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Abstract 

 
I give necessary and sufficient conditions under which interest-rate feedback rules eliminate 

aggregate instability by inducing a globally unique optimal equilibrium in a canonical New 

Keynesian economy with a binding zero lower bound. I consider a central bank that initially 

keeps interest rates pegged at zero for a length of time that depends on the state of the economy 

and then switches to a standard Taylor rule. There are two crucial principles to achieving global 

uniqueness. In response to deepening deflationary expectations, the central bank must, first, 

sufficiently extend the initial period of zero interest rates and, afterward, follow a Taylor rule that 

does not obey the Taylor principle. I obtain all results assuming a passive or Ricardian fiscal 

policy stance, so that it is monetary policy alone that eliminates undesired equilibria. The interest 

rate rules that I consider do not require central banks to undergo any significant institutional 

change and do not rely on the Neo-Fisherian mechanism of inducing an increase in inflation by 

first increasing interest rates. 

 
Key words: zero lower bound (ZLB), liquidity trap, New Keynesian model, indeterminacy, 

monetary policy, Taylor rule, Taylor principle, interest rate rule, forward guidance 
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1 Introduction

Short-term nominal interest rates in many developed economies —including Japan, the US

and Europe— have by now spent several years against their effective zero lower bound (ZLB)

or very close to it. One key tool that central banks have used when constrained by the ZLB

is forward guidance, whose main element is a promise to keep short-term nominal interest

rates low for an extended period of time. How long should this period be? Should it be

extended if inflation turns out to be lower than expected? Should it be stage-contingent at

all? Is it more dangerous to over or undershoot the desired optimal time? How should the

promise be communicated to the public and how should the central bank react —or threaten

to react— if outcomes are not what it aimed for? What does it take to “anchor expectations”

and prevent self-fulfilling deflationary traps? Can the central bank do it without the help of

fiscal policy? Is the Neo-Fisherian idea that raising interest rates will cause an increase in

inflation the only way to exit the ZLB?

In this paper, I answer these questions by studying interest rate rules for an economy in

a liquidity trap. I use a canonical deterministic New Keynesian (NK) model in continuous

time with a binding ZLB, as in Werning (2011). A binding ZLB arises because the exoge-

nous natural rate of interest is negative for some finite initial period of time. Eventually,

the natural rate becomes positive, so there is no fundamental reason why nominal interest

rates should remain at the ZLB indefinitely or experience recurring ZLB episodes after liftoff.

However, the economy is susceptible to expectational traps in which the expectation of low

inflation can be self-fulfilling, pushing the economy into the ZLB irrespective of the level

of the natural rate, a suboptimal outcome. The self-fulfilling expectations can also create

macroeconomic instability in the form of multiple equilibria and chaos, also an undesirable

result (Benhabib, Schmitt-Grohe, and Uribe (2001), Benhabib, Schmitt-Grohé, and Uribe

(2002b), Schmitt-Grohé and Uribe (2009)). I assume a credible central bank with commit-

ment follows a monetary policy rule that is very close to actual current practice. The central

bank first promises to keep interest rates pegged at zero for some length of time that can

be made contingent on past, present or forecasted future states of the economy. Once the

promise expires, the central bank forever after follows a standard Taylor rule of the form

i (t) = max {0, r + ξππ (t) + ξxx (t)}, where i (t) is the short-term nominal interest rate, π (t)

is inflation, x (t) is the output gap and r, ξπ and ξx are parameters of the rule chosen by the

central bank. I provide necessary and sufficient conditions for this kind of monetary policy

to produce the socially optimal “forward guidance” equilibrium characterized by Werning

(2011); Eggertsson and Woodford (2003); Jung, Teranishi, and Watanabe (2005) as globally

determinate (i.e. unique) equilibrium. My goal is not to provide an alternative to forward

guidance, but rather to show how to properly communicate it.
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In NK models without a ZLB, following a Taylor rule in which the short-term nominal

interest rate reacts more than one-for-one with inflation —the so-called Taylor principle—

is necessary and sufficient to achieve local determinacy (in a neighborhood of the economy’s

steady-state). In the baseline “three equation” version of the model, the Taylor principle

also delivers optimality of outcomes. In contrast, when the ZLB binds, I find that there are

two crucial principles needed for determinacy.

