hT
′

j ) ⊇ σ(hT
′,n−1

j ). So, if we write IdXi for the identity function on Xi, we have

(IdXi , h
T ′,n−1
−i )−1(E) ∈ Σi ⊗FT

′
−i. Then, for every player i and type ti ∈ Ti,

µT
′,n

i (ϕi(ti))(E) = b′i(ϕi(ti)) ◦ (IdXi , h
T ′,n−1
−i )−1(E)

= bi(ti) ◦ (IdXi , h
T ′,n−1
−i )−1 ◦ (IdXi , ϕ−i)

−1(E)

= bi(ti) ◦ (IdXi , ϕ−i ◦ h
T ′,n−1
−i )−1(E)

= bi(ti) ◦ (IdXi , h
T,n−1
−i )−1(E)

= µT,ni (ti)(E),

where the first equality uses the definition of an nth-order belief, the second uses the definition

of a generalized type morphism, the third uses the definition of the composition operator, the

fourth uses the induction hypothesis, and the fifth uses the definition of an nth-order belief

again. Conclude that µT,ni (ti) = µT
′,n

i (ϕi(ti)) and thus hT,ni (ti) = hT
′,n

i (ϕi(ti)) for each player i

and every type ti ∈ Ti.
So, for each player i ∈ I and each type ti ∈ Ti, we have hTi (ti) = hT

′
i (ϕi(ti)), which shows

that ϕ is a hierarchy morphism. �

A.2 Proof of Proposition 4.5

Let i ∈ I. It will be convenient to define hT,0i to be the trivial function from Ti into some singleton

{νi}. So, the σ-algebra σ(hT,0i ) generated by hT,0i is just the trivial σ-algebra S0i = {Ti, ∅}. Next

consider n = 1. Fix player i ∈ I. By definition, σ(hT,1i ) is the coarsest σ-algebra that contains

the sets

{ti ∈ Ti | hT,1i (ti) ∈ E} : E ⊆ H1
i measurable.

It suffices to restrict attention to the generating sets E of the σ-algebra on H1
i = ∆(Xi) (e.g.,

Aliprantis and Border, 2005). So, σ(hT,1i ) is the coarsest σ-algebra that contains the sets

{ti ∈ Ti | hT,1i (ti) ∈ E}

18



where E is of the form {µ ∈ ∆(Xi) | µ(F ) ≥ p} for F ∈ Σi and p ∈ [0, 1]. Using that for each

type ti, h
T,1
i (ti) is the marginal on Xi of bi(ti), we have that σ(hT,1i ) is the coarsest σ-algebra

that contains the sets

{ti ∈ Ti | bi(ti)(E) ≥ p} : E ∈ Σi ⊗ S0−i, p ∈ [0, 1].

That is, σ(hT,1i ) = S1i . In particular, hT,1i is measurable with respect to ST,1i .

For n > 1, suppose, inductively, that for each player i ∈ I, σ(hT,n−1i ) = ST,n−1i , so that

hT,n−1i is measurable with respect to ST,n−1i . Fix i ∈ N . By definition, σ(hT,ni ) is the coarsest

σ-algebra that contains the sets in σ(hT,n−1i ) and the sets

{ti ∈ Ti | µT,ni (ti) ∈ E} : E ⊆ ∆(Xi ×Hn−1
−i ) measurable.

Again, it suffices to consider the generating sets of the σ-algebra on ∆(Xi × Hn−1
−i ). Hence,

σ(hT,ni ) is the coarsest σ-algebra that contains the sets

{ti ∈ Ti | µT,ni (ti)(F ) ≥ p} : F ⊆ Xi ×Hn−1
−i measurable and p ∈ [0, 1].

(Note that this includes the generating sets of σ(hT,n−1i ), given that the nth-order belief induced

by a type is consistent with its (n − 1)th-order belief.) Using the definition of µT,ni and the

induction assumption that ST,n−1−i = σ(hT,n−1−i ), we see that σ(hT,ni ) is the coarsest σ-algebra on

Ti that contains the sets

{ti ∈ Ti | bi(ti)(F ) ≥ p} : F ∈ Σi ⊗ ST,n−1−i , p ∈ [0, 1].

