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Non-Technical Summary 

 
The recent financial crisis and the stress suffered in interbank markets brought to the fore the 
relevance of interconnectedness between banks and the importance of higher-order feedback 
loops embedded in the reciprocal web of exposures linking financial institutions. Network theory 
and network-based analytics have proven useful in extracting relevant information from systems 
that, due to their inherent complexity, do not lend themselves to simple apprehension.  
 
Of critical importance in macro prudential policy is the identification of key players in the financial 
network. In the context of interconnectivity analysis, the identification of critical nodes within a 
network has been a problem long studied in disciplines like sociology, under the heading of 
“centrality” analysis.  
 
While early contributions on interbank contagion and networks have focused on aggregated 
exposures, it is now increasingly recognised that the web of credit relationships linking banks’ 
balance sheets is in general more intricate and complex. 
  
Macro prudential policy addressing banks’ systemic importance could indeed benefit from the 
consideration of subnetworks and aggregated networks separately: systemic importance may 
depend on which activity is more critical at that time or the target of a specific policy.  
 
The papers addressing different layers of exposures between banks typically perform separate 
analyses for each layer and the aggregated network. This improvement remains a “watertight 
compartment” approach, and more comprehensive analyses may not only distinguish the 
interdependencies between the different layers, but may also help illustrate the potential policy 
side effects.  
 
In the present paper a unique dataset of exposures between large European banks that features a 
high level of disaggregation in terms of instruments and maturity is used. We analyse its multiplex 
structure by means of correlated multiplexity, core-periphery and similarity analyses.  
 
Additionally, we introduce two new measures designed for multiplex (or multilayer) networks, 
which build a systemic importance score for each bank in the aggregated network that can be 
decomposed into the contributions by each sub-network. This provides a holistic analysis that truly 
incorporates the mutiplex structure of the network, instead of doing separate analyses for the 
different layers and the aggregate network. We use the dataset of exposures between large 
European banks to illustrate the measures. Our approach builds on the logic that drives the policy 
process of assessing banks’ importance at the European Central Bank (ECB) and the Financial 
Stability Board (FSB), and is hence of policy relevance for supervisors and regulators. 
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Iñaki Aldasoro† Iván Alves‡

May 2015

Abstract

Research on interbank networks and systemic importance is starting to recognise that the
web of exposures linking banks balance sheets is more complex than the single-layer-of-exposure
approach. We use data on exposures between large European banks broken down by both
maturity and instrument type to characterise the main features of the multiplex structure of
the network of large European banks. This multiplex network presents positive correlated
multiplexity and a high similarity between layers, stemming both from standard similarity
analyses as well as a core-periphery analyses of the different layers. We propose measures of
systemic importance that fit the case in which banks are connected through an arbitrary number
of layers (be it by instrument, maturity or a combination of both). Such measures allow for
a decomposition of the global systemic importance index for any bank into the contributions
of each of the sub-networks, providing a useful tool for banking regulators and supervisors
in identifying tailored policy instruments. We use the dataset of exposures between large
European banks to illustrate that both the methodology and the specific level of network
aggregation matter in the determination of interconnectedness and thus in the policy making
process.
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Anne-Caroline Hüser for helpful suggestions. Aldasoro gratefully acknowledges financial support from DFG grant FA
1022/1-2 and research support from the Research Center SAFE, funded by the State of Hessen initiative for research
LOEWE.
†Goethe University Frankfurt & SAFE, Theodor-W.-Adorno-Platz 3 (Office 2.54), 60629 Frankfurt am Main,

Germany. B: aldasoro@safe.uni-frankfurt.de, �: +49 (0)15787126905.
‡European Central Bank. B: ivan.alves@ecb.int.

1

http://safe-frankfurt.de/home.html
mailto:aldasoro@safe.uni-frankfurt.de
mailto:ivan.alves@ecb.int


1 Introduction

Growing interest in the analysis of interconnectedness reflects the fact that systemic risk and sys-
temic importance assessment call for more than the traditional micro-prudential approach to su-
pervision. In particular, risk externalities of bank behaviour, which are not taken into account by
micro-prudential policies, call for a macro-prudential approach by regulators and supervisors. The
recent financial crisis and the stress suffered in interbank markets indeed brought to the fore the
relevance of interconnectedness between banks and the importance of higher-order feedback loops
embedded in the reciprocal web of exposures linking financial institutions.

Network analysis is an increasingly used tool for analytically capturing interconnectedness in
a diverse set of contexts, ranging from biological to man-made complex systems, and including in
recent times economic systems, in particular interbank networks. Network theory and network-
based analytics have proven useful in extracting relevant information from systems that due to
their inherent complexity do not lend themselves to simple apprehension.

Of critical importance in macro prudential policy is the identification of key players in the
financial network. In the context of interconnectivity analysis, the identification of critical nodes
within a network has been a problem long studied in disciplines like sociology, under the heading
of “centrality” analysis. The so-called centrality indicators attempt to assess, based on different
criteria, how important a node is for the functioning of the network under study. In the last years,
most notably in the aftermath of the crisis, the economics and finance literature have imported
many of the measures developed to assess centrality in other contexts, and in some cases adapted
them to the context of financial or interbank networks.

While early contributions on interbank contagion and networks have focused on aggregated
exposures, it is now increasingly recognised that the web of credit relationships linking banks’
balance sheets is in general more intricate and complex. The empirical literature thus far has
either disregarded heterogeneity in credit relationships or worked with only one layer (typically
the overnight unsecured market) resting on the tenet that it is representative of the whole web of
exposures.1 Of course, there is a very good reason why most of the extant literature on interbank
networks has worked with the simplification of a single layer of exposures, namely data availability.

Macro prudential policy addressing banks’ systemic importance could indeed benefit from the
consideration of subnetworks and aggregated network separately: systemic importance may depend
on which activity is at the time more critical or the target of a specific policy. For instance, the
aggregated systemic importance indicator of a given bank could be decomposed into shares of the
different subnetworks, thus possibly accounting for the multiple feedback loops that can exist when
banks are connected at different levels or layers of exposure. This is indeed the logic that drives
the policy process of assessing banks’ importance at the European Central Bank (ECB) and the

1Notable exceptions to this are the recent contributions by Bargigli et al. (2015) and Langfield et al. (2014)
among others. See the literature review section below for more details.
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Financial Stability Board (FSB), whereby global importance is constructed by an aggregation of
the size of the banks in relevant activities (see European Central Bank (2006) and Basel Committee
on Banking Supervision (2013)). Distinguishing aggregate from granular components of systemic
importance is an improvement over, for example, past practice of considering only banks’ size.
Explicitly addressing banks’ importance and complexities associated with interconnections within
a financial system through activities not recognised by the size of their balance sheets is key for
financial stability assessment. Thus, the regulatory definition of systemically important banks
adopted by the Basel Committee of Banking Supervision (BCBS) and the FSB rests on distinctly
recognising all the bank activities central to the financial system and weighing them to derive a
unique ranking of systemic importance.2 This recognition dates back to the ECB’s surveillance
of large and complex banking groups, which acknowledged the usefulness of refining the degree
of centrality of banks in such a way that banks’ importance relative to a given fragility can be
identified. In an environment of scant or rapidly changing liquidity, for instance, it is central to
policy makers’ interest to identify banks important in the provision of short term loans. Likewise, the
more structural provision of long term financing among banks is best understood in light of banks’
importance vis-à-vis longer term funding. The policy interest may centre on a bank’s importance
relative to the activity of a given market, and the picture provided by an aggregate interconnectivity
analysis that does not allow for a decomposition may be misleading. Without granular information
allowing to observe a bank’s centrality in the interconnectivity of these activities, the scope of policy
action remains limited.

The papers addressing different layers of exposures between banks typically perform separate
analyses for each layer and the aggregated network. While a welcome improvement, this still
represents a “watertight compartment” approach. More comprehensive analyses may not only
distinguish the interdependencies between the different layers, but may also help illustrate the
potential policy side effects.

To this end, in the present paper we build on the framework introduced by Aldasoro and Angeloni
(2015) and expand two of their systemic importance measures to the case in which banks are
connected through different layers, with the goal of attributing to each subnetwork its contribution
to the systemic importance index for any given bank. We then present a unique dataset of exposures
between large European banks that features a high level of disaggregation in terms of instruments
and maturity, originally introduced into the literature in Alves et al. (2013). We analyse its multiplex
structure and use it to illustrate the proposed measures.

The remainder of the paper is structured as follows. Section 2 briefly outlines the relation to
the literature, whereas in Section 3 we develop the logic behind multilayer networks, present the

2Likewise, an approach based on banks’ static characteristics observable through different activity shares could
benefit from explicitly recognising the importance of the banks’ degree of interconnectedness across the different activ-
ities, thus completing the decomposition of systemic importance on the basis of both activities and interconnectivity
degrees.
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approach to systemic importance in single layer networks put forward in Aldasoro and Angeloni
(2015) and its extension to the multiplex case. Section 4 presents the analysis of the multiplex
structure of the network of large European banks and uses the data to illustrate the measures of
systemic importance. Finally, Section 5 concludes.

2 Related Literature

The analysis of the systemic importance of financial institutions regained attention recently with
the collapse of some large institutions and near collapse of many others. Developments made all
too clear the dangers of the too-big-to-fail and too-big-to-bail problems. Our paper is related to
strands of literature which can be traced back to the seminal contributions by Allen and Gale
(2000) and Freixas et al. (2000). These theoretical papers were pivotal in their recognition of the
importance of the structure of interconnections between financial institutions. In the wake of these
contributions distinct approaches emerged in the literature, ranging from a static understanding of
financial relationships to dynamic approaches built on assumed interactive frameworks.3 Whereas
interactive models include those dealing with contagion simulations (with specific assumptions on
the reaction function of banks), the static types look at empirical data of some form of link between
banks and remain mute on the mechanisms characterising contagion. Many contributions included
proposals of new metrics of systemic importance.4 Our paper relates to the empirical approach to
systemic importance on the basis of static networks, and highlights the important policy content of
the choice of granularity of information in the analysis of systemic importance.

The empirical approaches in the financial networks literature had to cope with the limited
amount of information available. In this context, two types of financial interlinkages have been
broadly used - depending on the perspective taken on the type of interconnectedness sought. The
first and most easily available set of measures relies, directly or indirectly, on a given multinomial
asset price distribution (which associates in some non trivial manner financial institutions). It
typically exploits the asset price correlations observed among institutions through time (see for
instance Billio et al. (2012)).

