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The equivalence of convex and concave transport cost in a circular 
spatial model with and without zoning*1

La equivalencia del coste de transporte cóncavo y convexo en un mercado 
circular con y sin zonificación**2

Hamid Hamoudi
Isabel Mª Rodríguez Iglesias

Marcos Sanz Martín-Bustamante***3

Abstract

This article depicts a location game in a circular market. The equivalence results 
between a convex and a concave transport cost are reexamined by assuming 
an arbitrary length. In contrast to previous research the solution found shows 
that the equivalence relationship depends on the space length. Furthermore, 
the analysis is extended to a circular model with unitary length and zoning. In 
this case equivalence does not hold. Moreover, non-existence of equilibrium 
is shown under strictly linear quadratic functions. Surprisingly, equilibrium 
exists for a concave quadratic function but not for a convex quadratic function.

Key words: Convexity, concavity, spatial competition, circular model, transport 
costs, regulator.

JEL Classification: C72, D43, L13, R38.

Resumen

Este artículo describe un juego de localización en un mercado circular. Se re-
examina el resultado de equivalencia entre los costes de transporte cóncavos y 
convexos asumiendo una longitud arbitraria. Al contrario que en investigaciones 
previas, se encuentra una solución que muestra que la relación de equivalen-
cia depende de la longitud del espacio. Asimismo se extiende el análisis a un 
modelo circular con una longitud unitaria y zonificación. En este caso no se 
cumple la equivalencia. Además se demuestra la existencia de equilibrio para 
funciones estrictamente cuadrático-lineales. Sorprendentemente se produce 
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el equilibrio para una función cuadrática cóncava pero no para una función 
cuadrática convexa.

Palabras clave: Convexidad, concavidad, competencia espacial, modelo circular, 
costes de transporte, regulador.

JEL Classification: C72, D43, L13, R38.

1.	 Introduction

Spatial competition models consider consumers and firms distributed along 
a line or a circle. Both spatial configurations are important. The linear model à 
la Hotelling represents situations where there are exogenous endpoints; leading 
the distinct locations to be differentiated in terms of their relative positions to the 
borders- thus the market along the line is not perfectly homogeneous. Namely, 
the linear market assumption allows determination of location patterns which 
arise from various market characteristics, due to its intrinsic heterogeneity. In 
contrast, the circular city à la Salop case is perfectly homogeneous since loca-
tion patterns are differentiated in terms of the firms’ relative locations to each 
other. Therefore, the circular framework is more appropriate for certain real-life 
situations. Typical examples are traffic-jammed cities with large shopping malls 
located on the outskirts, along the circular belt-way, to avoid downtown traffic 
for shoppers, competing television networks when choosing time slots for their 
shows, airlines deciding on arrival and departure times for their flights… etc. 
In terms of product specification, the linear representation is often preferred 
because it applies to single-peaked consumer preferences, whereas no such 
analogy is available for the circular model.

These models usually assume a convex1 type of transport function and very 
often ignore concave2 transport cost functions. It is well known that choosing the 
type of costs depends on what is included in the concept of distance (itinerary, 
time, degree of buying advantages). However, there exists no clear evidence in 
favor of one or another transport cost in spatial competition models.

Given the nature of our investigation, the focus will be on the circular space. 
The first part builds on the model from De Frutos et al. (1999) in order to analyse 
the equivalence game induced by a convex and a concave linear quadratic trans-
port cost function in a circular market with an arbitrary length. In this context, 
it is shown that the equivalence result crucially depends on the length of the 
market. This outcome renders the analysis for the unit length a particular case 
from the general conclusions presented here. On the other hand, it can be taken 
as a precise rule of thumb for any urban city planner dealing with the choice on 
the appropriate side of a market.

1	 See D’Aspremont et al. (1979), Gabszewics et al. (1986), Anderson (1986), Hamoudi 
et al. (2011) among others.

2	  De Frutos et al. (1999, 2002), Hamoudi et al. (2005), Matsumura (2006).
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The second part extends the analysis by introducing a regulator. More 
specifically, the regulator restricts the location space of the agents in a circular 
market. Firms and consumers locate in the unit circle in separated areas: com-
mercial and residential.