That is, σ(hT,ni ) = ST,ni , and hT,ni is measurable with respect to ST,ni .

So, for each player i and n ≥ 1, σ(hT,ni ) = ST,ni . It follows immediately that σ(hTi ), as the

σ-algebra on Ti generated by the “cylinders” σ(hT,ni ), is equal to ST,∞i . �

A.3 Proof of Lemma 5.1

Let i ∈ I. Recall that Xi is countably generated, that is, there is a countable subset D0
i of Σi

such that D0
i generates Σi (i.e., Σi is the coarsest σ-algebra that contains D0

i ). Throughout this

proof, we write σ(D) for the σ-algebra on a set Y generated by a collection D of subsets of Y .

The following result says that a countable collection of subsets of a set Y generates a count-

able algebra on Y . For a collection D of subsets of a set Y , denote the algebra generated by D

by A(D). So, A(D) is the coarsest algebra on Y that contains D.

19



Lemma A.1. Let D be a countable collection of subsets of a set Y . Then the algebra A(D)

generated by D is countable.

Proof. We can construct the algebra generated by D. Denote the elements of D by Dλ, λ ∈ Λ,

where Λ is a countable index set. Define

A(D) =
{ ⋃
m∈F

⋂
`∈Lm

D`, F a finite subset of N, Lm ⊂ Λ, D` = Ak or D` = Ack for some k
}
, (3)

where Ec is the complement of a set E. That is, A(D) is the collection of finite unions of finite

intersection of elements of D and their complements. We check that A(D) is an algebra. Clearly,

A(D) is nonempty (it contains D) and ∅ ∈ A(D). We next show that A(D) is closed under finite

intersections. Let

A1 :=
⋃

m1∈F1

⋂
`∈L1

m1

D`, A2 :=
⋃

m2∈F2

⋂
`∈L2

m2

D`,

be elements of A(D). Then,

A1 ∩A2 =
⋃

(m1,m2)∈F1×F2

⋂
`1∈L1

m1

⋂
`2∈L2

m2

D`1 ∩D`2 .

Clearly, F1×F2 is finite, and so are the sets L1
m and L2

m. We can thus rewrite A1∩A2 so that it is

of the form as the elements in (3). We can likewise show that A(D) is closed under complements:

let A :=
⋃
m∈F

⋂
`∈Lm

D` ∈ A(D), so that Ac =
⋂
m∈F

⋃
`∈Lm

Dc
` ; then, since

⋃
`∈Lm

Dc
` ∈ A(D)

for every m, we have Ac ∈ A(D). So, A(D) is an algebra that contains D, and it is in fact

the coarsest such one (by construction, any proper subset of A(D) does not contain all finite

intersections of the sets in D and their complements). As D is countable, so is the collection of

the elements in D and their complements; the collections of the finite intersections of such sets

are also countable. Hence, A(D) is countable.

Note that for any p ∈ [0, 1], the set {ti ∈ Ti : bi(ti)(E) ≥ p} can be written as the countable

intersection of sets {ti ∈ Ti : bi(ti)(E) ≥ p`} for some rational p`, ` = 1, 2, . . .. So, by Proposition

4.5, the σ-algebra σ(hT,ni ), n = 1, 2, . . ., on the type set Ti, i ∈ I, is the coarsest σ-algebra that

contains the sets

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ Σi ⊗
⊗
j 6=i

σ(hT,n−1j ), p ∈ Q

We are now ready to prove Lemma 5.1. Fix i ∈ I. By Lemma A.1, the set D0
i generates

a countable algebra A(D0
i ) on Xi. Then, by Proposition 4.5 and by Lemma 4.5 of Heifetz and

20



Samet (1998b), we have that the σ-algebra σ(hT,1i ) is generated by the sets

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ D0
i ⊗

⊗
j 6=i

σ(hT,0j ), p ∈ Q.

