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PRELIMINARY AND INCOMPLETE

Abstract

We explore when it is optimal for senders to commit to signal structures which

induce the receiver to take higher actions when the underlying state is higher and

the preferences of the receiver satisfy strategic complementarity conditions. Building

on the literature on monotone comparative statics, we provide sufficient conditions

for the sender’s optimal signal structure consists of a monotone partition of the state

space, and characterize the boundary conditions. When the action space is binary, it

is optimal to use a monotone partition if the sender’s preferences are supermodular in

the action and the state. In the case of a continuum of actions, though, one must take

into account the additional effect that altering the receiver’s posteriors also affect her

choice. We provide a new single-crossing condition that takes account of this effect,

and guarantees monotonicity given appropriate conditions on the cost of implementing

the signal structure. If it is costless to provide information, it will be optimal for the

sender to reveal all information. Applications are provided to preference disagreement

with biases, as well as to expected revenue maximization.

1 Introduction

A prominent problem in economic literature is that of signalling one’s quality: one party,

referred to as the “sender,” transmits some information to another party, the “receiver,” who

then implements some action based on this information (using Bayesian reasoning) which

affects the sender. One angle from which to analyze this problem is found in the literature

on persuasion, where the sender is given commitment power in designing the signal structure,
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although it may be costly to do so. In their seminal paper, Kamenica and Gentzkow (2011)

(henceforth KG) showed that, when payoffs from signals are convex in the possible posterior

beliefs and signal design is costless, it is optimal to reveal all information to the receiver;

this result was extended by Kamenica and Gentzkow (2014) to environments where signals’

costs are increasing in their informativeness. More generally, the optimal signal structure

generates a payoff to the sender from the concave closure of the possible payoffs for any given

prior.

One can think of many environments that fit into the persuasion framework in which the

structure of signals is monotone, meaning that a higher realization of the underlying state

will lead to a “higher” message being sent in the sense that it induces the receiver to take

a higher action. For instance, credit rating agencies formulate a set of criteria by which

different ratings are assigned to various financial assets, and then apply those criteria once

an asset is issued: intuitively, a safer asset receives a higher score. Another such environment

is that of recommendations: a better candidate for a job receives a better review, in the

sense that it leads to the better candidate getting better offers. One may also consider

a school administrator placing students in courses of the optimal level of difficulty, where

teachers (once the students are placed) set the difficulty level based on their own criteria.

We formalize this intuition through sufficient conditions that guarantee that the optimal

signal structure will be monotone.

While KG demonstrate the existence of an optimal signal, their approach does not address

the issue of whether the resultant structure will be monotone. Indeed, by their techniques, it

is quite possible that one wish to pool types that are not within a connected interval, or to

send multiple possible messages with positive probability for the same type. To supplement

their methods, one needs an appropriate single-crossing condition for the sender’s payoffs

which will ensure that the sender wishes to match the higher types to higher messages.

Furthermore, while the approach of KG is relatively straightforward for low-dimensional state

spaces, the problem becomes intractable when the state becomes large. Indeed, as noted by

Kamenica and Gentzkow (2014), for a given state space Ω, the dimension of possible signals

is (∆(Ω))|Ω|.1 Additional methods are often needed in practice to simplify the problem.

In this paper, we propose to simplify the problem by deriving sufficient conditions under

which the optimal persuasion technique is to partition the state space. Specifically, if Ω is

a subset of the real line, then each message generated by the signal structure will give a

posterior to the receiver which simply consists of the prior restricted to a subinterval of Ω.

1If Ω is an interval subset of the real line, the cardinality of |Ω| is uncountably infinite, and so it becomes
difficult to find the concave closure of the sender’s payoffs.
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We do this by providing a single-crossing property for the signals: if the support for two

messages overlap, then it will be optimal to “swap” elements of the support from one to the

other to remove the overlap. This “swap” will consist of a Gâteaux derivative in the direction

of the change of the conditional distribution. This method is most similar to that used in

Bergemann and Pesendorfer (2007), who simultaneously consider the problem of providing

information and designing an optimal auction for bidders with independent private values;

they show that the optimal information structure is generated by partitioning each player’s

value space into a finite set of intervals by showing that for any non-monotone partition,

there exists a local improvement via swapping for some type. Thus our results can be viewed

as a generalization of theirs by precisely formulating a single-crossing condition to generate

local improvements.

Interestingly, the single-crossing conditions required when the sender can commit to a signal

structure differ from those when the sender cannot commit, on which the previous literature

has focused. In these papers, the sender first chooses an action to signal his type, while the

receiver chooses another action in response. The seminal papers of Spence (1973) about costly

job-market signalling, and Crawford and Sobel (1982) modelling costless communication,

merely involve a single-crossing condition for the sender’s payoffs between the underlying state

on one hand, and the respective actions chosen by the sender and the receiver. More recent

papers by Kartik (2009) and Mensch (2015) extend the conditions under which there exists

an equilibrium in which the sender’s signalling action will be increasing in the underlying

state. When there is no commitment, in equilibrium, the receiver’s beliefs are specified for

any action that the sender may take. The sender must therefore take the receiver’s beliefs

and hence her response as given when considering a potential deviation. So, a deviation by

the sender does not change the action that the receiver will take, and so the single-crossing

conditions for the sender will be straightforward.

When the receiver has two actions available, this intuition remains correct to a certain ex-

tent, although the reasoning is slightly different: it turns out that supermodularity of the

receiver’s and sender’s preferences in the action and state are sufficient to guarantee that

the induced action will be higher when the state is higher. Consider a pair of posteriors in

which, conditional on one of them, one takes the higher of the two possible actions, and one

takes the lower of the two conditional on the other. If we increase the weight of a high state

in the former posterior, the receiver is even more inclined to take a high action; similarly, by

decreasing the weight of a high state conditional on the latter posterior, the receiver will be

even more inclined to take a low action. Rather than look at the change in sender’s payoff

from shifting an individual state, though (as in the case of no commitment), one must look

at the change from this method of changing the weights of states in the posteriors: it must
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be that the payoff from pairing a high action with a high state, along with a low action with

a low state, is an improvement over pairing the high action with the low state and vice versa.

A weaker single-crossing condition will therefore not suffice to guarantee monotonicity.

In the case where the receiver has more than two actions available, even supermodularity of

the sender’s payoffs will no longer be sufficient. This is because, when the sender can commit

to a certain signal structure, the sender can no longer take the beliefs of the receiver as given

when optimizing: a change in the signal structure changes the posteriors of the receiver.

Perturbing a posterior by placing more weight on a certain state will therefore change what

action the receiver takes for that posterior. The naive intuition that only complementarities

between the resulting action and the underlying state matter is thus incorrect: one must also

consider the effect that changing a signal will have on the action chosen by the receiver given

that her beliefs have been perturbed.

The resulting structure will also depend on the costs required to generate the signals. If

the costs to generate a certain posterior only depend on the probability that it is generated,

regardless of the resultant distribution over states, then it is optimal to partition the state

space into a non-degenerate set of intervals. Under weaker complementarity conditions, it is

also optimal to partition in the same way if the cost only depends on the number of messages

that the signal structure can generate. However, if providing more precise signals is costless,

then it turns out that the single-crossing condition will also imply that it is optimal to reveal

all information. While KG showed that this is true when the sender’s payoffs are convex

in the resultant posteriors, the single-crossing condition provides an alternative method of

analyzing the problem. It also suggests that optimal monotone structures are degenerate,

since the conditions that would allow for improvement over non-monotone structures would

also make it optimal to completely separate.

When our single-crossing conditions are satisfied, it becomes relatively straightforward to

find the cutoffs for each realization in the partition. As the conditions will automatically

hold for all states that are not on the boundary of the partition conditional on their holding

at the boundary, one need only check that they hold at the boundary. This ensures that,

for a finite partition, one need only check a finite number of first-order conditions for any

hypothetical solution, as opposed to checking for every state.

Our approach allows us to reexamine some of the classic signalling problems which did not

assume commitment on the part of the sender. Specifically, we will examine the implications

of our results for the model of preference disagreement with biases of Crawford and Sobel

(1982) and the job market signalling model of Spence (1973). We show that the standard

examples of these models satisfy the single-crossing conditions, and so will make it optimal
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to partition the state space under full commitment. We also present applications to other

economically relevant issues such as expected revenue maximization.

2 Setup

For simplicity, we mainly keep the notation consistent with that of KG;2 this will allow for

easy cross-reference and comparison of results. There are two players, a sender (S) and a

receiver (R); for convenience, we will occasionally refer to the sender as “he” and the receiver

as “she.” There is an underlying compact state space Ω ⊂ R, with an associated prior

over the states µ0 ∈ int(∆(Ω)) that is common to both parties. Prior to the realization of

ω ∈ Ω, the sender can choose a signal structure (π,S), where S is a compact metric space

representing the set of possible realizations of the signal, and

π : [0, 1]→ Ω× S

x→ (π1(x), π2(x))

is a measurable function defined so that the realization of π2(x) = s ∈ S is correlated with

π1(x) = ω ∈ Ω. We assume that x is uniformly distributed over [0, 1]. Thus the random

variable s ∈ S is generated from ω via the probability integral transform as modelled by x

through the mapping π.