The study of regulation in this type of models contributes to urban industrial 
policy. For example, when choosing areas to locate new shops firms are often 
faced with political restrictions such as: green zone preservation, existing hos-
pitals, or residential areas. In turn, zoning becomes an important instrument to 
plan rational space occupation by choosing optimal specific areas for the loca-
tion of firms. The ban on the sale of all alcohol in residential areas constitutes 
a typical example of this kind of policy. The reasons for zoning in this case are 
twofold: alcohol consumption is associated with the negative effects of delin-
quency (Carpenter, 2007) and greater distance between consumers and sellers 
discourages consumption (Cook et al. 2000). A second paradigmatic example 
is the exclusion of gasoline stations from residential areas (Netz et al. 2002).

Initially, it is shown that the equivalence result cannot be extended to the 
model under zoning. Then, a proof is provided to demonstrate that price equi-
librium is not guaranteed for every possible location of firms under convex/
concave strictly linear quadratic transportation costs. Unexpectedly, the convex 
quadratic transport cost function cannot deliver price equilibrium for any location 
of firms. Thus, the equilibrium properties associated with this function are not 
as robust as many researchers suggest, D’Aspremont et al. (1979), Anderson 
(1986), (1988), Gabszewicz et al. (1986), Lambertini (1994), Böckem (1994), 
Tabuchi et al. (1995), Junichiro et al. (2004) and Brenner (2005). Notably, the 
concave quadratic transport cost function yields perfect price-location equi-
librium. Moreover, this equilibrium is unique and characterized by maximum 
differentiation (dispersion).

This article is structured as follows: section two introduces the standard 
model and studies the equivalence of the games induced by a convex and a 
concave transport cost function. In section three the regulated circular model 
is analysed in order to verify the equivalence of the games and concludes by 
seeking for the existence of Nash equilibrium in prices. Section four presents 
the main conclusions.

2.	 Revisiting the Equivalence result

2.1.	 The model

In the following example, the basic assumptions from Hotelling’s model 
(1929) are maintained except for the fact that the market considered is circular 
with a length of 2L. There are two firms which produce a homogeneous good, 
with zero production costs. Consumers are uniformly distributed along a circular 
city. Each consumer is constrained to buy one unit of good. Firm 1 locates at 
x1∈[0, L] and sells the product at price p1. Similarly, firm 2 locates at x2∈[0, L] 
such that x1 ≤ x2 and sells the product at p2. The consumer location denoted by 
α corresponds to a point in the circle and is identified with numbers in [0, 2L]. 
The most southern location is taken as 0 and values increase counter clockwise. 
Thus, the most southern location is considered both 0 and 2L. The distance be-
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tween the consumer and the firm is defined by di (α) = |α – xi |. Sellers follow 
an f.o.b price policy and consumers must travel to buy one unity of good and 
bear transport costs, denoted by C(di).

FIGURE 1
THE CIRCULAR MODEL MARKET

Consumers can travel along the whole circle and will always take the di-
rection implying the shorter distance to the chosen firm. Since the product is 
homogeneous, a consumer purchases from the seller with the lowest delivered 
price which consists of mill price plus transport cost. The indifferent consumer 
is defined as the consumer who faces the same full price from both firms so 
that: p1 +C(d1) = p2 +C(d2) .

The transport cost is assumed to be non-negative, continuous and increasing 
in distance with zero cost when travelling zero distance. This function can be 
convex or concave.

The main purpose from here on is to demonstrate that the game induced 
by a convex/concave function is equivalent to the game induced by a concave/
convex function.

2.2.	 Results

In order to achieve the above goal the following lemma is stated:

Lemma 1:

Given continuous and differentiable a transport cost function F(d), where 
d ∈ 0,L[ ] , another transport cost function can be found H(d’) such that: d = L-d, 
H(d’)=F(L) - F(d').

Proof: The length of the circular market in the model considered is equal to 2L. 
A consumer can travel a maximum distance of L involving a transport cost of 
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C(L) whereas the minimum distance is zero with zero transport cost associated. 
Departing from an initial coordinate system S1 with origin O = (0, 0) and axes 
d, C (d); a second reference system S2 can be defined by shifting the origin O to 
O'= (L, C(L)) and rotating 180 degrees. All pairs (d, C(d)) from S1 can then be 
represented in S2 under the following change of variable: d’=L-d, H(d’)=F(L) 
– F(d). If d’ is substituted by L-d into H, F (d) =H (L) – H (L-d) is obtained.n

Note that H(0)=F(0)=0 and H(L)=F(L). If ∂2F(d) / ∂2d ≥ 0 , i.e. F(d) is a 
convex function then H(d’) is a concave function ( ∂2H(d´) / ∂2d´≤ 0 ). Contrary, 
if F(d) is concave then H(d’) is convex.

