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1. Introduction 

There has been a long-standing debate among economists on the relative efficiency 

of price and quantity regulation instruments to correct market failures such as externalities 

(e.g., Weitzman, 1974 and Kaplow and Shavell, 2002 on pollution control in environmental 

economics). We focus on this topic in a spatial economy and compare the efficiency of tax 

instruments (property taxes and congestion charges) and zoning (floor area ratio regulations 

and land-use type regulations) as policy instruments to control the simultaneous congestion of 

road and nonroad infrastructure. 

This topic is important especially in city planning, simply because land use 

regulations (LURs) are indispensable in city planning. Consequently, it is natural that urban 

economists have been discussing the efficiency and equivalence of the LURs and Pigouvian 

tolls as instruments to mitigate congestion for several decades
1
.  

Research on the efficiency of LURs, henceforth also zoning, has been showing a 

wide variety of results depending on the specific framework used. In case of the monocentric 

city, it is well established that road congestion can be reduced by raising density. One form of 

this proposition states that in the monocentric city, lot-size zoning is equivalent to congestion 

charge in its effect on efficiency (Pines and Sadka, 1985; Wheaton 1998). However, this 

holds only in the case of fixed travel demand, in which case the lot-size zoning can modify 

the spatial distribution of travelers in the exactly same way as the congestion tolls (Oron et al., 

1973; Wheaton, 1998). A slight generalized setting, however, immediately invalidates this 

proposition. Indeed, the lot-size zoning is second-best (Pines and Sadka, 1985; Kono et al., 

2012) or even third-best (Pines and Kono, 2012). If agglomeration economies are present in 

addition to road congestion, land-use type zoning can almost be first-best if linked with a 

subsidy to internalize agglomeration economies in the polycentric framework (Rhee et al., 

                                           

1 Besides, there is a sizable body of planning literature. There, the “efficiency” of development controls is not 

something to be disputed, and the controls are required to “grow smart” (Ewing et al., 2007). 
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2014). In contrast, the urban growth boundary (UGB), which is in principle second-best in 

analytical models (Kanemoto, 1977; Arnott, 1979; Pines and Sadka, 1985), are found to 

improve welfare negligibly (Brueckner, 2007) or even be absolutely harmful in the 

polycentric framework (Anas and Rhee, 2006). In some cases, an expansionary growth 

boundary is recommended instead (Anas and Rhee, 2007; Anas and Pines, 2008). The third 

type of land use regulation usually considered is floor area ratio (FAR) regulation. FAR 

regulation is found to be an effective substitute of the first-best congestion toll when a 

minimum FAR is applied at the city center and maximum FARs are applied in the suburb in 

the closed monocentric city framework (Kono et al., 2012); the efficiency requires maximum 

FARs everywhere in the open monocentric city framework (Kono and Joshi, 2012)
2
.  

There is much less literature on mitigating nonroad congestion in the theoretical 

spatial models. Since each new resident entails additional costs of public service provision, 

the (Pigouvian) property tax is an efficient congestion charge that is indispensable when non-

distortionary head tax is unavailable (Hoyt, 1991; Krelove, 1993). Since zoning forces 

residents to consume “at least some minimum amount of housing” (Hamilton, 1975: 206) and, 

thus, is able to control density, the zoning works in a similar fashion to pricing instruments. 

In the monocentric city with negative agglomeration externalities, optimal zoning consists of 

a maximum FAR in the center where nonroad congestion is assumed to be stronger and 

minimum FARs in the suburb (Kono et al., 2009). 

Until now, land use regulations have been studied only on each single type of 

congestion, either road or nonroad congestion, but not both. However, congestion of nonroad 

infrastructure such as fire protection, police services, health care, schools, sewerages, energy, 

and telecommunication infrastructure or waste management, is usually present together with 

road congestion. Tackling these two types of externalities requires employing at least two 

types of LURs that do not fully correlate. As this has not been studied so far, it is not obvious 

a priori whether there is an efficient mix of LURs or whether the LURs are equivalent to 

optimal pricing instruments. The first candidate from the pricing instruments is Pigouvian 

congestion charging and the property taxation on the differential land rent arising from 

congested nonroad infrastructure. This is supposed to imply self-financing of nonroads 

according to the Henry George theorem (Flatters et al., 1974; Stiglitz, 1977; Arnott and 

                                           

2 Optimal regulation may also depend on other existing non-optimal policies. For instance, if FAR regulation is 

linked with non-Pigouvian cordon tolls this implies a minimum FAR inside and maximum FARs outside the 

cordon ring in the monocentric city (Kono and Kawaguchi, 2015). 
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Stiglitz, 1979). Despite the intuition, it has not yet been studied as to whether this instrument 

mix is efficient in the presence of the two types of congestion. Because of the interaction 

between these two types of congestion, it may also happen that the optimal levels of the tax 

instruments deviate from pure Pigouvian levels (see Parry and Bento, 2002, on the interaction 

of externalities). In this case, the self-financing rule could not be sustained. 

The first purpose of this study is to compare the efficiencies of pricing and regulatory 

instruments when both types of congestion coexist. To be able to study land-use type 

regulation, we need a mixed land use of residences and production. Therefore, we apply 

Anas-Xu (1999) type model that allows us to study these issues in a general equilibrium 

spatial model
3
. Our model includes features that are closely related to the real world 

including a general equilibrium non-monocentric model, two types of congestion, a basket of 

different regulation instruments, mixed land use for production and residences, and household 

heterogeneity. The household heterogeneity is a standard feature of the real world although it 

is neglected in most of the references above (exceptions are Anas and Rhee, 2006 and Rhee et 

al., 2014). In this case, marginal utilities of income (MUIs) may differ and the standard 

Pigouvian pricing is no longer first-best unless a special analytical remedy is administered, 

such as income transfers among households to equalize MUIs (De Palma and Lindsey, 2004). 

We derive the first-order formulas of the welfare change associated with various 

instruments (taxes and LURs). The formulas reveal the essential differences between the 

model with and without household heterogeneity, between taxes and LURs, and between the 

spatial and non-spatial models. We, then, perform numerical simulations to compare the 

efficiencies. The major findings are follows.  

First, we show that the free market fails to achieve the first-best efficiency in the 

spatial model with household heterogeneity even in the absence of market failures such as 

externalities. Although this result is in principle known and stems from differences in 

marginal utilities of income (MUIs) across heterogeneous households, the new finding is that 

income redistribution to equalize MUIs does not restore the first-best efficiency in the spatial 

model. The redistribution itself introduces a spatial distortion that nullifies the effectiveness 

of the conventional first-best instrument mix. The same proposition holds in the spatial 

economy with traffic congestion as well; Pigouvian pricing plus redistribution equalizing the 

                                           

3 As a side issue our model is able to reproduce the results from the literature mentioned above and show how 

different assumptions or even the limited model setup applied in those studies determine these results.  
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MUIs is not efficient with household heterogeneity. We can generalize this finding, that is, 

the standard prescription of De Palma and Lindsey (2004) holds only when the household 

heterogeneity is fixed, but fails if households are able to change their household type 

endogenously. Thus, our finding may hold in other cases too, where households change their 

own types by marrying, becoming parents, and switching travel modes, routes, house types, 

ownership types, income, or skill groups. In such cases, it turns out that only numerical 

simulations or empirical testing can tell which policy mix is welfare maximizing. 

Second, we analytically decompose welfare changes completely and numerically 

approximate the changes by component for the first time. A byproduct of this exercise is the 

covariance term of the Feldstein (1972) type representing the impact of heterogeneity on 

welfare in the spatial framework. Indeed, they account for a significant proportion of the total 

welfare change. This makes it clear that neglecting the covariance term in the presence of 

household heterogeneity may induce misperceptions of other components of the effects. This 

result may carry over to other issues of household heterogeneity, too. In addition, referring to 

the welfare decomposition, we explain some puzzles raised in the literature of urban and 

transportation economics. 

Third, the precise decomposition of the welfare change shows the different channels 

through which taxes and LURs affect welfare in the spatial economy with congestion
4
. While 

Pigouvian taxes internalize congestion externalities in the standard way, LURs have 

additional terms showing real estate market distortions and compliance costs of LURs. In the 

numerical analysis, these costs turn out to be huge and rise rapidly as the regulations get 

tighter.  

Fourth, concerning the equivalence of LURs and Pigouvian pricing, numerical 

simulations confirm that LURs can indeed be as efficient as Pigouvian taxation in the second 

best way. This, however, is true only for a narrow range of city size, while LURs are clearly 

less efficient than the second-best Pigouvian charging for larger cities where infrastructure is 

highly congested. This is not known in the exiting literature, which claims or implicitly 

accepts the proposition that zoning is almost as efficient as Pigouvian tolling. In addition, we 

find that in the case of smaller cities, LURs can be even more efficient than Pigouvian pricing, 

a result not yet reported in the literature. 

The first purpose of the study as stated above is about the efficiency of optimal 

                                           

4 Bertaud and Brueckner (2005) study costs of LUR in a monocentric model without externalities. 
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policies. An implicit assumption there is that the optimal policies are known to the planner. In 

contrast, the second purpose of this paper concerns the instrument choice, which is widely 

studied in environmental economics, when the planner cannot set the policies optimally. 

There are several reasons why actual policies deviate from the optimum such as conflicting 

aims of regulators (planners, tax authorities, or decision makers), imperfect internal decision-

making and planning processes, or imperfect regulatory information (missing, wrong or 

uncertain). To be more specific, actual land use regulations are chosen according to the 

objectives that are often conflicting with one another. Compact development is an example 

where saving in peri-urban areas could worsen outdoor living quality in inner cities 

(Westerink, 2013). To our knowledge, this problem has not been studied yet in the spatial 

framework.  

However, unlike the existing instrument choice literature, we introduce imprecision 

into the policies themselves rather than into the costs and benefits of pollution abatement. 

This analytical twist is so useful that we can evaluate any type of discrete policy deviation 

from optimal policies; the uncertainties of the costs and benefits of pollution abatement are a 

special case of our approach. In this new framework, we provide a formula, showing the 

welfare gain or loss at any point along the equilibrium path away from the optimum. Unlike 

the Weitzman’s (1974) famous formula “       ” that holds only near the optimum, our 

formula in general justifies the possible superiority of externality pricing to quantity 

regulation for discrete deviation whatever the reason. As Pizer (1997) shows numerically, 

when the policy change is discrete, Weitzman’s formula easily loses its predictive power. We 

confirm our theory by showing that indeed the welfare cost of deviation is so large for zoning 

failures that it is not only efficient but also safe to use tax instruments rather than the LURs. 