The first is that the Taylor principle cannot hold for (off-equilibrium) paths of the econ-

omy in which private sector expectations of falling into a deflationary trap are strong enough.

Following the Taylor principle is detrimental because promising to be tough on inflation

outside the ZLB prevents the future boom in inflation and output necessary to arrest the

deflationary expectations while at the ZLB. Delaying liftoff does not help either; it only con-

firms the pessimistic private sector expectations. For all other paths that do not have strong

enough deflationary expectations, the key is to follow the second principle for determinacy

that I explain next; for these paths, whether the Taylor principle holds is neither necessary

nor sufficient for uniqueness of equilibria.

The second principle is that the date for liftoff must be postponed sufficiently far into the

future when initial private sector expectations of falling into the deflationary trap become

stronger. Although compact and relatively easy to communicate, this principle entails several

elements. The most salient one is that the length of time for which interest rates are promised

to be kept at zero must be long enough to preclude deflationary expectations to take hold.

A longer span of interest rates pegged at zero guarantees, by stimulating future output and

inflation, that by the time the central bank reverts to a Taylor rule, the economy will no longer

be constrained by the ZLB. As expectations become more deflationary, the central bank can

fight them by delaying liftoff. This strategy is effective only up to a point. When deflationary

expectations are strong enough, the first principle explained in the last paragraph applies

and the only way to avoid indeterminacy is to not follow the Taylor principle. Conversely,

when deflationary expectations are weak enough, the liftoff time does not need to respond

to changes in expectations. It is only for the intermediate range of deflationary expectations

that are neither too weak nor too strong that delaying liftoff is both necessary and sufficient

to achieve global determinacy.

Another important element of the second principle is that the date of liftoff must be state-

dependent. Because rational expectations of falling into the trap are functions of inflation

and the output gap, responding to changes in expectations entails a state-dependent liftoff.

If liftoff is not state-dependent, irrespective of whether the Taylor principle holds outside the

ZLB, there always are multiple equilibria. This is true even if the central bank is allowed to

follow, after liftoff, a Taylor rule with path-dependent coefficients, a rule almost as flexible as

an unconstrained non-linear rule. It follows that calendar-based forward guidance, in which
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the central bank commits to zero interest rates until a specified future date that does not

change with the state of the economy, can never anchor expectations. In addition, the date

of liftoff must depend on initial expectations of the private sector, expectations that prevail

at the beginning of the liquidity trap. The liftoff rule cannot be purely forward-looking. The

rule for liftoff cannot solely depend on future expected values for inflation and the output

gap. Policies such as the “threshold strategy” pursued by the Federal Reserve (sometimes

called the “Evans rule”) in which interest rates are promised to be kept at zero (or very

low) at least until projected inflation rises above 2.5 percent or unemployment falls below

6.5 percent, even if state-contingent, fail to anchor expectations because they are purely

forward-looking.

The two principles become sharper if the interest rate rule is continuous in the state of

the economy so that, as is usually the case in practice and in most monetary policy rules in

the literature, small changes in the economy lead to commensurately small reactions by the

central bank. With continuous rules, the first principle is now that the Taylor principle can

never hold. To achieve determinacy, even if expectations of falling into the expectational trap

are completely absent, the Taylor principle still cannot hold. If the Taylor principle holds

for some states but not for others, continuity implies that there are some in-between states

exactly at the threshold between following and not following the Taylor principle. For these

states, the Taylor rule is neither tough enough on inflation to anchor expectations outside the

