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Abstract

I study the causal effect of the European Union Emissions Trading System (EU

ETS) on the productivity of German manufacturing firms. Using administrative

firm-level data, I estimate robust production functions for narrowly defined indus-

tries. This approach allows for an endogenous dynamic productivity process and

corrects for simultaneous changes in input use or productivity after a firm is reg-

ulated by the EU ETS. After estimating the firm specific productivity, I employ

a difference-in-differences framework in order to identify and quantify the average

treatment effect of the EU ETS on the productivity of regulated firms. The results

suggest no significant negative effect of the EU ETS on productivity. In contrast,

the EU ETS had a positive effect on productivity during the first compliance period.

An alternative identification strategy based on a combination of the difference-in-

differences framework and nearest neighbor matching supports this finding. A sub-

sample analysis provides evidence that the effect of the EU ETS is heterogeneous

across industries.
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1 Introduction

The increased likelihood of disasters linked to climate change, such as floodings, droughts,

and forest fires, has put greenhouse gas reduction targets on policy agendas worldwide.

The European Union (EU) acknowledged the importance of this endeavor by commit-

ting itself to cut greenhouse gas emissions by 20 percent until 2020 compared to 1990

figures. In 2005, the EU introduced the EU Emissions Trading System (EU ETS), a

multinational cap-and-trade system, in order to regulate emissions from stationary in-

dustrial installations. The need for effective and efficient policy instruments to mitigate

greenhouse gas emissions requires a thorough ex post evaluation of existing policies. The

analysis of the EU ETS and its impact on regulated firms offers the opportunity to better

understand the mechanisms and consequences of market based policy instruments.

First studies investigating the causal effects of the EU ETS show that it significantly

reduced carbon dioxide emissions of regulated firms in many countries and spurred the

development of new low carbon technologies throughout Europe (Petrick and Wagner,

2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl, and Jakobsen,

2016; Calel and Dechezleprêtre, 2016). Despite its positive short and long term effects,

the EU ETS has been the subject of significant political debate due to its potential

adverse impact on the economic performance and competitiveness of regulated fims that

compete on global markets.

From a theoretical point of view, it is not clear whether the EU ETS has an overall

negative effect on the economic performance of regulated firms. The cost of complying

with the EU ETS might decrease revenues and profits. However, according to the induced

innovation hypothesis postulated by Hicks (1932), a relative change in input prices might

create incentives to invest in new technology in order to reduce the use of the increasingly

expensive input. In which way these adjustments affect economic performance depends

on the production technolgy, input and output markets, and other factors that differ

across firms. Porter (1991) and Porter and van der Linde (1995) put forward a stronger

hypothesis specificly addressing the effects of environmental policy. They argue that

properly designed regulation might not only increase the incentives to develop and adopt

environmentally friendly technology but also consequently might affect competitiveness

in a favorable manner.

Calel and Dechezleprêtre (2016) empirically investigate the induced innovation hy-

pothesis and show that the EU ETS has a positive causal impact on low carbon innova-

tion measured by patenting activities. These inventions, but also operational changes or

investments in existing more efficient technologies might increase economic performance

and create an advantage for regulated firms over competitors.

The aim of this study is to analyze the causal effect of the EU ETS on the economic

performance of regulated firms. First, I estimate a structural production function model

in order to obtain the total factor productivity as a robust and comprehensive measure

of economic performance. Secondly, I isolate and quantify the effect of the EU ETS on

the productivity of regulated firms by exploiting treatment variation that results from
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the design of the scheme.

The dispersion in productivity levels across firms and plants has been under inves-

tigation in many areas of economic research, such as industrial organization, labor, and

trade (Syverson, 2011). Internal factors, such as input quality (Van Biesebroeck, 2003),

managerial practice (Bloom and Van Reenen, 2007), or R&D activity (Doraszelski and

Jaumandreu (2013)), but also external factors, such as trade competition (De Loecker,

2007) or market regulation (Knittel, 2002) drive firm-level productivity.1

Furthermore, market based environmental regulation has been identified as a driver

of firm-level productivity. Greenstone, List, and Syverson (2012) investigate the im-

pact of air quality regulation on the productivity of U.S. plants. Regulations governing

ozone, particulates, and sulfor dioxide decreased productivity, while regulations limit-

ing carbon monoxide increased productivity. On average, the productivity of polluting

plants decreased by 4.8 percent in regulated areas. Commins, Lyons, Schiffbauer, and

Tol (2011) investigate the correlation between energy taxation and productivity during

the period from 1997 to 2007. They use balance sheet data of European firms from

the sectors manufacturing, energy, and transport. Exploiting industry level variation in

energy taxation, they find a positive correlation between taxation and firm-level pro-

ductivity. In addition, they report a negative correlation between EU ETS participation

and productivity for the first compliance period.

The origins of production function estimation date far back in economic literature.

Marschak and Andrews (1944) investigate the challenges of estimating production func-

tions using OLS. The observed input factors that enter the production function are

chosen by firms. Therefore, unobserved firm specific determinants of production that

are correlated with the choice of inputs are likely to bias OLS estimates. Recent advances

have been made by Olley and Pakes (1996) (henceforth OP) who develop a structural

econometric model of production that corrects for the described simultaneity bias us-

ing investments to proxy unobserved firm specific productivity shocks. Levinsohn and

Petrin (2003) (henceforth LP) show that also static inputs can be used as proxies in

the framework of the control function approach. Ackerberg, Caves, and Frazer (2015)

(henceforth ACF) build on the basic idea to use observed firm characteristics to proxy

the unobserved productivity, but suggest a more general and more robust estimation

procedure. De Loecker (2013) enhances the ACF model by allowing for an endogenous

productivity process.

The empirical strategy of this paper consists of two steps. First, I follow ACF and

De Loecker (2013) and estimate a robust production function that allows the EU ETS

to simultaneously influence input choice and productivity process in order to obtain an

estimate for firm-level productivity. Secondly, I employ an identification strategy that

relies on treatment variation caused by the design of the EU ETS in order to estimate the

average treatment effect of the EU ETS on the productivity of regulated firms. In order

to balance administrative cost, the EU exempts small and medium sized emitters from

1See Syverson (2011) for a comprehensive survey on the productivity dispersion literature.
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regulation by the EU ETS. As a consequence, there are regulated and unregulated firms

within narrowly defined industries. I exploit this variation by estimating a variety of

difference-in-differences models that isolate the effect of the EU ETS from confounding

factors.

The empirical analysis is based on administrative firm data from Germany. I observe

detailed annual firm-level information for the period from 1999 to 2012. The core of the

dataset is the Cost Structure Survey (henceforth CSS) carried out by the German statis-

tical offices. The CSS contains comprehensive annual information on output produced

and inputs used by firms that operate in the manufacturing sector. It is the founda-

tion of many governmental statistics and reports on the activities of the manufacturing

sector.

The average treatment effect of the EU ETS on the productivity of regulated firms

is statistically significant and ranges between 0.5 and 0.7 percent during the first com-

pliance period depending on the set of control variables. The estimated treatment effect

for the second compliance period is negative, but economically and statistically insignif-

icant. Moreover, annual average treatment effects support the finding that the EU ETS

had an impact during the first compliance period, while the estimated effects are not

significantly different from zero for years of the second compliance period. In order to

investigate the heterogeneity of the treatment effect across industries, I additionally es-

timate the difference-in-differences model for energy intensive two-digit industries with

a sufficient number of regulated firms. The effect of the EU ETS on the productivity

of firms from the food, paper, and chemical industry are not significantly different from

zero. When estimating the model based on data for the industry producing basic metals,

I find a significant positive effect for the first compliance period ranging between 2.4 and

2.9 percent.

In order to relax the parametric assumption of the difference-in-differences model,

I follow Fowlie, Holland, and Mansur (2012) and combine the difference-in-differences

framework with nonparametric nearest neighbor matching. The estimated treatment

effects are statistically significant and positive for the first compliance period. In contrast

to the parametric approach, the difference-in-differences matching model also provides

evidence for a positive effect of the EU ETS during the second compliance period. The

estimated treatment effects are slightly higher in comparison to the parametric approach

and range between 1.5 and 2.7 percent for the first compliance period and 1.2 and

1.4 percent for the second compliance period, respectively. Annual treatment effect

estimates based on the difference-in-differences matching model support the result that

the EU ETS had a stronger effect during the first compliance period. For all models and

specifications, I investigate pretreatment years and show that the productivity evolves

in a parallel fashion across groups.

The structure of this paper is as follows: Section 2 describes the regulatory framework

of the EU ETS and gives an overview of the empirical literature concerned with the

causal effects of the EU ETS on firms’ production and investment decisions. Section
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3 describes the underlying official firm data and some descriptive statistics. Section 4

describes the empirical production function estimation and the difference-in-differences

model employed to identify the causal effect of the EU ETS. Section 5 contains the

parameter estimates of the empirical production functions and reports the results of

the difference-in-differences model. Section 6 provides robustness checks with regard

to heterogeneous treatment effects and functional assumptions. Section 7 discusses the

results and concludes.