The central proposition of this section can be stated now:

Proposition 1:

In a circular market of length 2L, the location-then-price game induced by a 
transport cost function F is fully equivalent to the game induced by a transport 
cost function H , where H(d)=F(L) – F(L-d) (1).

Proof: The result follows from lemma 1 above. By relying on definition 1; 
lemma 1; the proof of theorem 2 and corollary 3 in De Frutos et al. (2002) it 
can be proved straightforward.n

This result constitutes an extension of De Frutos et al. (2002) since it pro-
vides a generalization for the equivalence relation by showing how it depends 
on the market length.

To illustrate the relationship between convex and concave transport cost 
some functions from the linear quadratic family can be examined:

The convex function is given by, C+ (di ) =a
+di + b

+di
2 , where a+ ≥ 0, b+ ≥ 0  

and the concave function is represented by, C− (di ) =a
−di − b

−di
2 , where 

a− > 0, b− ≥ 0 . It is assumed that L ≤ (a-/2b-) to assure that the concave transport 
cost function is increasing in the whole market.

Corollary 1:

The location-then-price game induced by convex and linear quadratic trans-
port cost function, C+ (di), is fully equivalent to the game induced by concave 
and linear quadratic transport cost function, C– (di) if and only if the length of 
the market in this is equal to 2L = (a− − a+ ) / b−  and b+ = b− .n

Proof: Via the relation (1) between convex and concave cost, a relation-
ship between a+ , b+  and a− , b− can now be derived and represented as: 
a+ = a− − 2b−L, b+ = b−  (2). Then relationship between parameters L and 
a+ , a− , b− can be deducted from here.

Remarks:

Note that this result provides a specific relationship between the weights 
attached to the linear and non linear parts of the transport cost functions and the 
length of the circular market considered. This means that any existing public or 
private authority could take into account considerations about the weight of the 
parameters in the transport cost functions when deciding on the ideal size of 
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the space market. In this respect, the result provided here allows a city planner 
to be indifferent about the type of transport cost function.

For the case of a unitary length circular market, i.e. 2L = 1 under convex 
linear quadratic transportation De Frutos et al. (1999, proposition 1) show that 
there exists a subgame perfect price-location equilibrium iff a+ = 0 . They then 
prove that the game induced by the concave and linear quadratic transport cost 
function C− (di ) =b

− (di − di
2)  , i.e. a− = b− , has a unique subgame perfect 

equilibrium. More importantly for comparison purposes, the above function, 
C− (di ) =b

− (di − di
2) , yields equilibrium in the circular market only if L = 1/2. 

At this point, it is worth noting that the result from De Frutos et al. remains as 
a particular case for L =1/2. If any other value of L is considered their function 
does not lead to equilibrium. However, by using corollary 1 we show that the 
function, C− (di ) =b

− (2Ldi − di
2)  leads to equilibrium for any value of L, there-

fore, generalizing results from De Frutos et al. For the above concave function 
the equilibrium pattern remains similar in terms of maximum differentiation 
which corresponds to spatial dispersion3.

3.	 Circular market with zoning

3.1.	 Model

In this section a duopoly location model is analyzed in a circular market 
under zoning regulation. An authority divides a circular city of length 1 into 
two distinct parts, a commercial area of length v, such that 0 ≤ v ≤ ½ and a 
residential area of length 1–v.

The regulated circular model as represented in Figure 2 is shown below:

FIGURE 2
REGULATED CIRCULAR MODEL

V

X2

1/2+X1

1/2+X2

3	 Simple calculations, similar to those in De Frutos et al. (1999), show that for the above 
function a unique perfect-location equilibrium for the convex and concave case and any 
value of L exists, which is given by, x1 = 0, x2 = L,  p1 = p2 = b

+ / 4 .
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Two firms located at x1 and x2, with x1, x2 ∈ 0,v[ ]  and x1 ≤ x2 charge mill 
prices p1 and p2. Both sellers supply a homogeneous product, with zero produc-
tion costs without loss of generality. Although consumers can only be located 
within the arc of circle v,1[ ] , they can travel along the whole circle and will 
always take the direction that implies the shorter distance to the chosen firm. The 
distance between the consumer’s location α and the firm’s location xi is given 
by di = α − xi , i = 1,2 . Consumers are evenly distributed along the residential 
area v,1[ ] , and buy a single unit of product.