Upon receiving signal realization s, the receiver, using Bayesian reasoning from the signal

structure and the prior µ0, forms conditional probability assessment µ(·|s). The receiver

then chooses some action a from some compact set A ⊂ R. The utility function for the

receiver is given by uR(a, ω), which is bounded and measurable in ω, and is supermodular in

(a, ω). The sender has utility function vS(a, ω, π,S) = uS(a, ω)−c(π,S), where uS represents

the payoff to the sender from the action chosen by the receiver, while c(π,S) represents the

cost of implementing the signal structure. Thus uS is the portion of the payoff dependent

on a particular realization of the state and action, while c is the portion that depends on

implementing the entire signal structure. Assume that uS is bounded and measurable in ω,

and that c(·, ·) is increasing in the informativeness of the (π,S) in the sense of Blackwell

(1951).

2Since we allow for a continuum of states, we refer the reader to their online appendix, which deals
specifically with this environment.
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Upon observing s, the receiver’s problem is then

max
a∈A

∫
uR(a, ω)dµ(ω|s)

Define a distribution of posteriors by τ ∈ ∆(∆((Ω)), so that π induces τ , i.e. if π2(x) ∈ S ′ ⊂ S
for some measurable set X ⊂ [0, 1], then∫

S′
dτ(µ(·|s)) =

∫ 1

0

1[π2(x) ∈ S ′]dx

In order to be feasible via Bayes’ Theorem, we must have for all ω that∫
∆(Ω)

µdτ(µ) = µ0

The sender’s problem is then, since (π,S) pins down τ ,

max
(π,S)

∫
uS(a∗(µ), ω)dτ(µ)− c(π,S)

s.t.

∫
∆(Ω)

µdτ(µ) = µ0

A perfect Bayesian equilibrium of this game will consist of a vector (π,S, µ, a∗) such that

(i) µ is Bayes-consistent with the signal structure (π,S), (ii) a∗ is optimal for the receiver

given µ, and (iii) (π,S) is optimal for the sender given a∗. KG showed that in such an

environment, the set of perfect Bayesian equilibria is non-empty as long as c = 0 for all

(π,S); Kamenica and Gentzkow (2014) extended this result to environments in which Ω is

finite and c is increasing in the informativeness of the signal.

3 Monotone Signal Structures

Our central question is to analyze when the optimal signal structure is monotone, in that

it partitions the state space into subintervals of Ω. Before we can identify precisely what

this will mean, we first introduce an ordering over conditional probabilities. The idea will

be to rank distributions according to the actions that they induce of the sender: the higher

the action taken, the higher the distribution is ranked. Suppose that |S| is finite;3 in this

case, τ(µ(·|s)) > 0 for all s ∈ S. Consider any two conditional distributions µ, µ′ ∈ ∆(Ω),

3By Proposition 4 in the online appendix of KG, this is guaranteed whenever min{|A|, |Ω|} <∞.
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and assign them the probabilities τ(µ) and τ(µ′), respectively. Then we define an addition

operation between µ and µ′ so that µ + µ′ yields a new conditional distribution which is

generated with probability τ(µ+ µ′) = τ(µ) + τ(µ′), where, for any measurable Ψ ⊂ Ω,

(µ+ µ′)(Ψ) =
µ(Ψ)τ(µ) + µ′(Ψ)τ(µ′)

τ(µ) + τ(µ′)

Analogously, we define a subtraction operation which inverts the addition operation, i.e. if

µ̂ = µ−µ′, then µ′+ µ̂ = µ, assuming the posteriors from each such conditional are between

0 and 1 for all such Ψ.

In tandem with the above operations, we allow for scaling of signal realizations. Thus,

δ · µ+ ε · µ′ is defined so that τ(δ · µ+ ε · µ′) = δτ(µ) + ετ(µ′)

(δ · µ+ ε · µ′)(Ψ) =
δµ(Ψ)τ(µ) + εµ′(Ψ)τ(µ′)

δτ(µ) + ετ(µ′)

In much of the ensuing analysis, we examine the effects to µ that adding a conditional

distribution that occurs with probability ε which places conditional probability 1 on the

state ω′; with a slight abuse of notation, we label this by εω′, so that τ(εω′) = ε.

Next, we define an ordering over conditional distributions. This will allow for comparisons

to show that a signal structure that is “more monotone” in the sense of the ordering will be

a local improvement.

Definition 1: A binary relation �σ is an ordering over conditional distributions if the

following two properties hold:

(i) Completeness : For any µ1, µ2, either µ1 �σ µ2 or µ2 �σ µ1

(ii) Transitivity : For any µ1, µ2, µ3, if µ1 �σ µ2 and µ2 �σ µ3, then µ1 �σ µ3. Furthermore,

if one of the orderings is strict, then µ1 �σ µ3.

The ordering of the conditional distributions will be useful to essentially “summarize” the

information contained therein. In particular, we will be interested in the case where higher

distributions induce higher actions on the part of the receiver.

Assumption 1 (Action Monotonicity): µ1 �σ µ2 ⇐⇒ a∗(µ1) ≥ a∗(µ2).

While this assumption may seem restrictive, one should note that for any game that fits into

our model, there will always exist such an ordering �σ: one can simply define the ordering

to be that induced by the action chosen by the receiver upon believing µ.

To relate Assumption 1 to the underlying preferences of the receiver, we introduce the fol-

lowing property that posteriors may hold.
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Definition 2: The ordering �σ is (strictly) FOSD-consistent if µ1((−∞, ω]) ≤ µ2((−∞, ω])

for all ω ∈ Ω, then µ1(�σ) �σ µ2.

The following lemma characterizes the relationship between action monotonicity and the

FOSD-consistency condition. If the induced beliefs from µ1 first-order stochastically domi-

nated those from µ2, we write this as µ1 �FOSD µ2. This will be useful for our later results,

since there will be occasions where we will need to construct an improvement over a given

signal structure through a multi-step perturbation, each step of which preserves first-order

stochastic dominance. We will then be able to preserve ordering of the signals through each

step.

Lemma 1: Suppose that there is a unique optimal action a∗(µ). Let �σ be a complete and

transitive ordering. Then is FOSD-consistent if it satisfies action monotonicity (strictly so

if either a∗(µ1) ∈ int(A) or a∗(µ2) ∈ int(A)).

The proofs of all lemmas and propositions are contained in the appendix.

The above result shows that it is only possible to have the optimal action by the receiver

be increasing in the conditional distribution if the ordering ranks the induced distribution

higher when it first-order stochastically dominates the other. In this sense, the ordering �σ
is a completion of the ordering induced by first-order stochastic dominance. There are many

possible methods of ranking that fall into this latter category; an important one is by the

conditional mean.

Example 1: Suppose that signal realizations are ranked by the conditional mean of the

distribution, i.e. µ1 �σ µ2 ⇐⇒ Eµ1 [ω] ≥ Eµ2 [ω]. This is a complete and transitive

ordering. To see that it is FOSD-consistent, note that Eµ[ω] =
∫
ωdµ(ω). Since f(ω) = ω is

an increasing function, it follows that if µ1 �FOSD µ2, then Eµ1 [ω] ≥ Eµ2 [ω]. �

We can see from here how changing a conditional distribution affects its ordering. Specifically,

if we consider adding more weight to the highest portion of the support of a distribution,

then it will increasing its ranking in the ordering �σ. Similarly, subtracting weight to the

highest portion will decrease the distribution.

Now that we have defined an ordering over conditional distributions, we can present our

definition of monotone signal structures.

Definition 3: A signal structure (π,S) is monotone if, for all ω1, ω2 ∈ Ω, if ω1 > ω2 and

µ(·|s1) �σ µ(·|s2), then

ω1 ∈ supp(µ(·|s2)) =⇒ ω2 /∈ supp(µ(·|s1))

8



The following lemma will be useful for our results, stating that without loss of generality, it is

possible to merge realizations which are ranked equally under �σ.4 The intuition is that they

result in the same action chosen by the receiver, and so the sender is indifferent to combining

the two realizations into one. We can therefore assume without loss of generality that, for

every s1, s2 ∈ S, either µ(·|s1) �σ µ(·|s2) or µ(·|s2) �σ µ(·|s1).

Lemma 2: Suppose that the optimal signal (π,S) generates some measurable family of

subsets {S∗(a)} ⊂ S, where |S∗(a)| ≥ 2 and
∫⋃
{S∗(a)} dτ(µ(·|s)) such that, for all s1, s2 ∈

S∗(a), a∗(µ(·|s1)) = a∗(µ(·|s2)) = a. Then the signal (π′,S ′) is also optimal, where S = S ′

except that each S∗(a) is replaced by a single realization s′(a), i.e.

1. S \
⋃
{S∗(a)} = S ′ \ {s′(a)};

2. If π2(x) ∈ S \
⋃
{S∗(a)}, then π′2(x) = π2(x) and π1(x) = π′1(x);

3. If π2(x) ∈ S∗(a), then π′2(x) = s′(a)

Using the previous lemma, it is easy to see that any monotone signal structure partitions the

state space into intervals (though there may be some overlap in supports at the boundaries

if there is an atom at a particular ω in the prior µ0). We formalize this in the following

proposition.

Proposition 1: If a signal structure is monotone, then:

(a) For any two states ω1, ω2 ∈ supp(µ(·|s)), any ω′ ∈ Ω∩(ω1, ω2) is contained in supp(µ(·|s)).

(b) If ω ∈ supp(µ(·|s)) and there exist ω1 < ω and ω2 > ω such that ω1, ω2 ∈ supp(µ(·|s)) (i.e.

ω is in the “interior” of the support of s), then for all s′ such that either µ(·|s′) �σ µ(·|s) or

µ(·|s) �σ µ(·|s′), ω /∈ supp(µ(·|s′)).

(c) |supp(µ(·|s)) ∩ (supp(µ(·|s′))| ≤ 1.