Ironically, the welfare costs arise even when policies are optimally set on average. Moreover, 

we find that imprecise LURs can even be worse than doing nothing at all as a means to curb 

congestion.  

The rest of the paper is organized as follows. Section 2 presents the analytical model. 

Two types of infrastructure externalities are modeled: road and nonroad congestions. We 

characterize the first-best and second-best instruments in Section 3 and 4, respectively; we 

also discuss the optimal adjustment of land uses. In Section 5, we conduct numerical 

simulations and in Section 6 explore the consequences of deviations from optimal policies 

including Monte Carlo experiments. Section 7 concludes. Additionally, a glossary appears at 
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the end of the paper.  

2. The Model 

A closed metropolitan area is composed of an arbitrary number of zones. The lots 

inside a zone are treated identically for the purpose of residence, production, and travel. We 

measure distance by the distance between zone centroids. Thus, we abstract from intrazonal 

distance issues. Households choose where to live and work; firms choose the location of 

operations. Cross commuting occurs because residences and jobs are intermingled over the 

metropolitan area. For simplicity, we assume no trade of composite goods between zones, 

because the trade introduces no real difference to our analysis. 

2.1. Builders and composite good producers 

Builders in zone i construct office buildings using land 
B

iQ  and capital 
B

iX  

according to a constant returns to scale technology ( , )B B

i i i iB B Q X . The output iB  is a 

proxy for the structure services that users of a building enjoy and are measured by the office 

building’s floor area. A builder has a lot in which the maximum FAR allowed is 
B

if , which 

means 
B

i

B

i iB f Q . In other words, imposing a maximum FAR in a zone means that the 

planner intends to lower the zone’s market FAR below this maximum level. Let the unit land 

and capital rents be , X

i ir p , respectively. The Lagrangian of the cost minimization problem 

facing office builders in zone i  is 

   ( , ) B

i i

B X B B B B B B

B i i i i i i i ii i iB B Q X B f QrQ p X       ,  (1) 

where 0B

i   is the marginal cost of iB  when the FAR regulation is not binding, and 

0B

i   is the marginal compliance cost of the FAR regulation in zone i . When 
B

if  is set 

sufficiently high, the FAR regulation is not binding and the problem reverts to the standard 

cost minimization problem. Similarly, the planner may set the minimum FAR 
B

if , which 

requires B

i

B

i ifB Q . 

There is a second type of builder, who is known as a housing builder. Denote the 
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total floor area of housing in zone i by iH . Similar to the office builders, the housing 

builders use land H

iQ  and capital H

iX  to produce housing iH , and the technology obeys 

constant returns to scale. We denote the unit rental price of housing traded in zone i  by H

ip  

and measure housing services by the floor area. 

 Firms produce composite good iX  using building services iB
 

and labor iM . 

( , )X X

i i i i i iX S x B M S x , where ( , )i ix B M  is homogenous of degree one in inputs and X

iS  is a 

multiplier, external to each firm, showing the service quality of nonroad infrastructure in zone

i . We set the service level as ( , , )X X

i i i iS S B H K , where / 0X

i iS B   , / 0X

i iS H    

(congestible) and / 0X

i iS K   ,
 
where iK  is capacity of nonroad infrastructure which is 

under the planner’s control. For simplicity, we assume that both firms and households use the 

same nonroad infrastructure. When land use is mixed, this approximation is not a wholly 

unrealistic assumption. Road congestion is an important class of infrastructure congestion, 

but we deal with road congestion through commuters’ congested travel. Compared with 

smaller buildings, larger buildings are correlated with more output level, so they consume 

more services provided by local infrastructure and produce more network congestion from 

business trips and trade. The maximum FAR regulations, motivated partly by these planning 

concerns, target the proxy variables for their control in practice. 

 The city collects taxes for financing congestible infrastructure. Specifically, the X-

good firm’s profit maximization problem is 

, ,
max (1 )
i i i

B B

i i i i i

X

i i
X B M

p B w Mp X    ,    (2) 

where 
B

i  is the tax rate, and price terms are defined in an obvious way. In this way, we 

assume that one unit of the X-good is converted to one unit of capital input 
B

iX
 
in (1) for 

building construction. 

 At firms optimum we can derive a useful differential equation. 

((1 ) )
X X

X B B X i i
i i i i i i i i i i i

B B

i i

i

i

i

S S
X dp p B d B dp M dw p x dB dK

B K
 

  
    

 
 


  (3) 

In the absence of tax and infrastructure congestion, 0B X

i idS   , so that we have 

X B

i i i i i iX dp B dp M dw  , a familiar general equilibrium equation relating inputs, output, and 
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their prices to one another. 

 

2.2. Households 

By household      , we mean the representative household living in zone   and 

working in zone  . We differentiate types of households by commuting arrangements      . 

For a given residence–work zone pair ( , )i j , the utility maximization problem of household 

      is 

, ,
max ( , , , )
ij ij ij

H

ij ij ij i
z h l

iju z h l S  ,        (4) 

subject to (1 (8) )X H

i ij i ij j

H

i ij ij ijp z p h w t d D     , (8 )ij ij ijT g d l   ,   

where 

     1 H H B B X

ij i i i i i i i i i i i i

i

i i ij ij ijij
ii

r A y P y
N

D t F p H p B rR p K 
 

   
 

       ,  (5) 

land rent         taxes returned          infrastructure costs   net income transfer 

( , , )H H

i i i iS S H B K . 

ijz  denotes the composite good X  consumed by household      , 
H

ip  is the unit rental 

price of housing in the residence zone   , and ijh  is the amount of household      ’s 

consumption of housing measured by floor area. The subscripts of the other variables are 

interpreted in the same way. The tax rate 
H

i  is charged on housing consumption. ijt  are the 

traffic congestion charges collected from households commuting between zone   and  .

(.)H

iS
 
is the service level of local infrastructure as rated by households and is a function of a 

zone’s floor areas (housing and office buildings) as well as the capacity of nonroad 

infrastructure in that zone. Household       commutes ijd  days a month and work eight 

hours a day, while being paid jw  dollars an hour at work zone  . Each household is 

endowed with T  hours a month, which it allocates for commuting ij ijg d , leisure ijl , and 

working 8 ijd . ijg  is the daily commuting time between the two zones      . 

Households own equal shares of the entire land in the metropolitan area, and the land 

rent collected is distributed equally. The metropolitan government collects taxes, uses them 
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for financing infrastructure, and returns what remains to households. it  is the traffic 

congestion toll for cars on zone i ’s roads; iF  is zone i ’s traffic volume. Nonlabor income 

ijD  shows the fiscal arrangement to be analyzed. The planner uses the lump-sum instrument 

ijy  to equalize the MUIs of heterogeneous households in the potential first-best regime. If 

there is a budget deficit, the head tax is collected. ijP , which we explain in the next paragraph, 

is the share of household type ( , )i j  among the fixed total population N . 

 The random utility term 
ij

 is an i.i.d. Gumbel variate with mean zero and 

dispersion parameter  . The probability that a household most prefers zone   and   as its 

home–work zone pair is given by /ex expp ij mni mnjP V V   , where ijV  is the indirect 

utility of household      . We measure the welfare W  of residents by the expected value of 

the maximized utilities of the households in this metropolitan area (McFadden, 1974; Small 

and Rosen, 1981; Anas and Rhee, 2006): 

1) ln ex pma ( xij ij

ij

ij ijW E V V       .   (6) 

Households in our model are heterogeneous because they are differentiated by their 

tastes for the matched pair of home-work zones. The social welfare function is a nonlinear 

sum of individual utilities. Residential sorting by heterogeneous households is widely 

observed in metropolitan areas, and the social welfare function (4) is one way of 

incorporating this heterogeneity. Because households differ inherently in tastes, any policy 

necessarily has distinct differential impacts on each type of household, and the social planner 

weighs the impacts using the welfare function of the heterogeneous households’ differentiated 

evaluations. 

2.3. Market equilibrium conditions 

The left-hand sides of the following market clearing conditions represent demand and the 

right-hand sides show corresponding supply. 

Building markets, Housing: ij ij ij
NP h H     (7) 

Office: input demand of X-good firms = iB   (8) 
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X-goods markets: B H

ij ij i i i ij
NP z X X K X        (9) 

Labor markets: (8 )i ji jij
M NP d      (10) 

Land markets: 
H B

i i i iQ Q R A         (11) 

Further equilibrium conditions are: 

 Three types of zero profits, Housing and office builders and X-good firms (12) 

In (11), we set road capacity iR  equal to the land area allocated to roads while zonal land 

areas are fixed at iA . 

 All eight equalities exist in each zone  ; the unknowns are five prices in each zone, 

, , , , X H B

i i i i ir p p p w , and three outputs, , , i i iH B X , in each zone. We do not list the capital inputs, 

, XH B

i iX , of the housing and office builders as unknowns. Once the outputs , i iB X  are known, 

the capital inputs are given by the input demand in the relevant markets. Because we have the 

same number of equations and unknowns, we should be able to solve for all the unknowns. 

We can express all variables of the system as functions of these eight unknowns and policy 

variables in each zone. 

3. The Potential First-Best Regime 

3.1. Theory: the first-order rate of welfare change 

The planner maximizes welfare ( )W   with respect to Pigouvian charges, infrastructural 

capacities  
#

1
,, , ,

zones
H B

i i i ii it R K 


, and income redistribution         
: 

#

1max ({ , , , } ,{ } ),H B zones

i i i i i iji ijR K yW t      

subject to the market equilibrium conditions and the public budget constraint. 

A familiar approach is to form a Lagrangian with all the important constraints, including the 

market equilibrium conditions, combined by multipliers. However, this does not work 

because of the sheer complexity of the problem. Instead, we differentiate W  with respect to 

a policy variable and later incorporate the equilibrium conditions. 

 Because the equation system (7)–(12) is composed of eight types of unknowns 
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specified above, we can write the first-order derivative with respect to a fiscal instrument

    
#

1
, , ,

zones
H B

k k k ij ijk
t y  


  as follows: 

1,2 1,2

1,2 1,2 1,2

(.)

.

X H B
ij ij j ij ijn n n

ij ij ij ijX H B
ij n ij ij n ij nn j n n

ij ij ij ijn n n
ij ij ij ij

ij n ij n ij n ijn n n

V V dw V Vdp dp dpdW
P P P P

d p w p p

V V

d d

V Vdr dH dB
P P P P

r H d

d d

d B d

    

   

 

  

   
   

   

   
   

   

      

      

   (13) 

We can derive, say, 
X

ij iV p   (a derivative of indirect utility in the price of the X-good 

produced and sold in zone i ) in the first term by applying the envelope theorem to the utility 

maximization problem.
5
. The result is 

X M

ij i ij ijV p c z    . This term contains household 

( , )i j ’s MUI, 
M

ijc . n  runs from 1 to 2, which means there are two zones in the city. This is 

arbitrary, and the formula holds for the city with an arbitrary finite number of zones. 