Since the product is homogeneous, consumers will buy from the firm offering 
the lowest total price, that is, mill price plus transportation costs. A linear-quadratic 
transport cost function which can be either convex or concave is considered.

The timing of the game is the following: in the first stage firms choose loca-
tions and in the second stage firms compete in prices. The concept used to solve 
the model is perfect equilibrium; the game is then solved by backward induction.

The questions that arise in this context are:

(i)	 Are the convex case and the concave case related via a change of parameters?
(ii)	Is there price equilibrium for any locations x1, x2 in the circular market with 

zoning?

3.2.	 Demand function

The indifferent consumers determine the market boundaries between the two 
firms so that demand can be derived. Again, a consumer who faces the same full 
price (mill price plus transport cost) from the two firms is labeled as the indifferent 
consumer. Depending on the price and the location of firm, it is possible that an 
indifferent consumer exists in regions [v, x1 +1 / 2], [x1 +1 / 2, x2 +1 / 2], [x2 +1 / 2,1] 
on the circle.

Under a convex linear quadratic transport cost function, such as, 
C+ (di ) =a

+di + b
+di

2 , where a+ ≥ 0, b+ ≥ 0 , if there exists an indifferent con-
sumer4, she/he must be necessarily located in the region [x1 +1 / 2, x2 +1 / 2] 5. 
Let αB

+  be the location of this indifferent consumer. In this case, consumers to 
the right of αB

+  prefer seller 1, while consumers to the left of αB
+  prefer seller 2. 

Furthermore, there can be a second indifferent consumer in either [v, x1 +1 / 2]  
or [x2 +1 / 2,1]  denoted α A

+  or αc
.+ .

Substituting the expression for the location of the indifferent consumer, the 
demand of firm 1 is then given by:

4	 The expression of indifferent consumer is given by: p1+C(d1)= p2+C(d2)
5	 See De Frutos et al. (2002).
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D1
+ v, x1, x2, p1, p2( ) =

(1− v) if p1 − p2 ∈I1
+

(a+ + b+ ) (p2 − p1)
2b+z a+ + b+ − b+z⎡⎣ ⎤⎦

− a+

2b+
+ 1

2
− v

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

if p1 − p2 ∈I2
+

p2 − p1
2 a+ + b+ − b+z⎡⎣ ⎤⎦

− q
2
+ 1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

if p1 − p2 ∈I3
+

(a+ + b+ ) (p2 − p1)
2b+z a+ + b+ − b+z⎡⎣ ⎤⎦

+ a+

2b+
+ 1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

if p1 − p2 ∈I4
+

0 if p1 − p2 ∈I5
+

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

where z = x2 − x1, q = (x2 + x1) / 2 :

I1
+ = −∞,− z(a+ + b+ − b+z)⎡⎣ ⎤⎦ ,                        I2

+ = −z(a+ + b+ − b+z),− z(a+ + 2b+v − b+q⎡⎣ ⎤⎦ ,

I3
+ = −z(a+ + 2b+v − b+q),z(a+ + b+q)⎡⎣ ⎤⎦ ,                       I4

+ = z(a+ + b+q),z (a+ + b+ − b+z)⎡⎣ ⎤⎦ , 

I5
+ = z(a+ + b+ − b+z),+∞⎡⎣ ⎤⎦ .

When the transport cost function is concave, and given by C− (di ) =a
−di − b

−di
2 ,

where a− ≥ b− ≥ 06; no more than one indifferent consumer, α A
−  or αB

−  or αc
− , 

can exist located in the following intervals: [v, x1 +1 / 2], [x1 +1 / 2, x2 +1 / 2], 
[x2 +1 / 2,1]. The demand function D1

−  is then represented by:

D1
− v, x1, x2, p1, p2( ) =

(1− v) if p1 − p2 ∈I1
−

(p2 − p1)
2b−z

− q
2
+1− a−

2b−
⎛
⎝⎜

⎞
⎠⎟

if p1 − p2 ∈I2
−

p2 − p1
2 a− − b− + b−z⎡⎣ ⎤⎦

− q
2
+ 1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

if p1 − p2 ∈I3
−

(p2 − p1)
2b−z

− q
2
+ a−

2b−
⎛
⎝⎜

⎞
⎠⎟

if p1 − p2 ∈I4
−

0 if p1 − p2 ∈I5
−

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

where z = x2 − x1, q = (x2 + x1) / 2 :