2 The EU ETS as a natural experiment

In the framework of the Kyoto Protocol, the EU committed itself to reducing its green-

house gas emissions by 20 percent until 2020 compared with 1990 levels. In order to

achieve its emission targets, the EU decided in 2003 to regulate greenhouse gas emissions

from industrial installations by building an EU wide emissions trading system (European

Parliament and Council, 2003). The resulting EU ETS was finally introduced in 2005

and currently regulates about 45 percent of the EU’s greenhouse gas emissions caused

by more than 11,000 installations in 31 countries.2

The EU ETS covers emissions from combustion installations and installations that

run energy intensive production processes, such as oil refining, the production of metals,

cement, lime, ceramics, bricks, glass, or paper. The design of the EU ETS excludes

small and medium sized installations. For each of the listed processes, the European

Commission (EC) defined specific capacity thresholds that determine the inclusion into

the EU ETS.3 The regulated installations have to undergo a continuous monitoring,

reporting, and verification process. Once a year, they surrender allowances equivivalent

to their verified emissions.

The first compliance period of the EU ETS lasted from 2005 to 2007. It served as

a pilot phase and was completely decoupled from the following compliance periods. As

a consequence, allowances from the pilot phase were not eligible for surrender in later

years. In 2005, the allowance price ranged between 20 and 30 euros. The price dropped

and finally approached zero in 2007, when market participants realized that there was a

massive oversupply on the market. The pilot phase was followed by second compliance

period that coincided with the first commitment period of the Kyoto Protocol from 2008

to 2012. After the start of the second compliance period, the prices ranged between 20

and 30 euros, however a massive oversupply of allowances resulted in another price drop

during the second half of 2008. As in previous years, the allowances were mostly allocated

for free based on historic emissions. The plummeting demand due to the economic crisis

and the massive use of project based emission credits from the flexible mechanisms of the

Kyoto Protocol did not meet the rather inelastic supply of allowances. The allowance

price remained at a level of around 15 euros until a further shift in the second half of

2The EU ETS operates in the 28 member states of the EU as well as in Iceland, Liechtenstein, and

Norway.
3See European Parliament and Council (2003) Annex I for details on the inclusion criteria.
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2011 when the allowance price dropped below 10 euros. In contrast to 2007, the price

did not converge toward zero since the allowances could also be used for compliance in

subsequent years.4

Regulated firms can comply with the EU ETS in different ways. First, a regulated

firm can surrender allowances to legitimate its emissions. This strategy is dominant

as long as the allowance price is lower than the cost of abatement. Regardless of how

the firm obtains the required allowances, the surrender of allowances negatively affects

its economic performance. Alternatively, a regulated firm can abate greenhouse gas

emissions through a change in input choice, an adjustment of the production technology,

or the development of less emission intensive products. The effect of these abatement

options on the firm’s economic performance is less clear. A change in input choice, such as

a fuel switch, comes at relatively low cost and might not have any additional effects on the

firm. An adjustment of the production technology for example through investments in

energy efficiency however might not only reduce the use of fuel but could also increase the

overall efficiency of the firm. The development of new products also requires investments,

but might create an advantage over competitors. From a theoretical perspective, it is

not clear whether the EU ETS had a significant negative effect on firm performance or

whether secondary effects of abatement measures increased economic performance.

A few very recent studies aim to contribute empirical evidence to the academic and

public debates by investigating the causal effects of the EU ETS on the emissions and

the economic performance of regulated firms. These studies exploit treatment variation

that results from the inclusion criteria of the EU ETS. Since only large emitters are

regulated, there are regulated and unregulated firms within narrowly defined industries

that can be compared. The empirical evidence on the impact of the EU ETS on firm-level

emissions and emission intensity is mixed. Studies using data from Germany, France,

and Norway suggest that the EU ETS significantly reduced greenhouse gas emission

(Petrick and Wagner, 2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen,

Rosendahl, and Jakobsen (2016)).5 Jaraitė and Di Maria (2016) do not find that the EU

ETS significantly decreased firm-level emissions in Lithuania, but they find a significant

negative effect on emission intensity. So far, there is no evidence that the EU ETS had

a significant negative effect on indicators of economic performance. In contrast, Petrick

and Wagner (2014) find a positive effect of the EU ETS on the revenues of regulated firms

in Germany. Klemetsen, Rosendahl, and Jakobsen, 2016 find a positive effect on value

added and labor productivity of regulated firms in Norway. Calel and Dechezleprêtre

(2016) investigate the effect of the EU ETS on patenting. Their findings support that

the EU ETS increased the number of low carbon patents developed by regulated firms.

Bushnell, Chong, and Mansur (2013) examine how the EU ETS affects daily stock

returns of European firms. They show that low allowance prices are associated with low

stock prices for firms in both carbon and electricity intensive industries. Their results

4See Figure A.1 in Appendix A for details.
5Most of the studies investigating the causal effects of the EU ETS are still work under progress and

thus not yet peer reviewed.
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indicate that regulated firms profit from free allocation of allowances and a potential

pass-through of environmental cost. Fabra and Reguant (2014) employ reduced-form

and structural estimations in order to measure the pass-through of costs related to the

EU ETS. Using Spanish electricity market data, they show that the environmental costs

are almost completely passed through to electricity prices.

The aim of this study is to further investigate the impact of the EU ETS on the

economic performance of regulated firms. Debates on potential detrimental effects of

emissions trading on economic performance have accompanied the first two compliance

periods of the EU ETS. Large lobby groups such as the Federation of German Industries

frequently point out that the EU ETS imposes high costs on regulated firms and thus

threatens the competitiveness of European industries (The Federation of German Indus-

tries, 2016).6 This paper gives nuance to these debates with sound empirical evidence

on the causal effects of the EU ETS.

The existing ex post evaluations investigate the effect of the EU ETS on revenues,

value added, and labor productivity. These indicators do not provide a comprehensive

picture of the firm specific economic performance. I employ a structural production

function model in order to obtain a robust estimate of the firm-level total factor pro-

ductivity. This measure for economic performance has been prominently used in the

economic literature to investigate the origins of productivity dispersion.

Following the literature on the ex post evaluation of the EU ETS, I exploit the

inclusion criteria of the EU ETS to develop a sound identification strategy. I compare

the firm specific productivity of firms that are regulated, i.e. belong to the treatment

group, with the productivity of firms that are unregulated, i.e. belong to the control

group, before and after the implementation of the EU ETS. I estimate the treatment

effect employing parametric and nonparametric difference-in-differences models.

3 Empirical strategy

The empirical analysis consists of two subsequent steps.7 First, I estimate a robust

production function that allows for an endogenous productivity process. It corrects for

simultaneous changes in productivity and input use after a firm is regulated by the

EU ETS. The resulting production function is used to recover a firm specific measure of

productivity. Secondly, I assess the causal effect of the EU ETS on firm-level productivity

by employing the difference-in-differences framework.

6The Federation of German Industries is an umbrella association representing the interests of more

than 100,000 firms with about eight million employees.
7I follow the procedure applied by Braguinsky, Ohyama, Okazaki, and Syverson (2015) and employ a

two-step approach in order to investigate the effect of the EU ETS on firm specific productivity changes.

This procedure enables me to control for a large set of confounding factor in a difference-in-differences

framework.
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3.1 Production function estimation

Since the seminal paper of Marschak and Andrews (1944), it has been known that the

estimation of a production function using OLS most likely leads to biased coefficients.

The observed input factors that enter the production function - here, capital and labor

- are chosen by the firm. If there is a firm specific determinant of production, that

influences the input choice and is only visible to the firm itself, the OLS estimates will

be biased.

OP develop a structural econometric model of production that corrects for the

described simultaneity bias by using investments to proxy unobserved firm specific pro-

ductivity shocks. LP enhance this approach and show that also static inputs, such as

materials or energy use, can be used as proxy variables to control for productivity.8 ACF

build on the basic idea that underlies OP and LP, namely using observed firm charac-

teristics to proxy the unobserved productivity, but suggest a more general and more

robust estimation procedure. I estimate the production function following the approach

proposed by ACF.

I assume a Cobb-Douglas production function that takes the following empirical log

linear form for firm i at time t:

yit = βkkit + βllit + ωit + εit, (1)

where yit is the logarithm of gross value added, kit and lit denote the observable inputs

capital and labor expressed in logs, and ωit is the unobservable Hicks neutral productivity

term. The error term εit accounts for random shocks and measurement error and is

assumed to be identically and independently distributed.