If the signal structure is monotone, then it is quite easy to define the posteriors µ(·|s) using

Bayes’ theorem: they will just be the prior µ0 restricted to the set of types in the support

of µ given s. If there is an atom a some ω that is not in the interior of the support of the

posterior, then we just scale it by the probability that ω generates signal realization s. If

there is just a single ω in the support of s, then µ(ω|s) = 1.

4This is analogous to Proposition 1 in KG.
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4 Two Actions

There are many relevant situations in which a sender must convince a receiver to take one of

two actions. In many cases, there is complementarity between the state and the decision to

be taken. For instance, in the well-known example of KG, a prosecutor wishes to convince a

judge to convict a defendant. The judge is more inclined to convict the defendant if there is

a greater likelihood that he is guilty, and so there is complementarity between the state (the

guilt of the defendant) and the action (the verdict). As shown in their two-state example,

the optimal structure is monotone: one realization has only in its support one of the states

(in their case, that the defendant is innocent), while the other is supported by both of the

states (that the defendant is guilty, as well as, with some probability, that he is innocent).

We extend this reasoning more generally to environments with strategic complementarities.

Consider an environment in which A = {a1, a2}, with a1 < a2. By Lemma 2, one can restrict

attention to |S| ≤ 2, and so τ(µ(·|s)) > 0 for each s ∈ S.

Suppose that the preferences of both the sender and the receiver are weakly supermodular

in (a, ω). Assuming that the induced action a does not change for sufficiently small ε, the

marginal change in payoff to the sender from adding εµ′ to µ in the limit as ε→ 0 is

d(µ;µ′) ≡ lim
ε→0

τ(µ)
∫
uS(a∗(µ), ω)dµ+ ετ(µ′)

∫
uS(a∗(µ), ω)dµ′ − τ(µ)

∫
uS(a∗(µ), ω)dµ

ετ(µ′)

=

∫
uS(a∗(µ), ω)dµ′ (1)

This is the Gâteaux derivative of the payoff of the sender from conditional distribution µ

in the direction of µ′. If we define a posterior µ′ and assign it the value τ(µ′), then at the

optimal signal structure (π, {s1, s2}), if it is feasible to subtract ε · µ′ (for some small enough

ε > 0) from µ(·|s1) and add it to µ(·|s2), then

d(µ(·|s2);µ′)− d(µ(·|s1);µ′) ≤ 0 (2)

If not, then for small enough ε, there would exist an improvement from subtracting ε ·µ′ from

such a swap. This enables us to characterize a condition for monotone persuasion in the case

of binary action spaces.

Definition 4: The restriction of a signal realization s to some measurable subset Ψ ⊂ R
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such that Ψ ∩ Ω 6= ∅, sΨ, assigns

µ(A|sΨ) =
µ(A ∩Ψ|s)
µ(Ψ|s)

and

τ(sΨ) = τ(s) · µ(Ψ|s)

Theorem 2: If the sender’s preferences are supermodular in (a, ω), then a monotone signal

structure is optimal.

The intuition for Theorem 2 is straightforward: due to the complementarity between actions

and states, the sender would like to align the higher states with higher actions. If a signal

structure is not monotone, he can always increase the level of alignment by swapping some

of the support from the lower conditional distribution to the higher. This will not affect

incentive compatibility of the receiver, as now the receiver is even more inclined to choose

the higher action conditional on the higher signal realization.

One might be tempted to extend Theorem 2 to environments in which the sender’s payoff

is submodular to show that it is optimal to reveal no information. Similarly, one might be

tempted to show that a monotone signal structure is optimal when |A| > 2 as well. However,

this cannot be assumed, as once the posteriors are modified, the incentive compatibility con-

straints no longer need hold. Thus the critical condition that the changes in the conditional

distributions do not change the induced actions by the receiver will not necessarily hold,

either. For instance, when uS is submodular, transferring a high state ω to the distribution

of the lower of the two signal realizations, µ(·|s1), will increase the latter’s conditional dis-

tribution, and so may induce the receiver to instead take action a2. Similarly, for |A| > 2,

increasing µ(·|s2) may lead to the receiver taking an even higher action, which may or may

not be beneficial to the sender. In Section 5, we will extend our analysis to an environment

in which A is a continuum (specifically, an interval) in which a different but related condition

will allow for monotonicity.

In tandem with the inequality (2), one can observe that the optimal cutoff state ω∗ for the

signal structure, such that ω > ω∗ ∈ supp(µ(·|s2)) and ω > ω∗ ∈ supp(µ(·|s1)), must satisfy

the following first-order condition.

Corollary 3: Let (π,S) be an optimal (monotone) signal structure such that µ(·|s2) �σ
µ(·|s1). Then one of the following conditions must hold:

(a)
∫
uR(a1, ω)dµ(ω|s1) =

∫
uR(a2, ω)dµ(ω|s1)

(b)
∫
uR(a1, ω)dµ(ω|s2) =

∫
uR(a2, ω)dµ(ω|s2)
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(c) If ω̄1 ≡ sup{ω ∈ supp(µ(·|s1))} < inf{ω ∈ supp(µ(·|s2))} ≡ ω2, then uS(a2, ω2) ≥
uS(a1, ω2) and uS(a2, ω̄1) ≤ uS(a1, ω̄1). In particular, if uS is continuous in ω and ω̄1 = ω2 ≡
ω∗, then uS(a2, ω

∗) = uS(a1, ω
∗).

Note that the first two scenarios of Corollary 3 are incentive compatibility constraints for the

receiver: one must check to see if, from a small perturbation in the posterior, the receiver

would jump to a different action. If they are not binding, then on the margin, the sender

can shift some weight at the margin to the sender’s preferred action at state ω∗. Thus the

problem to find the optimal signal structure is simple: one checks the incentive compatibility

constraints, and if they are not binding, one finds the value of ω∗ are which the sender is

indifferent between the actions taken.

5 Continuum of Actions

We now explore the case where A is an interval, [a, ā]. As alluded to above, one may have the

intuition to attempt to align the higher states with higher actions as in the environment with

a binary action space. However, one must consider here an additional effect: by perturbing

the posteriors, one also changes the action that the receiver takes. Thus, one must incorporate

this effect as well when checking if such an alignment is an improvement for the sender.

To proceed with our analysis, we make a few additional assumptions. Assume that uR is

twice continuously differentiable with ∂2uR
∂a2

< 0 and ∂2uR
∂a∂ω

> 0. Because ∂2uR
∂a2

< 0, there will

exist a unique optimal action for the receiver for each posterior µ, which we define as a∗(µ).

Assume that uS is continuously differentiable in a and both uS and ∂uS
∂a

are continuous in ω.

Suppose that there are two signal realizations s1, s2 such that µ(·|s1) �σ µ(·|s2) that have

overlapping distributions, so that there exists ω∗ such that µ((−∞, ω∗]|s1) > 0 but µ((ω∗,∞)|s2) >

0 as well. We want to show that there exists a local improvement by swapping some of the

distribution above ω∗ from the support of signal realization s2 with some of the distribution

below ω∗ from that of s1. To precisely define what this means, define the marginal change

in payoff from adding two conditional distributions µ and µ′ for which τ(µ) and τ(µ′) are

positive by D(µ, µ′) (if we subtract µ′ from µ, this change will be D(µ,−µ′)). Thus, if one

adds µ and ε · µ′, D(·, ·) is defined to be

D(µ, ε · µ′) ≡ 1

ετ(µ′)
{τ(µ)[

∫
uS(a∗(µ+ ε · µ′), ω)dµ−

∫
uS(a∗(µ), ω)dµ]

+ετ(µ′) ·
∫
uS(a∗(µ+ ε · µ′), ω)dµ} (3)
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This illustrates two effects of adding µ′ to µ on the payoff of the sender. First, this will

perturb µ, and so perturb the optimal action for the receiver, a∗(µ). Second, there will now

be an additional measure of type ω′ which will now have the action associated with µ chosen

for it as well.

For the case where we add εω′ to µ, the marginal change in payoff to the sender can be

written as

D(µ, εω′) =
1

ε
{τ(µ)[

∫
uS(a∗(µ+εω′), ω)dµ−

∫
uS(a∗(µ), ω)dµ]+ε ·uS(a∗(µ+εω′), ω′)} (4)

Before this can be applied directly to form the single-crossing condition, one must note that

adding some weight to some state in some signal realization requires subtracting some from

another. It is not clear that these effects are symmetric, i.e. subtracting a certain amount

of weight from some realization results in the same marginal effects as from adding the same

amount of weight. Fortunately, due to the assumptions on the preferences of the receiver,

the best-reply a∗(µ) is well-behaved. To see the intuition, note that if the receiver were

completely certain of the state, then by taking the second derivative with respect to ω, we

have
∂2uR
∂a∂ω

(a∗(ω), ω) +
∂2uR
∂a2

(a∗(ω), ω) · da
∗(ω)

dω
= 0

and so the implicit function a∗(ω) is differentiable with derivative

da∗(ω)

dω
= −

∂2uR
∂a∂ω

(a∗(ω), ω)
∂2uR
∂a2

(a∗(ω), ω)
> 0

Note that the marginal effects of increasing or decreasing the underlying state are the same;

since it is the receiver’s reaction that affects the payoff of the sender, the marginal effect is

symmetric for the sender as well. A similar idea holds in showing that the effect of shifting

the conditional distribution up or down is symmetric. To do so, as in the previous section,

we define

d(µ;µ′) ≡ lim
ε→0

D(µ, ε · µ′)

to be the Gâteaux derivative of the payoff of the sender from conditional distribution µ in

the direction of µ′.