This paper addresses the second approach, which builds instead on interconnectedness observ-
able in financial institutions’ balance sheets to derive “traditional” network measures. In recent
years a number of papers on real-world interbank networks and payment systems have built on
specific datasets by constructing indicators with a financial focus.5 The core of these type of data

3For a good overview of simulation studies and methods applied to interbank contagion see Upper (2011).
4For the most comprehensive summary of measures to date see Bisias et al. (2012). For recent overviews of the

literature on interbank exposure networks and interbank networks at large see Langfield and Soramäki (2014) and
Hüser (2015) respectively.

5Examples of these are DebtRank by Battiston et al. (2012), SinkRank by Soramäki and Cook (2013) or the
contributions by Denbee et al. (2014) and Greenwood et al. (2014) among others.
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on interlinkages has remained though in the supervisory community. Starting with the contribu-
tion by Boss et al. (2004), the empirical analysis of financial network properties and contagion
potential has been expanding. While Boss et al. (2004) study the Austrian interbank market, other
studies made use of alternative country-specific datasets: Craig and von Peter (2014) for Germany,
Soramäki et al. (2007) and Bech and Atalay (2008) for the U.S.A., Degryse and Nguyen (2007)
for Belgium, van Lelyveld and In’t Veld (2012) for the Netherlands, Fricke and Lux (2012) for
Italy, Langfield et al. (2014) for the U.K., and Alves et al. (2013) for large European banks, among
others. Taken together, these and similar studies provide a series of “stylised facts” of real-world
interbank networks: a tiered banking network structure (with a core of highly connected institu-
tions to which other periphery banks are linked), low density, low average path length, a scale-free
degree distribution, high clustering relative to random networks and dissortative behaviour.

Our paper builds on the dataset of Alves et al. (2013) (more on the dataset in Appendix A)
and the recent contribution by Aldasoro and Angeloni (2015) that uses measures of the traditional
input-output literature translated to a banking context. As noted in Alves et al. (2013), financial
networks are in fact a multiplicity of networks through which large financial institutions interact,
thus altering the notion of systemic importance.

At the same time our contribution elaborates on multiplex or multilayer interbank networks.
The literature on multi-layer networks in general is only recently starting to take off in full force
(for more details see section 3). While it is usually recognised that the web of exposures linking
financial institutions is much more complex than a single matrix of exposures would suggest, data
limitations have typically hindered more holistic analyses of interbank networks in which financial
institutions’ balance sheets are intertwined through a variety of layers. Recent contributions are
starting to fill this gap. Bargigli et al. (2015) study the multiplex structure of interbank networks
using Italian data broken down by maturity and by the nature of the contract involved (secured
versus unsecured). They find that different layers present several topological and metric properties
which are layer-specific, whereas other properties are of a more universal nature. Furthermore,
they find that the overnight layer is representative of the total interbank network, whereas other
layers do not bear much resemblance to the overall aggregated network. Financial layers, they
established, are substantially different in terms of the characteristics that are known to determine
network fragility and the relative importance of banks. Langfield et al. (2014) present an analysis
of different layers of the U.K. interbank system by constructing an exposure and a funding network
from very granular data. Their dataset allows them to analyse the interbank market structure
by banks’ sectors and their role in the interbank system, as well as by instrument class by means
of cluster analysis. Their findings again point to the importance of considering different layers,
as structure typically differs among them. For instance, how close the network resembles a core-
periphery structure depends on the asset class considered. Further related contributions are the
papers by León et al. (2014), Molina-Borboa et al. (2015) and Montagna and Kok (2013). León
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et al. (2014) study the network of Colombian sovereign securities settlements by combining data
on transactions from three different trading and registering individual networks. Interestingly, they
find strong non-linear effects in the aggregation of networks, as the most important layer in terms of
market value transacted does not transfer its properties to the multiplex (or aggregated) network.
Molina-Borboa et al. (2015) present an analysis of the persistence and overlap of relationships
between banks in a decomposition of the Mexican banking system’s exposures network. Finally,
Montagna and Kok (2013) present an agent-based model of a multi-layered network consisting
of three different subnetworks: short term interbank loans, longer term bilateral exposures and
common exposures in banks’ securities portfolios. Their model is calibrated to European data
and further balance sheet items are considered for a more comprehensive assessment of systemic
risk. These studies have in common addressing in different systems or under different conceptual
frameworks issues that in Europe have proven relevant for the surveillance of financial stability and
macro-prudential policy.

3 Analysing complexity in multilayered banking networks

Following a brief review of the convenient input-output technique adopted by Aldasoro and An-
geloni (2015) in approaching financial networks of a single layer (or aggregate) network (i.e. a
monoplex interbank network) and an outline of the notion of systemic importance in section 3.1,
section 3.2 develops the analytical foundation for connections through different “layers” (i.e. a
multiplex interbank network).

3.1 The Input-Output approach to banking and the notion of systemic
importance

We consider a banking system composed of n banks, each of which collects deposits and equity,
lends to non bank customers and lends to and borrows from other banks. The aggregated balance
sheet in matrix notation can be expressed as follows:6

e + d + X′i = Xi + l (1)

where e, d, l are column vectors denoting respectively, equity, deposits and total non-interbank
lending (composed of loans, net securities holdings and lending to (reserves at) the central bank),

6Unless otherwise specified, we use standard notation from matrix algebra. By capital bold fonts (e.g. X) we
denote an n × n matrix with generic elements xij , whereas lower case bold fonts (e.g. x) represent n × 1 column
vectors with generic elements xi. The transpose of a matrix or vector is indicated with a prime (as in X′ or x′). The
vector xj denotes de jth column of matrix X, whereas x′i stands for the ith row of matrix X. The identity matrix
is indicated by I, the unit (column) vector is indicated by i, and ij stands for the jth column of I. Finally, a lower
case bold letter with a ”hat” on it (e.g. x̂) denotes an n×n diagonal matrix with the vector x on its main diagonal.
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i is a unit (i.e. summation) vector of appropriate size, and X is the matrix of interbank gross
bilateral positions,7 where an element xij represents lending from bank i to bank j and where by
construction xjj = 0, ∀j = 1, ..., n. All magnitudes are expressed in monetary terms, say euros.

Let q be a vector with total bank assets/liabilities and q̂ be a corresponding diagonal matrix,
such that q̂i = q. Then the right hand side of Equation 1 can be written in the following form:

q = Xq̂−1q̂i + l = Aq + l (2)

where A ≡ Xq̂−1 is the matrix of interbank positions in which each column is divided by the
total assets of the borrowing bank. Hence, the columns of A are fractions of unity and express,
for each bank, the share of funding from other banks as a ratio to total funding. Equation 2 is
similar in form and interpretation to the familiar input-output system.8 For a given matrix A, the
relation between loans and total assets is given by the well-known Leontief inverse B ≡ (I−A)−1,
which captures all direct and indirect connections between banks:9 If all aij are constant (interbank
borrowing and lending relations tend to be rather stable through time), the Leontief inverse captures
in a unique way the magnifying and distributive role shocks on lending or investment have on the
interbank system.

q = (I−A)−1l ≡ Bl (3)

According to this setting, we can study how a shock to non-interbank loans to one bank (l)
affects all banks in the system, in a way that depends on the matrix of bank interconnections B.
Additionally, we may assess the effect that shocks to the primary sources of funding (equity and
deposits) have on the total size of banks’ balance sheets. To this end we need a slight transformation
of the framework just presented, by focusing on the liability side instead of the asset side:

q = e + d︸ ︷︷ ︸
≡v

+ X′i = v + X′i (4)

⇐⇒ q′ = v′ + i′q̂q̂−1X = v′ + q′O (5)

where q̂−1X ≡ O is the matrix of output coefficients. This is the matrix of interbank positions in
which each row is divided by the total assets of the lending bank. Hence the rows of O are fractions
of unity that express, for each bank, the share of funding provided to other banks as a share of

7We can think of X as aggregating different types of exposures between banks. Such a matrix has been the focus
of analysis of much of the work on financial networks and we refer to it as the monoplex interbank network.

8For a complete treatment of input-output analysis including several different applications see Miller and Blair
(2009).

9See Aldasoro and Angeloni (2015) for the conditions needed to express total assets in terms of non-interbank
lending and the so-called “Leontief inverse”, and for a discussion on the stability of matrix X.
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total funding provided.
It is then straightforward to see that Equation 5 yields the following:

q′ = v′G, (6)

where G ≡ (I−O)−1. Equation 6 represents the supply-side version of the input-output scheme
(known as the “Ghosh inverse”).

There are a number of manners in which the importance of nodes in a network can be char-
acterised, ranging from simple degree metrics (measuring the number of a node’s linkages), to
more elaborate metrics trying to ascertain the specific role a node may play within the distribution
function served by the network. Although this issue is also central in the context of multiplex
networks, we seek here the simplest tractable decomposition of standard measures of importance
that illustrate the lessons to be drawn from the decomposition itself.

Aldasoro and Angeloni (2015) present several measures to assess the systemic importance of
banks in the interbank system, adapted from the input-output literature. Of particular interest here
are two measures: namely “backward” and “forward” linkages related to Equation 3 and Equation 6
respectively.

Backward linkages are useful in illustrating the transmission mechanism associated in lending.
For example, when bank j suffers a shock to non-interbank lending, the first impact is a reduction
in bank j’s balance sheet. Subsequently, however, other banks may be affected: bank j may curtail
credit to other banks, spreading the effect through the system. In the end, a unitary drawdown in
non-interbank lending for bank j would affect the system to an extent given by the jth column of
matrix B. The Rasmussen-Hirschman (RH) backward linkage index for bank j, which we denote
as hbj , can therefore be computed as:

hbj ≡ i′Bij (7)

The notion of a backward linkage stems from the fact that the hypothetical shock originates in
non-interbank lending and the index traces back its effect through the entire system, with interbank
linkages playing a crucial role in the process. The backward index can be normalised by, for instance,
relating it to the mean of the system (which we set equal to one):

h̄bj
≡ n i′Bij

i′Bi (8)

Similarly, the forward index captures the transmission of shocks on equity and deposits. It
builds on Equation 6 by summing along the row dimension of the so-called “Ghosh” inverse G
(based on the output matrix O):
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hfj ≡ i′jGi (9)

The hypothetical shock in this setting comes from the non-interbank funding side of the balance
sheet of the relevant bank. As opposed to the backward linkage, the original stimulus here comes
from the sources of funds, and the index evaluates how this affects the uses of funds, again with the
matrix of interconnections playing a key role. That is, matrix A starts at the end of the “banking
process” with a change in non-interbank lending and traces its effect backward through the system,10

whereas matrix O starts at the beginning with a change in primary sources of funding and traces
the effects forward through the system.