I assume, that the capital stock k at time t is determined by the investment i and

the capital stock depreciation in t − 1. The labor market regulation is quite strict in

Germany by granting employees a period of notice that can last several months depending

on employment relationship and industry. Therefore, I also treat labor as a dynamic

input and assume that it is chosen between t − 1 and t. OP, LP, and ACF assume

the dynamics of productivity to evolve according to an exogenous first order Markov

process. I follow De Loecker (2013) and consider a more general model, where I allow

determinants of production to influence future productivity.9 Accordingly, the evolution

8Ackerberg, Benkard, Berry, and Pakes (2007) offer a more detailed technical description of the

differences between these approaches.
9De Loecker (2013) includes exports into the first order Markov process in order to investigate the

learning by exporting hypothesis. The idea to allow for endogenous productivity has been implemented in

several structural econometric production models. Criscuolo and Martin (2009) examine the productivity

of foreign owned plants in the United Kingdom, Doraszelski and Jaumandreu (2013) study the impact

of R&D on productivity and Aw, Roberts, and Xu (2011) develop a structural model to shed light onto

the joint impact of investments in R&D and exporting on productivity dynamics. Collard-Wexler and

De Loecker (2015) measure the impact of technology choice on industry wide productivity in the U.S.

steel industry. Braguinski, Ohyama, Okazaki, and Syverson (2015) investigate the effect of merger on

productivity. All these studies feature the inclusion of additional production determinants into the first

order Markov process that governs the productivity dynamics.
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of the productivity dynamics is described by

ωit+1 = f(ωit, zit) + ξit, (2)

where the vector z collects determinants of production. The EU ETS might influence

the production and investment decisions of a regulated firm and thus affect future pro-

ductivity. Therefore, the effect of the EU ETS on productivity dynamics should be taken

into account in order to prevent potential bias. I include a dummy variable indicating if

a firm is regulated at time t. Furthermore, I add dummies for exports and R&D, since

it has already been shown by De Loecker (2013), Doraszelski and Jaumandreu (2013),

and Aw, Roberts, and Xu (2011) that both factors are important drivers of productivity.

Accordingly, the functional relationship between ωit and the determinants of production

is governed by

f(ωit, zit) =
3∑
j

θjω
j
it + γ1etsit + γ2rndit + γ3expit, (3)

where etsit, rndit, and expit denote dummy variables, that indicate if a firm is regulated

by the EU ETS, invests in R&D, or exports, respectively.

In order to deal with correlation between the observed inputs and productivity, I

follow LP and rely on a firm’s use of intermediate inputs m to control for unobserved

productivity shocks that are captured by ωit. I assume, that a firm’s demand for the

intermediate input is given by

mit = gt(kit, lit, ωit, zit). (4)

I assume monotonicity of intermediate inputs in productivity and thus invert gt(·) to

obtain ωit = ht(kit, lit,mit, zit), the proxy for productivity in the empirical production

function, i.e.

yit = βkkit + βllit + ht(kit, lit,mit, zit) + εit. (5)

The parameters βk and βl are not identified in this equation, since they are both included

in ht(·). Following ACF, I non-parametrically estimate this equation to obtain the

expected output E[yit|kit, lit,mit, zit]. As shown in Equation (6), the disposal of εit

enables me to compute the productivity for any possible combination of βk and βl:

ωit(βk, βl) = E[yit|kit, lit,mit, zit]− βkkit − βllit. (6)

As in the ACF approach, I plug ωit(βk, βl) into the law of motion of productivity in

Equation (2) in order to obtain the error term given βk and βl, ξit(βk, βl). The consequent

moment conditions I employ to identify the parameters of the production function are

described by

E

[
ξit(βk, βl)

∣∣∣∣∣kitlit
]

= 0. (7)

As explained above, I assume both capital and labor to be dynamic inputs and thus to be

mean independent of ξit. I employ the generalized method of moments to estimate the
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parameters. Finally, I use the estimates for βk and βl to recover the implied productivity:

ω̂it = y − β̂kkit − β̂llit. (8)

3.2 Disentangling the effect of the EU ETS

The second step of my empirical analysis is to identify and quantify the causal effect

of the EU ETS by comparing changes in productivity across German manufacturing

firms that are differentially affected by the EU ETS. Due to the inclusion criteria of the

EU ETS, there are regulated and unregulated firms within narrowly defined industries

allowing for a natural experiment framework. The baseline specification of the employed

difference-in-differences model I estimate for the time period from 1999 to 2012 is

ln(Productivityit) = α0 + α1ETSi + α2ETSi × PhaseIt
+ α3ETSi × PhaseIIt + ϕs + δt + λst + uit,

(9)

where ETSi indicates if a firm is regulated by the EU ETS, PhaseIt is equal to one for

years during the first compliance period (2005-2007) and zero otherwise, and PhaseIIt

(2008-2012) is equal to one for years during the second compliance period (2008-2012).

The inclusion of industry fixed effects ϕs adjusts for all constant unobserved determi-

nants of productivity across industries. The year fixed effects δt control for superior

trends in productivity in German manufacturing. λst denotes the full interaction terms

between the industry and year fixed effects and nonparametrically absorbs within indus-

try productivity trends. The error term uit is assumed to be mean zero.

The parameters α2 and α3 on the interaction terms between ETSi and the indicators

for the two compliance periods PhaseIt and PhaseIIt are the estimated effect of the EU

ETS during Phase I and Phase II, respectively. In order to take into account observed

and unobserved heterogeneity across regulated and unregulated firms, I enhance the

baseline specification (Specification I) gradually. First, I add additional control variables,

namely capital stock, employment, energy use, and material use (Specification II). Then,

I add lagged indicators for export and R&D experience (Specification III) and firm fixed

effects that adjust for all constant unobserved determinants of productivity across firms

(Specification IV).

Key to the described identification strategy is the parallel trend assumption: I assume

that in the absence of regulation by the EU ETS, trends in productivity evolve in a

parallel fashion across groups conditional on the included control variables. In order to

motivate this assumption, I investigate the development of productivity across treatment

and control groups during pretreatment years. In particular, I estimate the following

difference-in-differences model for the years before the announcement of the EU ETS,

i.e. the period between 1999 and 2002:

ln(Productivityit) = α0 + α1ETSit + α2ETSit × I(t > 2000)

+ ϕs + δt + λst + uit,
(10)
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where I(t > 2000) equals one for the years 2001 and 2002. Therefore, the parameter

α2 is a placebo treatment effect. The parallel trend assumption would be violated,

if α2 is significantly different from zero. I apply this procedure to all aforementioned

specifications of the difference-in-differences model.

The model described in Equation 9 provides the average treatment effects of the EU

ETS on firm specific productivity for the first and the second compliance period. Within

the two compliance periods, there was a high variation in the EUA price. High prices

might have provoked stronger reactions by regulated firms and thus might have caused

a heterogeneous treatment effect over time. In order to examine, if the effect of the

EU ETS on productivity changes over time within the compliance periods, I estimate a

modified difference-in-differences model that provides annual treatment effects:

ln(Productivityit) = α0 + α1ETSit +
2012∑

k=2000

αkETSit × I(t = k)

+ ϕs + δt + λst + uit,

(11)

where I(t=k) is an indicator function associated with the year t. The estimated param-

eters for the years from 2000 to 2004 can be interpreted as placebo treatment effects.

They will shed light onto the validity of the underlying assumptions of the difference-in-

differences model. If these are significantly different from zero, the model fails to identify

the effect of the EU ETS. The estimated parameters for the years from 2005 to 2012 will

provide annual average treatment effects. I estimate this modified model applying the

same specifications as described above (Specification I - IV).

4 Data and preliminary analysis

This study is based on official firm data from Germany. Combining different adminis-

trative data sources, I observe detailed annual firm-level information on general charac-

teristics, cost structure, energy use, and EU ETS obligations for the time period from

1999 to 2012.

The core of the dataset is the Cost Structure Survey (CSS) carried out by the Fed-

eral Statistical Office and the Statistical Offices of the German Federal States. The CSS

contains comprehensive annual information on output produced and inputs employed

by firms that operate in the manufacturing sector. The CSS includes all German manu-

facturing firms with more than 500 employees. For firms with at least 20 and less than

500 employees, the statistical offices collect data from a large random sample. 10The

participation in the CSS is mandatory by law and results are checked for consistency and

verified by the statistical offices. It is the foundation for many governmental statistics

and reports on the activities of the manufacturing sector.

10Similar data sets from other countries have been used in the productivity dispersion literature.

Doraszelski and Jaumandreu (2013) for example employ the Spanish equivalent in order to examine the

effect of R&D on firm-level productivity
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The random sample of firms with more than 20 and less than 500 employees is

renewed once every few years - in the sample period at hand, the random sample has

been drawn in 1999, 2003, 2008, and 2012. The random sample is stratified by the

number of employees and industry affiliation. Firms with more than 20 and less than

500 employees are always surveyed if they belong to concentrated industries.