ZLB nor stimulative enough inside the ZLB to guarantee an eventual exit from it, resulting

in multiple equilibria. Because the Taylor principle cannot hold for at least some states (by

the first principle without continuity), it then cannot hold for any state. With continuity of

the interest rate rule, the second principle also becomes more dovish. Rather than requiring

a late enough liftoff when expectations of falling into the deflationary trap are of medium

strength only, the second principle now requires a late enough liftoff for both medium and

weak expectations. Imagine the central bank promises that, for a particular state of the

economy, liftoff will occur earlier the critical time needed for eterminacy. By continuity,

this means that liftoff occurs ealier than the critical time for all states, since otherwise, by

continuity, there always is one state with liftoff occurring at exaclty the critical time, giving

a suboptimal equilibrium. But by the second principle without continuity, liftoff before the

critical times for all states cannot sustain a unique equilibrium

I have expressed the first and second principles in terms of expectations of falling into the

deflationary trap. But what exactly are these expectations? How should they be measured?

The levels of inflation and the output gap are, on their own, not very informative about

whether the economy is in a liquidity trap, at risk of converging to a deflationary steady-state

or on a desirable policy path, as has been already pointed out through various arguments

by Benhabib et al. (2001), Werning (2011) and others. Most strikingly, Benhabib et al.
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(2001) show that the economy can be arbitrarily close to the preferred non-deflationary

steady-state (the one that minimizes deviations of inflation and output from target) and

yet be inexorably headed to the deflationary trap. My results show that, in the context

of the basic NK model with a ZLB that I use, expectations of falling into the deflationary

trap are defined by two specific linear combinations of inflation and the output gap. The

first linear combination, which I refer to as the “trap factor”, measures the degree to which

expectations are pushing the economy into the undesirable deflationary steady-state. Higher

inflation and higher output gaps, present or future, make these expectations weaker. The

second linear combination, the “exit factor”, gives expectations of moving away from the

undesirable deflationary steady-state. These expectations become stronger when the output

gap increases or inflation decreases. The tug of war between the two factors determines

whether the economy can escape the ZLB.

While indeterminacy is an important issue in all NK models, it is especially difficult to

eliminate it in the presence of a binding ZLB. Benhabib et al. (2001) show that indeterminacy

is a robust feature of Taylor-style feedback rules when a ZLB is introduced, especially when

the Taylor principle is satisfied. While the same exact results apply in the framework I use,

I am able to eliminate the multiplicity of equilibria by considering a broader class of interest

rate rules that allow for a state-contingent liftoff date. Benhabib et al. (2002b) show that a

Taylor rule that is non-decreasing, respects the ZLB and follows the Taylor principle around

the desired (non-deflationary) steady-state gives rise to chaotic trajectories for the economy.

In contrast, I find that there can be global determinacy without chaos while using a Taylor

rule. Indeed, the Taylor principle helps eliminate chaos in the model I use. Thus, whether

the Taylor principle induces macroeconomic instability of this kind depends on the specific

setting under consideration.

In the same framework of Werning (2011) that I use in this paper, Cochrane (2013)

shows that an economy in a liquidity trap exhibits indeterminacy for any given (non-state

contingent) path of nominal interest rates. I extend Cochrane (2013)’s result by showing that

if the interest rate path is not state-contingent only until liftoff —instead of for the entire

path— and then follows a Taylor rule, indeterminacy still obtains for any choice of Taylor

rule coefficients. This result shows that a key source of indeterminacy is the zero interest

rate peg during the liquidity trap. Cochrane (2015), building on ideas in Werning (2011),

shows that for any given (non-stage contingent) path of nominal interest rates, there always

exists a Taylor rule that can implement the given path as a locally determinate equilibrium

by having a time-varying intercept or inflation target and following the Taylor principle. My

results show that this strategy does not work if the goal is to implement the given interest

rate path as a globally determinate equilibrium. On the other hand, although I only prove

how to implement the optimal equilibrium as the unique global equilibrium of the economy,
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the same techniques can be used to implement any other equilibrium as the unique global

equilibrium. Thus, I generalize the conclusions in Cochrane (2015) to situations in which the

ZLB binds and uniqueness is global.