I1
− = −∞,−z (a− − 2b−v + b−q)⎡⎣ ⎤⎦ ,               I2

− = −z (a− − 2b−v + b−q),− z(a− − b− + b−z)⎡⎣ ⎤⎦

I3
− = −z(a− − b− + b−z), z(a− − b− + b−z)⎡⎣ ⎤⎦ ,      I4

− = −z(a− − b− + b−z),z(a− + b−q)⎡⎣ ⎤⎦

I5
− = z(a− + b−q),+∞⎡⎣ ⎤⎦ .

6	 a− ≥ b−  is assumed to guarantee increasing transport costs in all the market.
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Let G (C, p1, p2,x1,x2),  represent the game induced by the transport cost 
function C and by the pair of locations ( x1,x2) , where C =C+  or C =C− .  

Proposition 2

The two price subgames G (C+ , p1, p2,x1,x2),  G (C− , p1, p2,x1,x2)  are not 
equivalent.

Proof:

Comparing the above demand D+ (v, p1, p2,x1,x2)  and D− (v, p1, p2,x1,x2),   
it  is  easy  to  see  that  by  using  the  appropriate  transformation, 
C− (d) =C+ (1 / 2)−C+ (1 / 2− d)  i.e. a+ = a− − 2b−L, b+ = b− , the demand 

for the convex case D+  and the demand for the concave case D−  are different. 
Therefore, taking into the definition of equivalent games7, it can be deduced 
that both price subgames G (C+ , p1, p2,x1,x2),  G (C− , p1, p2,x1,x2)  are not 
equivalent.n

3.3.	 Nash equilibrium

Starting from the second stage of the game, equilibrium in prices is discussed 
now. In this case, the commercial area v and the locations of the enterprises x1, x2, 
are given. As with the original Hotelling approach, Bertrand competition is assumed. 
The profit of seller i, i = 1, 2 is denoted by BI (pi , pj ) = piDI (pi , pj ), i ≠ j. From

Max
pi

BI (pi , pj ) i = 1,2

Subsequently, the first conditions are :

∂BI (pi , pj )

∂pi
= DI + pi

∂DI (pi , pj )

∂pi
= 0, i =1,2

By solving the conditions for both firms simultaneously, Nash equilibrium 
in price strategies can be obtained. Then, the following proposition is stated 
for the convex case:

Proposition 3:

Assuming the transport cost as the quadratic lineal convex function, 
C+ (d) = a+d + b+d 2, a+ ≥ 0, b+ > 0,  there is not a Nash price equilibrium 
for any pair of locations, (x1,x2)∈ 0,v[ ]  such that 0 ≤ v ≤1 / 2 .

7	 See De Frutos et al. (2002, definition1 pp. 535): Two price subgames G (F, x1, x2) 
and G’(F’, x1’, x2’) are full equivalent iff for every firm I, and for any strategy profile 
p ∈ R2.
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Proof: (see Appendix) n

Remarks:

The failure of the existence of Nash price equilibrium with convex and 
strictly linear-quadratic transport cost (a+ > 0, b+ > 0)  is expected given that 
a similar result is obtained in the linear and circular market. More surprisingly8, 
under quadratic transport costs, (a+ = 0)  price equilibrium is not found for any 
location pair.

Intuitively, the non existence of Nash price equilibrium with the quadratic 
transport cost is justified by the reduction of the space for consumer’s location. 
This pushes firms to compete through prices in a more intensive way. Furthermore, 
the average distance that consumers are covering increases once the short arc 
of the circumference behind firms is removed and not considered anymore as 
residential space. As the average distance is longer, the average transport cost 
increases more than proportionally and thus every firm is tempted to reduce 
prices trying to attract the highest number of consumers so that equilibrium 
ceases to exist. The reason is that a key equilibrium property does not hold in 
this context i.e no firm can increase its profit through a unilateral change in price. 