As with the backward index, the forward index can also be normalised relative to the mean of
system:

h̄fj ≡ n
i′jGi
i′Gi (10)

Based on the normalised version of the indices one can construct a taxonomy of systemic impor-
tance. By normalising the indicators with the mean of the system (where such mean is set to 1), a
bank showing an indicator above 1 will present an above average score of systemic importance, i.e.
a shock to this bank will affect the system more than the same shock to the average of all banks.
We use this taxonomy in Section 4 in order to identify the set of systemically important banks as
those presenting both normalised indicators above one:11

Table 1: Classification based on backward and forward linkages

h̄fj

< 1 > 1

h̄bj

< 1 Generally independent Important provider of funds

> 1 Dependent on funds from others Key bank

3.2 Systemic importance in a multiplex context

A common characteristic of interconnectedness analysis is the general focus on a single network.
However, in many, if not most, complex systems, the web of links connecting the actors of interest
is more complicated than that captured by a simple adjacency matrix of interconnections. In social
networks, this is so because the links connecting different actors can take place at distinct levels:

10It is implicitly assumed that the final goal of banking is the provision of credit to the non-financial sector.
11On the other hand, for the purposes of illustrating the multiplex extension of the measures, we stick to the

unnormalised version of the indices as they allow for better comparability.
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for instance people might be connected in the “workplace” network and not in the “gym” network.
If one were to aggregate all connections into a single matrix of interconnections, the implications
for, say, the spread of rumours, could be non-trivially altered. In transportation networks the
multi-level nature of connections is even more evident: think for example of the bus, tram, subway
and suburban train networks in any modern city. These networks share many nodes (in many
stations one can commute from one network to the other in order to reach the final destination)
and serve the overall purpose of taking people from point A to point B in a cost-effective manner.
Inoperability of one node might be quite consequential if for example the node is an important
nexus between different layers of the transportation network.

The fact that in many networks the edges or links connecting nodes can be of multiple types
has been termed multiplexity,12 as opposed to a single-layer type network which is referred to as
a monoplex network.13 One way to represent such multiplex network is to assign a colour to each
type of connection such that the set of nodes is intertwined through a variety of links of different
colours, yielding a so-called “edge-coloured” graph.

Before moving forward, some notation is first necessary.14 A single-layer graph is typically
characterised as a tuple G = (E, V ) where V is the set of vertices or nodes and E ⊆ V × V is the
set of edges or links. The characterisation of multi-layer networks requires the specification of levels
or layers of connectivity between the nodes.

To keep a high level of generality, one can note that a multi-layer network can have different
aspects. A clear example of what an aspect represents is given by the case that concerns us in
this paper, namely that of interbank exposure networks: one aspect of the connections between
banks can for instance be “instrument type”, whereas another aspect can be “maturity type” (for
a stylised example see Figure 1 below). Each aspect can have one or more elementary layers. In
the interbank market example the aspect “maturity type” can for instance have three elementary
layers: “short term”, “medium term” and “long term”; while the aspect “instrument type” could
be divided in, say, “credit claims” and “derivatives” . A network can have any number of aspects d
and one can define the sequence of aspects L = {La}da=1, such that to each aspect a corresponds a
set of elementary layers La. The term layer is hence reserved for the combination of all elementary
layers corresponding to all aspects of the network.

The network in Figure 1 generates 6 aggregated networks depending on the aspect one wishes
to emphasise. If the focus is on maturity one can aggregate the networks across instruments to get
the overall short term and overall long term networks, whereas if the focus is instead on instrument

12See De Domenico et al. (2013), D’Agostino and Scala (2014), Kivelä et al. (2014) and references therein. As noted
by these authors, the engineering and in particular the sociology literature have pioneered the study of multilayer
networks.

13In many applications such single-type or single-layer network results from the aggregation of different subnet-
works.

14Regarding the taxonomy, terminology and technical notation that we use to discuss multi-layer networks, we
closely follow the superb review article by Kivelä et al. (2014).

10



!

Figure 1: A stylised representation of a multiplex interbank network, where directionality and
weights of links have been omitted. Black dots indicate node-aligned banks, and thick lines indi-
cate connections within a given layer. This network displays two aspects, i.e. maturity type and
instrument type. The former aspect is composed of two elementary layers (short term and long
term), whereas the latter aspect presents three elementary layers (instruments A, B and C). The
multiplex network is therefore composed of 2× 3 = 6 layers.

types one can aggregate across maturity in order to get the network for instrument i (short + long
term). Finally, either way one chooses to aggregate one can always get the overall aggregation of
exposures (the lower right network).

Generally speaking, in a multi-layer network nodes can be present in all or a subset of the layers,
and links can not only exist between a given node and its counterpart in another layer but also
between different nodes in different layers. Our setting is in this regard more simple and we are
therefore able to abstract from some complications that would require further notation: (i) every
layer is composed of the exact same set of nodes, and (ii) inter-layer links are implicit and given
between a node and its counterpart (i.e. a copy of the same node) in another layer. The first
feature implies that our network of interest is node-aligned and one can define the set of vertices
as VM = V × L1 × . . . × Ld (implying an edge set given by EM ⊆ VM × VM ), the second feature
implies that the network is diagonal. We therefore have that multiplex networks are a subset of
multi-layer networks, and we can characterise them by the quadruplet M = (VM , EM , V,L).

Having briefly provided some background on multiplex networks, we now tackle the extension
of the measures presented above to the more realistic case in which banks’ balance sheets are linked
through a variety of instruments or maturities. Of particular interest is the decomposition of the
systemic importance index for the aggregated network for a given bank, i.e. a decomposition of
the vectors h(b) and h(f) introduced above. That is, instead of calculating systemic importance
measures for the different layers and for the overall network separately, ideally one would like to

11



see how much of the overall systemic importance score of a given bank can be attributed to each
of the different subnetworks that together constitute the aggregated network of connections.

To make the discussion general let us assume that there are α = 1, . . . , L different layers, such
that X =

∑L
α=1 Xα. Without loss of generality these could represent the combination of elementary

layers of different aspects: for example one aspect could be instrument type whereas another could
be maturity type, as shown in Figure 1 and discussed above. The balance sheet of the banking
system would read as:

e + d +
(

L∑
α=1

X′α

)
i =

(
L∑
α=1

Xα

)
i + l (11)

Focusing on the asset side of the banking system we can perform transformations analogous to
those used to arrive to Equation 2 and Equation 3, and we obtain the same expression involving
the Leontief inverse, namely q = (I−A)−1l ≡ Bl, with A =

∑L
α=1 Aα and Aα ≡ Xαq̂−1, where as

before each matrix Aα represents the interbank network for layer α where each column is divided
by the total assets of the borrowing bank.

A useful property of the Leontief inverse is that can be expressed as an infinite series:

B = (I−A)−1

= I + A + A2 + A3 + · · ·

= I + A
(
I + A + A2 + · · ·

)
= I + AB,

Using this and noting that A =
∑L
α=1 Aα, Equation 3 can be expressed as:

q = Bl = (I + AB) l =
(

I +
L∑
α=1

Hα

)
l (12)

where Hα ≡ AαB, α = 1, . . . , L.15 It is apparent from Equation 12 that the balance sheet
equation can be decomposed into layers, such that each layer’s role in magnifying shocks on the
asset’s side is evident.

The backward linkage index is still calculated as in Equation 7, but now we are able to attribute
to each layer α its contribution to the overall systemic importance index, as measured by the column
sum of the Hα matrices.

To see what the column sums of matrix Hα (i.e. for an instrument α) look like we can re-express
the matrix in vector notation as follows:

15An alternative way of arriving at Equation 12 is by noting that q = Aq + l and q = Bl, replacing the second
equation in the right-hand side of the first one and using A =

∑L

α=1 Aα.
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Hα =


a′α1b1 · · · a′α1bn

...
. . .

...
a′αnb1 · · · a′αnbn

 (13)

where a′αi indicates the ith row of matrix Aα and bj denotes the jth column of matrix B.

Now consider the backward linkage indicator of bank j, which is given by the sum of the elements
in column j of matrix B as shown in Equation 7. The share of this index that can be attributed to
layer α is given in turn by the sum of the elements in column j of matrix Hα:

i′Hαij = a′α1bj + · · ·+ a′αnbj = (a′α1 + · · ·+ a′αn) bj (14)

Note that the overall effect behind the logic of the backward linkage index is captured by the
vector bj , i.e. the jth column of the Leontief inverse B. In the case of a monoplex system the
sum of the elements of bj would constitute the index of interest. Here we are concerned with the
disentanglement of how each layer connecting banks contributes to the overall systemic importance
index of banks. This is captured by the aαi, i = 1, . . . , n.

If bank j has exposures on layer α, it follows that this layer will have a bearing on the final index
of systemic importance for bank j. On the other hand, bank j might not be exposed to another
bank i on layer α, so distress in bank i on layer α will not affect bank j directly. In a monoplex
network there exists the possibility that j is nonetheless affected through a third bank k which is
exposed to i and to which bank j is itself exposed. The incorporation of this type of channel is
indeed a major asset of network analysis. A multiplex structure expands these indirect channels,
and these channels can help in assessing the nature and extent of the policy impact.

For the sake of argument, let us assume that bank j has no exposures on layer α, then it will
be the case that a′αj = 0′. By Equation 14 it is obvious that this does not imply that layer α is not
relevant to account for the overall systemic importance index of bank j, since bank j is exposed to
other banks on other layers β 6= α,β = 1, . . . , L (as captured by bj) and these other banks might
themselves be exposed in layer α (as captured by a′αk 6= 0′, k 6= j, k = 1, . . . , n).

Likewise, shocks originating in the liabilities are magnified via the different layers via a similar
decomposition. As noted above, in the case of forward linkages, interest lies in tracing forward
the effect of unitary declines in the primary sources of funding (deposits and equity) of any given
financial institution, using the supply-side version of the input output model (see Equation 6). The
forward index involves summation along the row dimension of matrix G = (I−O)−1. In the context
of a multiplex network we note that the output matrix O can be expressed as O =

∑L
α=1 Oα, where

the output matrix for each layer α (α = 1, . . . , L) is in turn given by Oα = q̂−1Xα.
Using the same logic for infinite series as above, we can re-express the Ghosh inverse as:
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G = (I−O)−1 = I + GO = I +
L∑
α=1

Kα (15)

where Kα = GOα, α = 1, . . . , L. In vector notation such Kα matrices can be expressed as:

Kα =


g′1oα1 · · · g′1oαn

...
. . .

...
g′noα1 · · · g′noαn

 (16)

where g′i stands for the ith row of G, whereas oαj denotes the jth column of Oα.

Since the forward linkage indicator is constructed by summing along the row dimension of matrix
G, that part of the index for bank i that can be attributed to layer α can be expressed as:

i′iKαi = g′ioα1 + · · ·+ g′ioαn (17)

As before, lack of exposure by bank i in layer α implies that oαi = 0, but layer α can still
contribute to systemic importance as measured by the forward index via the vectors oαk (k 6=
i, k = 1, . . . , L) and their interactions with the total effect as measured by g′i.