 On the other hand, (13) has price and quantity derivatives such as 
X

idp d , jdw d , 

ndH d . The differential equation (3) links these terms. Using the market equilibrium 

conditions (7)–(12), we can simplify (13) to the following intuitive form (Appendix 1): 

       (a)              (b) 

MEC from more , ( ) MEC from more , ( )i iB H

X H X H
X Xi i i i i i
i i i i i iM

i ii

B B H H

i

i

i

i i

i i i ip p
d

S S dB S S dHN dW
p x N p x N

c d B B H dH
   

  

    
      

         
      

   
   

   

 
1,2

iji
ii ijii i j

i

w F g
d

dPdF
t Ny

d 

 
   

 
    + Cov.      (14) 

         (c)                (d)      (e) 

The welfare change is composed of five elements: (a) the Pigouvian term for marginal 

congestion costs of office services, (b) the Pigouvian term for marginal congestion costs of 

housing services, (c) the Pigouvian term for marginal road congestion, (d) the distortion term 

of spatial allocation, and (e) the covariance term due to heterogeneity of households. This is 

                                           

5 The standard approach is to apply Roy’s identity, which is rather inconvenient in our general equilibrium 

setup. 
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the basic formula whose components we discuss below. 

Symbols in (14) are defined as follows: M M

ij ijij
c P c  is the average MUI, iN  is 

the number of zone i ’s residents,  ,ii ig Fg R  is the travel cost in zone i, 

 H M

ij iij iju S c   , and  ii ijj ijNP N   (zone i  households’ average marginal 

utility of nonroad infrastructure service H

iS  in monetary terms). The traffic in zone  , iF , is 

iF   within-zone trips + passing-through trips + incoming trips + outgoing trips 

,

( )
n m i

ii nm mn n

n

i in

i n i

F F F F F , 

where ijF  is the traffic volume from zone   to zone  . Cov is defined as follows: 

Cov  
Expected value of ij

M M

ij ij ij ij ijij
ij

A

M
P c c A A

N

c
P

 
 

 
 
 
 

   ,   (15) 

where 

(1)

,

( )( )8
X H

j iji i
ij ij ij ij

H H

i i i i
ij

i

H

ij ij

ij

ij ij k

i

dw dgdp dp
A z d d

d d d d

S dH S dB
d

h w

H d B d



  

   

 

   

 















  (16) 

with 1ij

k 
 
when the origin–destination zone pair       contains zone k , and zero 

otherwise. When the policy instrument is ijy ,  ij

ks  is added to (14), where 0 ks

ij  for 

   , ,i j k s , and zero otherwise. ijA  is the change in consumer surplus due to the effects of 

changes in prices and externalities on household type       induced by fiscal instrument  . 

The first term in (14) shows the consumer surplus change in zone i ’s X-good market 

triggered by the price change in the X-good price, 
X

ip . ijw  is household      ’s value of 

time. Because ijA  distributes with population probabilities  ijP , and the two multiplied 

terms in (15) are weighted by these probabilities, Cov is the covariance of individual MUIs 

M

ijc  and the rate of consumer surplus change ijA  that a policy change d  engenders. 
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When the policy instruments are infrastructure capacities, new terms are added to 

(14):   

X

k

H
X k k
k k k k

k k

S S
p x N r

R R


 
 

 
 for road capacity kR     (17) 

X H
X Xk k
k k k k k

k k

S S
p x N p

K K


 
 

 
 for nonroad capacity kK  .  (18) 

Infrastructure capacity is expanded until the marginal expansion costs (last term in (18)) are 

equal to the reduced marginal congestion cost (first two terms in (18)). The same applies to 

road infrastructure in (17). 

 

3.2. Discussion 

3.2.1. Heterogeneity and the covariance term 

Although some other studies using a spatial model present similar covariance terms 

(e.g., Hirte and Tscharaktschiew, 2013; Rhee et al., 2014), thus far, its consequences have not 

been fully explored. We can understand the role of heterogeneity using a simplified model. 

Suppose that there is only one good x  whose unit price is p . This p  is endogenous in our 

system, which is again a function of a policy variable  . Thus, expressing the indirect 

utilities as  ( )iv p   ( i  is the type of households), we can write the welfare function as 

  1 2( ) , ( ), , ( )nvW v p v   , while omitting all the other variables for the sake of intuition 

(refer to the Appendix for the more detailed derivation). Then,  

   
  

  
     

  

   

   

  

  

  
       

     
  

   

   

  
  

   
    

  

  
  

   
  

        

  

 

            (19) 

where M

i idW dv c  is called the social MUI of household type 1, ,i n  and    is the 

amount of good x consumed by type   household. The last equality follows from Roy’ 

identity. It reveals the link between the welfare change and the change in consumer surplus 
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measured by the area below the inverse demand function.  

If only the despot’s utility matters, the covariance term does not arise from (19) 

simply because there is no such thing as variation in the MUIs. Next, suppose that we 

measure the social welfare by the area below the market demand curve. This means that we 

measure welfare (both individual and social) by monetary units with a uniform social MUI 

1M

i idW d c c    . Then, (19) becomes  

    
  

   
  

        

 

         

 

  

This expression does not have the covariance term
6
.  

 Divide both sides of (19) by   and take its limit. Then, expand and rearrange the 

terms.  

( )M M M

i i i

i ii i

dW dW dp dW dp
c x c c x

d dv d dv df f f
,  (20) 

(a)                  (b) 

where Mc is the expected value of M M

i i ii
c Pc . When the function W  is given by (6), 

we obtain i idW d P  , the proportion of type   households. Then, (a) in (20) represents 

the terms (a)+(b)+(c) in (14).  

It remains to explain how the covariance formula in (14) might be derived from (b) 

in (20). Since i idW d P  , a simple algebra shows that the last term of (20) is nothing but 

the covariance.  

( ) ( ) ( )

( ) .

M M M M M M

i i i i i i i

i i ii

M M

i i i

i

dW dp dp
c c x P c c x P c c

dv d d

dp
P c c x

d

x
f f

x
f

, 

The first equality holds for all real numbers  , because       
            

 
  

                                           

6 Arnott and Krauss (1998) analyze the marginal cost pricing in the presence of heterogeneous facility users, but 

there does not arise the covariance term. In fact, they measure the welfare by the area under the demand curve. 
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                   . Finally, set                                  to 

have the covariance formula in (15).  

On the basis of the discussion, we can state the following proposition: 

Proposition 1: The covariance term could arise if both of the following two conditions are 

met. 

 Condition (a) The welfare function contains an array of indirect utilities 

of heterogeneous households. 

 Condition (b) The social marginal utilities of income (social MUIs) differ between 

households. 

Remark We should be careful about the precise meaning of this proposition. Let     be the 

income of household      . From (6),            , so that household      ’s social MUI 

is                            
 . When the social MUIs differ (i.e., there are some pairs 

            such that       
        

 ),    
     is not guaranteed, so        

        

and the covariance term does not necessarily vanish. This is why we added a qualifier “could” 

in the first line of the proposition. At the same time, however, social MUIs all equal does not 

necessarily imply zero covariance (i.e., Cov=0) as well, because       
        

  for 

different             pairs does not necessarily imply    
     

 , in which case    
     

  

   with Cov=0. ■ 

 

3.2.2. Heterogeneity and the breakdown of the conventional first-best instruments  

First, we show that household heterogeneity itself is a source of market failure even 

in the absence of infrastructure congestion. Subsequently, we introduce congestion and 

further show that the set of first-best instruments known in the literature fails to make the 

whole terms in (14)-(16) vanish. Now, suppose that the infrastructure is free of congestion, 

and income redistribution ijy  is not yet a policy variable. No congestion means a constant 

service quality of infrastructure, 
X X H H

i i i i i i i iS B S H S B S H           0 , 0ig  at 

each zone  . Then, (14) reduces to 

B B H H

i
i i i

i

i

i

i

iM
i

ip p
d d d

dB dH dFN dW
t

c d
 

   
     + Cov.   (21) 
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If there were no covariance term, an efficient solution is achieved at 0B H

i i it     for all 

i  in (21) (recall that infrastructure is financed by head tax). However, since there is a 

covariance term in (21), 0B H

i i it     for all   does not necessarily imply 0dW d  . 

This demonstrates that the heterogeneity itself is a source of market failure. Markets do not 

deal with household heterogeneity in an efficient way even in the absence of any other market 

failures. 

Therefore, the presence of heterogeneous households requires an intervention to 

make the last term of (21) vanish. This is even true in the absence of other market failures. 

The standard fix of this problem is to use income redistribution     to equalize MUIs (De 

Palma and Lindsey, 2004; Anas, 2012).  

To see why this may not work in our spatial model, let us consider the case without 

any externalities and introduce transfers     to equalize MUIs, the standard intervention to 

efficiently deal with heterogeneity. Head tax revenue is 
ij ijij

N P y dollars. In this case, it 

turns out that we should rewrite (21) as  

Cov
ij

ijM ij

dPN dW
Ny

c d d 
        (22) 

Note that (22) contains  ij ijij
N y dP d  , a new term which does not exist in (21). In 

other words, introducing transfers to equalize MUIs is not a device to ensure efficiency 

because it forces households to relocate, thereby altering the type composition of households. 

Now, let us introduce infrastructure congestion with Pigouvian pricing and equalize 

MUIs through transfers. The first-order rate of welfare change is given by (14), where the 

second last term, (d), continues to survive under the conventional rule (i.e., marginal cost 

pricing coupled with redistribution): 

ij

ijM ij

dPN dW
Ny

c d d 
  .       (23) 

This raises the question of why the conventional intervention works in De Palma and 

Lindsey (2004) but fails to work in our model. De Palma and Lindsey (2004) restore market 

efficiency by using congestion tolls and income redistribution in the transportation market 
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where travelers “differ with respect to wages, values of travel time, and the congestion 

characteristics of their vehicles.” Despite these differences in heterogeneity, in their setting, 

redistribution did not alter the composition of heterogeneous travelers, that is, 0ijdP  in 

our terms. In contrast, the policy intervention in our setting perturbs the commuting 

arrangements (location pattern), so the type composition of households ijP  is altered 

implying that 0ijdP  for all ( , )i j  pairs. Therefore, Pigouvian congestion pricing and 

income redistribution only make (a), (b), (c), and (e) in (14) vanish, while leaving the spatial 

re-sorting term (d) intact. The result is (23). Note here that although 0ijij
dP d  , 

  0ij ijij
Ny dP d   does not necessarily follow.  