Proposition 4:

Considering  a  linear  quadratic  concave  transport  cost  function, 
C− (d) = a−d − b−d 2 , such that a− ≥ b− > 0 :

i)	 If  a− > b− > 0 ,  there  is  not  price  equilibrium  for  any  location  pair 
	 (x1,x2)∈ 0,v[ ] .
ii)	 If a− = b− , i.e. the transport cost is represented as C− (d) = a− (d − d 2),  there 

exists a subgame perfect price-location equilibrium. Therefore, the equilibrium is 
unique and given by: x1

*(v) = 0 , x2
*(v) = v, p1

*(x1
*,x2

*) = p2
*(x1

*,x2
*) = b− v (1− v).

Proof: (see Appendix) n

Remarks:

Prices are increasing with respect to v in perfect equilibrium. Thus, a large 
value for the shopping area, v, might involve less price competition. Consequently, 
firms prefer to separate from each other within the retail area leading to maxi-
mum differentiation.

Hamoudi et al. (2012) have analysed a concave linear quadratic transport 
cost for the particular case in which a− = b− ≥ 0,  with the aim of finding 
out the optimal size of commercial area 0,v[ ].  For v = 1 / 2  and an identi-
cal function, the same result is found as in De Frutos et al. (1999), namely: 

8	 In the linear and circular market there exist equilibrium under quadratic transport cost 
(Gabszewicz et al. (1986), Anderson (1988), De Frutos et al. (1999), Hamoudi et al. 
(2011)).
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x1
* = 0, x2

* = 1 / 2, p1
* = p2

* = b− / 4  Similarly, this case corresponds to spatial 
dispersion/maximum differentiation.

An intuitive explanation is given by the fact that when separating the com-
mercial and residential areas, the average distance increases; however, it does 
so differently with the concave transport cost function and the convex one. 
Thus, the weight of the transport cost is not important enough to induce fierce 
price competition.

4.	 Conclusions

In this article the problem of the equivalence between a quadratic lineal 
convex cost of transport and a concave one is initially reconsidered in the model 
of spatial competition in a circular city. The length of space is assumed arbitrary 
instead of unitary. The result obtained is that the relation of equivalence depends 
on the perimeter of the circular city.

When convex and concave linear quadratic transport cost functions are 
considered an equivalence relationship is obtained. This relationship is a key 
result in theoretical and practical terms. On one hand, it shows a link between 
the weights attached to the linear and non linear parts of the transport cost 
functions and the length of the circular market considered. On the other hand, 
it can be taken as a reference by any urban city planner interested in choosing 
the size of the market. A regulator can consider a priori criteria on the weight of 
the parameters in the transport cost functions when deciding on the ideal size of 
the space market; given that once equilibrium is reached for a convex/concave 
function it is also ensured for the concave/convex case. More importantly, the 
result shown allows a city planner to be indifferent about the type of transport 
cost function. This is a remarkable contribution as considerations on the type 
of transport cost function are often due to technical reasons and lack economic 
foundation.

Secondly, a regulated circular space is considered in which a planner decides 
about the spatial configuration where firms and consumers are forced to locate 
in different areas of the circle. There is not equivalence in the games induced 
by a convex lineal-quadratic transport cost function and a concave function.

On the other hand, the convex or concave strictly linear quadratic transport 
cost function involves similar equilibrium problems to those found in the standard 
circular or linear model. Furthermore, even for the particular case of a convex 
quadratic transport cost, the equilibrium failure persists. This is a rather sur-
prising result since the quadratic transport cost function has always guaranteed 
equilibrium existence in spatial competition models.

Nonetheless, a concave quadratic transport cost function is found, that 
re-establishes the Nash equilibrium in prices for any location of firms. In this 
location equilibrium firms locate at the end of the commercial area, correspond-
ing to maximum product differentiation/spatial dispersion.

Finally, the striking fact is the failure of equilibrium with the convex quadratic 
transport cost when it exists under concave quadratic transport cost. This results 
stands in sharp contrast to those stemming under a linear market assumption. 
It is the type of zoning regulation in this model which creates the nonexistence 
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problem of equilibrium with convex quadratic transport cost. Indeed, it is rather 
simple to prove that price equilibrium exists for any locations with convex or 
concave quadratic costs when consumers are allowed to locate in the commercial 
area from the circular or linear market
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Appendix

Proof of Proposition 3:

Given the definition of Nash’s equilibrium in prices and the expressions 
of the profit functions, the solution can be calculated easily by using the first 
order condition: 

Case 1: Equilibrium prices in region I2
+ .