In order to add information on employment, exports, investments, and entry and exit

to the CSS, I link the CSS with data from the German production census Official Firm

Data for Germany (Amtliche Firmendaten für Deutschland - AFiD). The production

census is also maintained by the German statistical offices and is obligatory for all

manufacturing firms with more than 20 employees. Furthermore, I merge the CSS

with the European Union Transaction Log (EUTL) in order to identify firms that are

regulated by the EU ETS.11 The resulting unbalanced panel comprises annual data of

about 15,000 firms for the years from 1999 to 2012. Due to the dynamic structure of

the model, I only consider firms that reported in at least two consecutive years. The

industry classification system corresponds to ISIC Revision 4.

The measure for output is the firm’s gross value added which is obtained from the

CSS and deflated using two-digit ISIC deflators.12 The labor input is constructed by tak-

ing the annual average of the number of employees reported monthly in the production

census. The annual average offers a more detailed view on employment in comparison to

the number of employees collected at the reporting date of the CSS. I use detailed invest-

ment data contained in the production census in order to compute the capital stock for

each firm based on the perpetual inventory method.13 The material expenditures stem

from the CSS and are deflated by type using deflators for the manufacturing sector.14

In addition, the firms participating in the CSS are asked to report R&D expenditures.

These comprise the cost of internal R&D activities, but also joint activities with external

research centers and laboratories. I consider a firm to conduct R&D activities, if the

total R&D expenditures are positive. The production census provides export revenues

on the firm-level. Analogously I consider a firm to be exporting if it reports positive

export revenues.

In Table 1, I report descriptive statistics to characterize the group of firms regulated

by the EU ETS and the group of unregulated firms. Firms regulated by the EU ETS

are on average larger in terms of output produced and inputs used. This is due to the

design of the EU ETS that only regulates large emitters. There is a relatively high

number of small and medium sized firms in the data set. Therefore, statistics on the

control group and the entire data set show positively skewed distributions on the main

characteristics.15 On average, the firms of the manufacturing sector were expanding

11See Annex A for more information on the merge of CSS, AFiD, and EUTL.
12The data on price indices can be retrieved from the web portal of the Federal Statistical Office:

https://www-genesis.destatis.de/genesis/online Producer Price Index 61241-0004.
13This procedure has been used by many other papers estimating production functions, as for instance

Olley and Pakes (1996). See Annex B for details on the computation of the capital stock.
14See footnote 11.
159 in Appendix A reports detailed descriptive statistics on the entire data set showing percentiles and
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until the economic crisis led to decreasing demand and contractions in 2009. From 2010

to 2012, the firms rapidly recovered and continued to grow on average.

Table 1: Descriptive statistics

EU ETS firms Unregulated firms

Mean SD N Mean SD N

2000

Gross value added (EUR 1000) 270,956 930,476 339 19,323 186,228 14,768

Output (EUR 1000) 623,951 2,348,248 338 45,760 415,962 14,660

Capital stock (EUR 1000) 277,470 851,531 339 15,825 117,142 14,700

Energy use (MWh) 1,139,299 4,880,839 339 21,816 293,735 14,767

Number of employees 2,339 8,429 339 248 1,661 14,767

R&D expenditure (EUR 1000) 35,334 215,372 339 1,636 41,329 14,768

Exports (EUR 1000) 417,213 2,165,096 339 21,343 324,984 14,767

2005

Gross value added (EUR 1000) 296,848 1,173,846 383 19,685 178,177 13,475

Output (EUR 1000) 711,907 2,778,015 381 50,103 443,246 13,223

Capital stock (EUR 1000) 278,734 930,450 383 16,143 117,655 13,389

Energy use (MWh) 1,291,501 4,469,597 383 19,937 169,754 13,286

Number of employees 2,260 8,013 383 241 1,622 13,474

R&D expenditure (EUR 1000) 44,205 253,976 383 1,913 45,681 13,475

Exports (EUR 1000) 503,908 2,511,781 383 26,790 370,656 13,474

2010

Gross value added (EUR 1000) 270,600 1,050,857 440 18,274 201,533 14,959

Output (EUR 1000) 696,410 3,015,317 438 47,815 487,422 14,812

Capital stock (EUR 1000) 254,298 814,679 440 14,310 109,372 14,884

Energy use (MWh) 1,595,464 6,518,306 440 17,217 131,277 14,818

Number of employees 1,936 7,032 440 220 1,460 14,944

R&D expenditure (EUR 1000) 42,431 258,910 440 1,715 41,345 14,959

Exports (EUR 1000) 540,497 3,056,996 440 26,037 372,078 14,945

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital stock are denoted

in EUR 1000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical Offices Germany (2014): Official

Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own

calculations.

Table 2 shows the distribution of regulated and unregulated firms across two-digit

industries in the merged data set. While combustion installations that generate heat or

power can be found in most industries, the firms that operate process regulated installa-

tions are mainly concentrated in the industries manufacturing food (10), beverages (11),

paper (17), coke and refined petroleum products (19), chemicals (20), pharmaceutical

products (21), rubber and plastic (22), other nonmetallic mineral products (23), and

basic metals (24).

higher moments of the distributions.
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Table 2: Number of observations by industry: total and regulated firms

2005 2008 2012

NACE Industry Total Regulated Total Regulated Total Regulated

10 Food products 1,528 44 1,903 52 1,888 53

11 Beverages 285 8 260 10 245 11

12 Tobacco products 22 1 21 2 21 2

13 Textiles 424 5 414 7 333 4

14 Wearing apparel 268 0 215 0 185 0

15 Leather and related products 118 0 103 0 84 0

16 Wood and products of wood and cork 361 11 458 19 377 16

17 Paper and paper products 359 63 435 72 435 78

18 Printing and reproduction of recorded media 330 2 359 1 329 3

19 Coke and refined petroleum products 44 15 47 17 45 16

20 Chemicals and chemical products 729 49 854 56 846 54

21 Pharmaceutical products 184 8 201 8 185 6

22 Rubber and plastic products 806 10 978 9 812 14

23 Other nonmetallic mineral products 733 100 792 117 687 119

24 Basic metals 545 32 642 32 646 35

25 Fabricated metal products 1,522 2 2,149 4 1,907 2

26 Computer, electronic and optical products 694 5 831 4 694 4

27 Electrical equipment 808 4 970 4 980 4

28 Machinery and equipment n.e.c. 2,226 6 2,585 8 2,138 7

29 Motor vehicles, trailers, and semitrailers 663 10 701 9 541 9

30 Other transport equipment 257 5 238 5 212 5

31 Furniture 382 0 397 0 351 0

32 Other manufacturing 452 3 587 3 547 2

33 Repair and installation of mach. and equip. 118 0 108 0 623 1

– Total 13,858 383 16,248 439 15,111 445

Notes: Number of firms for the first year of Phase I of the EU ETS (2005), the first year of Phase II (2008) and the last year

of Phase II (2012) that is also the last year I observe. Source: Research Data Centres of the Statistical Offices Germany (2014):

Official Firm Data for Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial Units, own calculations.
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5 Results

In this section, I first report the production function estimates based on the ACF ap-

proach I described in Section 3.1. Secondly, I will show the results of the difference-in-

differences model I outlined in Section 3.2 in order to shed light onto the causal effect

of the EU ETS on firm-level productivity.

5.1 Production function estimates

I estimate value added production functions for two-digit industries within manufactur-

ing using data for the time period from 1999 to 2012. Table 3 reports the results of the

ACF model along with estimates based on standard OLS regressions, the total number

of firms and the total number of observations for the entire sample period.

Table 3: Output elasticities

OLS estimates ACF estimates

NACE Industry # Firms # Observ. Capital Labor Capital Labor

10 Food products 4,342 22,981 0.349
(0.004)

0.643
(0.005)

0.369
(0.024)

0.541
(0.015)

11 Beverages 664 3,889 0.137
(0.013)

0.985
(0.020)

0.181
(0.065)

0.949
(0.044)

13 Textile 1,089 6,030 0.183
(0.006)

0.885
(0.010)

0.195
(0.022)

0.867
(0.038)

15 Leather and related
products

253 1,582 0.249
(0.012)

0.834
(0.019)

0.237
(0.035)

0.839
(0.055)

16 Wood and products of
wood and cork

1,261 5,640 0.175
(0.006)

0.884
(0.010)

0.180
(0.028)

0.844
(0.038)

17 Paper and paper products 1,017 5,532 0.214
(0.007)

0.867
(0.010)

0.289
(0.034)

0.788
(0.052)

18 Printing and reproduction of
recorded media

1,207 4,704 0.152
(0.007)

0.900
(0.010)

0.257
(0.087)

0.613
(0.196)

20 Chemicals and chemical
products

1,707 10,311 0.241
(0.006)

0.820
(0.008)

0.258
(0.024)

0.779
(0.039)

22 Rubber and plastic products 2,652 11,864 0.183
(0.004)

0.881
(0.006)

0.198
(0.014)

0.865
(0.020)

23 Other nonmetallic
mineral products

2,061 10,836 0.249
(0.005)

0.792
(0.007)