Proposition 2 (Efficiency, heterogeneity and spatial re-sorting) 

1) As a result of household heterogeneity, the free market equilibrium fails to 

achieve maximum welfare even in the absence of market failures. 

2) As a result of spatial re-sorting, the conventional rule (i.e., Pigouvian tolls 

plus redistribution to equalize MUIs) alters the type composition of 

households and is not guaranteed to be first-best. Consequently, any policy 

mix is a candidate for the first-best, and only numerical simulations or 

empirical testing can tell which policy mix is welfare maximizing. 

We can interpret our result in a more general way. In any model where households 

are heterogeneous but can choose which type of household they belong to, the same problem 

may arise. There are many examples of this sort: mode, route, vehicle, and housing type 

choices, as well as marriage, parenting, and education. Hence, our finding should have 

consequences for many other issues as well. 

 

3.2.3. Other consequences of the heterogeneity in spatial models: Pigouvian tolls  

Would the presence of heterogeneity increase or decrease, say, Pigouvian tolls? It is 

clear from the welfare change formulas that the planner has to adjust the tolls so as to 

increase the covariance term as far as possible. Using transportation jargon, this clearly 

implies that Pigouvian tolls are likely to be suboptimal in the presence of “user” 
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heterogeneity. We illustrate this point using a simple example.  

For the sake of exposition, suppose that the city has two zones, where zone 1 is the 

monocentric center with mixed land use and zone 2 has residences only. Further, assume that 

 /ij i ijij jA d dg dw   in (16), 2t   (congestion charge at zone 2) and that there is a 

fixed number of commute trips in zone 1 so that the traffic at the CBD is, say,   (= 

population of the city). As                   , the welfare change associated with the 

covariance due to the change in 2t  is  

Cov 2t       2 2

M M M M

ij ij ij ij ij ij ij

ij ij

tP c c A EA c tP c A       

  2
21 21 21

2

( )

21 2

M M dg
P c c d

dt
w t



   . 

Workers are paid the same wage in zone 1. However, zone 2 residents pay higher 

travel costs which lower their value of time and, thus, reduces their labor supply; we expect 

that zone 2 residents’ net income is lower, thus, 21 0 M Mc c . Therefore, a positive toll 

2 0t   adds more welfare, and the household heterogeneity requires the planner to set the 

edge zone tolls above the Pigouvian toll. This will result in a more centralized city. However, 

it is not clear at all in what specific way the heterogeneity affects the policy prescription in 

the full model, although one finds a statement that heterogeneity tends to have a moderating 

effect on congestion (De Palma and Lindsey 2004: 135). 

3.2.4. Other consequences of the heterogeneity in spatial models: self-financing  

Spatial re-sorting 0ijdP   also makes the self-financing rule break down in our 

setting since Pigouvian pricing as well as standard capacity expansion is not optimal. Assume  

(i) service qualities, B

i,  , 1H

i iS S g , are further assumed to stay constant with regard to 

proportionate changes in capacities and patronage,
7
 (ii) congestion is fully priced, (iii) 

income is suitably redistributed so as to make the MUIs all equal across heterogeneous 

households, and (iv) infrastructure (roads and nonroads) is expanded until the marginal 

                                           
7
 When simultaneously doubling and tripling the road lanes and the number of cars on roads does not change 

the travel speed, this condition is met, as is true in the congestion function a la the Bureau of Public Roads.  
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expansion costs are equal to the reduced marginal congestion cost (Yang and Meng 2002; see 

(17)-(18) above). In this case self-financing holds, but efficiency is not achieved.  

 

Proposition 3 (Self-financing) 

By following the conventional rule of pricing externalities, sizing 

infrastructure and transferring incomes to equalize MUIs, the infrastructure 

budget is balanced (i.e., self-financed). However, this arrangement is no 

longer efficient on account of spatial re-sorting. 

 

Later, we see that the arrangement following the conventional rule could be even 

disastrous. 

 

3.2.5. Elasticity rule for Pigouvian nonroad tolls 

Approximating the covariance term by zero, we can derive an elasticity rule for 

optimal nonroad tolls. Suppose that cross effects 0B H

i i i iS H S B      . Then, we can 

write from (21) 

( )

X
X i
i i

B B

i

i

i

S
p

B
p x



 
 
 

 , 

( )

H H

i i i

H

i
i

i

S
N

H
p 



 
 
 

 ,     

which implies 

Zonal output value
per floor area

Zonal infra benefit
per floor area

/

/

/

/

B B X

i i i

H H H H H

i i i i i i i

X

i i

X X X X X

i i i i i i i i i i

H

i i

H

i

iii i

i

B S

p S x B S B Sp x p B

H SN N Hp S H S

S H

 

   









    ,   (24) 

where 
X X

i i i ip S x B is the value of zonal output per office floor area and 
H

i i i iN S H  is the 

zonal nonroad infrastructure benefits per housing floor area that iN  households of zone   

experience as a whole. (24) has the following implications
8
: 

                                           

8 The covariance term as well as the spatial re-location term imply that Pigouvian tolls are not first-best, while 
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Summary 1 (Elasticity rule) Assume zero covariance and zero cross effects. 

1) Property taxes are proportional to the elasticities of the service 

qualities in floor areas. This proportionality is weighted by the value of 

affected economic welfare, which are output values in the case of 

offices and residential service utilities in the case of housing.   

2) There is no a priori reason to believe that business properties should be 

taxed more or less than housing. 

4. Analysis of the Second-Best Regimes 

4.1. Theory 

In light of the first-order welfare change (14), we may refer to the congestion tolls 

on building structures (i.e., (a) and (b) in (14)) as differentiated property taxes levied on 

congestible local public services. That is, we can regard property taxes as a type of 

congestion charge. In the real world, property taxes are not necessarily sufficiently 

differentiated among property types and localities. To take an extreme example, let 

H B

i i   
 

(constant) for all zones i  and all property types. Even in this case, however, we 

expect the welfare performance of this tax scheme not to be poor. The reason is that although 

the tax rate   is fixed, the tax bill per unit of floor area, , H B

i ip p  , is higher in the central 

business district (CBD) than in suburbs. So, the congestion charge continues to be higher in 

the CBD than in the suburbs
9
.  

Concerning zoning, imagine that there is a city called Zoning City, where the only 

instruments available are zoning instruments 
#

1, , ,{ , }H B H zones

k k

B

k k k ks f f f f  , which are residential 

land shares ks  in nonroad land, maximum FARs ,  H B

k kf f , and minimum FARs ,  H B

k kf f  in 

each zone k . Superscripts , H B  denote housing and office (business) buildings, 

respectively. In the Zoning City, the LURs are fully differentiated over different zones and 

                                                                                                                                   

in some studies where spatial heterogeneity is present Pigouvian terms are said to be first-best (Anas and Xu, 

1999; Anas and Rhee, 2006, 2007). Anas (2012) also states that transfers to equalize MUI are usually not con-

sistent with Pigouvian tolling and that the Henry-George Theorem does not hold in this case. Our study reveals 

that the reason for this outcome is the spatial misallocation resulting from equalization transfers. 

9 We refer readers interested in spatial analysis of the second-best optimal property tax system to other literature 

(e.g., Kono and Pines, 2013). 
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property types, and infrastructure is financed by head tax. After modifying the utility 

maximization problem and market equilibrium conditions in accordance with the Zoning 

City’s setup, the planner maximizes welfare W  with respect to the zoning instruments:   

  
#

1
, , ,max , H B

zones

k

H B

k k k kkf f fW fs


      (25) 

subject to (a) market equilibrium conditions, 

(b) fixed infrastructural capacities. 

 The rates of welfare change with respect to the regulatory instruments are as follows: 

MEC by an extra MEC by an extra i iH B

X H X H
X Xi i i i i i
i i i i i iM

i ik i i k i i k

i i

S S dH S S dBN dW
p x N p x N

c ds H H ds B B ds
 

      
      

      
    

 
     Size of 
distorted MEC in traffic rents

CovH B LSi
k k k k

i

i k

i

i

i

dF
r r A

g
w F

dF s

 
     

 




 , (26) 

X H X H
X Xi i i i i i
i i i i i iM B B Bi i

i ik i i k i i k

S S dH S S dBN dW
p x N p x N

c df H H df B B df
 

      
      

      
    

 
Marginal compliance cost

CovB B Max B B M FARBi
k

ini
i i k k k k

i

B
i k

dF

d

g
Q Q

f
w F

F
   

  
    

 
 ,  (27) 

(.)
i

X H X H
X Xi i i i i i
i i i i i iM H H H

i ik i i

i

i k i k

S S dH S S dBN dW
p x N p x N

c df H H df B B df
 

      
      

      
    

 
Marginal compliance cost

CovH H Max H H Min

i i

FARH

i
i

kk k

k

k kH
i

dF
w F g Q Q

df
   

 
     
 

 . (28) 

H

kf  could be either the maximum FAR 
H

kf  or the minimum FAR H

kf  for housing, 

whichever is applicable. When the maximum FAR regulation is binding, 1, 0Max Min    

in the second lines of (27)–(28); when the minimum FAR regulation is binding, 

0, 1Max Min   . The first three terms in each formula of (26)–(28) are the first three terms 

in (14) with the Pigouvian taxes set to zero. , H B

k kr r  are unit rents of residential and business 
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land in zone k, respectively. The terms before the covariance terms are new terms appearing 

in the Zoning City. They show the regulatory costs arising from distorted real estate markets. 

Marginal compliance costs, , k k  , are the Lagrangian multipliers associated with the 

maximum and minimum FAR regulations, respectively, that appear in (1). We, further, see 

that the zoning instruments interact with each other via its effects on services (structures) and 

congestion.  

We can discuss the regulatory terms in (26)–(28) a little more. Suppose that starting 

at a situation with a positive regulative allocation of land to residential use, 1 0s  , more 

land is allocated to residential use in zone 1 (that is, higher 1s  with 1 0s  ). Then, the 

residential land rent there will fall c.p. and the business land rent will rise with 1 1 0H Br r  . In 

this case, 11 1( ( ) ( )) 0H B sr r      , so this land share adjustment is accompanied by the 

welfare loss from zone 1’s land market. When, starting at 1 0s  the residential share in zone 

1 is adjusted downward instead, we continue to have 11 1( ( ) ( )) 0H B sr r      . Similarly, the 

last terms in (27)–(28) are easily shown to be always negative for a small adjustment of the 

LURs. The intuition is that every binding regulation causes compliance costs because it 

forces the producers to adjust their operation in a direction they do not want. 