In the discrete-time version of the model I use in this paper, Eggertsson and Woodford

(2003) implement the optimal equilibrium as a locally determinate equilibrium by means

of an “output-gap adjusted” price-level target and as a globally determinate equilibrium by

adding an “active” or “non-Ricardian” fiscal policy commitment. They are the first to put

forth a fiscal-monetary rule that produces global determinacy in NK models with a ZLB.

My results are different in four ways. First, the monetary policy rule I study requires little

change in the institutional arrangements of most central banks, an advantage when putting

it into practice. The policy instrument is the short-term nominal interest rate, already

the predominant instrument of choice. State-contingent forward guidance has already been

tried, as with the Evans rule mentioned above, and Taylor rules fit the observed behavior of

many central banks outside the ZLB quite well. Implementation capabilities for the rules I

investigate are in place today. A switch to a price-level target may entail some initial fixed

costs, such as a temporary loss of credibility, although the size and duration of these costs

are difficult to assess. Perhaps a more relevant argument is that, rightly or not, central

banks are not currently considering a move to price-level targets, at least not to the general

public’s knowledge1. Of course, a price-targeting regime can be implemented and explained

by means of an interest rate rule and, conversely, the interest-rate rules that I study can be

communicated as a price-targeting rule if the target is defined appropriately. However, the

essence of the rule in Eggertsson and Woodford (2003) is more naturally explained as a price

level targeting regime while the rules I examine are more naturally explained as interest rate

rules. Since communication is a key aspect of policy rules, the distinction seems, at the very

least, worth mentioning.

Second, unlike price-level targeting, the interest rate rules I consider can be made mem-

oryless after liftoff and still guarantee global determinacy. All path-dependence can end

when the promise to keep interest rates at zero ends. The Taylor rule that the central bank

follows after liftoff can be the same —have the same coefficients— for any path that the

economy takes. The path dependence for the rules I consider is essential before liftoff but

not afterwards. In price level targeting, the closing of the price gap that opens while at the

ZLB continues after interest rates become positive. The trajectory of nominal interest rates

implied by the target is always backward looking for at least some time after the end of the

ZLB period.

1 Judging from meeting minutes, the Federal Open Market Committee (FOMC) discussed and rejected
nominal GDP targeting in 1982, 1992 and 2011 (Committee (2015a), Committee (2015b), Committee
(2015c)), but not without noting some of its merits. Bernanke (2015b) and Bernanke (2015a) explain
why the FOMC rejected nominal GDP targeting in 2011.
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Third, Eggertsson and Woodford (2003) consider an economy with shocks and perfect

foresight while I have a deterministic economy without shocks. This allows Eggertsson and

Woodford (2003) to show that the rule they propose can be implemented without any esti-

mate or knowledge of the statistical process for the natural rate of interest, a very appealing

feature. Since I do not consider shocks, it is not possible to evaluate whether the same

would hold true for the rules I deal with. In terms of other informational requirements,

both types of rule are similar and require knowledge of current inflation, the output gap and

parameters of the model. One distinction is that with price-level targeting the central bank

must implement a specific time-varying target, while the interest rate rules in this paper

only require a “strong enough” response. While this makes no difference strictly inside the

perfect-information model, in practice it may be a desirable trait of rules. For example, hav-

ing to set the policy instrument above a certain bound instead of exactly equal to a single

value may ease the practical burden of having to estimate the parameters in the model, even

if the bound itself depends on parameters. A central bank can judge a certain set of parame-

ters to be ex-ante reasonable and then enact a policy that works for all such parameters. All

it takes is to keep interest rates pegged at zero for a length of time longer than the maximum

lower bound across all parameters under consideration. The “strong enough” requirement

is akin to the Taylor principle requiring that the response of interest rates to inflation is

strong enough. It gives the central bank a higher margin of error; overshooting the intended

length of time for which interest rates are promised to be zero does not re-introduce indeter-

minacy. On the other hand, undershooting could produce indeterminacy. It is in this sense

that undershooting the desired optimal time is more dangerous than overshooting it. For

determinacy, an ambivalent central bank should err on the side of too long, rather than too

short, a ZLB period.