( ∂B1
+ / ∂p1 ) = 0⇔    (a+ + b+ )(p2 − 2p1)+ z(a

+ + b+ − b+z)(b+ − 2b+v − a) = 0

( ∂B2
+ / ∂p2 ) = 0⇔    (a+ + b+ )(p1 − 2p2)+ z(a

+ + b+ )(a+ + b+ − b+z) = 0  

By solving the two previous equations simultaneously the result is given by:

p1
* =

z(a+ + b+ − b+z)
3(a+ + b+ )

b+ 3− 4v( ) − a+⎡⎣ ⎤⎦
, 
p2
* = z(a

+ + b+ − b+z)
3(a+ + b+ )

b+ 3− 2v( ) + a+⎡⎣ ⎤⎦

This solution must also verify the condition p1
*(z,q,v)− p2

*(z,q,v)∈I2
+

i)	 −z(a+ + b+ − b+z) ≤ p1
* − p2

*   ⇔    3(a+ + b+ )− 2(b+v + a) ≥ 0,

This inequality always holds.

ii)	 p1
* − p2

* ≤ −z(a+ + 2b+v − b+q)

	 ⇔ (b+ )2(3q − 2zv)+ a+b+ (3q − 2z)− (a+ + b+ )(a+ + 4b+2v) ≥ 0.

However, this inequality does not hold for every value of z, q, a, b, v. 
Therefore equilibrium in prices will exist if the previous condition is fulfilled, 
so it can be stated that there is not a equilibrium in prices in region I2

+  for every 
value of z and q. 

Case 2: Equilibrium prices in region I3
+ .

( ∂B1
+ / ∂p1 ) = 0  is equivalent to: (p2 − 2p1)+ (a

+ + b+ − b+z)(1− q) = 0

( ∂B2
+ / ∂p2 ) = 0  is equivalent to: (p1 − 2p2)+ (a

+ + b+ − b+z)(1+ q − 2v) = 0 .

The equilibrium prices are obtained by solving the two previous equations 
together and so that their expressions will be given by:

p1
** = (z / 3)(a+ + b+ − b+z) (3− q − 2v), p2

** = (z / 3)(a+ + b+ − b+z) (3+ q − 4v) .
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Nevertheless, this solution has to verify the condition p1
**(z,q,v)− p2

**(z,q,v)∈I3
+

i) − z(a+ + 2b+v − b+q) ≤ p1
** − p2

**   ⇔ b+zq − z(3a+ + 4b+v)+ 2(a+ + b+ )(q − v) ≤ 0

ii) p1
** − p2

** ≤ z(a+ + b+q)   ⇔ b+zq + 2b+q + 2b+ vz − 2(a+ + b+ )v ≥ 0.

However, these inequalities do not hold for every value of z, q, a, b, v. 
Consequently, equilibrium in prices will exist if the previous condition is car-
ried out so it can be assured that there is no equilibrium in prices in region I3

+  
for every value of z and q.

Case 3: Equlibrium prices in region I4 .

( ∂B1
+ / ∂p1 ) = 0  is equivalent to: (a+ + b+ )(p2 − 2p1)+ z(a

+ + b+ )(a+ + b+ − 2b+z) = 0

( ∂B2
+ / ∂p2 ) = 0⇔    (a+ + b+ )(p1 − 2p2)+ z(a

+ − 2b+v − a+ )(a+ + b+ − b+z) = 0

The equilibrium prices are derived by solving the two previous equations:

p1
*** = (z / 3)(a+ + b+ − b+z) b+ 3− 2v( ) + a+⎡⎣ ⎤⎦ , p2

*** = (z / 3)(a+ + b+ − b+z) b+ 3− 4v( ) − a+⎡⎣ ⎤⎦

Nonetheless, it has to be verified that p1
***(z,q,v)− p2

***(z,q,v)∈I4
+ ,

i) z(a+ + b+q) ≤ p1
*** − p2

***

⇔ b+2(3q − 2zv)+ a+b+ (3q − 2z)+ (a+ + b+ )(a+ − 2b+2v) ≥ 0.

However, this inequality does not hold for every value of z, q, a, b, v.

ii) p1
*** − p2

*** ≤ z(a+ + b+ − b+z)

This inequality is always carried out. Therefore there will be price equilibrium 
if the previous condition holds in which case it can be asserted that there is not 
equilibrium in prices in region I4  for any value of z and q.