Summary 2 (Analytical structure) 

1) Pricing and quantity instruments work on the same variables to reduce 

congestion: volume of structures and traffic.  

2) However, the LURs have additional terms associated with the 

distortionary cost of real estate markets (structures and land). 

4.2. Discussion 

4.2.1. Implications for applied models 

Before proceeding, we note that (14) and (26)–(28) were derived by adding 

individual market effects over different markets using the differential equation (3). Finally, 

all the market effects cancel out, and only those representing market imperfections show up. 

In this sense, the first-order welfare changes as formulated in (14) and (26)–(28) are an 

envelope result of the general equilibrium land-use-transportation model à la Anas and Kim 
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(1996). Because the result is of the envelope type, we do not need all the market information 

to calculate the welfare impact of a policy; we need only the impacts on market imperfections, 

already present or newly introduced. 

Summary 3 (Envelope result)  

Calculating the general equilibrium welfare change requires only 

information of market imperfections, existing or newly introduced. 

The envelope result has one important implication on the applied research using the 

land-use and transportation models. One common platform used in this class of models is the 

spatial input–output framework, in which a regional economy is composed of a closely knit 

network with interregional and interindustry linkages.0F

10
 One problem with this ambitious 

modeling effort is the huge and demanding data set required to run the models, which is 

mostly unavailable. Now, note that the first-order derivatives (14), (26)–(28) have no terms, 

at least ostensibly, related with interregional and interindustry technical linkages. 

Reformulating the original production function ( , )X

i i i iX S x B M  so as to consider these 

linkages, we continue to have the identical derivatives (14) and (26)–(28) due to the zero 

profits. Therefore, there is some room to compromise the burdensome data requirement with 

the theoretical rigor of the applied models. 

Therefore, we could measure the net welfare gain or loss differently from Echenique 

et al. (2012) and Jun (2012). For example, Jun (2012) evaluates the welfare impact of the 

restricted provision of land for factories in the capitol region of Korea. To calculate the 

production loss, he required regional input–output data. The formulas in (26)–(28) state 

instead that it is enough to measure the distortionary cost of the real estate markets affected. 

In the case of land supply restriction, Jun (2012) already has zonal areas kA  (second last 

term in (26)). Because the only imperfection in his model is traffic congestion, which can be 

calculated easily in our approach, the only challenging task is to measure the multiplicative 

term ( )H B

k kr r  in (26). 

                                           
10

 There is voluminous literature on the benefits and costs of smart growth and compact development in the 

planning field (Ewing and Cervero, 2010; OECD, 2012). However, Echenique et al. (2014) and Jun (2012) are 

the only studies that, to the authors’ knowledge, analyze together the economic costs and benefits of LURs with-

in one modeling framework of regional economies. 
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4.2.2. Implications in the monocentric city: links to the literature 

The existing literature on the FAR regulations is predominantly monocentric with no 

business land use. To link our discussion to the literature and to gain more insight, imagine a 

city composed of two zones, where zone 1 (CBD) accommodates both office buildings and 

housing and zone 2 is completely residential
11

. Furthermore, suppose that the number of 

workdays ijd  is fixed at d  to be tractable and to fit standard monocentric approaches. 

Because of the fixed number of working days, zone 1’s traffic volume is fixed at 1F N  at 

each working day. This is equivalent to the standard monocentric model’s setup, in which 

traffic volume is usually fixed at N  at the CBD point. 

Assume that LURs 1 1 1 2( ; , ; )B H Hs f f f  are the only policies available and that the 

covariance terms are negligible. Now, imagine that the city planner slightly adjusts land 

shares and FARs prevailing in the free markets with the aim of improving welfare. Since 1F  

is fixed, 1 d 0/dF   ,  1 1 21 , ,, B H Hs f f f   and the associated welfare changes are shown as 

W nonroad ext. 1s +  2
1 1 1

1

(

2

)

1 2 1 1

0

H Bw
dF

r r A
d

g s s
s

F




 
    


 


,   (27) 

W nonroad ext. 1

Hf +  2
1 2 2 1 1 1 1 1 1

(
0

1

)

H H H Max H H Min H

H
w F g f Q

dF

d
Q f

f
   




 
  

   


, (28) 

W nonroad ext. 2

Hf  +  2
1 2 2 2 2 2 2 2 2

(
0

2

)

H H H Max H H Min H

H
w F g f Q

dF

d
Q f

f
   




 
  

   


, (29) 

W nonroad ext. 1

Bf  +  1 2 2 1 1 1 1 1 1

0

2

1

B B B Max B B Min B

B
w F g f Q

dF
f

f
Q

d
   



   
 
  
 

. (30) 

1s  is the discrete change in zone 1’s residential land share. The other notations are 

interpreted in the same way. (27)–(30) reveals the interplay between different types of 

congestion and different zoning policies. We can use these equations to reproduce different 

                                           
11

 This setup is more general than most existing models, in which the CBD is described as a point, meaning that 

the whole metropolitan land is used exclusively for residences. 
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results from the literature by adjusting assumptions. 

 For instance, in case of traffic congestion only, the first terms in (27)–(30) vanish. 

Because the last terms are all negative in (27)–(30), the only way the LURs can improve 

welfare is to make the second terms in (27)–(30) positive. This immediately implies 1 0Hf   

from (28) (a minimum FAR regulation in the center) and 2 0Hf   from (29) (a maximum 

FAR regulation at suburbs). Our assumptions concerning 2F  are 2 1/ 0HF f    and 

2 2/ 0HF f   , i.e. higher buildings in the CBD and lower buildings in suburbs pushes people 

into the CBD, thus, lowering traffic in suburbs. This reproduces the prescription to 

metropolitan-wide road congestion in the monocentric literature (e.g., Pines and Kono, 2012; 

Kono et al, 2012). Our theory shows that this outcome is valid only when the increase in 

density in the CBD does not cause the service quality of nonroads at the city center to 

deteriorate (see the first terms in (26)–(28) and (27)–(30)). When such adjustment congests 

the CBD too much, it could be even better to decentralize activities from the CBD to other 

zones, as in Anas and Rhee’s (2007) case of growth boundaries. 

If there is no road congestion, the second terms vanish in (27)–(30). Lowering 

density by maximum FAR is then the prescription where maximum FAR is tighter in the 

CBD (see Kono et al. (2010) for “population” externalities). In this way, our model allows 

evaluating zoning in the presence of two types of congestion. Optimal zoning policy then 

depends on the relative strength of congestion types as well as on the instrument mix 

available, as we show next. 

4.2.3. Optimal adjustment of land uses  

Convert the first-order derivative, say, (26) into a new formula composed of 

elasticities and shares of external costs as follows: 

Total transp.
cost 

Agg. land
reof zone nt of zone 

,       i k i k ki kki i i g s

i

H B

i H s i B s k A s

i i ik

k

dW
EC w F gEC ALR

ds
 (31) 

where  / /H X X H

i i i i i i i i iiEC p x S H N S H H      is the external cost present in zone i’s 

nonroad infrastructure due to the marginal adjustment in housing stock iH ; B

iEC  is the 

external cost present in zone i’s nonroad infrastructure due to the marginal office stock 
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change iB ; and [ (1 )]H B

k k k k k kALR r s r s A   is the aggregate land rent of zone k, while    , 

   ,    ,     are the elasticities of housing stock, office stock, congestion and aggregate 

land rents w.r.t. the share of land usable for housing    (land-use type regulation) The 

coefficient terms before the elasticities in (31) play the role of relative weights when the 

elasticities are added over all markets and externalities.  

The FAR regulations have the similar expression. Denote by    
 ,    

 ,    
 ,    

  the 

elasticities of the housing stock, office stock, congestion and the office floor area with respect 

to to the FAR regulation in zone   on housing, respectively. Then, we have 

Total transp. Total compliance cost of
cost in zone zone 's 

Floor ar

housing builde

e

s

a

r

(.)
       H H H H H H

i k i k i k k k i k

H B

i i

i i

H H H H H

i i i

H H

k kH H f B f g f f Q
k

k

f

i

i

kEC EC w F g
d

f
f

W

d
Q .  (32) 

We can derive a similar formula for the FAR regulation of office buildings, 
B

kf .  

Summary 4 (Optimal adjustment of LURs)  

The planner should adjust the LURs, , ,H B

k k kf f s , so as to make (31)–(32) 

positive, while assigning more weight to the terms with higher cost shares 

and higher elasticities. 

In summary, Pigouvian tolls as well as property taxes mimicking Pigouvian tolls are 

only second best because they cannot consider differences in MUIs, and because property 

taxes fail to account fully for traffic congestion. In addition, land-use regulations entail 

compliance costs and, thus, cannot be first best even if they were to account for household 

heterogeneity. Considering the sheer complexity of the model, we cannot decide of whether 

zoning is as efficient as Pigouvian tolls. To explore this issue, we now turn to numerical 

exercises. 

5. Numerical Examination 

5.1. Calibration 

We examine a hypothetical metropolitan area, linear in shape, which accommodates a 

population of 1.2 million in a fully circular nonmonocentric metropolitan area. The 
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population density is 14 persons/hectare. The population is smaller than mid-sized American 

metropolitan areas and density is set accordingly. We use a Cobb–Douglas function for the X-

good producers, 1X

i i i iX S M B  . Housing builders produce housing according to the CES-

technology 

     
1/

1
H

H HH

Hk kk H

HQ XH


 

    
  

.      

Office buildings kB  are produced similarly to housing. We use the utility function 

1/

( l nln 1 ) n l
U

U U

ij

H

ij U ij U ij iu z h l S


          .    

With no harm to the major point of the study, we set the number of workdays ijd  at 20.8 

days a month. 