Lemma 3: (a) For all µ such that a∗(µ) ∈ (a, ā),

d(µ;µ′) = −
∫

∂uS
∂a

(a∗(µ), ω)dµ ·
∫

∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ
+

∫
uS(a∗(µ), ω)dµ′ (5)

13



Otherwise, if for any ω ∈ Ω, a∗(µ) = a∗(µ + εω) ∈ {a, ā} for small enough ε > 0, then

d(µ;µ′) =
∫
uS(a∗(µ), ω)dµ′.

(b) Suppose that it is feasible to subtract ε · µ′ from µ for small enough ε. Then

d(µ;−µ′) = −d(µ;µ′)

Lemma 3 provides a formula for the effects of adding an infinitessimally small amount of µ′

to µ. For the special case of adding εω′ to µ in the limit as ε→ 0, this is given by

d(µ;ω′) = uS(a∗(µ), ω′)−
∂uR
∂a

(a∗(µ), ω′)
∫

∂uS
∂a

(a∗(µ), ω)dµ∫
∂2uR
∂a2

(a∗(µ), ω)dµ
(6)

Hence we can write d(µ;µ′) as

d(µ;µ′) =

∫
d(s;ω′)dµ′ (7)

Interestingly, d(µ;µ′) does not depend on τ , so we do not need to take account of the proba-

bility of a given posterior occuring in our ordering. This is due to the inverse proportionality

of the size of the effects from perturbing the distribution: if τ(µ) is larger, then the posterior

will change less from adding ε · µ′, and so the induced action will shift less; on the other

hand, there is a greater proportion of states (with respect to the prior) that are affected by

this change in posterior. These two effects will exactly cancel out.

An economic interpretation of the expression for d(µ;ω′) is in order. As mentioned above,

there are two effects from changing the posterior. First, the action taken at the particular

states will change, since the action taken at the old posterior is now taken at the new posterior.

Second, there is an effect of changing the action taken at the old posterior, since the receiver

will change his action as the posterior has changed. For marginal changes in the distribution,

only these two first-order effects matter. Thus, the first term in the expression, uS(a∗(µ), ω′, is

the effect of having action a∗(µ) taken when the state is ω′, since that is how the distribution

was perturbed. The second term is the marginal effect on the payoff of the sender from the

receiver changing his action from that taken at posterior µ. Thus
∫

∂uS
∂a

(a∗(µ), ω)dµ is the

marginal utility of the sender from the change in action of the receiver at posterior µ, while

−
∂uR
∂a

(a∗(µ),ω′)∫ ∂2uR
∂a2

(a∗(µ),ω)dµ
is the marginal amount by which a∗(µ) is perturbed by placing more weight

on ω∗. These two effects are combined additively for a readily interpretable expression.5

5This is similar to the expression for virtual utility found in Myerson (1981): in both cases, the principal
(here, the sender) maximizes his utility subject to the constraint of incentive compatibility on the part of the
agent (i.e. the receiver).
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The definition of d will extend naturally to distributions µ which do not arise as posteriors

from (π,S), as long as we assign such µ a positive value of τ . As seen in the previous section,

if (π,S) is optimal, then for any s1, s2 ∈ S for which τ(µ(·|s1)), τ(µ(·|s2)) > 0 such that it is

feasible to subtract ε · µ′ from µ(·|s1), it must be that

d(µ(·|s2);µ′)− d(µ(·|s1);µ′) ≤ 0

or else there would exist an improvement by swapping ε · µ′ from µ(·|s1) to µ(·|s2). This will

greatly ease our definitions for our single-crossing conditions, which we now present.

Definition 4: The payoffs for the sender are d-supermodular if, for ω′ > ω and µ′ �σ µ,

d(µ′;ω′)− d(µ′;ω) > d(µ;ω′)− d(µ;ω) (8)

Similarly, the payoffs to the sender are d-submodular if

d(µ′;ω′)− d(µ′;ω) < d(µ;ω′)− d(µ;ω) (9)

Definition 5: The payoffs for the sender are d-quasisupermodular if

d(µ′;ω)− d(µ;ω) ≥ 0 =⇒ d(µ;ω′)− d(µ;ω′) > 0 (10)

The payoffs to the sender are d-quasisubmodular if

d(µ′;ω)− d(µ;ω) ≤ 0 =⇒ d(µ;ω′)− d(µ;ω′) < 0 (11)

The intuition here is that, if the sender could choose which action to induce once the state

was realized, he would want to choose a higher action when the state was higher if his

preferences were quasisupermodular; this follows from the standard analysis of Milgrom and

Shannon (1994). This justifies the reasoning in signaling games where the sender cannot

precommit to a signal structure (such as cheap talk), since in a perfect-Bayesian equilibrium,

the sender takes the receiver’s beliefs conditional on any message as given, and so the sender

will not change the induced action by deviating to a particular message. In our environment,

though, the sender will change the action taken following a particular message (i.e. when the

posterior is perturbed), since a different action will now be optimal for the receiver. Thus

we must combine this effect as well into the problem of the sender, and only then check for

single-crossing in the posterior (and hence the action) that the sender wants to induce given

the state.
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We are now ready to present our main theorem.

Theorem 4: Let c = 0 for all (π,S).

(i) If the sender’s payoffs are d-quasisupermodular, then it is optimal for the sender to reveal

all information.

(ii) Conversely, if his payoffs are d-quasisubmodular, then it is optimal to reveal no informa-

tion, i.e. the posterior beliefs for the receiver will just be µ0.

The intuition for the proof of Theorem 4(i) is that, if there is a posterior µ with more than

one state in the support, then we can duplicate the posterior to form µ1, µ2, and perturb

them so that a little more weight is placed at the top of the support of, say, µ2, or a little

less weight at the bottom, while the opposite is done for µ1. After this perturbation, µ2 will

be ranked higher than µ1 due to FOSD-consistency, and so it will be a strict improvement

to swap even more of the support. Since this initial perturbation can be arbitrarily small,

it turns out that there will be a strict improvement over this initial posterior. Thus there

cannot be any posteriors which have more than one state in the support, implying that full

separation is optimal.

The intuition for Theorem 4(ii) is that, if there were two posteriors µ2 �σ µ1 that induced

different actions, then by FOSD-consistency, there must be some pair of states for which a

higher action a∗(µ2) is taken for the higher of the two states, while a∗(µ1) is taken for the

latter. It will then be an improvement to swap either the higher state or the lower state, and

so this could not be optimal. All realizations must therefore lead to the same action in the

optimal signal structure, and so by Lemma 2 one can just as well reveal nothing.

A key element of the proof of Theorem 4 was the absence of costs of implementing a signal.

However, in many cases of interest, this assumption is not reasonable. This may arise from

physical costs of providing additional information, which may make it optimal to only par-

tially reveal the information to the receiver. We therefore include the following result for the

case where it is not optimal to reveal all information.

Theorem 5: Assume that c(π,S) is increasing in |S| and lim|S|→∞ c(π,S) =∞.

(i) If c(π,S) is solely a (continuous) function of the vector of probabilities {τ(µ)} (irrespective

of the posteriors that they induce) and the sender’s payoffs are d-supermodular, then the

optimal signal structure is monotone.

(ii) If c(π,S) is solely a function of the number of posteriors generated (i.e. |S|) and the

sender’s payoffs are d-quasisupermodular, then the optimal signal structure is monotone.

In terms of economic interpretation of Theorem 5, in addition to the obvious interpretation of
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it being costly to the sender to generate the signal, one can reinterpret this result to apply to

when the receiver has a fixed capacity. Recall that in Lemma 2, we saw that without loss of

generality, we could merge signal realizations if they resulted in the same outcome. Suppose

that the receiver will choose to implement N actions, and the sender can only influence what

those N actions are. One possible instance in which this might apply is in tracked courses:

a school may offer a fixed number of tracked classes in a certain subject, and teach them at

a difficulty level determined by the students in the respective classes. The school principal’s

optimal course difficulty level may differ from that of the teachers, as the must take into

account the preferences of the students’ parents; however, the teachers are the ones who

have control over their classrooms. The principal’s problem would then be to optimize the

distribution of students so as to induce the most favorable incidence of student quality and

course difficulty level. Alternatively, one could view the capacity as regarding class size: the

school can only fit a fixed number of students in each class, and so the sender must optimize

with the constraint that the vector of class sizes remains constant. Assuming that the number

of students is large, this can be viewed as fixing the proportion of students in each class. We

summarize these results in the following corollary.

Corollary 6: Let c(π,S) = 0.

(i) Suppose that the receiver has a capacity constraint on the number of actions that it can

implement, so that it is costless for the receiver to implement up to N different actions, but

for any n > N , it is infinitely costly for the receiver. Then if the sender’s preferences are

d-quasisupermodular, the optimal signal structure is monotone, but without full disclosure.

(ii) Suppose that the receiver has a fixed capacity τ̂(n) for each action an ∈ A, where n ∈
{1, ..., N} such that

∑N
n=1 τ̂(n) = 1 (i.e. each of the N actions taken must be taken with

a fixed probability, but which action to choose is up to the receiver) Then if the sender’s

preferences are d-supermodular, the optimal signal structure is monotone, but without full

disclosure.