0.225
(0.016)

0.820
(0.019)

24 Basic metals 1,269 8,088 0.176
(0.006)

0.868
(0.009)

0.190
(0.026)

0.855
(0.036)

25 Fabricated metal
products

5,791 24,835 0.148
(0.003)

0.926
(0.004)

0.144
(0.008)

0.925
(0.013)

27 Electrical equipment 2,610 11,807 0.161
(0.005)

0.909
(0.007)

0.209
(0.054)

0.834
(0.079)

28 Machinery and
equipment n.e.c.

6,760 31,085 0.092
(0.003)

0.994
(0.004)

0.091
(0.007)

0.988
(0.010)

29 Motor vehicles, trailers,
and semitrailers

1,553 8,451 0.164
(0.006)

0.897
(0.008)

0.164
(0.006)

0.886
(0.023)

31 Furniture 1,256 5,544 0.156
(0.006)

0.927
(0.009)

0.168
(0.050)

0.853
(0.089)

Notes: All parameter estimates are significant at the 5 % level. Standard errors are computed by employing the block bootstrap
algorithm with 500 replications. I employ cluster bootstrap to obtain standard errors. Source: Research Data Centres of the
Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial
Units own calculations.
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The ACF model is implemented employing the general method of moments procedure

shown in Section 3.1. The standard errors are clustered at the firm-level and obtained

by applying the block bootstrap treating each set of firm observations together as an

independent and identical draw from the population of firms.16 The block bootstrap

takes into account that the multiple observations of a firm are correlated over time

in some unknown way and corrects for the two-step nature of the general method of

moments estimator.

The number of firms within the industries ranges between 253 (leather and related

products) and 6,760 (machinery and equipment) firms during the sample period from

1999 to 2012, while the total number of observations ranges between 1,582 (leather and

related products) and 31,085 (machinery and equipment). The precision of the estimates

tends to increase with the number of observations. All estimated coefficients of the ACF

model are statistically significant at conventional levels.

The production functions vary significantly across industries reflecting the hetero-

geneity within the manufacturing sector. All industries have in common that the coef-

ficient on labor is larger than the coefficient on capital. A comparison of the ACF and

the OLS parameters shows that for most industries, the ACF coefficient on capital is

larger, while the ACF coefficient on labor is smaller. This is in line with the findings of

OP and LP. They show that the endogeneity of the input choice results in an upward or

downward bias depending on how fast a firm can adjust the input use. OLS coefficients

on relatively inflexible inputs such as capital tend to be biased towards zero, while co-

efficients on relatively flexible inputs are positively biased. The returns to scale range

from 0.87 (printing and reproduction of recorded media) to 1.13 (beverages).

I compute the firm-level productivity as the residual from the production function

as described in Equation 8. Figure 1 shows the indexed mean productivity for two-

digit industries within manufacturing. The mean productivity evolves quite differently

over time across two-digit industries again reflecting the heterogeneity across indus-

tries within manufacturing. While some industries record increasing mean productivity

(e.g. food products, electrical equipment, machinery and equipment, and motor vehicles,

trailers, and semitrailers), others show decreasing mean productivity (e.g. printing and

reproduction of recorded media and basic metals, and furniture).

The economic crisis did not affect manufacturing in Germany as seriously as in other

European countries. However, demand for German goods decreased significantly in 2009.

This development is also reflected in a drop in productivity of most two-digit industries.

Firms cannot smoothly adapt their input choice to demand shocks. Therefore, a rapid

decline in demand decreases capacity utilization and consequently productivity.

The different developments in productivity across industries are taken into account

in the second stage of my empirical analysis. The various specifications of the difference-

16This approach has been first proposed by LP in this context. Subsequent studies that apply LP or

ACF follow this strategy, see e.g. De Loecker and Warzinski (2012), De Loecker (2013), and Collard-

Wexler and De Loecker (2015). More information on the bootstrap can be found in Horowitz (2001)
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in-differences model always include industry and year fixed effects as well as a full set

of interaction terms. In this way, the model nonparametrically captures heterogeneous

developments in productivity across industries and over time.

Figure 1: Indexed mean productivity (base year 1999).
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Structure Survey and AFiD-Panel Industrial Units, own calculations.
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5.2 Estimated treatment effects

Table 4 reports the results of the difference-in-differences model described in Section 3.2.

The first column shows the estimates of Specification I that includes fixed effects and full

interaction terms on industry and year. Columns two and three report the results for

Specification II and Specification III that include an enhanced set of control variables.

The results of Specification IV that adds firm fixed effects are shown in the last column.

The displayed treatment effects can be interpreted as semi-elasticities.

Table 4: Difference-in-differences treatment effects.

I II III IV

Phase I 0.007∗∗

(0.003)
0.005∗

(0.003)
0.005

(0.003)
0.007∗∗

(0.003)

Phase II -0.000
(0.003)

-0.002
(0.003)

-0.001
(0.003)

-0.001
(0.003)

Pretreatment
analysis

0.005
(0.003)

0.004
(0.003)

0.005
(0.003)

(0.004)
(0.003

Fixed effects

Industry × × ×

Year × × × ×

Industry year inter-
action terms

× × × ×

Firm ×

Additional controls

Capital, labor, en-
ergy use, and materials

× × ×

Indicator for export
and RnD experience

× ×

# Firms
(1999-2012)

34,373 34,215 32,302 32,302

# Observations
(1999-2012)

173,178 172,065 153,823 153,823

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance
at the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source:
Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey,
AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.

Bertrand, Duflo, and Mullainathan (2004) point out that conventional standard er-

rors for difference-in-differences applications with long time series and a high serial cor-

relation in the outcome variable are inconsistent. Since the considered time series is

rather long (14 years) and productivity is highly persistent, I refrain from applying con-

ventional standard errors. According to Bertrand, Duflo, and Mullainathan (2004) the

bootstrap performs well if the cross section is sufficiently large and the serial correlation

in the data is taken into account. I follow their recommendation and employ the block

bootstrap in order to obtain adequate standard errors for the estimated treatment effects

clustered at the firm-level.

Specifications I, II, and IV show a significant positive effect of the EU ETS on

18



firm-level productivity ranging between 0.5 and 0.7 percent during the first compliance

period. The estimated treatment effects for the second compliance periods are nega-

tive, but rather small and statistically insignificant. In order to examine the parallel

trend assumption, I estimate the four specifications for the pretreatment time period

from 1999 to 2002 treating 2001 as the implementation year of the EU ETS. The re-

sults of the pretreatment analysis are report in the third row of Table 4. None of the

estimated placebo effects is statistically significant. Consequently, I fail to reject the

hypothesis that the key identifying assumption holds strongly supporting the validity of

the difference-in-differences approach in this setting.

In addition to the average treatment effect for the entire compliance period, I also

estimate the annual effects of the EU ETS as shown in Equation 11 in order to investigate

variations in the impact over time. Figure 2 displays the results of the annual treatment

effects model. The horizontal line denotes the treatment effect while the horizontal bar

denotes the twofold standard deviation. Per year, four bars are shown corresponding to

the four specifications outlined above. Most estimated treatment effects are statistically

insignificant. However, the annual treatment effects of Phase I are slightly higher in

comparison to the pretreatment and Phase II years.

Figure 2: Annual treatment effects.
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III and Specification IV can only be estimated for the period from 2000 to 2012. I employ block bootstrap to obtain standard

errors. Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost

Structure Survey and AFiD-Panel Industrial Units, own calculations.
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6 Robustness checks

6.1 Heterogeneous treatment effects

The industries within the manufacturing sector differ with regard to many aspects.

They produce very different goods, face different market conditions on input and output

markets and face different kinds of regulation. As a consequence, the effect of the EU

ETS on the regulated firms might vary across industries. The average treatment effect

over all industries therefore does not provide the full picture of the impact of the EU

ETS.

For this reason, I analyze the effect of the EU ETS at the two-digit industry level.

I focus on the industries manufacturing food products (10), paper and paper products

(17), chemicals and chemical products (20), rubber and plastic products (22), other non-

metallic mineral products (23) as well as basic metals (24). These industries provide a

sufficient number of observations in the group of the regulated firms (see Table 2). I es-

timate the difference-in-differences model depicted in Equation 9 and further investigate

the validity of the parallel trend assumption by estimating a placebo treatment effect

during the pretreatment period from 1999 to 2002 as described by Equation 10. The

standard errors are again obtained by applying the block bootstrap algorithm.