4 The multilayered network of large European banks

As highlighted in section 3 and illustrated in appendix A, operational differences across layers in the
multiplex network result in distinct aggregate and network characteristics of different components
of a layered network system. However, the distinctions extend beyond aggregate differences high-
lighted in appendix A, resulting in different landscapes across layers (different configuration and
composition of the layers). Macro prudential policy benefits from this added level of granularity by
clarifying broad directions that policy may take in addressing market-specific characteristics, such
as structural concentrations in specific layers (maturity or instrument type, for instance). Clearly
related to layer-specific issues, macro prudential policy also aims to address structural vulnerabil-
ities of specific institutions, such as addressing their systemic importance. Is the choice of a layer
for analysis relevant to establishing which institutions are significant? If not, systemic importance
takes a new form. For example, global metrics of importance can be decomposed into layer-specific
components, as shown in section 3, while the layer specific form allows to identify local (e.g. “in
the layer”) champions. For some policies the difference can be crucial. Policy aimed at a particular
issue (say liquidity, market making or structural bank regulations) can profit from a more granular
introspection into systemic importance.

This section starts by illustrating relevant different results that start to emerge once the analysis

14



of networks, first, and systemic importance, subsequently, is carried onto the realm of multiplex
networks. Following a couple of illustrations of the differences observed across layers of the network
of large European banks, changes in the institutions’ systemic importance across layers are presented
within the formal multilayered approach outlined in section 3. These results are contrasted with the
numerical comparison of other measures of systemic importance that do not allow for an analytic
decomposition between layers.

Due to space considerations we relegate the detailed description of the data used to appendix A.
We only shall note at this stage a couple of relevant features. In particular, the dataset presents two
aspects, namely instrument and maturity type. The partition of exposures according to instrument
type is given by: (i) assets (A), further subdivided into credit claims (CC), debt securities (DS)
and other assets (OA), (ii) derivatives (D), and (iii) off-balance-sheet (OffBS) exposures. On the
other hand, exposures according to maturity type are divided into: (i) less than one year including
on sight (“short term (S)”), (ii) more than one year (“long term (L)”), and (iii) a residual of
unspecified maturity (U ).

4.1 Critical differences across layers of the banking network

The multilayered structure of financial relationships may result in important differences relative to
results obtained by the analysis of any single or aggregate layer alone. In particular, we analyse the
point-wise similarity across layers, with the goal of assessing, as the name indicates, the extent to
which the layers are similar. Furthermore, differences stemming from the core-periphery analysis
of specific layers are seen in light of the different functions of the layers in capturing the interaction
between large banks.

Similarity analysis As noted by Bargigli et al. (2015), it is important to distinguish between
topological similarity and point-wise similarity, as one does not necessarily imply the other. For
instance, two networks may be very similar in terms of density, degree distribution, etc., but
the existence of a link between two nodes in the first network may be irrelevant to explain the
existence of an analogous link in the second network. For interbank exposures such differences are
particularly relevant, since for two identical distributions of a given characteristic across layers,
point-wise dissimilarity would indicate institutional specialisation in the trade of an instrument or
within a maturity type, or changes of interbank relations when carrying out the analysis in time.16

Clearly, structural policy on interconnectedness, including that aimed at institutions like macro
prudential regulation, is enriched with the identification of those markets (or layers) that are more
relevant, and the institutions that are key in them.

16Given the lack of a time series of interbank exposures for large European banks we are only able to perform the
first type of comparison in the present paper.
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In particular, measures designed for binary and weighted networks are considered.17 A distance
metric useful for binary representations of the network layers is the Jaccard similarity index (J ),
capturing the probability of observing a given connection in a network conditional on observing the
same link in the other network. For a given pair of vectors x and y, the index is computed as the
quotient between the size of the intersection and size of the union of the two ordered vectors:

J (x,y) = |x ∩ y|
|x ∪ y| (18)

For networks with weighted links the Cosine similarity index (C ) can be used as proximity
metric. As indicated by its name, C measures the cosine of the angle formed by the two vectors by
means of a normalised dot product between them:18

C (x,y) = x · y
||x|| × ||y|| (19)

Table 2 presents results for Jaccard (lower triangle) and Cosine (upper triangle) similarity
according to instrument type.19 While numbers are rarely above 50% (in particular for non-
overlapping networks), they are relatively big (compare for instance to Table 7 in Bargigli et al.
(2015)), pointing to a relative lack of complementarity between instruments. This is particularly
true when comparing derivatives with assets. Off-balance-sheet exposures present lower indices
when compared to assets and derivatives, though values above 40% can still be considered rela-
tively large. When comparing overlapping networks one can see that roughly 80% of the connections
that are present in the total network are also present in the assets network, whereas this percentage
drops below 50% when the comparison is between off-balance-sheet and total exposures. This last
number implies, for instance, that almost half of the connections present in the total aggregated
network are also present in the off-balance-sheet network.

As can be seen in the upper triangle of Table 2, similarity computed based on weights rather
than on a binary indicator of existence/absence of relationship delivers lower values for the index,
but the overall distribution remains unchanged.

A relative lack of complementarity between different maturities can also be appreciated from
the high values reported in Table 3: the long and short term networks share 62% of connections.

17Binary networks are those indicating only whether ties do or do not exist, in a 0-1 fashion. Weighted networks
assign some value to the relationship being modelled (for instance, a monetary value). Both types of measures
considered here represent the matrices as ordered vectors which are then compared.

18See the discussion in Bargigli et al. (2015) regarding the preference for this measure as opposed to the Pearson
correlation coefficient for weighted networks. In the case of both similarity metrics used here, we have that S ∈ [0, 1],
S = J,C. In principle the Cosine similarity index ranges from -1 to 1, but since the network in our application
presents non-negative values only, this index only takes non-negative values.

19Some of the indices need to be interpreted with caution. For instance, the index comparing the credit claims
network with the total assets network will be necessarily high as one is a subset of the other. While still informative,
it should be read in a different light as the index comparing, say, credit claims and derivatives. We highlight with
bold fonts the indices corresponding to “non-overlapping” networks in Tables 2 and 3.
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A-CC A-DS A-Other A-Total Derivatives Off BS Total
A-CC 0.32 0.29 0.80 0.33 0.18 0.70
A-DS 0.50 0.08 0.82 0.26 0.24 0.71
A-Other 0.18 0.15 0.29 0.10 0.12 0.26
A-Total 0.70 0.78 0.16 0.36 0.26 0.88
Derivatives 0.50 0.46 0.15 0.53 0.13 0.66
Off BS 0.44 0.37 0.16 0.41 0.41 0.54
Total 0.57 0.63 0.13 0.81 0.61 0.48

Table 2: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument
type. Non-overlapping networks are highlighted in bold fonts. A=Assets, CC=Credit Claims,
DS=Debt Securities, OffBS=Off Balance Sheet.

This number drops to 43% when evaluating Cosine similarity (upper triangle of Table 3, still a high
number for a comparison of weighted matrices).20 Table 4 in appendix B delves more deeply into
the combination of instrument and maturity and reinforce the message: highest values of similarity
are typically between different maturities for the same type of instrument.

Long Short Total Unclassified
Long 0.43 0.75 0.03
Short 0.62 0.81 0.23
Total 0.69 0.73 0.50
Unclassified 0.04 0.03 0.16

Table 3: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by maturity type.
Non-overlapping networks are highlighted in bold fonts. A=Assets, CC=Credit Claims, DS=Debt
Securities, OffBS=Off Balance Sheet.

Layers, therefore, appear closer to the extent they represent the same type of business, and
to some extent maturity underlying the relation. The differences, however, can be non-negligible
across layers of activity types.

Core-periphery structure An important avenue for characterising structural features of net-
works is the core-periphery paradigm, as such structure is ubiquitous in several types of networks.21

20Some matrix comparisons between overlapping networks present a Cosine above the Jaccard similarity: this
indicates that when taking monetary values into account the proximity between the matrices is higher than when
only considering the existence/absence of relationships.

21For applications to interbank networks see: Craig and von Peter (2014) who propose an algorithm for the
identification of the core set of banks based on the idea of intermediation and use it with German data, Fricke and
Lux (2012) for the case of Italy, van Lelyveld and In’t Veld (2012) for the Netherlands, Soramäki et al. (2007) for
the FedWire payment system in the U.S. and Langfield et al. (2014) for the U.K., among others. For applications in
other sciences see references in Borgatti and Everett (1999).
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In the wake of the seminal contribution by Borgatti and Everett (1999), different methods to assess
the core-periphery structure of networks have been proposed. Borgatti and Everett (1999) propose
two types of core-periphery analyses, namely a discrete and a continuous version. The former builds
on block-modelling and proposes a two-class partition of nodes, in which some nodes form part of
the densely connected core (a 1-block in block-modelling terminology) while the remaining nodes
make up the periphery, loosely connected to the core and not connected within itself (a 0-block).
A stylised representation in matrix notation would be as follows:

M =
[

Core-Core Core-Periphery
Periphery-Core Periphery-Periphery

]
=
[
1 ?
? 0

]
(20)

where the off-diagonal blocks are left to be specified by the researcher depending on the appli-
cation at hand. The idea is then to a find a fit (optimal in some sense) between a given empirical
network and this idealised structure, such that the optimal core size is found in the process.

The continuous model of core-periphery analysis assigns a level of “coreness” to each node,
without the need to partition the network into two (or more) classes of nodes ex ante. The notion
of closeness plays an important role in this method, as the strength of the connection between a
pair of nodes will be a function of their closeness to the centre.

For the case of interbank networks, the seminal contribution by Craig and von Peter (2014)
builds on the block-modelling approach and motivates the choice of a specific structure for the
off-diagonal elements of the block matrix. In particular, building on the concept of intermediation,
they suggest that core banks should lend to and borrow from at least one bank in the periphery.
This translates into two restrictions: the Core-Periphery block should be row regular (i.e. each row
has at least one 1) and the Periphery-Core block should be column regular (i.e. each column has
at least one 1). According to this approach, core banks are a strict subset of intermediaries.

Figure B.1 presents the results from the core-periphery analysis based on the algorithm devel-
oped by Craig and von Peter (2014).22 The size of the core is notably large, with exception of the
“marginal networks” (i.e. other assets and unspecified maturity). Each of the different layers feature
more than 20 banks in the core, whereas the overall network presents 31 banks in the core. Within
the instrument type division, the off-balance sheet network features the best fitness to the core-
periphery model (lowest error score), whereas short term exposures fit the core-periphery model
slightly better than long term exposures. In terms of core composition, the instrument dimension
shows a bit more heterogeneity: there are 11 banks which are part of the core in all subnetworks
(excluding other assets). For the maturity dimension this is not the case: out of the 23 banks
present in the core of the long term network, 20 are also part of the short term core.