 

Table 1 Reference parameters 

--------------------------------------------------------------------------------------------------------- 

Geography and Population 

Zone 1 & 5: 7 km, Zone 2 & 4: 5 km, Zone 3: 4 km 

N  1.2 million persons (2 dependents/household) 

Population density: 14.0 persons/hectare on average (endogenous in each zone) 

Production 

X-good producers: 0.8   (labor cost share), 

1 0.2   (land cost share) 

Builders of housing and office buildings: Land cost share = 30% 

 H B   -0.923 (elasticity of factor substitution = 0.52) 

H  0.875, B 0.915 

Household-workers  

Household income = $50,000/year 

Housing expenditure = 30% of the household income 

Utility function:  0.4,   0.6, U  -0.786, U  0.475  

Time endowment T = 500 hours/month 

Number of workdays: 20.8d   days/month 

 6 (dispersion parameter) 

-------------------------------------------------------------------------------------------------------- 

 

 

We adjust the cost shares and elasticities of substitution according to empirical stud-

ies and consumer expenditure surveys (Koenker, 1972; Shoven and Whalley, 1977; Polinsky 

and Ellwood, 1979; McDonald, 1981; Thorsnes, 1997). We specify the service qualities of 
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infrastructure as  
XX

i X i i iS a K B H


    and  
HH

i H i i iS a K B H


    . In line with Yeoh 

and Stansel (2013), we choose  0,0.11X  . More problematic is to set the coefficients of 

the function H

iS . We resolve the difficulties in setting the coefficients , , , X HX Ha a   in 

such a way that the uniform property tax rate of 0.95%, as applied to the stock value of prop-

erties, covers the cost of infrastructure (roads and nonroads together). We use a discount rate 

of 5% to convert tax rates into flow rates. We use the Bureau of Public Roads function for the 

congested travel time,  ,i ig F R . Table 1 displays the parameters used for the simulations. 

 

Table 2. Technical details of the simulations 

(a) Section 5.2 

City type Road budget Nonroad budget Road tolls Prop. tax rates 

Base City Roads and nonroads all financed by head tax  No tolls No prop. tax 

Tolled City 

Road tolls exactly 

cover road budget in 

each zone. 

Prop. taxes exactly 

cover nonroad budg-

et in each zone. 

Endogenous
1
 

First-best 

City 

Road and nonroad tolls charged in the same 

way as the Tolled City. 

Endogenous (income  

redistribution used too) 

PT City 
Prop. tax rev. = sum of metro-wide  

road and nonroad budgets 
No road tolls Endogenous 

Zoning City, 

LS only 
Financed with head tax Neither road tolls nor prop. taxes 

Note: Capacities of nonroads in the Tolled City are determined by (17)-(18). Capacities of road and 

nonroads of the other cities follow those of the Tolled City. 

 

(b) Section 5.3 

City type Road budget Nonroad budget Road tolls Prop. tax rates 

Base City Roads and nonroads all financed by head tax No tolls No prop. tax 

Tolled City 
Not necessarily  

balanced
1
 

Prop. taxes exactly 

cover nonroad budg-

et in each zone. 

Policy 

variable 
Endogenous

2
 

PT City 
Financed with head and prop. taxes; prop. 

taxes ≠ sum of road and nonroad budgets. 
No road tolls 

Policy 

Variable 

Zoning City, 

LS only 
Financed with head tax Neither road tolls nor prop. taxes 

1
 Any budget deficit or surplus of the city is equally shared among the residents in the form of head 

tax (deficit) or government transfer (surplus). 
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2
 Although nonroad capacities are fixed here, land rents and the prices of capital inputs are not fixed in 

our general equilibrium model. So, property tax rates are “endogenous” to cover variable input costs. 

 

 

 

5.2. Efficiencies when optimal policies are known  

5.2.1. Basic Simulations 

We perform simulations to compare the efficiencies of LURs, congestion charges, 

and uniform property taxes which are often used in reality. We define five types of city: 

Zoning City, PT (property tax) City, Tolled City, Base City and First-best City.  

The Tolled City sets Pigouvian congestion charges for roads and nonroads while 

balancing the road and nonroad budgets in each zone separately and adjusting capacities, too 

((17)-(18) hold). In this city, all the terms except for the last two terms in (14) are set equal to 

zero. In the model with no user heterogeneity, this scheme is not only self-sufficient but also 

first best. All other types of cities use the same level of road and nonroad capacities as the 

Tolled City in order to avoid experimental noise that might be introduced by differing 

infrastructural capacities.  

In the PT City, traffic congestion is not priced and a single uniform property tax rate 

is applied to both residential and business properties irrespective of the location of a structure. 

This rate is set so as to precisely cover the combined expenditure for roads and nonroads in 

the metropolitan area. In the Zoning City, the planner knows the optimal mix of LURs and 

adjusts residential land shares is  and FARs , H B

i if f  in each zone to maximize welfare (6). 

The expenditure for roads and nonroads is financed with a head tax. In the First-best City, 

congestion externalities are fully priced as in the Tolled City. In addition, the last two terms 

are set to zero as well by income redistribution ijy , meaning that the sum of all the terms in 

(14) vanishes in the First-best City. The Base City is the laissez-faire city where none of the 

policies is available and infrastructure is financed by head taxes. Table 2(a) summarizes the 

major features of the cities. 
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Table 3. Land use patterns of the Base and Zoning Cities under reference population 

(a) Land use 

Zone 3 (CBD) 4 5 

Share of 

business 

land 

Base City 0.15 0.32 0.49 

Zoning City 0.14 0.30 0.46 

Tolled City 0.15 0.32 0.49 

Share of 

residential 

Land 

Base City 0.39 0.54 0.50 

Zoning City 0.40 0.56 0.53 

Tolled City 0.39 0.54 0.51 

Note: In the Base City, roads’ land share at the CBD = 1− (business land 0.15 + residential land 0.39) 

= 0.46 (=46%). The land for roads in zone 1 and 5 is of pretty small size less than 1% of the total 

zonal land area. 

 

(b) Floor area ratios 

Zone 3 (CBD) 4 5 

Business 

buildings 

Base City 0.69 0.49 0.17 

Zoning City 0.70 0.47 0.15 

Tolled City 0.69 0.48 0.17 

Residential 

buildings 

Base City 0.66 0.45 0.15 

Zoning City 0.68 0.43 0.13 

Tolled City 0.66 0.44 0.14 

Note: The entries for the Zoning City are optimal LURs, strictly binding to every builder and 

landowner. The FAR numbers here are just indexes and the absolute size carries no meaning.  

 

Figure 1 Welfare performance

(a) Welfare gain

Millions

$/year/household

(b) Welfare loss of imprecise LURs
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Table 3 shows that the Zoning City only minimally adjusts land uses and floor area 

ratios compared to the Base City. Figure 1(a) shows the welfare gains that various types of 

city attain over and above the Base City’s welfare. Zoning and property taxes are shown to 

move from being more efficient than to being as efficient as and, eventually, to being less 

efficient than Pigouvian pricing (i.e., the Tolled City) as metropolitan population increases. 

This means two things. First, zoning is almost as efficient as Pigouvian tolls. This coincides 

with the existing literature. For example, Kono et al. (2012) show that FAR regulations in the 

monocentric city achieve 80% of the welfare gain obtained by the first-best city. According to 

Rhee et al. (2014), land share adjustment together with production subsidies achieve 99% of 

the first-best instruments’ welfare gain. However, the proposition that zoning is almost as 

efficient as Pigouvian tolls is valid over only a narrow range of metropolitan population. Se-

cond, it is surprising that Pigouvian congestion charges (i.e., the Tolled City) could be less 

efficient than zoning, which has not been reported in the literature. This cannot occur in the 

model without heterogeneity. 

 

Summary 5 (Equivalence of LURs and Pigouvian tolls)  

When optimal policies are known, zoning could be more efficient than, as 

efficient as, or less efficient than Pigouvian tolls. That is, in contrast to the 

finding in the theoretic literature that zoning is very efficient (Pines and 

Sadka, 1985; Wheaton, 1998; Kono et al., 2012; Rhee et al., 2014), zoning 

could be far less efficient than pricing instruments for large cities. 

Conversely, zoning could be more efficient than congestion charges for small 

cities. 

 

5.2.2. Discussion: covariance term and real estate market distortions 

The covariance term explains the apparent anomalies in Figure 1(a). To see this more 

clearly, we create a straight path of the LUR policy changes, parameterized by  , from the 

Base City to the Zoning City, and path integrate the welfare function along this straight line 

using (26)–(28) (Yu and Rhee, 2013). In Figure 1(b),  =0 is the Base City, and     is the 

Zoning City. The curve “Systematic” is welfare explained by the first four terms in concert in 

(26)–(28); the curve “Covariance” is welfare explained by the covariance terms in (26)–(28). 

The covariance part explains 38% of the welfare gain of the Zoning City over the Base City 

(i.e., BC/AC=0.38). This share is astonishingly large and is shown to increase even further as 
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population increases. 

How do the anomalies in the equivalence results arise? In smaller cities with lower 

externalities, zoning improves on redistribution effects in the presence of household 

heterogeneity while market distortions are relatively small. With increasing city size 

externalities increase and zoning becomes less and less efficient compared to Pigouvian tolls 

because redistribution effects become relatively less important and land market distortions or 

compliance costs increase fast (the dotted curve in Figure 1(b)). The same applies to property 

taxes. Because the zoning city applies a policy mix that is better than any single zoning 

instrument our finding holds also for any policy applying only a single zoning instrument as 

considered in the literature on zoning. 

As a reference, we also report a zoning city in which only land shares is  are 

adjusted. The “LS only” curve represents that city in Figure 1(a). Comparing the Zoning City 

curve with the LS Only curve suggests that the efficiency gain of the Zoning City arises 

mostly from FAR regulations. Figure 1(a) simply shows that any policy not considering 

household heterogeneity would fail to improve welfare much. 

5.2.3. Discussion: breakdown of the conventional rule (spatial distortions) 

Household heterogeneity renders the conventional rule for correcting the congestion 

externalities disastrous. In the nonspatial model where the market intervention does not alter 

the type composition of user heterogeneity, the combination of congestion charges and 

income redistribution, i.e., the conventional rule, restores efficient market outcomes. In the 

Tolled City, we fully priced congestion externalities, so the first three summations in (14), 

(a)+(b)+(c), vanished. In the First-best City, we also made the sum of the remaining two 

terms in (14), (d)+(e), zero using income transfer ijy . In contrast, the conventional rule 

makes only (a)+(b)+(c)+(e) vanish in our spatial model, while ignoring the spatial re-sorting 

term, (d)  ij ii jjNy dP d  .  
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Figure 2 Conventional rule breaks down.
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Let us examine how problematic the conventional rule is in our spatial model. As the 

utility function is Cobb-Douglas, the MUI is the inverse of household income. Building upon 

this observation, we vary differences in MUIs through redistribution to lower the difference 

between richer and poorer households in addition to Pigouvian tolling. Figure 2 shows the 

results when we successively add or subtract a fixed amount of income, say $100 dollars. 

When there is no re-sorting, the covariance term vanishes and welfare reaches its maximum if 

income is equal, that is, the maximum income difference is zero. However, as Figure 2 shows, 

welfare does not increase but declines the smaller this difference. The reason is the relocation 

of households as a response to redistribution. The highest point in Figure 2 marks the First-

best City where the last two terms (e)+(d) vanish on account of redistribution
12

. Figure 2 

demonstrates that setting (a)+(b)+(c)+(e) to zero according to the conventional rule, is 

disastrous when the spatial re-sorting term is ignored in the model where type composition 

itself varies in response to a policy intervention. 