Denote this collection of these sets by D1
i , so that σ(hT,1i ) = σ(D1

i ); clearly, D1
i is countable and

A(D1
i ) ⊆ σ(hT,1i ) (so that σ(hT,1i ) = σ(A(D0

i ))).

For m > 1, suppose that for every i ∈ I, the σ-algebra σ(hT,m−1i ) on Ti is generated by

a countable collection Dm−1i of subsets of Ti such that A(Dm−1i ) ⊆ σ(hT,m−1i ). Fix i ∈ I. By

Proposition 4.5 and Lemma 4.5 of Heifetz and Samet (1998b), the σ-algebra σ(hT,mi ) is generated

by the sets

{ti ∈ Ti : bi(ti)(E) ≥ p} : E ∈ D0
i ⊗

⊗
j 6=i

A(Dm−1j ), p ∈ Q.

Denote this collection of these sets by Dmi ; as before, Dmi is clearly countable and A(Dmi ) ⊆
σ(hT,mi ). Again, we have σ(hT,mi ) = σ(Dmi ) = σ(A(Dmi )).

So, we have shown that for every i ∈ I and m = 1, 2, . . ., the σ-algebra σ(hT,mi ) is generated

by a countable collection Dmi of subsets of Ti. The σ-algebra σ(hTi ) is generated by the algebra⋃
m σ(hT,mi ) =

⋃
m σ(Dmi ), or, equivalently, by the union

⋃
mDmi (Proposition 4.5). Since the

latter set, as the countable union of countable sets, is countable, the σ-algebra σ(hTi ) is countably

generated.

It now follows from Theorem V.2.1 of Parthasarathy (2005) that for each player i, the σ-

algebras σ(hT,mi ), m = 1, 2, . . . are atomic in the sense that for each ti ∈ Ti, there is a unique

atom amti in σ(hT,mi ) containing ti; the analogous statement holds for σ(hTi ). �

A.4 Proof of Proposition 5.2

Fix a player i ∈ I. By Proposition 4.5, we have ST,∞i = σ(hTi ) and ST,ni = σ(hT,ni ) for each

n ≥ 1. By Lemma 5.1, the σ-algebras σ(hT,∞i ) and σ(hT,ni ) are atomic for every n ≥ 1. Let

n ≥ 1. Let ti, t
′
i ∈ Ti. Since σ(hT,ni ) is atomic, there exist a unique atom ani (ti) ∈ σ(hT,ni )

such that ti ∈ ani (ti) and a unique atom ani (t′i) ∈ σ(hT,ni ) such that t′i ∈ ani (t′i). Suppose

hT,ni (ti) = hT,ni (t′i). Then for every generating set E of the σ-algebra σ(hT,ni ), either ti, t
′
i ∈ E

or ti, t
′
i 6∈ E. So, ani (ti) = ani (t′i). Suppose hTi (ti) 6= hTi (t′i). Then there is a generating set E

of σ(hT,ni ) that separates ti and t′i, that is, ti ∈ E, t′i 6∈ E. So, ani (ti) 6= ani (t′i). The proof of

the claim that there is a unique atom a∞i in σ(hTi ) that contains both ti and t′i if and only if

hTi (ti) = hTi (t′i) is analogous, and therefore omitted. �

21



References

Aliprantis, C. D. and K. C. Border (2005). Infinite Dimensional Analysis: A Hitchhiker’s Guide

(3rd ed.). Berlin: Springer.

Aumann, R. and A. Brandenburger (1995). Epistemic conditions for Nash equilibrium. Econo-

metrica 63, 1161–1180.

Battigalli, P. and M. Siniscalchi (1999). Hierarchies of conditional beliefs and interactive epis-

temology in dynamic games. Journal of Economic Theory 88, 188–230.