Table 5 reports the results for Specification I and II and Table 6 shows the results

for Specification III and IV, respectively. Considering the first compliance period, the

estimated treatment effects for the industries manufacturing food (10), paper (17), and

chemicals (20) are mostly positive, but statistically insignificant. During the second

compliance period, the effect of the EU ETS was statistically insignificant, but the signs

varied across the three industries. The estimated treatment effect was positive for the

industries producing food (10) and chemicals (20), while the effect was negative for the

paper industry (17). The results for the industries producing rubber and plastic (22)

and other nonmetallic mineral products (23) indicate that the parallel trend assumption

is violated for some specifications. Therefore, I refrain from interpreting the results

for these industries. The EU ETS had a significant positive effect on the firms of the

industry producing basic metals (24) during the first compliance period. The effect

ranges between 2.4 and 2.9 percent. During the second compliance period, the EU ETS

did not significantly influence the productivity of the regulated firms. For this industry,

the pretreatment analysis supports the parallel trend assumption.

The subsample analysis sheds light on the heterogeneity of the treatment effect,

however, this empirical strategy comes along with a reduction of the sample size. The

number of firms ranges from 1,707 (paper industry, 17) to 4,342 (food industry, 10) in

the period from 1999 to 2012, while the total number of observation ranges from 10,310

(paper industry, 17) to 22,981 (food industry, 10). As a consequence, the precision of

the estimates decreases in comparison to the analysis using the full sample.

The results of the subsample analysis support the hypothesis that the effect of the

EU ETS is not homogeneous across industries.
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Table 5: Difference-in-differences treatment effects - subsample analysis (I/II).

I II

NACE Industry Pre-
treatment

Phase I Phase II Pre-
treatment

Phase I Phase II

10 Food prod-
ucts

0.019
(0.017)

0.002
(0.009)

0.002
(0.010)

0.019
(0.018)

0.001
(0.009)

0.003
(0.010)

17 Paper and pa-
per products

0.013
(0.010)

0.009
(0.012)

-0.004
(0.013)

0.014
(0.010)

0.008
(0.012)

-0.005
(0.013)

20 Chemicals and
chemical
products

-0.001
(0.005)

0.002
(0.007)

0.007
(0.007)

-0.001
(0.005)

0.002
(0.006)

0.005
(0.006)

22 Rubber and
plastic prod-
ucts

0.002
(0.007)

0.005
(0.005)

0.011∗

(0.006)
0.014

(0.010)
0.001

(0.006)
0.007

(0.005)

23 Other non-
metallic min-
eral products

-0.004
(0.004)

-0.002
(0.005)

-0.001
(0.004)

-0.006
(0.004)

-0.004
(0.004)

-0.003
(0.004)

24 Basic metals 0.001
(0.004)

0.029∗∗∗

(0.007)
-0.005
(0.010)

-0.001
(0.004)

0.026∗∗∗

(0.007)
-0.009
(0.010)

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance
at the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source:
Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey,
AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.

Table 6: Difference-in-differences treatment effects - subsample analysis (II/II).

III IV

NACE Industry Pre-
treatment

Phase I Phase II Pre-
treatment

Phase I Phase II

10 Food prod-
ucts

0.022
(0.018)

0.004
(0.010)

0.006
(0.011)

0.021
(0.017)

0.012
(0.009)

0.008
(0.010)

17 Paper and pa-
per products

0.012
(0.009)

0.008
(0.013)

-0.006
(0.014)

0.013
(0.009)

0.012
(0.013)

-0.005
(0.007)

20 Chemicals and
chemical prod-
ucts

0.002
(0.004)

-0.001
(0.006)

0.003
(0.006)

0.001
(0.004)

0.001
(0.006)

0.005
(0.007)

22 Rubber and
plastic prod-
ucts

0.026∗∗

(0.012)
-0.002
(0.007)

0.004
(0.006)

0.020∗

(0.010)
0.002

(0.006)
0.008

(0.006)

23 Other non-
metallic min-
eral products

-0.007
(0.004)

-0.004
(0.005)

-0.001
(0.004)

-0.007∗∗

(0.004)
0.002

(0.004)
-0.002
(0.004)

24 Basic metals 0.002
(0.004)

0.025∗∗∗

(0.007)
-0.011
(0.010)

-0.002
(0.004)

0.024∗∗∗

(0.008)
-0.013
(0.010)

Notes: Standard errors are computed by employing the block bootstrap algorithm with 500 replications. *** denotes significance
at the 99 percent level. ** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source:
Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey,
AFiD-Panel Industrial Units, and AFiD-Module Use of Energy, own calculations.
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6.2 Relaxing functional form assumptions

The parametric difference-in-differences model described in Section 3.2 relies on func-

tional form assumptions on the treatment and outcome model that might affect the

estimated treatment effect. When including observable firm characteristics into the

difference-in-differences model, I implicitly assume a linear relationship between the

control variables, the treatment, and the outcome. In order to relax this assumption,

I follow Fowlie, Holland, and Mansur (2012) and combine the difference-in-differences

framework with nonparametric nearest neighbor matching. Based on the firm character-

istics I observe, I match treated firms with similar untreated firms. The resulting control

group only contains firms that are similar to the firms of the treatment group.

Following Heckman, Ichimura, and Todd (1997) and Heckman, Ichimura, Smith, and

Todd (1998) the difference-in-difference matching estimator is described by

τ̂ =
1

N

∑
j∈I1

{
(ln(Productivity)jt′(1)− ln(Productivity)jt0(0))

−
∑
k∈I0

wjk(ln(Productivity)kt′(0)− ln(Productivity)kt0(0))
}
.

(12)

The set of firms regulated by the EU ETS is defined as I1, while the unregulated firms

are collected in set I0. There are N regulated firms indexed by j, the unregulated

firms are indexed by k. The weight wjk takes the value one, if a firm of the control

has been matched and zero otherwise. Following Fowlie, Holland, and Mansur (2012),

I identify the nearest neighbor using the Mahalanobis distance to measure similarity

between firms. I perform matching with replacement linking each treated firm with one

and five similar firms of the control group. Similar firms are identified using information

of the pretreatment year 2000 on output, capital stock, labor, energy use, material use

as well as indicators for export and R&D experience. Due to the strong heterogeneity

across industries, I exactly match on the two-digit industry classification.

Similarly to the parametric difference-in-differences approach, I assume that the mean

productivities of treatment and control group evolve in a parallel fashion over time in

the absence of the regulation by the EU ETS. In order to investigate the validity of

this assumption, I conduct a pretreatment analysis using data from 1999 to 2002 with a

placebo treatment in 2001.

Table 7 reports the results of the pretreatment analysis and the estimated treat-

ment effects based on the difference-in-difference matching estimator. The estimates

are based on a comparison between the pretreatment period from 2001 to 2002 with

each compliance period of the EU ETS. I compute standard errors that are robust with

respect to autocorrelation and heteroscedasticity following Abadie and Imbens (2006).

The placebo treatment effects estimated for the year 2001 are close to zero and statis-

tically insignificant. The treatment effect estimated for the first compliance period is

statistically different from zero. When matching with the nearest neighbor, I obtain an

average treatment effect of 2.7 percent. The preferred specification of the parametric

difference-in-differences model provides a productivity increasing effect of 0.7 percent.
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Adding the five closest neighbors to the control group reduces the treatment effect to 1.5

percent. Also for the second compliance period, the nearest neighbor matching shows

significantly positive estimates. The treatment effect ranges between 1.2 percent (one

neighbor) and 1.4 (five neighbors). These results differ from the results of my main

model that does not provide any evidence for a significant effect of the EU ETS during

the second compliance period. These differing outcomes might be explained by the dif-

ferent designs of the two identification strategies. Applying the matching algorithm, I

avoid the functional assumptions of the parametric difference-in-differences model and

I only compare the regulated firms with very similar unregulated firms. Furthermore,

I am only able to compare firms that stay in the sample during the considered time

periods from 1999 to 2008 and from 1999 to 2012, respectively.

Apart from the average treatment effect for each compliance period, I also estimate

annual treatment effects in order to investigate the development of the treatment effect

over time. The pretreatment year 2000 serves as the base year for this approach. For the

pretreatment years from 2001 to 2004, I expect the estimated treatment effects not to

be statistically different from zero. Figure 3 shows the annual treatment effects and the

corresponding confidence bands. From 2001 to 2004, the estimated treatment effect is

not significantly different from zero. During the first compliance period, the confidence

bands slightly widen, however the estimated treatment effects are statistically different

from zero. During the first compliance period, the estimated treatment effect ranges

between 1.4 percent (2006) and 3.8 percent (2007) when matching with the nearest

neighbor and between 1.1 percent (2006) and 1.8 percent (2008) when matching with

the five nearest neighbors. The estimated treatment effects for the second compliance

period are closer to zero and statistically insignificant.

The results of the difference-in-differences nearest neighbor matching approach sup-

port the results of the parametric difference-in-differences model.

Table 7: Nonparametric difference-in-differences treatment effects.