 

                                           
12

 The highest point in the figure does not look like $308, which should be the intercept of the curve First-best 

in Figure 1(a). The reason is that we did not normalize the household income to $50,000/year for easier compu-

ting. 
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6. Instrument Choice: Efficiencies When Optimal Policies Are Not Known 

6.1. Setup 

In Subsection 5.2, the planner could pinpoint an optimal policy (first-best or second-

best policy). In reality, however, the instrument choice and actual implementation are not free 

of hindrance and complications due to various reasons: imperfect property rights, multiple 

externalities, market power, unobservable behavior, imperfect information, administrative 

capacity, and politics (Fischel, 1985: ch.10; Bennear and Stavins, 2007). Further issues are 

discussed in the political economy of instrument choice (e.g., influence of lobbying groups by 

Grossman and Helpman, 1994; overview of transport literature by Hepburn, 2006). 

Consequently, the instrument level chosen is likely to deviate from the theoretic optimum. In 

this subsection, we consider this issue and explore its consequences for the optimal 

instrument design. 

To evaluate the welfare impact of deviations from optimal policies, we choose the 

following experimental setting. Imagine three cities each with 1.2 million inhabitants and the 

same road and nonroad capacity as the Tolled City in Section 5.2. The first city, Base City, 

uses spatially differentiated property taxes to finance local road and nonroad infrastructure. 

Neither other taxes nor transfers are available. 

In the second city, Tolled City, the planner sets road tolls to maximize welfare W in 

(6), while considering the covariance term and collecting spatially differentiated property 

taxes to balance nonroad budgets in each zone. As these road tolls take into account the 

covariance term, the road tolls deviate from Pigouvian tolls; any surplus or deficit from road 

tolls is redistributed. In this Tolled City, we assume that income transfer is not available. 

Because the planner sets the road tolls considering the covariance term and ignoring the road 

budget balance, the welfare is higher than that of Figure 1(a). In Figure 1(a), road and 

nonroad budgets were all constrained to be exactly balanced in each zone. Next, we vary road 

tolls in each zone around these second-best tolls that we just obtained, and calculate changes 

in welfare caused by deviations from the second-best road tolls. Here, the tolls set differ from 

the standard Pigouvian tolls equaling marginal external cost of congestion
13

  

                                           

13 Of course, this higher welfare cannot happen in the model with homogeneous households where balanced 

budgets and full pricing are two salient features of the first-best city when the service quality stays the same 

with the proportionate change in infrastructure capacity and patronage. 
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The third city, PT City, levies spatially uniform property taxes but does not charge 

road tolls. This type of city is observed more commonly in the real world. It varies the tax 

rates for housing H  and business buildings 
B  and uses head tax recycling to maximize 

welfare. The intention is to check the sensitivity of the welfare change in the setting where 

the city is minimally constrained in using the property taxes. Table 2(b) summarizes the 

major features of the city types examined in this subsection. 

 

6.2. Theory 

To measure the welfare loss induced by deviations from optimal policies, we 

parameterize the congestion charges by 0b  , where 0b   corresponds to the Base City 

and 1b   to the Tolled City. Similarly, we parameterize the LURs by 0  , where 1   

corresponds to the Zoning City and (0,1)  corresponds to the Base City. 1F

14
 We perturb 

, b   around 1 and denote the welfare change by 
TolledW  for the Tolled City and by 

ZoningW  for the Zoning City. By construction, 0TolledW   and 0ZoningW  . We express 

these differentials up to the second order of the parameters to obtain 

 
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2

2

1

1

2

Tolled
Tolled

b

d W
W b

db


   ,   
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2
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1

1
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Zoning d W

W
d








   ,  (33) 

where , Tolled ZoningW W  are welfare of the Tolled and Zoning Cities, respectively. We collect 

the terms from (33) under the rubric of B  for benefits and C  for costs to obtain the 

formulas containing second-order terms similar to Weitzman (1974) and Laffont (1977). 

Implicit in our exercise is that uncertainties have been introduced into the policy instruments 

and that welfare is given for certainty. This means that welfare is ex post welfare. Unlike 

Weitzman (1974), this twist greatly facilitates the exposition, as we shall see. 

There are two reasons why (33) is not of much help. First, the general equilibrium 

nature of our framework is too complex to provide an unambiguous sign from analytics. 

Second, the policy intervention is discrete, so the local approximation (33) working only near 

the optimums could be completely wrong for the discrete changes introduced by the Zoning 

                                           
14

 The usage of   here slightly differs from its usage in Figure 1(b). In Figure 1(b), the Base City corresponds 

to 0  .   
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and Tolled Cities. Therefore, Weitzman and Laffont’s second-order formulas, which hold only 

around the optimums, do not allow obtaining the welfare differential with discrete changes. 

We have to rely on alternative ways to evaluate discrete derivations from optimal policies 

(see Pizer, 2002, for mitigating climate change). 

Once again, the first-order welfare changes (14), (26)–(28) show a way to get around 

this difficulty. One critical difference between (14) and (26)–(28) is that (14) has two terms, 

one positive and the other negative, mutually offset inside parentheses, but (26)–(28) do not. 

Because the terms inside parentheses of (14) cancel out at the optimum, the welfare change 

will be small in association with a given change in b, b , away from the optimum ( 1b  ). 

Note that (14) holds at any equilibrium near or far from the optimum. Figure 3 is a graphical 

illustration consistent with this observation in which the marginal benefit (MB) curve is lo-

cated close to the marginal cost (MC) curve in panel (a) and far apart from the marginal cost 

curve in panel (b). 

 

 

Figure 3 Deviation from optimal policies

(a) Congestion tolls (b) Land use regulations
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From previous simulations we can get some intuition. Table 3 shows that the Zoning 

City only slightly perturbs the Base City, and the dotted curve in Figure 1(b) indicates that 

when the deviation is large, the welfare cost by the second last terms in (26)–(28) will soon 

overwhelm all the other effects. Figure 3(b) is a graph consistent with this interpretation. To 

remind the readers, the two curves are located far apart compared to Figure 3(a). Again, note 
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that (26)–(28) hold at any point near or far from the optimum. Once we have a figure 

resembling Figure 3, we are likely to obtain a larger welfare loss in the Zoning City than in 

the Tolled City for the same given deviation b    . In the end, we need simulations to see 

whether we can corroborate this intuition. 
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6.3. Simulation 

We perform simulations to validate the insight provided by (14) and (26)–(28), or 

equivalently Figure 3. Indeed, Figure 4 confirms our conjecture. It shows new profiles of 

welfare gain over the Base City under the reference population of 1.2 million. On the 

horizontal axis, 1.2 means that policies were set 20% higher than the optimal values. The 

curve labeled “LS only” is the Zoning City, in which only land shares are perturbed, while 

FARs are fixed at the levels of Subsection 5.2. Conversely, if we perturb the FARs only and 

hold land shares fixed at the levels of Subsection 5.2, we obtain a shape closely following the 

“LS only” curve. So, we omit the “FAR only” curve in Figure 4. The city types relying on the 

tax instruments rarely experience large welfare losses compared to the second-best optimal 

welfare (approximately $220). It does not matter much whether the planner fails to pinpoint 

the optimal tax policies. In contrast, when the planner is wrong about the zoning policy, the 

cost is huge. Because a small deviation could bring about a strictly negative net benefit, 
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zoning could be even worse than doing nothing.  

One problem with Figure 4 is that all the policy instruments are inflated or deflated 

by the same ratio to obtain the graphs. To explore whether the outcome is robust to other 

pattern of deviation form optimal policy, we conduct another experiment. This time, we allow 

actual policies to deviate from the optimal policies by setting differing ratios among changes 

in the instruments. As pricing instruments are extremely insensitive to deviation (e.g., policy 

failure or information errors), it is sufficient to check the sensitivity of the LURs against the 

deviation. 

Now, we introduce discrete random variables , 1,2,3i i   that could be either 

positive or negative. This random variables can take values  0.15; 0.07;0;0.07;0.15   with 

equal probability of 1/5.
15

 We denote the optimal LURs (Zoning City) by 
is  (residential 

land share), 
H

if

 (FAR of housing) and 

B

if

 (FAR of office buildings). Lacking the precise 

information of the second-best LURs, the planner adopts actual land-use controls as follows:  

 11i iss    ,  21H

i

H

iff    ,  31B

i

B

iff    , 

where i  denotes the percentage deviation from the optimal level of the instrument in the 

Zoning City. We randomly set all i  and calculate the associated welfare change from the 

Base City. We repeat this independently 20 times. At each trial, we measure the imprecision 

of zoning by  
2

1,2,3
1 ˆ00

i ii 


 , where ˆ
i  is the average of i ’s. 

In Figure 5(a), we plot the 20 welfare changes resulting from this experiment against 

the degree of regulatory imprecision. Welfare is higher than the Base City in 7 trials (dots 

above the x-axis) and lower than the Base City in 13 trials (dots below the x-axis). Although 

the planner’s policy is correct on average, due to imprecision he loses on average $148 

(Figure 5(a)) instead of winning more than $200 (Figure 4). 

 

 

                                           
15

 This uniform distribution is not new at all. Refer to Pizer (2002: 415, 417) for a similar practice in estimating 

the costs and benefits of climate change mitigation. 
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Figure 5 Welfare loss of imprecise zoning
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Next, we vary the metropolitan population N , perform the same experiments 

leading to Figure 5(a), and tabulate the average welfare losses. Figure 5(b) is the result. We 

calculate the standard deviation of each experiment composed of twenty independent trials 

and superimpose the standard deviations on the average welfare losses. As in Figure 5(a), the 

planner always loses on average. The average loss and the standard deviation increase as the 

metropolitan area becomes more congested. We may narrow the range of the values that i  

takes on or we may use different (symmetric) distributions for i . Nonetheless, unless the 

range is much smaller than 0.15 , we obtain essentially the same results of welfare loss. 

The experimental results of the LURs coincide with what has been reported in the 

literature on metropolitan-wide development controls. For example, building height 

restriction in Bangalore, India has resulted in a loss of 1.5% to 4.5% of household income 

(Bertaud and Brueckner, 2005). Similar welfare costs are reported for the greenbelts around 

metropolitan areas in Seoul, Korea by Lee (1999) and in the UK by Cheshire and Sheppard 

(2002). One persistent difficulty is that it is not easy to set land use regulations optimally in 

the real world.  