Fourth, and perhaps most importantly, global determinacy for the interest rate rules I

contemplate is achieved with “passive” or “Ricardian” fiscal policy, in which the government

always adjusts taxes or spending ex-post to validate any path of the endogenous variables

that may arise. Thus, monetary policy is anchoring expectations on its own. There is

no need for help from fiscal policy and no requirement of fiscal insolvency along some off-

equilibrium paths. To my knowledge, this paper is the first to present a monetary policy

regime that produces global determinacy when fiscal policy is passive/Ricardian and the

ZLB binds. This does not imply that fiscal rules or the fiscal theory of the price level are

unimportant in theory or not relevant in practice. I do not analyze active/non-Ricardian

rules, so my results are silent regarding the relative merits of eliminating indeterminacy by

means of an active monetary policy versus an active fiscal policy. The need to study the

combined fiscal-monetary regime remains as important as ever2.

2 See Leeper (1991), Sims (1994), Benhabib, Schmitt-Grohé, and Uribe (2001), Woodford (2001), Benhabib,
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Schmitt-Grohé and Uribe (2014) propose an interest rate based strategy to escape liquid-

ity traps that entails temporarily deviating from a Taylor rule by increasing nominal interest

rates in a deterministic and non-state contingent way until it reaches a pre-specified target.

This Neo-Fisherian strategy succeeds in setting a floor for inflation without the need for a

“non-Ricardian” fiscal stance, although it does not lead to globally determinate outcomes.

Cochrane (2015) shows that, under a broad variety of assumptions, NK models in a liquidity

trap have equilibria with the Neo-Fisherian feature that when the central bank raises interest

rates, inflation rises both in the short and the long run. He shows how to construct Taylor

rules that implement any such equilibria in a locally determinate way. In this paper, I present

an example in which global determinacy is attained by Neo-Fisherian means. The central

bank commits to raising interest rates at particular dates in the future with little concern for

what level of inflation will prevail at the time. The strong commitment to increasing rates

in the future dispels any deflationary expectations by the same logic as in Schmitt-Grohé

and Uribe (2014) and Cochrane (2015), allowing the economy to exit the expectational trap.

For these Neo-Fisherian rules, it is still necessary to have a stage-contingent liftoff for global

determinacy, an ingredient absent in Schmitt-Grohé and Uribe (2014) and Cochrane (2015).

At any rate, my main results focus on rules that are not Neo-Fisherian to keep mone-

tary policy as close to current practice as possible, attempting to minimize the distance to

real-world implementation. Even if Neo-Fisherianism ends up being empirically vindicated

or becomes a consensus theory, it is currently far from central bank orthodoxy and does not

seem to be under serious consideration by any major central banks. There are many other

proposals on how monetary policy should be conducted in a liquidity trap. Some prominent

examples include: Svensson (2004), who advocates a currency depreciation combined with

a calibrated crawling peg; McCallum (2011), Sumner (2014) and Romer (2011), who rec-

ommend nominal GDP targeting; and Blanchard, DellAriccia, and Mauro (2010) and Ball

(2014), who promote increasing the inflation target by contending that the trade-off of higher

steady-state inflation and less frequent visits to the ZLB is worth undertaking. For the class

of rules I consider in this paper, there are no suboptimal trade-offs and no need to change

central bank communication to accommodate new monetary or price aggregates, price-level

or inflation targets, “shadow” rates, exchange rates, the central bank’s balance sheet, or the

quantity or price of other assets.

Schmitt-Grohé, and Uribe (2002a), Cochrane (2011) among many other.