Remark: KG also provide sufficient conditions for which it is optimal to either reveal all

information, or reveal nothing: the former will be optimal when the sender’s payoff is convex

in the posterior, while the latter is optimal when it is concave. A simple example demonstrates

that these notions are distinct. Suppose that Ω = {ω1, ω2, ω3, ω4}, with ω1 < ω2 < ω3 < ω4

and µ0 assigning equal probability to each state. Convexity implies that the signal structure

(π, {s1, s2}) in which supp(µ(·|s1)) = {ω1, ω3} and supp(µ(·|s2)) = {ω2, ω4} is at least as

good for the sender as revealing no information, whereas this is not necessarily the case

in the presence of either d-supermodularity or d-quasisupermodularity. On the other hand,

there is some monotone signal structure (π′, {s′1, s′2}) which is preferable to (π, {s1, s2}) under
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d-quasisupermodularity, which is not necessarily the case under convexity. �

The characterization of the signal structure as monotone greatly eases the search for the

optimal structure, as on must now only search over a countable number of possible cutoff

points to describe the intervals over which the signals are supported. This also allows the

construction of first-order conditions in looking for the optimal structure. Suppose, as in case

(ii) of Theorem 5, that the cost structure only depends on the number of signal realizations.

Then one cannot be better off by switching the marginal type of some interval of support to

another, and vice versa. We describe these incentive conditions in the following result.

Corollary 7: Suppose that c(π,S) is solely a function of |S| and the sender’s payoffs are d-

quasisupermodular. Let (π,S) be an optimal (monotone) signal structure). Consider s1, s2 ∈
S such that µ(·|s1) �σ µ(·|s2) and there does not exist s3 ∈ S \ (s1, s2) such that µ(·|s1) �σ
µ(·|s3) �σ µ(·|s2). If

ω̄2 ≡ sup{ω ∈ supp(µ(·|s2))} < inf{ω ∈ supp(µ(·|s1))} ≡ ω1

then d(µ(·|s1);ω1) ≥ d(µ(·|s2);ω1) and d(µ(·|s1); ω̄2) ≤ d(µ(·|s2); ω̄2). In particular, if ω̄2 =

ω1 ≡ ω∗, then d(µ(·|s1);ω∗) = d(µ(·|s2);ω∗).

We now present applications of our results.

6 Applications

6.1 Preference disagreement

One of the classic models of signalling is the cheap talk model of Crawford and Sobel (1982).

In their model, they show that in any perfect Bayesian equilibrium, the sender’s types are

partitioned, so that a higher type sends a higher message. They also show that when types

are uniformly distributed, and

uS(a, ω) = −(a− ω − b)2

uR(a, ω) = −(a− ω)2

then if it were possible for the sender to commit to reveal his type, he would receive a higher

payoff than the equilibrium from their model. However, they do not explore whether this

would indeed be optimal overall, nor do they analyze other distributions of types.

KG explored a more general class of sender preferences in the persuasion environment, and
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showed that if the sender’s preferences are given by

uS(a, ω) = −(a− (b1 + b2ω))2 (12)

for [a, ā] = Ω = [0, 1], then it is optimal to reveal all information if b2 >
1
2
, and reveal nothing

if b2 <
1
2
.

We extend the analysis here further to look at the optimal structure when full separation

is not possible. When the sender’s preferences are given as in (12), we find that, since

a∗(µ) = Eµ[ω],

d(µ;ω′) = −(a∗(µ)− (b1 + b2ω
′))2 + 2(a∗(µ)− ω′)(

∫
(a∗(µ)− (b1 + b2)ω)dµ

= −(a∗(µ)− (b1 + b2ω
′))2 + 2(a∗(µ)− ω′)(a∗(µ)− b1 − b2a

∗(µ))

To check for d-supermodularity, we check the sum of the terms involving both a∗(µ) and ω′,

which is

2b2a
∗(µ)ω′ − 2a∗(µ)ω′ + 2b2a

∗(µ)ω′

Because a∗(µ) is increasing in µ, this above expression is supermodular in (µ, ω′) if b2 >
1
2
,

and submodular if b2 <
1
2
. Thus it is optimal to reveal all information in the former case,

and reveal none in the latter, as anticipated by KG. Furthermore, if costs are as in Theorem

5, it will be optimal to have a monotone signal structure.

To give a concrete example of a finite partition, let us look at an optimal partition when

|S| = 2, A = [0, 1], b2 = 1, and µ0 induces the uniform distribution over [0, 1]. Consider the

optimal signal structure (π, {s1, s2}), with µ(·|s2) �σ µ(·|s1). Since the signal structure will

be monotone, there will exist ω∗ such that µ(·|s1) induces the uniform distribution on [0, ω∗],

while µ(·|s2) induces the uniform distribution on [ω∗, 1]. Thus

a∗(µ(·|s1)) =
ω∗

2

a∗(µ(·|s2)) =
1 + ω∗

2

and so, by Corollary 7, it must be that

−(
ω∗

2
−(b+ω∗))2+2(

ω∗

2
−ω∗)(ω

∗

2
−b−ω

∗

2
) = −(

1 + ω∗

2
−(b+ω∗))2+2(

1 + ω∗

2
−ω∗)(1 + ω∗

2
−b−1 + ω∗

2
)
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Simplifying this expression yields

−(
ω∗

2
− (b+ ω∗))2 − 2b(−ω

∗

2
) = −(

1 + ω∗

2
− (b+ ω∗))2 − 2b(

1− ω∗

2
)

b = 2bω∗ =⇒ ω∗ =
1

2

Thus it is optimal to divide the interval [0, 1] into two equal pieces. The intuition for this is

that, were the intervals to be uneven (say, with the upper interval being larger and the bias

b being low), the concavity of the sender’s payoff would imply that there would be a greater

loss from high states (i.e. ω near 1) being farther from the induced action of the receiver

than there would a benefit of moving the higher states of the lower interval (i.e. ω close to

ω∗) closer to the induced action of the receiver.

6.2 Expected revenue maximization

A central issue in many economic environments is the effect that additional information has

on the expected revenue raised from the actions of the receivers. Milgrom and Weber (1982)

showed that in many auction environments, when bidders are symmetric, releasing informa-

tion raises expected revenues when bidders’ signals are affiliated. Similarly, Ottaviani and

Prat (2001) showed that a monopolistic seller maximizes his expected revenue by releasing

information when it is affiliated with the buyer’s private signal.

We focus here on the model of Spence (1972), in which potential workers signal their qual-

ity/type ω by undertaking costly education. Without commitment, the sender must choose a

sufficiently high message to successfully convince the receiver that he is indeed the high type,

so much so that a lower type would not choose to send so costly a message. The receiver then

offers a wage (in our model, a) equal to the conditional expectation of the sender’s type.

Using the results in the previous subsection, we examine the optimal signal structure when

the sender can commit to send specific messages for any true state ω. In our analysis, we

briefly abstract from the costly nature of the message technology, and just look at the payoffs

from outcomes. Suppose that, as in the case of cheap talk, the receiver’s utility function is a

quadratic loss function of the form −(a− ω)2. Then

−
∂uR
∂a

(a∗(µ), ω′)
∫

∂uS
∂a

(a∗(µ), ω)dµ∫
∂2uR
∂a2

(a∗(µ), ω)dµ
= a∗(µ)− ω

Thus

d(µ;ω′) = a∗(µ)
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This function is both weakly supermodular and submodular in (µ, ω′), and so we would

intuitively expect that revealing all (respectively, no) information is weakly optimal. To

show this more formally, suppose that we perturb the payoffs of the sender by adding a term

vk(a, ω) = − 1
2k

(a− ω)2. Importantly,

∂vk
∂a∂ω

(a, ω) > 0

and

lim
k→∞

sup
a,ω
|∂vk
∂a

(a∗(s), ω)| = 0

Let ukS(a, ω) = uS(a, ω) + vk(a, ω). Indicating the marginal change in payoff from adding εω′

to signal µ when the sender has payoff ukS by dk(µ;ω′), we find that

dk(µ;ω′) = a∗(µ)− 1

2k
(a∗(µ)− ω)2 − (a∗(µ)− ω′)(1− 2

∫
(a∗(µ)− ω)dµ)

= a∗(µ)− 1

2k
(a∗(µ)− ω)2 − (a∗(µ)− ω′)

This function is supermodular in (s, ω), and so by Theorem 4, it is optimal to reveal all

information. Now consider any optimal signal structure (π,S) with associated τ , and compare

it with the structure which reveals all information. Then

0 ≤
∫ ∫

uS(a∗(µ), ω)dµdτ(µ)−
∫
uS(a∗(ω), ω)dµ0(ω)

≤ |
∫ ∫

uS(a∗(µ), ω)dµdτ(µ)−
∫ ∫

ukS(a∗(µ), ω)dµdτ(µ)|

+

∫ ∫
ukS(a∗(µ), ω)dµdτ(µ)−

∫
ukS(a∗(ω), ω)dµ0(ω)

+|
∫
ukS(a∗(ω), ω)dµ0(ω)−

∫
uS(a∗(ω), ω)dµ0(ω)|

Note that ∫ ∫
ukS(a∗(µ), ω)dµdτ(µ)−

∫
ukS(a∗(ω), ω)dµ0(ω) ≤ 0

and the first and last terms are bounded by 1
2k

supa,ω(a− ω)2. Since Ω is compact and [a, ā]

is bounded, the first and last terms vanish as k →∞, and so∫ ∫
uS(a∗(s), ω)dµ(ω|s)dτ(s)−

∫
Ω

uS(a∗(s), ω)dµ0(ω) ≤ 0

which shows that revealing all information is optimal. A similar method in which the sign of
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vk is flipped shows that it is also optimal to reveal no information. If, in the spirit of Spence’s

costly signalling approach, it is costly to generate more than one signal (corresponding to the

effort in his model), then it will be strictly optimal to reveal no information. The intuition is

simple: since the sender only cares about the expected wage, there is nothing that the sender

can do to change the global expected value of ω, which determines the overall expected wage.