The network of exposures between large European banks presents some features that distinguish
it from other interbank networks analysed in the literature. In particular, it is already a subset of

22We thank Ben Craig for making available the code needed for the computation.
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“national champions” which tend to be very well connected and thereby display strong intercon-
nectivity density. It is less evident, in such a setting, how can one find a clearly defined relatively
small core of intermediating banks. This was illustrated above with the block-modelling techniques,
as the size of the core is too large. The more flexible definition of the core used by Della Rossa
et al. (2013) avoids the explicit (and often artificial) partition in subnetworks of block-modelling
and is more natural for weighted networks, in contrast to block-modelling which is better suited for
binary networks.

Della Rossa et al. (2013) associate to each network a core-periphery profile, which is a discrete
and non-decreasing function α1, α2, . . . , αn that: (i) assigns a coreness value to each node, (ii)
provides a graphical representation of the network structure, (iii) and allows for the computation
of a centralisation indicator which measures the distance to an idealised core-periphery structure
(the “star” network). Furthermore, the method allows for the definition of the α-periphery which
collects all nodes with a coreness value below a given threshold α,23 and identifies the set of p-nodes,
which are those that constitute the periphery in a strict sense, i.e. those nodes that together form
a 0-block.24

Figure B.2 presents the core-periphery profile by instrument and maturity type against two ex-
treme benchmarks, namely the complete network and the star network. There are some similarities
with respect to the insights gained from the block-modelling approach, but also some differences.
The broad message that the partition according to maturity is more homogeneous remains unal-
tered. Furthermore, the short term network is closer to an idealised core-periphery structure (in
the block-modelling analysis this manifested itself in a better fit, see Figure B.1). On the other
hand, from the second analysis we are able to see that the core-periphery profile of the long term
network is very similar to that of the total network, with the same number of core banks25 and very
similar centralisation index (see also Figure B.3). There are three banks which are simultaneously
present in the core of the short term, long term and total networks.

The analysis based on instrument type yields again more heterogeneity: off-balance sheet and
derivatives exposures show more proximity to the star-network ideal (Figure B.2) and a higher
centralisation index (just as before they showed a lower error score, see Figure B.1). The debt
securities network shows the most proximity to the total aggregated network in terms of its core-
periphery profile, an insight that escaped us with the block-modelling approach. There is only one
bank that belongs to the core in all networks according to instrument type (excluding other assets).
On the other hand, all of the banks belonging to the core in the derivatives and off-balance sheet
networks are part of the core in the aggregated network too, while for the debt securities network
this number is only 4 out of 8. Similarity in the core-periphery profile of two networks is therefore
not a guarantee of similarity in the actual composition of the core.

23Alternatively, one can think of the α-core as the complement of the α-periphery.
24The code for the computation of the core-periphery profile is available from the authors’ website.
25We take as core banks those that have an α-coreness above 0.5.
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Finally, we note that at the very top of the coreness ranking we never find the same bank for
any pair of networks when the focus is on either instrument or maturity type. That said, the bank
with the highest coreness in the short term network is also the same bank sitting at the top of the
debt securities coreness ranking (also for the aggregated network), whereas the top bank in terms
of coreness for the long term network coincides with that of the derivatives network.

The stability of these results through time cannot be tested with the information available, they
already indicate the importance of some banks across and within layers may not be as universal as
suggested by the monoplex approach.

4.2 Identifying systemic importance across layers in a formal setting

A institution’s importance in the input and output mechanisms of shock transmission illustrates
its criticality for spreading external shocks affecting banks’ balance sheets (lending and/or eq-
uity/deposit). Figures B.4 and B.5 in Appendix B present the backward and forward indices for
the top 10 banks according to instrument and maturity type respectively. There is no reason to
expect that the ranking of top 10 banks for each indicator would coincide, and indeed this is not
the case. That said, 5 out of the top 10 banks are shared by the two indicators.

The decomposition of global (monoplex) systemic importance into layer-specific contributions
developed in section 3.2 provides an estimate of the contribution of a bank’s activity within each
layer to the overall importance of that bank.

For the analysis of the decomposition of systemic importance indicators into the contributions
by each layer we make use of the classification outlined in Table 1 and focus on the set of systemic
banks, i.e. those that present both normalised backward and forward indices above one. Figure B.6
presents the normalised indices for all banks for the two indicators considered, highlighting those
that show a score above the mean of the system. Following the classification of systemic banks
we find ten banks with a score above 1 for both normalised indicators. Furthermore, some banks
that might be highly ranked in one of the indicators might not make it to the list of systemically
important banks because they rank poorly in the other indicator: in our example this is the case
most notably for the third ranking bank according to the forward index (bank 27). Additionally,
there is one bank that is not part of the top 10 banks in neither indicator but nonetheless makes it
to the list of systemically important banks. Not surprinsingly, the five banks which feature in both
lists of top ten banks are also present in the list of systemically important banks.

Figure 2 presents the backward and forward indices for systemically important banks partitioned
according to instrument type. For the backward index a significant portion of the contribution to
the overall systemic importance of the most important banks is given by the two main asset exposure
sub-categories, namely credit claims and debt securities. This is broadly in line with the composition
of exposures by instrument (see Figure A.1), in particular for the two top banks for which also off
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balance sheet exposures account for a non-negligible share of their critical transmission role. Despite
accounting for slightly more than 25% of exposures, the derivatives network does not contribute
much to the ranking of systemically important banks, pointing to one important insight of our
analysis: importance in terms of interconnectivity is driven by more than size.

Figure 2: RH backward (left) and forward (right) indices, for systemic banks by instrument type.

The backward index focuses on the importance of the transmission of shocks to the borrowing
side of the balance sheet, by summing along the column dimension of the transformed interbank
matrix. Conversely, by summing along the row dimension, the forward index illustrates the trans-
mission of shocks on the lending side of the balance sheet. In the case of such asset shocks, the
outline of importance is quite different: the top bank (bank 45) stands out notably against the rest,
and an overwhelming majority of this difference is attributable to the off-balance sheet network.
Naturally, bank 45 is an important player in terms of exposures in this particular network,26 but
still it only accounts for roughly 1/5 of all exposures and it is not in fact the top bank in this
regard. A network that has a rather minor share of overall exposures (the off-balance sheet network
accounts for 1/7 of exposures, see appendix A) can nonetheless be a major driver of the systemic
importance score of specific banks. While such a result might seem obvious at the intuitive level,
our measures provide a clear-cut way of quantifying this.

The second ranking bank (bank 44) has on the other hand a significant share of its score
accounted for by the derivatives network. Interestingly, 4 out of the ten systemically important
banks do not form part of the core of any network (according to Craig and von Peter (2014)’s
algorithm). Systemic importance measured in terms of a bank’s ability to transmit shocks then
also needs to be qualified by the nature of the shock affecting the system, in addition to the market

26In fact, this bank belongs to the core of only two networks: the other assets (a rather “marginal” network) and
the off-balance sheet networks.
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through which the transmission takes place.
The comparison of a bank’s forward and backward transmission role indicates that the drivers

of systemic importance can vary substantially depending on the criterion of emphasis, and there is
value in the consideration of both dimensions simultaneously.27

Figure 3 displays the partition of systemic importance indices by maturity type for the 10 more
systemic banks. Long and short term exposures account for roughly 4/5 of the total Figure A.1),
in almost equal proportions. For the backward index we see that with a couple of exceptions long
term exposures account for the largest share. Most notable within the exceptions is the second
highest ranking bank, for which half of the index is explained by short term exposures with the
other half shared equally between long term exposures and those of unspecified maturity.

Figure 3: RH backward (left) and forward (right) indices, for systemic banks by maturity type.

When it comes to the forward index we see that for the three top systemically important banks
at least half of the score is accounted for by the long term network. With the exception of one
bank, the network of unspecified maturity does not play a role (the entire forward transmission
score of the exceptional bank is attributable to this network). It could in principle be the case that
a bank has a great deal of its systemic importance score explained by off-balance sheet instruments
of unspecified maturity. The ability to detect such opacity as the driver of the systemic importance
ranking of a bank is another potential interesting insight from the analysis we present. In particular,
such a case might be in the interest of supervisors/regulators to watch over.

Based on the algorithm by Craig and von Peter (2014) five out of the ten systemically important
banks belong to the core of the short term network, whereas three out of this five also belong to

27Furthermore, the methodology presented in Section 3.2 allows for further decompositions, though for ease of
exposition we do not pursue this here. For instance, we could partition the indices according to both instrument and
maturity type, allowing for a finer distinction of the sources of systemic importance. For illustrative purposes, we
focus on a specific partition by instrument and maturity type, and a specific subset of banks.
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the core of the long term network. Based on the alternative algorithm for identification of a core-
periphery profile by Della Rossa et al. (2013) , only one systemic bank belongs to the core of the
long term network (bank 35) and none to the short term. There are no banks that are present in the
core of most networks regardless of the method used to identify the core. When the method used
is that of Craig and von Peter (2014), bank 35 is present in all cores except that of the off-balance
sheet network. Identification of systemic importance is far from being a synonym with being in
the core, neither for the aggregate network nor for its different layers, and the choice among the
different implementations matter for policy makers.

The banks identified in the figures above pose a risk to systemic stability, and the method
proposed here allows for a decomposition and description of the sources of such systemic importance
from a holistic perspective, starting from a matrix representation of the balance sheet of the entire
banking system. Even when the derivation of the measures is grounded in theory and involves some
matrix algebra, the ultimate motivation of our endeavour is practical in nature. We posit that such
measures can be of use for bank regulators and supervisors. In this respect, we view their simplicity
and straightforward implementation as an important asset.

4.3 Systemic importance across layers from additional perspectives

Real-world financial interaction manifests itself through a variety of channels. For analytical pur-
poses such coupling of different interactions (or layers) can occur randomly. However, in real-world
complex systems the specific, non-random structure of multiplexity can be significant. The similar-
ity in the transmission across layers has been termed correlated multiplexity by Lee et al. (2014).28

Such feature has been suggested to be central for the unfolding of failure cascades through the
system (see Buldyrev et al. (2010)).

In order to evaluate the extent of correlated multiplexity we look at a number of measures of
centrality which capture alternative notions of systemic importance. When the centrality rankings
of banks across layers is resilient, then one can speak of layers being correlated (correlated multi-
plexity), and thus independently of the specific structure of the transmission involved, the central
institutions are likely to be the same (ordered in the same manner). When this is not the case,
then multiplexity is not correlated and this centrality is layer-specific.