Battigalli, P. and M. Siniscalchi (2002). Strong belief and forward-induction reasoning. Journal

of Economic Theory 106, 356–391.

Blume, L., A. Brandenburger, and E. Dekel (1991). Lexicographic probabilities and choice under

uncertainty. Econometrica 59, 61–79.

Brandenburger, A. and E. Dekel (1987). Rationalizability and correlated equilibria. Economet-

rica 55, 1391–1402.

Brandenburger, A. and H. J. Keisler (2006). An impossibility theorem on beliefs in games.

Studia Logica 84, 211–240.

Carlsson, H. and E. van Damme (1993). Global games and equilibrium selection. Economet-

rica 61, 989–1018.

Dekel, E., D. Fudenberg, and S. Morris (2007). Interim correlated rationalizability. Theoretical

Economics 2, 15–40.

Ely, J. and M. Peski (2006). Hierarchies of beliefs and interim rationalizability. Theoretical

Economics 1, 19–65.

Feinberg, Y. and A. Skrzypacz (2005). Uncertainty about uncertainty and delay in bargaining.

Econometrica 73, 69–91.

Friedenberg, A. (2010). When do type structures contain all hierarchies of beliefs? Games and

Economic Behavior 68, 108–129.

Friedenberg, A. (2014). Bargaining under strategic uncertainty. Working paper, Arizona State

University.

22



Friedenberg, A. and H. J. Keisler (2011). Iterated dominance revisited. Working paper, Arizona

State University and University of Wisconsin-Madison.

Friedenberg, A. and M. Meier (2007). The context of the game. Working paper, Arizona State

University.

Friedenberg, A. and M. Meier (2011). On the relationship between hierarchy and type mor-

phisms. Economic Theory 46, 377–399.

Geanakoplos, J. D. and H. M. Polemarchakis (1982). We can’t disagree forever. Journal of

Economic Theory 28, 192–200.

Harsanyi, J. C. (1967). Games on incomplete information played by Bayesian players. Part I.

Management Science 14, 159–182.

Heifetz, A. and W. Kets (2013). Robust multiplicity with a grain of naiveté. Working paper,

Northwestern University.

Heifetz, A. and D. Samet (1998a). Knowledge spaces with arbitrarily high rank. Games and

Economic Behavior 22, 260–273.

Heifetz, A. and D. Samet (1998b). Topology-free typology of beliefs. Journal of Economic

Theory 82, 324–341.

Kets, W. (2011). Bounded reasoning and higher-order uncertainty. Working paper, Northwestern

University.

Liu, Q. (2009). On redundant types and Bayesian formulation of incomplete information. Journal

of Economic Theory 144, 2115–2145.

Mertens, J. F. and S. Zamir (1985). Formulation of Bayesian analysis for games with incomplete

information. International Journal of Game Theory 14, 1–29.

Neeman, Z. (2004). The relevance of private information in mechanism design. Journal of

Economic Theory 117, 55–77.

Parthasarathy, K. (2005). Probability Measures on Metric Spaces. AMS Chelsea Publishing.

Perea, A. (2007). A one-person doxastic characterization of Nash strategies. Synthese 158,

251–271.

23



Tan, T. and S. Werlang (1988). The Bayesian foundations of solution concepts in games. Journal

of Economic Theory 45, 370–391.

Yildiz, M. (2009). Invariance to representation of information. Working paper, MIT.

24


	Cover 1586
	EquivalentTypes-2015-1213
	1 Introduction
	2 Belief Hierarchies and Types
	2.1 Encoding Belief Hierarchies by Type Structures
	2.2 From Type Structures to Belief Hierarchies

	3 Hierarchy and Type Morphisms
	4 Generalized Type Morphisms
	5 Characterizing Types With the Same Belief Hierarchy
	6 Finite Type Structures
	A Proofs
	A.1 Proof of Theorem 4.4
	A.2 Proof of Proposition 4.5
	A.3 Proof of Lemma 5.1
	A.4 Proof of Proposition 5.2