Pretreatment
analysis

Phase I Phase II

One neighbor 0.006
(0.004)

0.027∗∗∗

(0.009)
0.012∗

(0.006)

Five neighbors 0.004
(0.003)

0.015∗∗∗

(0.005)
0.014∗∗∗

(0.005)

# Observations 11,609 3,212 6,757

Notes: The computed standard errors are based on Abadie and Imbens (2006). *** denotes significance at the 99 percent level.
** denotes significance at the 95 percent level. * denotes significance at the 90 percent level. Source: Research Data Centres of
the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial
Units, and AFiD-Module Use of Energy, own calculations.
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Figure 3: Annual treatment effects - NN matching.
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on Abadie and Imbens (2006). Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for

Germany (AFiD) - Cost Structure Survey and AFiD-Panel Industrial Units, own calculations.

7 Concluding discussion

Debates on potential detrimental effects of emissions trading on economic performance

have accompanied the first two compliance periods of the EU ETS. This paper investi-

gated the causal effect of the EU ETS on the total factor productivity of regulated firms.

The productivity is measured as residual from a structural production function estimate

that is robust with regard to endogeneity and allows the EU ETS to simultaneously

influence input choice and the dynamic productivity process. I identify the effect of the

EU ETS on firm-level productivity by exploiting treatment variation that occurs due to

the design of the EU ETS. In order to releave small and medium sized emitters of car-

bon dioxide from the regulatory burden, only large emitters have been included into the

EU ETS. I examine changes in the firm-level productivity by comparing regulated and

unregulated firms before and after the implementation of the EU ETS. In particular, I

estimate a variety of parametric difference-in-differences models including different sets

of explanatory variables and fixed effects in order to eliminate the influence of potential

confounding factors.

The estimated treatment effects for the first compliance period of the EU ETS are

mostly statistically significant and positive. No effect of the EU ETS could be observed

for the second compliance period using the parametric difference-in-differences model.

Estimated treatment effects based on a combination of the difference-in-differences frame-

work and nearest neighbor matching support the findings for the first compliance period,

but also show a significant positive effect of the EU ETS on productivity during the sec-
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ond compliance period.

So far, there is no scientific study investigating the effect of the EU ETS on the

total factor productivity of regulated firms. The very recent ex post evaluations of

the EU ETS mostly find a significant reduction of carbon dioxide emissions (Petrick

and Wagner, 2014; Wagner, Muûls, Martin, and Colmer, 2014; Klemetsen, Rosendahl,

and Jakobsen, 2016) and emission intensity (Petrick and Wagner, 2014; Jaraitė and Di

Maria, 2016) caused by the EU ETS. With regard to other firm characteristics, Petrick

and Wagner, 2014 find a positive of the EU ETS on the revenue of German firms and

Klemetsen, Rosendahl, and Jakobsen, 2016 find a positive effect on value added and labor

productivity. Jaraitė and Di Maria (2016) provide empirical evidence for a positive effect

of the EU ETS on the renewal of installed capital stock. Wagner, Muûls, Martin, and

Colmer, 2014 find that the EU ETS had a negative effect on employment. Calel and

Dechezleprêtre (2016) investigate the effect of the EU ETS on patenting and find that

it spurred low-carbon patents.

The results of this study are basically in line with these findings that are based

on data from different European countries. Investments in more efficient capital stock

triggered by the EU ETS could have reduced the use of static inputs such as energy and

labor and thus might have increased the overall productivity. Innovative new products

that require less energy use in the production process might have increased productivity

and output as well.

There are several factors that might have influenced the analysis and should be

kept in mind when discussing the results and their implications. First, I would like

to point to the fact that the productivity measure employed in this study is revenue

based. I use specific two-digit price indicators to deflate outputs produced and inputs

employed, however there might be still changes driven by price developments. This

has implications for the interpretation of the causal effect of the EU ETS. If firms are

able to pass additional cost on to customers, then the higher output price due to a

cost pass through could be reflected as a productivity gain. As shown by Bushnell,

Chong, and Mansur (2012) and Fabra and Reguant (2014), emissions costs are passed

through to electricity prices by utilities. It is likely that at least in some industries of

the manufacturing sector firms are also able to pass through costs to product prices. A

solution to this problem would be to estimate a quantity based productivity measure

based on physical units of inputs and outputs. The estimation of a quantity based

production function for multi-product firms is in general feasible (De Loecker, Goldberg,

Khandelwal, and Pavcnik, 2016). However, this approach requires a sufficient number

of single-product firms within narrowly defined industries. Using only German data, I

do not observe enough single-product firms in order to estimate such a model.

A further issue that might influence the results of my analysis is the exit of firms

caused by the EU ETS. If the EU ETS forced unproductive regulated firms out of the

market, then the average productivity would increase in the group of the regulated

firms even if the active firms remained on the same productivity level. Regrettably,
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the CSS is an unbalanced panel similar to the data sets used in many other studies of

the productivity dispersion literature, such as Doraszelski and Jaumandreu (2013). The

design of the CSS impedes a clear distinction between the exit from the market and the

end of the obligation to participate in the survey. However, examining the EUTL data

I do not observe significant attrition among the EU ETS regulated firms.

The second compliance period of the EU ETS coincides with the world economic

crisis. In 2009, output produced and inputs employed decreased in the German manu-

facturing sector. Firms recovered quickly in the subsequent years, however consequences

of the crisis might conflate with the effect of the EU ETS during the second compliance

period. I assume that the crisis did not affect firms from the treatment and control

group differently conditional on fixed effects and firm characteristics. Among other con-

trol variables, I include capital stock, employment, energy use, and material use into the

difference-in-differences model in order to capture the variation caused by the crisis.

In this study, I focus on the direct effect of the EU ETS. I abstract from any indirect

effects, e.g. through equilibrium effects or the increase of electricity prices due to the

EU ETS.

Future research could tackle some of these issues. For example, one could investigate

the effects of the EU ETS on industry dynamics by employing structural approaches to

ideally European firm-level data.
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Appendix A. Additional information on data and descrip-

tive statistics

A.1. EUA price development

Appendix A.1. provides additional information on the EUA price development. Figure 4

shows the price series of the ICE-ECX EUA front year futures with the closest maturity.

Figure 4: EUA prices 2005 - 2013
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A.2. Free allocation and verified emissions

Appendix A.2. provides information on the free allocation and the verified emissions of

firms in the dataset. Table 8 shows the total amount of grandfathered EUAs and the

total amount of verified emissions for two digit industries.

Table 8: Number of observations by industry: total and regulated firms

Phase I Phase II

NACE Industry Free al-
location

Verified
emis-
sions

Balance Free al-
location

Verified
emis-
sions

Balance

10 Food products 10,730.32 9,695.56 1,034.76 21,471.65 18037.63 3434.02

11 Beverages 448.38 446.22 2.16 862.98 718.35 144.63

12 Tobacco products � � � � � �

13 Textiles � � � � � �

14 Wearing apparel 0 0 0 0 0 0

15 Leather and
related products

0 0 0 0 0 0

16 Wood and prod-
ucts of wood and
cork

1,805.56 575.27 1,230.29 5,320.81 1,029.93 4,290.88

17 Paper and paper
products

21,398.24 17,597.27 3,800.97 36,300.12 26,661.00 9,638.12

18 Printing and
reproduction of
recorded media

� � � � � �

19 Coke and refined
petroleum prod-
ucts

77,947.19 77,925.31 21.88 134,922.3 124,959.69 9,962.61

20 Chemicals and
chemical prod-
ucts

38,861.04 30,589.69 8,271.35 10,1483.09 87,533.43 13,949.66

21 Pharmaceutical
products

2,276.38 1,390.66 885.73 3,108.41 2,040.37 1,068.03

22 Rubber and plas-
tic products

1,130.28 1,000.44 129.85 1,775.60 1,463.27 312.34

23 Other non-
metallic mineral
products

90,831.29 79,230.95 11,600.34 156,617.63 137,016.66 19,600.97

24 Basic metals 112,048.83 101,291.07 10,757.76 264,550.73 164,814.81 99,735.92

25 Fabricated metal
products

� � � � � �

26 Computer, elec-
tronic and optical
products

� � � � � �

27 Electrical equip-
ment

� � � � � �

28 Machinery and
equipment n.e.c.

� � � � � �

29 Motor vehicles,
trailers, and
semi-trailers

8,853.423 8,154.973 698.45 12,476.513 14,623.63 -2,147.117

30 Other transport
equipment

� � � � � �

31 Furniture 0 0 0 0 0 0

32 Other manufac-
turing

� � � � � �

33 Repair and instal-
lation of mach.
and equip.

� � � � � �

Notes: � marks statistics that have not been released by the statistical offices due to the low number of observations.
Source: Research Data Centres of the Statistical Offices Germany (2014): Official Firm Data for Germany (AFiD)
- Cost Structure Survey and AFiD-Panel Industrial Units, own calculations.
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A.3. Matching AFiD, CSS, and EUTL

The different internal data sets of the Statistical Offices Germany, such as AFiD and

CSS, can be easily merged via plant and firm-level indentifiers. However, it requires some

effort to match external data to AFiD and CSS, since the information on firm identifiers

and names is not accessible for researchers. I match AFiD data on the firm-level with

aggregated data from the EUTL for the years from 2005 to 2012 using the commercial

register number and the VAT number. I am able to match 77 percent (813 firms) of the

firms in the EUTL with AFiD. The 238 firms that are not matched mainly belong to

the energy, public, or service sector and thus are not contained in the production census

for manufacturing.
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A.4. Descriptive statistics - full sample

Table 9 reports additional descriptive statistics on the full sample.