For a wider comparison of centrality across layers we explore the correlation between layers of
selected measures of local and global connectivity alternative to our analytical concept of systemic
importance. We consider degree and strength measures of bank centrality, which for a directed
network measure respectively the number of relationships and the weight of such links. A directed

28For instance, it can be expected that a person with many links in the “friendship” layer of a social multiplex
network also has a relatively high number of links in other networks by virtue of her being a friendly person. Parshani
et al. (2010) show how well connected ports tend to couple with well connected airports. Barigozzi et al. (2010)
present similar evidence for the international trade network by comparing commodity-specific sub-networks and the
aggregate.
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version of PageRank, the algorithm used by Google to rank webpages within their search engine is
used for connectivity at the global level.

The correlation of the measures across layers (see tables 5, 6 and 7) overwhelmingly point to
the existence of positively correlated multiplexity. Banks that are well connected in a network tend
also to be well connected in other networks. This is particularly strong when looking at degree
centrality for both its incoming and outgoing versions (though in general out-degree centrality
tends to present slightly lower correlations than in-degree centrality). When looking at strength
centrality the message remains unaltered, though the magnitudes are reduced, in particular for out-
strength in the short term derivatives network and the two off-balance-sheet networks. Focusing
on node-specific global measures of importance does not alter the takeaway from the analysis: the
correlation of PageRank centrality across networks delivers similar results to strength centrality,
though slightly stronger than the latter (Table 7).

Two additional centrality measures, closeness (in its in and out versions) and betweenness cen-
trality, show similar results.29 With a couple of exceptions (short versus long term assets and
short versus long term derivatives), in-closeness does not present strong correlated multiplexity.
But for out-closeness we again have very strong evidence of positively (and significant) correlated
multiplexity. Finally, for betweenness centrality we also have positively correlated multiplexity,
significant for all but one combination of networks and with values somewhat smaller than those
observed for PageRank-in centrality. The results on correlated multiplexity are even stronger when
considering Spearman rank correlation instead of the simple Pearson correlation discussed thus far,
suggesting that systemic order among banks (central for the policy making process) is even more
resilient across layers.

Taken together, these results imply that, for the network considered, centrality is strongly per-
manent across layers, underlining the usefulness of ranking under limited information in identifying
critical institutions. Molina-Borboa et al. (2015) find that important actors in the different layers
differ30 and take this as a significant reason to motivate the use of multiplex networks instead of
just a single aggregated network. We argue on the basis of the results in this and previous sections
that even in the case in which the importance of actors is strongly persistent across layers (as they
show to be in the network of large European banks), there is still significant value in looking at
all layers for which information is available (i.e. the multiplex network), especially if one is able to
decompose systemic importance into layer-specific contributions as our method illustrates.

29Results are available upon request from the authors.
30They conflate importance with belonging to the core. While strictly speaking systemic importance and coreness

are different (though related) concepts, we find their nomenclature appropriate for their purposes and hence take it
at face value.
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5 Concluding remarks

The recent financial crisis brought to the fore the relevance of interconnectedness in general, and
in particular in interbank markets. Of critical importance in this context is the identification of
the key players in the financial network. While early contributions on the topic have focused on
aggregated exposures, it is now increasingly recognised that the web of reciprocal exposures linking
bank balance sheets is more intricate and complex. Interbank networks are better characterised as
multiplex networks, featuring connections at multiple levels.

In the present paper we analyse the multiplex structure of the network of large European
banks, making use of a detailed dataset presenting exposures partitioned according to maturity
and instrument type. We find a high level of similarity between the different layers (either by
instrument or maturity), a core periphery structure which comprises a large core (relative to studies
using country-specific datasets), and positively correlated multiplexity. The results suggest that an
institution’s role in the channel of transmission is critical in determining the global importance
of such institution, that the notion of importance may not be related to the traditionally studied
core-periphery role of the institution, and that nevertheless key forms of non-decomposable (across
layers) centrality measures are resilient across layers, indicating that global forms of centrality are
robust to the absence of granular data availability.

Importantly, we develop a measure of systemic importance suited to the case in which banks
are connected through an arbitrary number of different layers. This allows us to compute systemic
importance indicators and decompose them into the contributions of the different layers, providing
a holistic analysis that truly incorporates the mutiplex structure of the network (instead of doing
separate analyses for the different layers and the aggregate network). We illustrate our measures
with the dataset on exposures between large European banks. Our approach builds on the logic that
drives the policy process of assessing banks’ importance at the European Central Bank (ECB) and
the Financial Stability Board (FSB), and is hence of policy relevance for supervisors and regulators.
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Langfield, S. and Soramäki, K. (2014). Interbank exposure networks. Computational Economics.

Lee, K.-M., Kim, J. Y., Lee, S., and Goh, K.-I. (2014). Multiplex networks. In D’Agostino, G. and Scala,
A., editors, Networks of Networks: The Last Frontier of Complexity, Understanding Complex Systems,
chapter 3. Springer International Publishing Switzerland 2014.
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A Overview of the data

We make use of a unique dataset of anonymised interbank exposures between large European banks,
originally presented in Alves et al. (2013). The preparation of the dataset was part of a collective
effort undertaken by the European Systemic Risk Board, the European Banking Authority and
national supervisory authorities. In particular, the dataset presents bilateral exposures between 53
large European banks as of end 2011, with breakdown according to both maturity and instrument
type.31 Banks report their exposures at the level of the banking group, the implication being that
non-financial subsidiaries and insurance are not included in the reporting exercise, and exposures
to counterparties were aggregated using an accounting scope of consolidation (hence including all
subsidiaries of that counterparty). The exposure data represents a directed and weighted network,
in which each node is represented by a banking group and each link going from node A to node
B accounts for an exposure of the former to the latter. The multiplex structure of the dataset
stems from the level of disaggregation that the dataset contains, namely along the instrument and
maturity dimensions.

The partition of exposures according to instrument type is as follows: (i) assets, further subdi-
vided into credit claims, debt securities and other assets, (ii) derivatives, and (iii) off-balance-sheet
exposures. On the other hand, exposures according to maturity type are structured according to:
(i) less than one year including on sight (“short term”), (ii) more than one year (“long term”), and
(iii) a residual of unspecified maturity.32 Coming back to the terminology introduced in section 3,
the interbank exposure dataset used presents two aspects, namely instrument type and maturity
type. The former has either 3 or 5 elementary layers (depending on whether we consider the sub-
division of assets or not) whereas the latter presents 3 elementary layers. As a consequence we can
have either 9 or 15 layers.33

The combination of the three types of asset exposures (namely credit claims, debt securities and
other assets) accounts for almost 2/3 of overall exposures (see Figure A.1). Derivatives explain 27%
of exposures, whereas off-balance-sheet items account for the smallest share at 17%. Furthermore,
almost all banks report exposures on credit claims and debt securities and therefore the shares are
more evenly distributed among banks: to reach 80% of total exposures for each of these categories
one needs 18 banks. While also a significant amount of banks report derivatives exposures, these are
more concentrated as it takes 12 banks to reach the 80% share of total exposures in this category.
Off-balance-sheet exposures, on the other hand, are characterised by fewer banks reporting and

31There are 53 reporting banks, while there is a bank which did not report exposures to other institutions. Hence,
there are 53 banks reporting exposures to 54 banks, and the matrices we work with are of dimension 54-by-54.

32The original dataset presents further subdivisions of interbank credit claims and off-balance-sheet items. We
keep the partition mentioned above as it is enough for our illustrative purposes. But it should be noted that the
method presented here can be applied to any arbitrary number of sub-divisions.

33As noted earlier, one can focus attention on a given aspect of the network by aggregating across the other aspect
, i.e. in order to focus on maturity type, aggregate across instrument type to have the “short term”, “long term” and
“unspecified maturity” networks.
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much more concentration: the first 6 banks account for 80% of exposures in this category. Regarding
maturity type, the distinction between exposures is not different as it is for instruments: short and
long exposures account for roughly the same share of overall exposures and both present a similar
number of reporting banks.34

Figure A.1: Composition of exposures by instrument and maturity (left and right panel respec-
tively).

Exposures of unspecified maturity behave quite differently, with just 7 banks reporting and with
the first 3 accounting for 75% of exposures in this category. When combining the maturity and
instrument type dimensions, one sees that each instrument presents its own nuances in terms of
maturity breakdown (see Figure A.2). While asset exposures are marginally tilted toward shorter
maturities, derivatives present more diversity and are slightly leaning towards longer term exposures.
Off-balance-sheet exposures, on the other hand present a good deal of dispersion for short term but
not so much for long term exposures, which present a very small median. Furthermore, for this
instrument type there is a non-negligible share of exposures of unspecified maturity, which speaks
to the well-known opacity of these types of instruments.

It should be noted that the network built with the data comprises the exposures between the
group of banks which participated in the exercise, hence exposures of this group of banks to other
EU banks are not considered in the analysis. That said, the bilateral exposures reported by banks
represent slightly more than half of total exposures to EU banks, thereby capturing a good piece
of the action, in particular between the larger banks.35

The level of connectivity of the network of large European banks is large relative to other

34It should be noted that in the case of long term exposures there is one bank which stands far above the rest,
accounting for almost 20% of exposures in this category.

35The share of exposures to large EU banks relative to total exposure to EU banks varies depending on instrument
type and bank, with the median for total exposures being 60%. For details see Alves et al. (2013), in particular
Chart 2.
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Figure A.2: Share of short and long term exposures (left and right panels respectively) in total
exposure by instrument.

studies that focus on national banking systems, as reflected in the relatively high density of the
network: 60% of all possible connections are actually present for total exposures. While the density
is naturally lower in composing layers (48%, 36% and 29% for assets, derivatives and off-balance-
sheet respectively), values still remain well above those encountered in previous studies focusing on
national banking systems.36

Despite being relatively dense, the network of large European banks follows a power law dis-
tribution just as other interbank networks observed in the literature, i.e. it presents a scale-free
topology. A network with a scale-free topology is characterised by being robust to random shocks
but vulnerable to targeted attacks, yielding the so-called “robust yet fragile” property. Figure A.3
and Figure A.4 present the degree distributions according to instrument and maturity type respec-
tively. While there is not much of a difference between the degree distributions of the long and
short term networks, the layers corresponding to different instruments present more diversity. The
layer corresponding to the assets network is closer to the overall network for both in- and out-degree
distributions, in line with the share of these type of exposures in overall exposures (see Figure A.1).
On the other hand, the off-balance-sheet layer is farthest from the total network, with the deriva-
tives layer lying somewhere in between. The distinction between layers becomes less clear-cut for
the out-degree distribution.37

Further properties of the network are its high level of reciprocity (especially for higher levels
of aggregation of exposures) and its dissortative behaviour. Higher reciprocity implies that a high
share of exposures are reciprocated by a corresponding counter-exposure, suggesting that systemic

36See among others Craig and von Peter (2014), van Lelyveld and In’t Veld (2012), Fricke and Lux (2012),
Soramäki et al. (2007) for the cases of Germany, the Netherlands, Italy and the U.S. respectively.