Therefore, there is no incentive either to hide or reveal information.
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Appendix: Proofs

Proof of Lemma 1: Suppose that µ1 �FOSD µ2. Since (strict) supermodularity is preserved

by first-order stochastic dominance, µ1 �FOSD µ2 if and only if, for any a1 > a2,∫
uR(a1, ω)dµ1 −

∫
uR(a2, ω)dµ1 ≥

∫
uR(a1, ω)dµ2 −

∫
uR(a2, ω)dµ2

where the inequality is strict if µ1 �FOSD µ2, by Theorem 7 of Milgrom and Shannon (1994).

By Theorem 5 of Milgrom and Shannon (1994), this implies that a∗(µ1) ≥ a∗(µ2) (strictly so

if µ1 �FOSD µ2 and either a∗(µ1) or a∗(µ2) is located in the interior of A by Theorem 1 of

Edlin and Shannon (1998)). �

Proof of Lemma 2: Clearly the payoff from any realization s /∈ S∗(a) is the same, so we

only need to check that the payoff from s′ is equal to that from
⋃
{S∗(a)}. The payoff from

the former is ∫
⋃
{s′(a)}

∫
uS(a∗(µ(·|s′)), ω)dµ(ω|s′)dτ(µ(·|s′))

while from the latter, it is∫
⋃
{S∗(a)}

∫
uS(a∗(µ(·|s)), ω)dµ(ω|s)dτ(µ(·|s))

Since a∗(µ(·|s)) = a for all s ∈ S∗(a), and action a is feasible conditional on s′ being realized,

we conclude that a∗(µ(·|s′)) = a, and so the two signals generate the same payoffs. �

Proof of Proposition 1: To show (a) and (b), by Bayes’ Theorem, there must exist s′ such

that ω′ ∈ supp(µ(·|s′)). Suppose that s′ 6= s. By Lemma 2, we can assume that µ(·|s′) �σ

µ(·|s). If µ(·|s′) �σ µ(·|s), then monotonicity would be violated since ω1 ∈ supp(µ(·|s)). On

the other hand, if µ(·|s′) ≺σ µ(·|s), then monotonicity would be violated by ω2. We therefore

conclude that s′ = s.

For (c), if ω1, ω2 ∈ supp(µ(·|s)) ∩ suppµ(·|s′)), where ω1 6= ω2, monotonicity is violated since

the higher of {ω1, ω2} is in the support of the lower distribution, while the lower is in the

support of the higher distribution. �

Proof of Theorem 2: In the case where the sender’s preferences are supermodular, consider
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any optimal signal structure (π,S). If |S| = 1, then the signal structure is trivially monotone,

and we are done. Thus we can assume without loss of generality that |S| = 2 and that there

exist s1, s2 ∈ S such that a∗(µ(·|s1)) = a1 and a∗(µ(·|s2)) = a2. Suppose that the (π,S)

is not monotone. Then there exist ω1 ∈ supp(µ(·|s1)) and ω2 ∈ supp(µ(·|s2)) such that

ω1 > ω2. Without loss of generality, let ω1 = sup{ω : ω ∈ supp(µ(·|s1))} and ω2 = inf{ω :

ω ∈ supp(µ(·|s2))}. For any δ > 0, let sδ2 be the restriction of s2 to [ω2, ω2 + δ), and sδ1 be

the restriction of s1 to [ω1 − δ, ω1]. Let ω∗ ∈ [ω2, ω1] be the maximal value of ω at which

τ(µ(·|sω∗−ω2
2 )) ≤ τ((µ(·|sω1−ω∗

1 )). Then for some τ(µ(·|si))µ(ω∗|si) ≥ νi ≥ 0, we can define

µ̄1 = µ(·|sω1−ω∗
1 ) + ν1ω

∗ and µ̄2 = µ(·|sω∗−ω2
2 ) + ν2ω

∗ such that τ(µ̄1) = τ(µ̄2).

Since uS is supermodular in (a, ω), it follows that

d(µ(·|s2); µ̄1)− d(µ(·|s2); µ̄2) ≥ d(µ(·|s1); µ̄1)− d(µ(·|s1); µ̄2) (13)

as long as the induced action a∗ does not change. Note that for all η ∈ (0, 1],

µ(·|s2)− ηµ̄2 + ηµ̄1 �FOSD µ(·|s2) (14)

and so by single-crossing this implies that

a∗(µ(·|s2)− ηµ̄2 + ηµ̄1) ≥ a∗(µ(·|s2)) = a2

Similarly, since

µ(·|s1) �FOSD µ(·|s1) + ηµ̄2 − ηµ̄1 (15)

by single-crossing,

a∗(µ(·|s1) + ηµ̄2 − ηµ̄1) ≤ a∗(µ(·|s1)) = a1

Moreover, by (14) and (15), (13) remains true if we replace µ(·|s2) with µ(·|s2)− ηµ̄2 + ηµ̄1

and µ(·|s1) with µ(·|s1) + ηµ̄2− ηµ̄1. By the fundamental theorem of calculus, it follows that

τ(µ(·|s2))

∫
uS(a2, ω)d(µ(·|s2)− µ̄2 + µ̄1) + τ(µ(·|s1))

∫
uS(a1, ω)d(µ(·|s1) + µ̄2 − µ̄1)

= τ(µ(·|s2))

∫
uS(a2, ω)dµ(·|s2) + τ(µ(·|s1))

∫
uS(a1, ω)dµ(·|s1)

+

∫ 1

0

[d(µ(·|s2)− ηµ̄2 + ηµ̄1; µ̄1)− d(µ(·|s2)− ηµ̄2 + ηµ̄1; µ̄2)]dη

−
∫ 1

0

d(µ(·|s1) + ηµ̄2 − ηµ̄1; µ̄1)− d(µ(·|s1) + ηµ̄2 − ηµ̄1; µ̄2)dη
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≥ τ(µ(·|s2))

∫
uS(a2, ω)dµ(·|s2) + τ(µ(·|s2))

∫
uS(a1, ω)dµ(·|s1)

Hence adding µ̄1− µ̄2 to µ(·|s2) and adding µ̄2− µ̄1 to µ(·|s1) results in a weak improvement

over (π,S). Note that the resultant signal structure is now monotone, as there is no ω < ω∗

in the support of µ(·|s2) + µ̄1 − µ̄2, and no ω > ω∗ in the support of µ(·|s1) + µ̄2 − µ̄1. Since

(π,S) was optimal, there also exists a monotone signal structure which is optimal. �

Proof of Corollary 3: Suppose that neither (a) nor (b) hold. Then for any ω ∈ Ω and

for small enough ε, a∗(µ(·|si) + εω) = a∗(µ(·|si)). For each of the signals s1, s2, we define

the signal realizations sδ1, s
δ
2 which restrict s1, s2 to the open interval within δ of ω2 and ω̄1,

respectively. For every δ > 0, if (π,S) is optimal, then dµ(·|s1);µ(·|sδ1)) ≥ d(µ(·|s2);µ(·|sδ1))

and d(µ(·|s2);µ(·|sδ2)) ≥ d(µ(·|s2);µ(·|sδ2)). Note that as δ → 0, µ(·|sδ1) → µ(·|ω̄1) in the

weak-* topology. Hence

lim
δ→0

d(µ(·|si);µ(·|sδ1)) = uS(ai, ω̄1)

which is precisely the value of d(µ(·|s), εω̄1). Similarly, we find that

lim
δ→0

d(µ(·|si);µ(·|sδ2)) = uS(ai, ω2)

Suppose that uS(a2, ω2) < uS(a1, ω2). Then for sufficiently small δ, d(µ(·|s1);µ(·|sδ2)) >

d(µ(·|s2);µ(·|sδ2)). Thus there would be a feasible improvement from shifting a a weight

of ε of µ(·|sδ2) from µ(·|s2) to µ(·|s1), and so (π,S) could not be optimal. Similarly, if

uS(a2, ω̄1) > uS(a1, ω̄1), then there exists an improvement by shifting (for small enough δ

and ε) a weight of ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). �

Proof of Lemma 3: For the receiver, the change in payoff from adding ε · µ′ to µ, for a

given choice of a ∈ [a, ā], is∫
uR(a, ω)d(µ+ ε · µ′)−

∫
uR(a, ω)dµ =

ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
uR(a, ω)dµ′

Hence the receiver’s problem is now

max
a

τ(µ)

τ(µ) + ετ(µ′)

∫
uR(a, ω)dµ+

ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
uR(a, ω)dµ′

and so the first-order condition becomes

τ(µ)

τ(µ) + ετ(µ′)

∫
∂uR
∂a

(a∗(µ+ε ·µ′), ω)dµ(ω|s)+
ετ(µ′)

τ(µ) + ετ(µ′)
·
∫
∂uR
∂a

(a∗(µ+ε ·µ′), ω)dµ′ = 0

Note that the second term of the above equation vanishes as ε → 0. By Berge’s maximum
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theorem, limε→0 a
∗(µ+ ε ·µ′) = a∗(µ). Combining these cases and dividing by ετ(µ′), we have

τ(µ)

ετ(µ′)(τ(µ) + ετ(µ′))

∫
∂uR
∂a

(a∗(µ+ε·µ′), ω)dµ+
ετ(µ′)

ετ(µ′)(τ(µ) + ετ(µ′))
·
∫
∂uR
∂a

(a∗(µ+ε·µ′), ω)dµ′

− 1

ετ(µ′)

∫
∂uR
∂a

(a∗(µ), ω)dµ = 0

Taking the limit as ε→ 0,

− 1

τ(µ)