Table 9: Additional descriptive statistics

Mean SD Skewn Kurtosis p10 p50 p90 N

2000

Gross value added 24,969.77 233,803.09 34.88 1,436.37 1,111.46 4,473.50 36,967.21 15,107

Output 58,790.54 548,088.98 48.64 3,017.09 2,077.68 10,260.49 96,753.55 14,998

Capital stock 21,722.82 176,689.16 33.88 1,380.38 455.93 3,545.52 34,412.70 15,039

Wages and salaries 12,995.41 116,283.62 47.35 2,665.08 797.66 2,868.15 22,520.11 15,106

Energy use 46,893.63 803,001.62 60.14 4,767.93 164.10 1,660.84 30,951.67 15,106

Number of employees 294.68 2,093.58 45.16 2,458.74 27.75 85.67 547.83 15,106

R&D expenditure 2,392.66 52,273.32 48.67 2,686.61 0 0 975.5043 15,107

Exports 30,226.70 459,974.70 49.82 2,919.78 0 1,111.121 35,350.72 15,106

2005

Gross value added 27,345.33 266,307.21 39.93 2,011.60 1,173.94 4,987.07 39,760.41 13,858

Output 68,637.96 646,894.49 49.06 2,956.55 2,287.86 11,930.16 110,994.73 13,604

Capital stock 23,445.80 198,335.76 38.00 1,769.07 480.71 3,605.26 36,694.26 13,772

Wages and salaries 13,293.17 118,987.17 46.27 2,522.02 771.88 2,957.47 22,089.02 13,857

Energy use 55,565.39 793,966.15 42.11 2,313.17 275.40 2,135.74 36,675.84 13,669

Number of employees 296.61 2,106.77 44.87 2,419.63 28.25 88.92 531.25 13,857

R&D expenditure 3,082.25 62,091.20 44.90 2,293.96 0 0 1,541.87 13,858

Exports 39,977.06 560,038.10 46.71 2,517.40 0 2,106.06 48,757.09 13,857

2010

Gross value added 25,483.97 269,640.70 39.65 1,836.76 1,149.20 4,582.03 34,591.33 15,399

Output 66,443.37 709,260.71 57.04 3,867.12 2,309.90 11,687.90 106,083.33 15,250

Capital stock 21,201.18 179,555.17 39.14 1,909.50 451.18 3,404.83 33,839.90 15,324

Wages and salaries 11,785.77 105,233.78 47.18 2,613.07 749.72 2,679.64 19,384.89 15,385

Energy use 62,728.99 1,144,134.97 51.02 3,124.93 294.94 2,136.16 35,485.39 15,258

Number of employees 269.29 1,887.62 46.79 2,628.07 30.00 85.08 479.58 15,384

R&D expenditure 2,878.184 60,147.87 46.24 2,480.41 0 0 1,389.11 15,399

Exports 40,749.75 639149.50 50.55 2918.14 0 2,050.15 48,962.84 15,385

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital

stock are denoted in EUR 1000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical

Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial

Units, and AFiD-Module Use of Energy, own calculations.
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Appendix B. Capital stocks for the German production cen-

sus

Information on capital stocks is an important ingredient for several applications in empir-

ical economic research - especially productivity analysis. The official production census

of the German manufacturing sector (Amtliche Firmendaten für Deutschland; AFiD)

comprises rich information on investments on the plant and the firm-level, but does not

include information on capital stocks. In order to remedy this shortcoming, I compute

capital stocks employing the perpetual inventory method (PIM).

The basic formula of the perpetual inventory method is

Kt = Kt−1(1− δ) + It, (13)

where K denotes capital stock, δ the geometric depreciation rate and I the investment.

From the basic formula one can derive the initial capital stock K1.

K1 = I0 + I−1(1− δ) + I−2(1− δ)2 + ... (14)

K1 =

∞∑
s=0

Is(1− δ)s (15)

I follow a notation that has been also used by earlier empirical studies as for instance

Hall and Mairesse (1995). I assume the real investments to grow by the rate g.

K1 = I0

∞∑
s=0

[
(1− δ)
(1 + g)

]s
(16)

K1 = I0
(1 + g)

(g + δ)
(17)

Hence, the capital at the beginning of the first period is defined by

K1 = I1
1

(g + δ)
(18)

The PIM has been extensively used in studies that analyze sector and country level

data. In principle, it also can be applied for the computation of capital stocks based

on micro level data. However, turning from aggregate data toward micro data creates

some issues that have to be considered: First, investments are lumpy, i.e. investments

highly fluctuate over time. This property of investments on firm and plant level creates

difficulties to compute the initial capital stocks. Considering this, I compute the average

of It over all time periods available in order to estimate I1.

Î1 =

∑n
t=0

It+1

(1+i)t

n
(19)

This leads us to the second issue that has to be considered when applying the PIM on

micro data: It requires the observation of single agents (plants, firms, etc) over several
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time periods. For AFiD this issue is not a problem, since the investment data is census

data. The resulting data set is a panel giving information for each year from 1995 to

2012. Otherwise it would be problematic to compute the initial capital stock. The

growth rate of capital g and the depreciation rate δ can either be assumed to take a

certain value or it can be estimated for each industry based on aggregate data. I follow

the latter approach and use aggregated data on the two-digit industry level and compute

industry specific average growth rates and depreciation rates.

In order to estimate the capital stock I use the firm-level investment data from

the AFiD-Panel Industrial Units comprising investment in machinery and equipment,

investment in buildings, and investment in properts without buildings. I deflate the

investments using two-digit industry level deflators for machinery and equipment as well

as general deflators for buildings and property without buildings. Starting from K1 I

plug the firm specific investments and the industry specific time-varying depreciation

rates into equation 13 in order to compute the entire time series of the firm’s capital

stock.

Apart from the AFiD-Panel Industrial Units, I exploit aggregate data on the two-

digit industry level. These aggregate data can be retrieved via the Destatis portal

GENESIS.17 In particular I used the tables 81000-0107 National Accounts Depreciation,

81000-0115 Gross Investment, 81000-0116 Gross Capital Stock, 81000-0117 Net Capital

Stock, and 61262-0001 Price Index Property in order to compute the growth rates, the

depreciation rates and the deflators.

Since the focus of this study lies on the firm-level, I compute the capital stocks for

firms. The method can be also employed to estimate capital stocks on the plant level.

Table 10 reports descriptive statistics of the capital stock for firms in my sample.

17https://www-genesis.destatis.de/genesis/online
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Table 10: Descriptive statistics capital stock

Mean SD Skewn Kurtosis p10 p50 p90 N

1999 21,146.23 172,173.5 34.12 1,386.98 445.00 3,496.39 33,492.84 15,125

2000 21,722.82 176,689.2 33.88 1,380.38 455.93 3,545.52 34,412.70 15,039

2001 23,070.89 183,951.9 32.97 1,307.05 483.09 3,742.21 36,520.37 14,193

2002 23,910.89 190,909.2 32.59 1,269.70 498.21 3,867.37 37,574.70 13,603

2003 23,476.19 191,567.4 34.13 1,401.42 474.83 3,648.04 36,643.93 14,460

2004 23,071.02 191,259.8 37.10 1,684.88 472.18 3,574.86 36,549.22 14,270

2005 23,445.8 198,335.8 38.00 1,769.07 480.71 3,605.26 36,694.26 13,772

2006 23,777.36 197,148.1 37.34 1,719.16 484.33 3,666.73 37,776.86 13,405

2007 23,906.36 194,193.5 36.75 1,676.67 484.88 3,725.18 38,495.00 13,161

2008 20,665.96 174,540.6 40.26 2,021.59 450.68 3,340.48 33,742.33 16,088

2009 21,412.52 180,442.9 40.08 2,011.87 454.33 3,440.60 34,780.25 15,714

2010 21,201.18 179,555.2 39.14 1,909.50 451.18 3,404.83 33,839.90 15,324

2011 21,480.04 184,980.6 37.12 1,736.09 448.65 3,402.04 32,790.13 14,965

2012 21,393.36 189,500.1 37.90 1,795.70 433.42 3,146.24 33,135.09 14,926

Notes: Gross value added, output (production value), wages and salaries, R&D expenditure, exports and capital

stock are denoted in EUR 1000. Energy use is denoted in MWh. Source: Research Data Centres of the Statistical

Offices Germany (2014): Official Firm Data for Germany (AFiD) - Cost Structure Survey, AFiD-Panel Industrial

Units, and AFiD-Module Use of Energy, own calculations.
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