37All these characteristics are also reflected in the estimated coefficient of the power law distribution in Table 1
in Alves et al. (2013).
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Figure A.3: In- and out-degree distributions - left and right panel respectively - by instrument
type (in log-log scale).

risk might be lower for high levels of aggregation since some exposures might be netted. A network
is said to be assortative (with respect to its nodes’ degrees) if high (low) degree nodes tend to be
connected to other high (low) degree nodes. If instead high degree nodes tend to be connected to
low degree nodes the network is said to be dissortative. Interbank networks are typically found to
be dissortative, and the network of large European banks is no exception. This feature is closely
associated to the core-periphery structure of interbank networks found in the extant literature,
and it reflects efficient specialisation between the actors in the network. In the European interbank
network this specialisation is more apparent in granular instrument and maturity types. For further
details on the network and some of its topological properties we refer the interested reader to Section
3 in Alves et al. (2013).

B Tables and Figures
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Figure A.4: In- and out-degree distributions - left and right panel respectively - by maturity type
(in log-log scale).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) Assets-CC L 0.23 0.33 0.14 0.30 0.14 0.35 0.06 0.08 0.11
(2) Assets-CC S 0.33 0.22 0.13 0.08 0.15 0.24 0.15 0.04 0.12
(3) Assets-DS L 0.31 0.43 0.31 0.07 0.07 0.24 0.09 0.04 0.23
(4) Assets-DS S 0.25 0.37 0.42 0.01 0.05 0.11 0.04 0.05 0.28
(5) Assets-Other L 0.16 0.09 0.09 0.08 0.09 0.13 0.02 0.01 0.01
(6) Assets-Other S 0.13 0.11 0.10 0.11 0.18 0.07 0.03 0.15 0.12
(7) Derivatives L 0.27 0.35 0.35 0.27 0.11 0.11 0.18 0.07 0.11
(8) Derivatives S 0.27 0.40 0.33 0.24 0.09 0.09 0.45 0.02 0.06
(9) OffBS L 0.35 0.25 0.26 0.23 0.11 0.09 0.23 0.23 0.36
(10) OffBS S 0.32 0.38 0.27 0.26 0.11 0.10 0.29 0.34 0.31

Table 4: Jaccard (lower triangle) and Cosine (upper triangle) Similarity Indices, by instrument
and maturity type. CC stands for Credit Claims, DS stands for Debt Securities, and L (S) stands
for Long (Short) Term.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.77*** 0.64*** 0.52*** 0.57*** 0.44***
Assets-S 0.88*** 0.71*** 0.58*** 0.39*** 0.60***
Deriv.-L 0.69*** 0.80*** 0.72*** 0.44*** 0.53***
Deriv.-S 0.78*** 0.89*** 0.90*** 0.40*** 0.63***
OffBS-L 0.83*** 0.87*** 0.73*** 0.79*** 0.52***
OffBS-S 0.84*** 0.91*** 0.79*** 0.86*** 0.92***

Table 5: Correlation indices for in-degree (lower triangle) and out-degree (upper triangle) centrality.
L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1% (5%, 10%)
level.
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Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.62*** 0.83*** 0.15 0.14 0.25*
Assets-S 0.50*** 0.49*** 0.18 0.08 0.26*
Deriv.-L 0.46*** 0.64*** 0.11 0.17 0.17
Deriv.-S 0.37*** 0.70*** 0.85*** -0.00 0.09
OffBS-L 0.26* 0.67*** 0.48*** 0.55*** 0.69***
OffBS-S 0.40*** 0.79*** 0.55*** 0.55*** 0.52***

Table 6: Correlation indices for in-strength (lower triangle) and out-strength (upper triangle)
centrality. L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1%
(5%, 10%) level.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.62*** 0.78*** 0.14 0.18 0.39***
Assets-S 0.60*** 0.45*** 0.18 0.07 0.22
Deriv.-L 0.52*** 0.71*** 0.15 0.16 0.19
Deriv.-S 0.46*** 0.75*** 0.87*** -0.00 0.16
OffBS-L 0.33** 0.65*** 0.52*** 0.53*** 0.73***
OffBS-S 0.50*** 0.80*** 0.61*** 0.61*** 0.56***

Table 7: Correlation indices for PageRank in (lower triangle) and out (upper triangle) centrality.
L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1% (5%, 10%)
level.

Figure B.1: Core banks and error score based on Craig and von Peter (2014) algorithm, by
instrument and maturity (left and right panel respectively). The error score is expressed as a share
of all possible connections.
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Figure B.2: Core-periphery profile by instrument and maturity (left and right panel respectively),
based on the method by Della Rossa et al. (2013). Blue straight lines indicate the complete (diag-
onal) and star (“inverted L”) networks as benchmarks.

Figure B.3: Core banks, p-nodes and centralisation by instrument and maturity (left and right
panel respectively), based on the method by Della Rossa et al. (2013). Core banks are those with
αk > 0.5; p-nodes are periphery nodes in the strict sense (αk = 0).
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Figure B.4: RH backward (left) and forward (right) indices, for top 10 banks by instrument type.

Figure B.5: RH backward (left) and forward (right) indices, for top 10 banks by maturity type.
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Figure B.6: RH backward and forward indices (upper and lower panel respectively). Banks with
a score above 1 are coloured with dark blue.
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C Additional results - NOT FOR PUBLICATION

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.48*** 0.18 0.52*** 0.39*** 0.45***
Assets-S 0.34** 0.48*** 0.66*** 0.37*** 0.54***
Deriv.-L -0.24* -0.10 0.42*** 0.29** 0.37***
Deriv.-S -0.01 0.06 0.34** 0.35** 0.45***
OffBS-L 0.26* 0.18 0.15 0.12 0.45***
OffBS-S 0.25* 0.16 0.01 0.22 0.19

Table 8: Correlation indices for Closeness in (lower triangle) and out (upper triangle) centrality.
L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1% (5%, 10%)
level.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L
Assets-S 0.39***
Deriv.-L 0.25* 0.45***
Deriv.-S 0.49*** 0.54*** 0.57***
OffBS-L 0.55*** 0.50*** 0.22 0.57***
OffBS-S 0.41*** 0.42*** 0.37*** 0.30** 0.36***

Table 9: Correlation indices for Betweenness centrality. L (S) stands for Long (Short) Term. ***
(**,*) denotes statistical significance at the 1% (5%, 10%) level.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.73*** 0.56*** 0.55*** 0.59*** 0.47***
Assets-S 0.86*** 0.63*** 0.62*** 0.48*** 0.64***
Deriv.-L 0.76*** 0.82*** 0.70*** 0.51*** 0.47***
Deriv.-S 0.79*** 0.89*** 0.90*** 0.46*** 0.57***
OffBS-L 0.87*** 0.86*** 0.69*** 0.76*** 0.65***
OffBS-S 0.83*** 0.91*** 0.77*** 0.84*** 0.89***

Table 10: Spearman correlation indices for in-degree (lower triangle) and out-degree (upper trian-
gle) centrality. L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at
the 1% (5%, 10%) level.
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Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.65*** 0.59*** 0.56*** 0.58*** 0.60***
Assets-S 0.82*** 0.54*** 0.57*** 0.42*** 0.54***
Deriv.-L 0.71*** 0.79*** 0.55*** 0.50*** 0.47***
Deriv.-S 0.70*** 0.76*** 0.87*** 0.40*** 0.53***
OffBS-L 0.62*** 0.71*** 0.75*** 0.69*** 0.73***
OffBS-S 0.67*** 0.79*** 0.81*** 0.73*** 0.87***

Table 11: Spearman correlation indices for in-strength (lower triangle) and out-strength (upper
triangle) centrality. L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance
at the 1% (5%, 10%) level.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.60*** 0.57*** 0.50*** 0.56*** 0.55***
Assets-S 0.79*** 0.54*** 0.53*** 0.45*** 0.51***
Deriv.-L 0.71*** 0.81*** 0.57*** 0.56*** 0.43***
Deriv.-S 0.63*** 0.76*** 0.87*** 0.44*** 0.48***
OffBS-L 0.63*** 0.73*** 0.74*** 0.66*** 0.62***
OffBS-S 0.65*** 0.80*** 0.80*** 0.73*** 0.84***

Table 12: Spearman correlation indices for PageRank in (lower triangle) and out (upper triangle)
centrality. L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1%
(5%, 10%) level.

Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L 0.49*** 0.18 0.50*** 0.42*** 0.44***
Assets-S 0.39*** 0.49*** 0.61*** 0.43*** 0.60***
Deriv.-L -0.24* -0.09 0.39*** 0.29** 0.35***
Deriv.-S 0.05 0.04 0.35** 0.35*** 0.47***
OffBS-L 0.23 0.14 0.11 0.01 0.49***
OffBS-S 0.22 0.08 0.02 0.17 0.04

Table 13: Spearman correlation indices for Closeness in (lower triangle) and out (upper triangle)
centrality. L (S) stands for Long (Short) Term. *** (**,*) denotes statistical significance at the 1%
(5%, 10%) level.
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Assets-L Assets-S Deriv.-L Deriv.-S OffBS-L OffBS-S
Assets-L
Assets-S 0.51***
Deriv.-L 0.22 0.54***
Deriv.-S 0.59*** 0.61*** 0.60***
OffBS-L 0.39*** 0.42*** 0.25* 0.36***
OffBS-S 0.48*** 0.44*** 0.36*** 0.51*** 0.57***

Table 14: Spearman correlation indices for Betweenness centrality. L (S) stands for Long (Short)
Term. *** (**,*) denotes statistical significance at the 1% (5%, 10%) level.

Debt Securities
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

C
re

d
it

C
la

im
s

Degin 0.82*** 0.20 0.66*** 0.58*** 0.63*** 0.48*** 0.41*** 0.02 0.31**
Degout 0.21 0.60*** 0.22 0.36*** 0.17 0.38*** 0.34** 0.13 0.31**
Strin 0.74*** 0.26* 0.79*** 0.67*** 0.70*** 0.57*** 0.33** -0.12 0.19
Strout 0.48*** 0.35*** 0.48*** 0.59*** 0.40*** 0.55*** 0.50*** -0.11 0.13
PRin 0.73*** 0.27* 0.77*** 0.65*** 0.70*** 0.55*** 0.35** -0.09 0.21
PRout 0.47*** 0.39*** 0.47*** 0.58*** 0.43*** 0.55*** 0.49*** -0.08 0.16
Cloin 0.22 -0.11 0.06 0.17 0.05 0.20 0.23* 0.09 0.20
Cloout -0.05 0.41*** -0.02 0.10 0.01 0.09 0.20 0.33** 0.34**
BW 0.17 0.27* 0.05 0.08 0.07 0.07 0.31** 0.32** 0.43***

Table 15: Spearman correlation between centrality measures corresponding to two different
networks: Assets - Credit Claims (rows) vs Assets - Debt Securities (columns). Deg=Degree,
Str=Strength, PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical
significance at the 1% (5%, 10%) level.