∫
∂uR
∂a

(a∗(µ), ω)dµ′ = lim
ε→0

1

ετ(µ′)
{
∫
∂uR
∂a

(a∗(µ+ ε · µ′), ω)dµ−
∫
∂uR
∂a

(a∗(µ), ω)dµ}

= lim
ε→0

1

ετ(µ′)

∫
∂2uR
∂a2

(a∗(µ), ω)dµ · (a∗(µ+ ε · µ′)− a∗(µ)) (16)

and so

lim
ε→0

a∗(µ+ ε · µ′)− a∗(µ)

ετ(µ′)
=
− 1
τ(µ)

∫
∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ

Substituting this into the sender’s problem gives

lim
ε→0

D(µ, ε · µ′) =

lim
ε→0

1

ετ(µ′)
{τ(µ)[

∫
∂uS
∂a

(a∗(µ+ε·µ′), ω)dµ]·[a∗(µ+ε·µ′)−a∗(µ)]+ετ(µ′)·
∫
uS(a∗(µ+ε·µ′), ω)dµ′}

= −
∫

∂uS
∂a

(a∗(µ), ω)dµ ·
∫

∂uR
∂a

(a∗(µ), ω)dµ′∫
∂2uR
∂a2

(a∗(µ), ω)dµ
+

∫
uS(a∗(µ), ω)dµ′

Note that if if a∗(µ) = a∗(µ + εω) ∈ {a, ā} for small enough ε > 0, then the first term

vanishes, and we are left with limε→0D(µ, ε · µ′) =
∫
uS(a∗(µ), ω)dµ′.

Since this is true regardless of the sign of ε,

lim
ε→0+

D(µ, ε · µ′) = − lim
ε→0−

D(µ,−ε · µ′)

whenever such a subtraction is feasible. �

Proof of Theorem 4: In both cases, we first proceed for the case in which Ω is finite, and

then extend to the infinite case through successive finite approximations of Ω. By Proposition

4 in the online appendix of KG, this implies that |S| is finite, and so τ(µ(·|s)) > 0 for all

s ∈ S.

(i) Suppose that (π,S) is optimal and there exists some signal s ∈ S such that µ(ω|s) /∈ {0, 1}
for some ω. We show that there exists an improvement over (π,S). Consider the alteration
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(π′,S ′) which is identical to (π,S) except that it duplicates s into s1 and s2 such that

µ(ω|s) = µ(ω|s1) = µ(ω|s2) and τ(µ(·|s1)) = τ(µ(·|s2)) = 1
2
τ(µ(·|s)). For shorthand, we

write µ(·|si) = µi.

Suppose that a∗(µ(·|s)) ∈ (a, ā). Let ω ≡ min{ω : ω ∈ supp(µ(·|s))} and ω̄ ≡ max{ω : ω ∈
supp(µ(·|s))}. Then for ν, η ≥ 0 (with at least one strictly so),

µ2 + νω̄ − ηω �σ µ1 − νω̄ + ηω (17)

Moreover, by d-quasisupermodularity, either

d(µ2 + νω̄ − ηω; ω̄)− d(µ1 − νω̄ + ηω; ω̄) > 0 (18)

or

d(µ1 − νω̄ + ηω;ω)− d(µ2 + νω̄ − ηω;ω) > 0 (19)

Thus for any β, γ ∈ (0, 1
2
), by the fundamental theorem of calculus, there exist 1

2
≥ ν ≥ β

and 1
2
≥ η ≥ γ (with at least one strict) such that

τ(µ1 − νω̄ + ηω)

∫
uS(a∗(µ1 − νω̄ + ηω), ω)d(µ1 − νω̄ + ηω)(ω)

+τ(µ2 + νω̄ − ηω)

∫
uS(a∗(µ2 + νω̄ − ηω), ω)d(µ2 + νω̄ − ηω)(ω)

> τ(µ1 + γω − βω̄)

∫
uS(a∗(µ1 + γω − βω̄), ω)d(µ1 + γω − βω̄)(ω)

+τ(µ2 − γω + βω̄)

∫
uS(a∗(µ2 − γω + βω̄), ω)d(µ2 − γω + βω̄) (20)

and so we can without loss of generality set max{ν, η} = 1
2
, as there will exist an improvement

by incrementing the weight on either ω̄ or ω for the cases where ν < 1
2

and η < 1
2

since the

payoffs will be continuous in (ν, η) by Lemma 3. Note that (β, γ) were arbitrary, and that

lim
(β,γ)→(0,0)

τ(µ1 + γω − βω̄)

∫
uS(a∗(µ1 + γω − βω̄), ω)d(µ1 + γω − βω̄)(ω)

+τ(µ2 − γω + βω̄)

∫
uS(a∗(µ2 − γω + βω̄), ω)d(µ2 − γω + βω̄)(ω)

= τ(µ)

∫
uS(a∗(µ), ω)dµ(ω) (21)

Hence we can take a sequence of values {(βk, γk, νk, ηk)}∞k=1 such that (βk, γk) → (0, 0) and
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(without loss of generality) νk = 1
2

and ηk ≤ 1
2

for all k such that each (βk, γk, νk, ηk) satisfies

(19). Since the interval [0, 1
2
] is compact, there exists a convergent subsequence of {ηk}∞k=1 to

some η∞ ∈ [0, 1
2
] (without loss of generality, the sequence itself). By Lemma 3, the payoff to

the sender is continuous in (β, γ, ν), and so in the limit, we find from (20) that

τ(µ1 −
1

2
ω̄ + η∞ω)

∫
uS(a∗(µ1 −

1

2
ω̄ + η∞ω), ω)d(µ1 −

1

2
ω̄ + η∞ω)(ω)

+τ(µ2 +
1

2
ω̄ − η∞ω)

∫
uS(a∗(µ2 +

1

2
ω̄ − η∞ω), ω)d(µ2 +

1

2
ω̄ − η∞ω)(ω)

≥ τ(µ)

∫
uS(a∗(µ), ω)dµ(ω) (22)

Moreover,

µ2 +
1

2
ω̄ − η∞ω �FOSD µ2

∼FOSD µ1 �FOSD µ1 −
1

2
ω̄ + η∞ω

and so µ2 + 1
2
ω̄−η∞ω �σ µ1− 1

2
ω̄+η∞ω by Lemma 1. There then exists a local improvement

from either adding small enough weight ε of ω̄ from µ1 − 1
2
ω̄ + η∞ω to µ2 + 1

2
ω̄ − η∞ω, or

small enough ε of ω from µ2 + 1
2
ω̄− η∞ω to µ1− 1

2
ω̄+ η∞ω, due to inequalities (18) and (19),

respectively. Hence there exists an improvement over (π,S), and so it cannot be optimal.

For the case in which a∗(µ(·|s)) ∈ {a, ā}, the above method does not quite work, since it

may be that a∗(µ2 + 1
2
ω̄ − η∞ω) = a∗(µ1 − 1

2
ω̄ + η∞ω). To circumvent this issue, we take a

closer look at the support of µ(·|s). Suppose that a∗(µ(·|s)) = ā. If, for all ω ∈ supp(µ(·|s)),
a∗(ω) = ā, then splitting s into separate signals for each state does not change the payoff,

and so it will again be optimal to reveal all information. Otherwise, by supermodularity of

uR in (a, ω), it must be that a∗(ω) < ā. Since a∗ is continuous in µ, there exists β∗ ∈ (0, 1]

for which a∗(β∗ ·µ(·|s)− (1− β∗)ω) = ā, but for all β ∈ (0, β∗), a∗(β ·µ(·|s)− (1− β)ω) < ā.

It will then follow that for η, ν ≥ 0 (with one strict),

β∗ · µ(·|s)− (1− β∗)ω �σ β∗ · µ(·|s)− (1− β∗)ω + ηω − νω̄

Thus we can split s into two signals s1, s2 such that, for some c > 0,

µ1 = cβ∗ · µ(·|s)− c(1− β∗)ω

and

µ2 = µ(·|s)− (cβ∗ · µ(·|s)− c(1− β∗)ω)
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This will not change the payoff, as in both cases a∗(µ(·|si)) = ā. The argument then proceeds

as above, where now d(µ1;ω) is given by (5), but d(µ2;ω) = uS(ā2, ω). The case where

a∗(µ(·|s)) = a is symmetric, and so is omitted.

(ii) Suppose that (π,S) is optimal, and there exist s1, s2 ∈ S such that (without loss of

generality) µ(·|s1) �σ µ(·|s2); define these respective distributions as µ1 and µ2, respectively.

By Lemma 1, �σ is FOSD-consistent, and so there must exist ω1 ∈ supp(µ(·|s1)) and ω2 ∈
supp(µ(·|s2)) such that ω1 > ω2. By d-quasisubmodularity, either

d(µ2;ω1)− d(µ1;ω1) > 0

or

d(µ1;ω2)− d(µ2;ω2) > 0

In either case, an improvement exists, and so (π,S) can only be optimal if for all s1, s2 ∈ S,

µ1 ∼σ µ2. By Lemma 2, merging all such realizations generates the same payoff. Hence the

signal structure which generates the posterior beliefs identical to the prior is optimal.