7



2 The Canonical New Keynesian Model with a ZLB

I use the framework of Werning (2011), a standard deterministic New Keynesian model

in continuous time, log-linearized around a zero-inflation steady state.3 The economy is

described by:

ẋ (t) = σ−1 (i (t)− r (t)− π (t)) , (1)

π̇ (t) = ρπ (t)− κx (t) , (2)

i (t) ≥ 0. (3)

Markets are complete. The variables x (t) and π (t) are the output gap and the inflation rate,

respectively. The output gap is the log-deviation of actual output from the hypothetical

output that would prevail in the flexible price, efficient allocation. Henceforth, for brevity, I

refer to the output gap simply as output. The central bank’s policy instrument is the path for

the nominal short-term (instantaneous) interest rate i (t), which must remain non-negative

at all times. The variable r (t) is the exogenous natural rate of interest, defined as the real

interest rate that would prevail in the flexible price, efficient economy with x (t) = 0 for all

t. The process for r (t) is

r (t) =

{
rl < 0 , 0 ≤ t < T

rh > 0 , t ≥ T
.

The constants T > 0, rl < 0 and rh > 0 are given. The economy starts in a liquidity trap

and exits it with certainty at time T . None of the results in this paper change if the path

for r (t) is different as long as r (t) < 0 for t < T and r (t) > 0 for t ≥ T .

Equation (1) is the IS curve, the log-linearized Euler equation of the representative con-

sumer. The constant σ−1 > 0 is the elasticity of intertemporal substitution. Equation (2) is

the New Keynesian Phillips Curve (NKPC), the log-linear version of firms’ first-order con-

ditions when they maximize profits by picking the price of consumption goods subject to

consumers’ demand and Calvo pricing. The constant ρ > 0 is the representative consumer’s

discount rate and κ > 0 is related to the amount of price stickiness in the economy. As

3 See Woodford (2003) or Gaĺı (2009) for details.

Although the majority of analysis of determinacy in New Keynesian models is done in log-linearized
models, Braun, Körber, and Waki (2012) contend that conclusions would differ in the non-linear model.
On the other hand, Christiano and Eichenbaum (2012) show that the additional equilibria that arise from
non-linearities in Braun et al. (2012) are not E-learnable. In addition, Christiano and Eichenbaum (2012)
show that the linear approximation is accurate except on extreme cases, such as when output deviates
by more than 20 percent from steady state.

While important, I do not seek to address these issues here and simply use the log-linear model (plus the
ZLB), the standard practice in the literature.
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κ→∞, the economy converges to a fully flexible price economy while prices are completely

rigid when κ→ 0.

Definition. An equilibrium consists of bounded paths for output, inflation and the nominal

interest rate {x (t) , π (t) , i (t)}t≥0 that, given a path {r (t)}t≥0 for the natural rate, satisfy

equations (1)-(3).

There are three elements in the definition that are worth discussing in the present context.

First, the requirement that output and inflation remain bounded at all times is equivalent

to the asymptotic conditions

lim
t→∞
|x (t)| < ∞, (4)

lim
t→∞
|π (t)| < ∞. (5)

The justification and role that equation (5) plays for determinacy of equilibria is contro-

versial in the literature.4 In the specific setup of this paper, inflation explodes if and only

if the output gap explodes, making it impossible to differentiate nominal from real explo-

sions. Thus, equation (5) can be omitted from the definition of equilibrium without any

consequences. In the non-linear version of the simple model I consider, unbounded infla-

tion leads to real consumption exploding or becoming zero, connecting nominal and real

variables asymptotically. Equations (4) and (5) then capture transversality conditions. If

consumption explodes, the behavior of the representative agent is suboptimal, as he can

reallocate consumption intertemporally and consume more in every period. Similarly, zero

asymptotic consumption implies suboptimality since transferring consumption from today,

when marginal utility is finite, to the distant future, when marginal utility is unbounded,

increases utility. In a more general model, however, it may be possible to separate nominal

and real explosions and the conditions in equations (5) and (5) may not correspond directly

to economically meaningful transversality conditions in the non-linear model.