Derivatives
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

T
ot

al
A

ss
et

s

Degin 0.91*** 0.47*** 0.89*** 0.65*** 0.90*** 0.66*** 0.10 0.04 0.16
Degout 0.33** 0.59*** 0.22 0.35*** 0.22 0.37*** 0.32** 0.28** 0.34**
Strin 0.81*** 0.45*** 0.85*** 0.61*** 0.85*** 0.62*** 0.11 -0.01 0.11
Strout 0.70*** 0.47*** 0.71*** 0.60*** 0.71*** 0.61*** 0.16 -0.00 0.09
PRin 0.81*** 0.44*** 0.83*** 0.57*** 0.84*** 0.58*** 0.08 0.03 0.12
PRout 0.64*** 0.44*** 0.65*** 0.56*** 0.66*** 0.57*** 0.09 0.04 0.06
Cloin 0.05 0.16 -0.02 0.04 -0.02 0.04 -0.16 0.45*** 0.29**
Cloout -0.06 0.40*** -0.13 0.03 -0.12 0.03 0.07 0.47*** 0.44***
BW -0.02 0.33** -0.09 0.04 -0.09 0.04 0.01 0.62*** 0.45***

Table 16: Spearman correlation between centrality measures corresponding to two different net-
works: Total Assets (rows) vs Derivatives (columns). Deg=Degree, Str=Strength, PR=PageRank,
Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical significance at the 1% (5%, 10%)
level.
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Off Balance Sheet
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

T
ot

al
A

ss
et

s
Degin 0.92*** 0.46*** 0.88*** 0.57*** 0.86*** 0.48*** 0.32** 0.20 0.32**
Degout 0.20 0.49*** 0.20 0.41*** 0.20 0.44*** 0.16 0.40*** 0.40***
Strin 0.74*** 0.40*** 0.80*** 0.51*** 0.78*** 0.42*** 0.27* 0.18 0.24*
Strout 0.60*** 0.45*** 0.60*** 0.55*** 0.58*** 0.49*** 0.31** 0.20 0.27*
PRin 0.75*** 0.41*** 0.79*** 0.52*** 0.78*** 0.43*** 0.26* 0.17 0.25*
PRout 0.56*** 0.41*** 0.55*** 0.51*** 0.54*** 0.45*** 0.31** 0.16 0.24*
Cloin 0.02 -0.05 -0.13 -0.11 -0.12 -0.11 0.08 0.16 0.09
Cloout -0.02 0.38*** -0.14 0.16 -0.11 0.21 -0.18 0.45*** 0.33**
BW 0.03 0.24* -0.16 0.04 -0.14 0.09 -0.19 0.36*** 0.23*

Table 17: Spearman correlation between centrality measures corresponding to two different
networks: Total Assets (rows) vs Off Balance Sheet (columns). Deg=Degree, Str=Strength,
PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical significance at
the 1% (5%, 10%) level.

Off Balance Sheet
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

D
er

iv
at

iv
es

Degin 0.81*** 0.44*** 0.78*** 0.53*** 0.77*** 0.47*** 0.31** 0.19 0.31**
Degout 0.45*** 0.51*** 0.39*** 0.45*** 0.38*** 0.47*** 0.07 0.40*** 0.36***
Strin 0.82*** 0.44*** 0.79*** 0.53*** 0.77*** 0.44*** 0.36*** 0.19 0.34**
Strout 0.62*** 0.39*** 0.54*** 0.49*** 0.53*** 0.44*** 0.14 0.26* 0.28**
PRin 0.82*** 0.44*** 0.80*** 0.52*** 0.77*** 0.44*** 0.36*** 0.18 0.33**
PRout 0.62*** 0.41*** 0.55*** 0.50*** 0.54*** 0.46*** 0.16 0.27** 0.30**
Cloin 0.06 0.28** 0.08 0.30** 0.07 0.30** 0.04 0.18 0.20
Cloout 0.06 0.18 -0.03 0.02 -0.03 0.03 0.01 0.32** 0.26*
BW 0.14 0.23* 0.09 0.12 0.08 0.16 0.13 0.28** 0.30**

Table 18: Spearman correlation between centrality measures corresponding to two different
networks: Derivatives (rows) vs Off Balance Sheet (columns). Deg=Degree, Str=Strength,
PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical significance at
the 1% (5%, 10%) level.

Long Term
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

S
h
or

t
T

er
m

Degin 0.93*** 0.27** 0.79*** 0.46*** 0.82*** 0.41*** 0.03 -0.01 0.13
Degout 0.34** 0.78*** 0.34** 0.72*** 0.33** 0.72*** 0.28** 0.39*** 0.46***
Strin 0.87*** 0.16 0.88*** 0.46*** 0.89*** 0.40*** -0.12 -0.06 -0.05
Strout 0.64*** 0.41*** 0.64*** 0.76*** 0.63*** 0.70*** 0.06 0.06 0.11
PRin 0.87*** 0.18 0.88*** 0.44*** 0.90*** 0.39*** -0.08 -0.07 -0.03
PRout 0.60*** 0.47*** 0.64*** 0.79*** 0.62*** 0.73*** 0.07 0.10 0.12
Cloin -0.18 -0.06 -0.23* -0.05 -0.24* -0.06 0.05 0.14 0.10
Cloout 0.07 0.42*** 0.03 0.19 0.05 0.20 0.23* 0.40*** 0.51***
BW -0.04 0.13 -0.14 0.01 -0.12 0.02 0.23* 0.25* 0.36***

Table 19: Spearman correlation between centrality measures corresponding to two different net-
works: Short Term (rows) vs Long Term (columns). Deg=Degree, Str=Strength, PR=PageRank,
Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical significance at the 1% (5%, 10%)
level.
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Assets - Long Term
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

A
ss

et
s-

S
h
or

t
T

er
m Degin 0.86*** 0.21 0.65*** 0.36*** 0.68*** 0.34** 0.28** 0.21 0.30**

Degout 0.10 0.73*** 0.23* 0.64*** 0.23* 0.62*** 0.16 0.32** 0.37***
Strin 0.82*** 0.11 0.82*** 0.37*** 0.80*** 0.33** 0.13 -0.01 0.07
Strout 0.49*** 0.43*** 0.54*** 0.65*** 0.53*** 0.60*** 0.23 0.17 0.28**
PRin 0.83*** 0.12 0.81*** 0.36*** 0.79*** 0.32** 0.13 -0.01 0.09
PRout 0.47*** 0.44*** 0.51*** 0.63*** 0.51*** 0.60*** 0.25* 0.20 0.30**
Cloin 0.01 0.07 -0.06 0.22 -0.05 0.23* 0.39*** 0.16 0.26*
Cloout -0.20 0.48*** -0.12 0.30** -0.08 0.28** 0.13 0.49*** 0.48***
BW -0.13 0.43*** -0.03 0.31** 0.02 0.28** 0.18 0.51*** 0.51***

Table 20: Spearman correlation between centrality measures corresponding to two different net-
works: Assets - Short Term (rows) vs Assets - Long Term (columns). Deg=Degree, Str=Strength,
PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical significance at
the 1% (5%, 10%) level.

Derivatives - Long Term
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

D
er

iv
at

iv
es

-S
h
or

t Degin 0.90*** 0.40*** 0.87*** 0.54*** 0.87*** 0.52*** 0.20 0.13 0.22
Degout 0.31** 0.70*** 0.29** 0.67*** 0.27** 0.66*** 0.16 0.42*** 0.38***
Strin 0.81*** 0.27* 0.87*** 0.45*** 0.88*** 0.45*** 0.14 0.02 0.08
Strout 0.45*** 0.45*** 0.41*** 0.55*** 0.41*** 0.56*** 0.14 0.19 0.11
PRin 0.81*** 0.27** 0.87*** 0.46*** 0.87*** 0.46*** 0.11 0.01 0.05
PRout 0.45*** 0.46*** 0.42*** 0.56*** 0.42*** 0.57*** 0.11 0.19 0.12
Cloin 0.37*** 0.21 0.33** 0.16 0.33** 0.14 0.35** 0.14 0.32**
Cloout 0.18 0.48*** 0.14 0.37*** 0.13 0.38*** 0.09 0.39*** 0.41***
BW 0.51*** 0.55*** 0.38*** 0.45*** 0.38*** 0.46*** 0.35*** 0.46*** 0.60***

Table 21: Spearman correlation between centrality measures corresponding to two different net-
works: Derivatives - Short Term (rows) vs Derivatives - Long Term (columns). Deg=Degree,
Str=Strength, PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) denotes statistical
significance at the 1% (5%, 10%) level.

Off Balance Sheet - Long Term
Degin Degout Strin Strout PRin PRout Cloin Cloout BW

O
ff

B
S
-S

h
or

t

Degin 0.89*** 0.40*** 0.82*** 0.42*** 0.80*** 0.44*** 0.36*** 0.30** 0.39***
Degout 0.32** 0.65*** 0.36*** 0.67*** 0.35*** 0.60*** 0.16 0.59*** 0.64***
Strin 0.82*** 0.37*** 0.87*** 0.38*** 0.85*** 0.43*** 0.32** 0.30** 0.36***
Strout 0.35** 0.68*** 0.40*** 0.73*** 0.39*** 0.67*** 0.15 0.57*** 0.62***
PRin 0.81*** 0.37*** 0.86*** 0.39*** 0.84*** 0.44*** 0.32** 0.29** 0.36***
PRout 0.29** 0.65*** 0.34** 0.69*** 0.33** 0.62*** 0.13 0.55*** 0.58***
Cloin 0.54*** 0.06 0.51*** 0.08 0.49*** 0.13 0.04 -0.03 0.01
Cloout 0.14 0.48*** 0.15 0.48*** 0.13 0.42*** 0.20 0.49*** 0.57***
BW 0.30** 0.57*** 0.33** 0.58*** 0.31** 0.52*** 0.22 0.53*** 0.57***

Table 22: Spearman correlation between centrality measures corresponding to two different net-
works: Off Balance Sheet - Short Term (rows) vs Off Balance Sheet - Long Term (columns).
Deg=Degree, Str=Strength, PR=PageRank, Clo=Closeness, BW=Betweenness. *** (**,*) de-
notes statistical significance at the 1% (5%, 10%) level.
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