Now consider the case where Ω is infinite. Consider any information structure (π,S). Let

ω̄ = sup{ω ∈ Ω} and ω = inf{ω ∈ Ω}. Consider a sequence of approximating state spaces

{Ωk} defined by dividing the interval [ω, ω̄] into subintervals of length ω̄−ω
2k

, and so that all

states ω in the same interval Ink (indexed by n ∈ {1, ..., 2k}) are mapped to the same value,

ωnk ; the prior distribution µk0 is then defined by assigning to ωnk the probability

µk0(ωnk ) =

∫
Ink

µ0(ω)

where Ink = [n(ω̄−ω)+ω
2k

, (n+1)(ω̄−ω)+ω
2k

), with the interval closed for n = 2k. We correspondingly

approximate (π,S) by (πk,Sk) in which for any s ∈ S, there is a signal realization sk ∈ Sk
such that

µk(ωnk |sk) =

∫
Ink

µ(ω|s)

and

dτ(µk(·|sk)) = dτ(µ(·|s))

Since π is measurable, this construction is well-defined. Note that this may lead to some

duplicates, i.e. there may be multiple values of sk which lead to the same µk; if so, these

realizations can be merged by Lemma 2 without changing the payoff from the resultant signal

structure.

As we have already shown, when the sender’s payoffs are d-quasisubmodular it is optimal to
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reveal no information when the state space is Ωk with prior µk0, and so∫
uS(a∗(µk0), ω)dµk0(ω) ≥

∫ ∫
uS(a∗(µk), ω)dµk(ω)dτ(µk)

Since uR is continuous and both µk → µ and µk0 → µ0 in the weak-* topology, it follows that

a∗(µk) → a∗(µ) and a∗(µk0) → a∗(µ0) by Berge’s maximum theorem. By the continuity of

uS, this implies that∫
uS(a∗(µ0), ω)dµ0(ω) ≥

∫ ∫
uS(a∗(µ), ω)dµ(ω)dτ(µ)

and so the signal structure which reveals no information provides at least as good a payoff

to the sender as (π,S).

Similarly, when the sender’s payoffs are d-quasisupermodular, it is optimal to reveal all

information, and so∫
uS(a∗(ω), ω)dµk0(ω) ≥

∫ ∫
uS(a∗(µk), ω)dµk(ω)dτ(µk)

Taking the limit as µk → µ and µk0 → µ0 yields∫
uS(a∗(ω), ω)dµ0(ω) ≥

∫ ∫
uS(a∗(µ), ω)dµ(ω)dτ(µ)

and so it will be optimal to reveal all information. �

Proof of Theorem 5: For both (i) and (ii), we show that there is a local improvement for

any (π,S) that is not monotone. Without loss of generality, by Lemma 2 we can assume

that for all s1, s2 ∈ S, either µ(·|s1) �σ µ(·|s2) or µ(·|s2) �σ µ(·|s1). Now suppose that

µ(·|s1) �σ µ(·|s2), but there exists ω2 ∈ supp(µ(·|s2)) and ω1 ∈ supp(µ(·|s1)) such that

ω2 > ω1.

To show that an optimal signal structure exists, note that since lim|S|→∞ c(π,S) =∞, there

must exist some N∗ such that optimal structure must have |S| < N∗. We then check for the

optimal signal structure conditional on |S| = N < N∗, and optimize over N . For fixed N ,

the function ∑
s∈S

τ(µ(·|s))
∫

Ω

uS(a∗(µ), ω)dµ(ω|s)− c(π,S)

is continuous in (µ, τ(µ)), since a∗(µ) is continuous in µ and c(·, ·) is continuous in {τ(µ)}.
The set of such µ is compact under the weak-* topology, while {τ(µ)} is an N -dimensional

Euclidean vector contained in the N -dimensional simplex (a compact set, as long as we allow
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duplicate signal realization that induce posterior µ), and so an optimal (π,S) exists.

To show that a monotone signal structure is optimal, fix δ < 1
2
(ω2 − ω1), and define sδ1 to be

the restriction of s1 to [ω1 − δ, ω1 + δ], and sδ2 to be the restriction of s2 to [ω2 − δ, ω2 + δ].

(i) By d-supermodularity, for all ω′2 ∈ supp(µ(·|sδ2)) and ω′1 ∈ supp(µ(·|sδ1)), we have that

d(µ(·|s1);ω′2)− d(µ(·|s1);ω′1) > d(µ(·|s2);ω′2)− d(µ(·|s2);ω′1)

and so

d(µ(·|s1);µ(·|sδ2))− d(µ(·|s1);µ(·|sδ1)) > d(µ(·|s2);µ(·|sδ2))− d(µ(·|s2);µ(·|sδ1))

Hence there exists an improvement (excluding costs) by adding (ε
τ(µ(·|sδ1))

τ(µ(·|sδ2))
) ·µ(·|sδ2) (where ε is

sufficiently small) to µ(·|s1) and subtracting an equal weight from µ(·|s2), while subtracting

ε · µ(·|sδ1) from µ(·|s1) and adding it to µ(·|s2). Moreover,

τ(µ(·|s1) + ε
τ(µ(·|sδ1))

τ(µ(·|sδ2))
· µ(·|sδ2)− εµ(·|sδ1)) = τ(µ(·|s1))

τ(µ(·|s2) + ε · µ(·|sδ1)− ετ(µ(·|sδ1))

τ(µ(·|sδ2))
· µ(·|sδ2)) = τ(µ(·|s2))

and so the vector of probabilities {τ} (and hence c) is unaffected. Therefore (π,S) is not

optimal.

(ii) Similarly, if the sender’s payoffs are d-quasisupermodular, either

d(µ(·|s1);ω′2)− d(µ(·|s2);ω′2) > 0

or

d(µ(·|s2);ω′1)− d(µ(·|s2);ω′1) > 0

and so either

d(µ(·|s1);µ(|sδ2))− d(µ(·|s2);µ(·|sδ2)) > 0

or

d(µ(·|s2);µ(·|sδ1))− d(µ(·|s2);µ(·|sδ1)) > 0

In either case, ignoring costs, there exists a local improvement, in the former case by trans-

fering sufficiently small ε weight of µ(·|sδ2) from µ(·|s2) to µ(·|s1), or in the latter case from

transferring ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). Let the new signal structure be (π′,S ′). Since

|S ′| = |S|, the cost c is unaffected. Hence (π,S) is not optimal. �
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Proof of Corollary 6: We show that, in both cases, the problem reduces to that described

in Theorem 3.

(i) By Lemma 2, |S| ≤ N ; moreover, if it is optimal to set |S| < N , it is also optimal to

set |S| = N , as one can always construct duplicate signals with the same posterior. We can

therefore rewrite the problem as one in which

c(π,S) =

0, |S| ≤ N

∞, otherwise

(i) As shown in part (i), the signal structure must have |S| ≤ N . Let the optimal signal

structure then be (π,S) (such a structure will exist because the set of signal structures

with |S| ≤ N is compact). Suppose that the set of actions taken is {a∗n}Nn=1, and let the

posterior distribution of types conditional on each a∗n be ν(·|a∗n) (this may be achieved through

randomization by the receiver). Then the signal structure (π′,S ′) in which S ′ = {sn}Nn=1,

µ(·|sn) = ν(·|a∗n), and τ(µ(·|sn)) = τ̂(n) will also be optimal. To see this, note that the

receiver to take the same set of actions {a∗n}Nn=1, as any other set of actions {â∗n}∞n=1 with

associated posterior distributions of types ν̂(·|â∗n) that would be optimal under (π′,S ′) would

also be feasible under (π,S) since ν̂(·|â∗n) =
∑N

n=1 αnν(·|a∗n) for some {αn}Nn=1 such that∑N
n=1 αnτ(µ(·|sn)) = τ̂(n). Thus the problem of the sender can be rewritten as one in which

c(π,S) =

0, {τ(µ)} = {τ̂(n)}

∞, otherwise

In both cases, the result then follows from Theorem 5. �

Proof of Corollary 7: For each of the signals s1, s2, we define the signal realizations sδ1, s
δ
2

which restrict s1, s2 to within δ of ω1 and ω̄2, respectively. For every δ > 0, if (π,S) is optimal,

then dµ(·|s1);µ(·|sδ1)) ≥ d(µ(·|s2);µ(·|sδ1)) and d(µ(·|s2);µ(·|sδ2)) ≥ d(µ(·|s2);µ(·|sδ2)). Note

that as δ → 0, µ(·|sδ1)→ µ(·|ω1) in the weak-* topology. Hence if we take the limit as δ → 0,

we find that

lim
δ→0

d(µ(·|s);µ(·|sδ1)) = −
∫
∂uS
∂a

(a∗(µ(·|s)), ω)dµ(ω|s)]·
∂uR
∂a

(a∗(µ(·|s)), ω1)∫
∂2uR
∂a2

(a∗(µ(·|s)), ω)dµ(ω|s)
+uS(a∗(µ(·|s)), ω1)

which is precisely the value of d(µ(·|s), εω1). Similarly, we find that

lim
δ→0

d(µ(·|s);µ(·|sδ2)) = −
∫
∂uS
∂a

(a∗(µ(·|s)), ω)dµ(ω|s)]·
∂uR
∂a

(a∗(µ(·|s)), ω̄2)∫
∂2uR
∂a2

(a∗(µ(·|s)), ω)dµ(ω|s)
+uS(a∗(µ(·|s)), ω̄2)
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Suppose that d(µ(·|s1); ω̄2) > d(µ(·|s2); ω̄2). Then for sufficiently small δ, d(µ(·|s1);µ(·|sδ2)) >

d(µ(·|s2);µ(·|sδ2)). Thus there would be a feasible improvement from shifting a a weight

of ε of µ(·|sδ2) from µ(·|s2) to µ(·|s1), and so (π,S) could not be optimal. Similarly, if

d(µ(·|s2);ω1) > d(µ(·|s1);ω1), then there exists an improvement by shifting (for small enough

δ and ε) a weight of ε of µ(·|sδ1) from µ(·|s1) to µ(·|s2). �
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