While these studies calculate the costs of one single instrument of zoning, our study 

shows that a policy mix of zoning also bears costs. We further find that these costs can be 

more than compensated by benefits near the optimum zoning policy. However, net costs arise 
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if zoning is set away from the optimum. They increase more than proportionally to the 

deviation from optimal zoning. These findings are not yet reported in the zoning literature 

 

Summary 6  

1) Depending on policy accuracy, the efficiency ranking of the LURs and 

tax instruments varies greatly.  

2) Policy decision-making and the imperfectness of regulatory information 

needed for LURs or taxes might cause nonoptimal choice of zoning and 

taxes. The welfare costs of suboptimal zoning are so huge that zoning is 

strongly adverse compared to Pigouvian tolls and property taxes. It is 

even possible that zoning is worse than doing nothing at all. 

 

6.4. Instrument choice in pollution control and city planning  

The formulas (14) and (26)–(28) should not come as a surprise, because they are 

conceivable from Harberger (1971) and are related to the traditional view of instrument 

choice in environmental economics. Nevertheless, these formulas considerably extend the 

discussion of existing instrument choice literature; they provide a global platform that 

extends the instrument choice theory of pollution control to various types of externalities and 

to a wide range of policy deviations beyond cost-benefit uncertainties.  

Strictly speaking, Weitzman’s (1974) famous formula B C   holds only near the 

optimums. Many authors adopt this local formula to differentiate the global superiority of 

different policies (Hoel and Karp, 2002) or resort to graphs to draw global implications and 

conclusions (Stavins, 1996; Kaplow and Shavell, 2002). Pizer (2002) emphasizes the danger 

of this practice. He calculates that the welfare differential between prices and quantities is 

about five times larger with the linearization of Weitzman in contrast to the application of a 

full welfare analysis. 

This practice simply testifies to the difficulty in deriving formal expressions 

applicable to a discrete policy change. In the process, uncertainties of benefits and/or costs 

are introduced, only to have the same local characterization of the welfare differential 

between prices and permits (Laffont, 1977). In contrast, we examine deviations from optimal 

policies that might be caused by quite a number of different reasons found in the planning 

and decision process, such as lobbying or information failures. The trick was to incorporate 
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the uncertainties or imprecision into the policies rather than into the costs and benefits of 

pollution control. 

Let us illustrate how nicely (14) and (26)–(28) explain the superiority of prices to 

quantities in the instrument choice literature whose setting is much simpler than ours is. 

Again, Pizer (1997: 2) reports essentially the same simulations as ours in controlling 

greenhouse gases and summarizes that “slightly more stringent targets lead to dramatic 

welfare losses.” This is not a coincidence. Pizer sets the tax price equal to the almost constant 

marginal benefit of pollution abatement (Figure 5 in his report, a special case of our nonlinear 

marginal harm schedules). In addition, permits are bound to entail distortionary costs under 

uncertainties (the second-terms of (26)–(28) in our setting). Thus, the welfare calculus in 

Pizer’s study has essentially the same mathematical structure as our study of the cost–benefits 

associated with the two competing instruments, although the mathematical structure is not 

explicit in his study.  

Now, since the instruments solving the equation  (14) = 0 are first best and his 

pricing always equals the true marginal damages due to the flat marginal harm schedule, the 

flat pricing should work better than permits in Pizer, even under (cost) uncertainties. Because 

quantities entail not a small cost of market distortions, as the second-last terms in (26)–(28) 

show, the welfare differential should be large between pricing and permits. In other words, 

the same cost–benefit calculus applies to Pizer’s and our studies; it is natural that pricing 

works much better than permits in his study and climate control literature in general with 

stock pollutants, when either one of the instruments is to be used.  

Consequently, although (14) and (26)–(28) are intended to be discerning for nonstock 

externalities, they turn out to apply equally well to stock pollutants. Our theory and 

simulations show that these findings from environmental policies in principle carry over to 

congestion policies in a very different spatial framework that considers various nonstock 

externalities, land use, and heterogeneous households. It is in this sense that (14) and (26)–

(28) and Figure 3 provide a global platform that extends the instrument choice theory of 

pollution control to various types of externalities and to a wide range of policy deviations 

beyond cost-benefit uncertainties.  
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Summary 7 

1) The responsibility to control externalities differs between owners of 

individual facilities in the case of pollution control and public 

authorities managing infrastructure in our case. However, similar 

economics is at work, so that (14), (26)–(28) are equally applicable to 

the instrument choice in both environmental economics and city 

planning. 

2) The superiority of prices to quantities in controlling externalities stems 

from the cost–benefit structure of welfare changes, which is uniquely 

associated with each type of policy. 

7. Conclusion 

We found that some of the well-known results on congestion policies no longer hold 

if there are heterogeneous households, multiple land uses, and different types of congestion. 

It turns out that redistribution effects can be so large that any policy not considering 

redistribution is far from being first-best. This result demands further research to explore 

whether household heterogeneity has similarly strong implications on optimal policy design 

for other regulation issues. Furthermore, the result that even in a first-best framework 

Pigouvian taxes and redistribution to equalize marginal utilities of income do not provide a 

first-best solution, might be relevant for other cases in which re-sorting across heterogeneous 

household types is feasible (e.g., heterogeneity according to education status, family status, 

and income type). 

The findings concerning zoning are surprising. The outcome from the literature that 

zoning is almost as efficient as Pigouvian tolls is valid only for a narrow range of a city’s 

population. Furthermore, zoning could be even better than congestion charges. Such findings 

are not yet known in the literature. The findings point to the significance of redistribution 

issues when household heterogeneity is present. Consequently, some of the generally 

accepted findings are challenged. Whether this holds true for other regulation policies is an 

open issue. 

Policies might not be optimally set for various reasons, such as imperfect information, 

we provide an evaluation of the efficiency losses of deviations from optimal policy. We 
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conclude from this exercise that enacting zoning is a very risky undertaking because this 

regulation policy could worsen welfare below the no-policy case with congestion. This issue 

is serious, considering that zoning is a standard instrument in city and regional planning. 

Of course, land-use regulations usually have other objectives too, such as separation 

of incompatible uses. Our study is limited in this respect. However, even then, the efficiency 

problem remains and might offset all or part of the benefits that land-use planning intends to 

reap. The strong distortion that zoning imposes on real estate markets is the reason for the 

high welfare costs of small deviations from optimal regulation. The same distortionary cost 

will continue to work in models with other types of externalities, notably, production and 

consumption externalities, and in models of government competition among municipalities. 

We expect that this vulnerability of land-use regulations to non-optimal choice is 

relevant to policy of other types of regulation applied to various markets. This is already 

known with respect to misperception (e.g., Kaplow and Shavell, 2002). However, in our study, 

we show that any deviation for any reason from the optimal regulation causes this robustness 

problem of the instrument. Accordingly, further research is needed on the local robustness of 

other regulatory instruments around the optimum. We are confident that this issue is 

replicated in other markets and regulatory policies. Therefore, it could be a very common 

issue and should be considered when exploring optimal instrument design. 
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Appendix 1. Derivation of the first-order welfare change 

Form the Lagrangian of the household’s utility maximization problem. 
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We calculate each term of (11) one by one. An example follows. 
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We have applied the envelope theorem to have the formula. After calculating this type of de-

rivatives, we substitute them into (11). 
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Using (3) and the market equilibrium conditions, we can simplify the above as follows: 

The first seven terms of (11) 
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In the similar fashion, we can calculate the last term of (11). 
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Combine (34) and (35) to have the desired formula. We can derive the derivatives of the 

other policy variables in the similar fashion. 

 

 

 

Appendix 2. Glossary 

Abbreviations LUR land-use regulations; FAR floor area ratio; MUI marginal utility of in-

come 

Zone index , , ,i j k s  
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Transport ( , )i i i ig g F R  travel time in zone i  (hour/km), ijg  travel time between 

zone i  and j ; ,i ijt t  are tolls per kilometer similarly defined; ,i ijF F  

traffic volumes similarly defined; iR  road capacity in zone i ; iK  capaci-

ty of nonroad infrastructure such as water, sewage, power, gas, and tele-

communications that do not consume land per se 

Producers iX  composite goods = X-goods; iM  labor input to X-good production; iB  

building input to X-good production (unit: floor area); ,H B

i iQ Q  land inputs 

for the production of residential and commercial buildings, respectively; 

,H B

i iX X  capital inputs (=capital converted from X-goods by one-to-one) for 

the production of residential and commercial buildings, respectively; iH  

housing units measured in floor area; iB : business buildings measured in 

floor area 

Household N metro population; iN  zone i ’s residents; household ( , )i j : the repre-

sentative household living in zone i  and working in zone j ; ijz  compo-

site consumed by household ( , )i j ; ijq  lot size consumed by household 

( , )i j ; T time endowment; ijd  number of commuting days of household 

( , )i j ; ijV  indirect utility function of the household ( , )i j ; W  welfare 

function = expected maximum utility; ij  idiosyncratic taste term for home-

work zone pairs;   dispersion parameter of the idiosyncratic terms; ,ij iju V  

ordinary and indirect utility functions, respectively; ,M T

ij ijc c  Lagrangian 

multipliers of income and time, respectively; 
Mc  weighted average of 

M

ijc ’s; 

/T M

ij ij ijw c c ; iw  value of time of the travelers in zone i  

Prices ir  unit land rent in zone i ; iw  hourly wage offered in zone i ; 
X

ip  price 

of composite good = price of capital inputs to housing and business building 

producers; 
B

ip  unit rental price of office floor area; 
H

ip  unit rental price of 

housing floor area; iw  value of time of zone i 's travelers; ijw  value of 

time of household ( , )i j  

Externalities i  zone i  households' marginal utility of nonroad infrastructure; 

( , , )X

i i i iS B H K  quality of nonroad infrastructure in zone i  as perceived by 

zone i ’s X-good producers; ( , , )H

i i i iS B H K  quality of nonroad infrastruc-

ture in zone i as perceived by households living in zone i  
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Taxes ,B H

i i   property tax rates imposed on one dollar rental price of office build-

ings and housing units, respectively; it , ijt  traffic congestion tolls in zone 

i  and for the trips whose O-D is ( , )i j , respectively; 
ijy  income transfer 

for household (i,j) 

Regulations  is  residential land share of zone i ; ,H H

i if f  maximum and minimum 

floor area ratios, respectively, imposed on housing units in zone i ; ,B B

i if f  

maximum and minimum floor area ratio imposed on business buildings in 

zone i , respectively; ,H H

i i   marginal compliance cost when maximum 

and minimum FARs, respectively, are imposed on housing units in zone i ; 

,B B

i i   marginal compliance cost when maximum and minimum FARs, re-

spectively, are imposed on office buildings in zone i  
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