Proof of Proposition 4:

The equilibrium prices can be calculated by using the first order condition:

Case 1: Equilibrium prices in region I2
− .

( ∂B1
− / ∂p1 ) = 0  is equivalent to: (p2 − 2p1)+ z(2b

− − b−q − a− ) = 0

( ∂B2
− / ∂p2 ) = 0 , is equivalent to: (p1 − 2p2)+ z(a

− + b−q − 2b−v) = 0 .

Equilibrium prices are obtained by solving the two previous equations, their 
expressions are given by:
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p1
* = (z / 3) 2b− (2− v)− (a− + b−q)⎡⎣ ⎤⎦ , p2

* = (z / 3) 2b− (1− 2v)+ (a− + b−q)⎡⎣ ⎤⎦

However this solution has to verify the condition p1
*(z,q,v)− p2

*(z,q,v)∈I2
−

i) − z(a− − 2b−v − b−q) ≤ p1
* − p2

*   ⇔ 2b− (1− 2v)+ (a− + b−q) ≥ 0

This inequality is always fulfilled.

ii) p1
* − p2

* ≤ −z(a− + 2b−v − b−q)   ⇔ (a− + b−q)− b− (1− 2v) ≤ 0.

This inequality does not hold for every value of z, q, a, b, v and a− ≠ b− . 
However, both inequalities can be verified for any value of z, q, v and a− = b−. 
It can then be guaranteed that no equilibrium in prices in region I3

−  exists for 
every value of z and q and a− ≠ b− . Nevertheless, equilibrium exists if a− = b−

Case 2: Equilibrium prices in region I3
− .

( ∂B1
− / ∂p1 ) = 0 , is equivalent to: (p2 − 2p1)+ (1− q)(a

− − b− + b−z) = 0

( ∂B2
− / ∂p2 ) = 0  is equivalent to: (p1 − 2p2)+ z(a

− + b−q − 2b−v) = 0 .

The equilibrium prices are obtained by solving the two previous equations:

p1
** = (1 / 3)(a− − b− + b−z)(3− q − 2v) , p2

** = (1 / 3)(a− − b− + b−z)(3+ q − 4v)

Nevertheless this solution has to verify the condition p1
**(z,q,v)− p2

**(z,q,v)∈I3
−:

i) − z(a− − b− + b−z) ≤ p1
** − p2

**   ⇔ 2q − 3z − 2v ≤ 0

ii) p1
** − p2

** ≤ z(a− + b− − b−z)   ⇔ 2q + 3z − 2v ≥ 0 .

These inequalities do not hold for every value of z, q, and v and a− ≠ b− .

However, both inequalities can be verified for any value of z, q, v and a− = b−

Case 3: Equilibrium prices in region I4
− .

( ∂B1
− / ∂p1 ) = 0  is equivalent to: (p2 − 2p1)+ z(a

− − b−q) = 0

( ∂B2
− / ∂p2 ) = 0  is equivalent to: (p1 − 2p2)+ z(2b

− (1− v)− (a− − b−q)) = 0 .

Equilibrium prices are obtained by solving the two previous equations and 
giving their expressions by:

p1
*** = (z / 3) 2b− (1− v)+ (a− − b−q)⎡⎣ ⎤⎦ ,    p2

*** = (z / 3) 4b− (1− v)− (a− − b−q)⎡⎣ ⎤⎦
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Nonetheless this solution has to verify the condition p1
∗∗*(z,q,v)− p2

***(z,q,v)∈I4
−

i) z(a− − b− `+b−z) ≤ p1
*** − p2

***   ⇔ b− (2q + 3z)+ (a− − b− )− 2b−v ≤ 0   and

ii) p1
*** − p2

*** ≤ z(a− − b−q)        ⇔ (−b−q)+ (a− − b− )+ 2b−v) ≥ 0.  

These inequalities do not hold for every value of z, q, a, b and v and a− ≠ b−

It can then be guaranteed that no equilibrium in prices in region I3
−  exists for 

every value of z and q and a− ≠ b−  . Nevertheless, equilibrium exists if a− = b−

If a− = b−  then, price equilibrium exists. By substituting these equilibrium 
prices in the profit functions, simple calculation show that location equilibrium 
exists and is given by: x1

*(v) = 0 , x2
*(v) = v. . Therefore, corresponding prices are:  

p1
* = p2

* = b− v (1− v).  