Second, paths for x (t) and π (t) that satisfy equations (1) and (2) must be continuous.5

If there were any jumps and because markets are complete, the representative consumer’s

4 Cochrane (2011) argues that there is no good economic reason to prevent nominal explosions. McCallum
(2009) and Atkeson, Chari, and Kehoe (2009) agree and, among others in an active area of research,
propose different criteria to eliminate or select equilibria. Woodford (2003), Wren-Lewis (2013) and
others defend the approach of using equation (5).

5 Under the usual “classical” definition, differentiability of x (t) and π (t) would also be required for all t. I
instead use derivatives in the distribution sense or in the sense of “Filippov solutions” (Filippov (2013)),
a weaker solution concept that allows for non-differentiability in a set of measure zero and is a natural
choice for the problem at hand. However, any other of the usual weaker notions of derivative (such as
viscosity solutions) would yield the same results as long as derivatives are finite everywhere.

Without this purely technical modification, the assumed discontinuous process for the natural rate r (t)
would imply that (1) and (2) have no solution. More importantly, even if r (t) were smooth, the central
bank’s control problem of Section 3 would have no solution since the solution requires a jump in the
control i (t).
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Euler equation (in its IS incarnation) would be violated due to the existence of arbitrage

opportunities. On the other hand, there are no smoothness requirements for i (t) to be part

of an equilibrium, as it is a choice variable for the central bank.

Third, neither the definition of equilibrium nor the dynamics of the economy in equations

(1) and (2) make any explicit reference to fiscal policy although, as stressed by Woodford

(1995), Sims (1994), Benhabib et al. (2001), Cochrane (2011) and others, determinacy or

the lack thereof is a result of the joint monetary-fiscal regime. The implicit fiscal behavior I

assume is that of a “Ricardian” (in the terminology of Woodford (2001)) or “passive” (in the

terminology of Leeper (1991)) regime: The fiscal authority always adjusts taxes or spending

ex-post to validate any path of the endogenous variables that may arise. I consider a passive

fiscal policy to highlight that the determinacy results I present are a direct consequence of

central bank policy and do not need any specific rules for government spending, debt or

taxes to eliminate undesirable equilibria.

3 The Optimal Equilibrium

The social welfare loss function for the economy is

V =
1

2

∫ ∞
0

e−ρt
(
x (t)2 + λπ (t)2

)
dt. (6)

The constant λ > 0 is a preference parameter that dictates the relative importance of

deviations of output and inflation from their desired value of zero. This quadratic loss

objective function can be obtained as a second order approximation around zero inflation

to the economy’s true social welfare function when the flexible price equilibrium is efficient

(Woodford, 2003). An optimal equilibrium is an equilibrium that minimizes (6).

Werning (2011) solves for the optimal equilibrium {x∗ (t) , π∗ (t) , i∗ (t)}t≥0. He finds that

it is unique and that the optimal path for the nominal interest rate is

i∗ (t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗ (t) + rh , t ≥ t∗
, (7)

where the optimal liftoff date, t∗, is a constant that can be found as a function of the

parameters of the model. Importantly, t∗ > T . The optimal policy is to commit to zero

nominal interest rates for longer than the natural rate r (t) is negative — one of the main

aspects of forward guidance. However, equation (7) is not a policy rule. Indeed, the optimal

path (1− κσλ) π∗ (t) + r (t) is a single fixed path, a function of time only. It describes one

particular equilibrium. It is neither contingent on the actions of the central bank nor on
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whether realized inflation, output or private sector expectations happen to take one value or

another. As such, it addresses neither the on nor the off-equilibrium behavior of the central

bank and hence says nothing about implementability or indeterminacy.

Plugging (7) into (1) and (2) gives the optimal paths for inflation and output for all

t > 0. Given x∗ (0) and π∗ (0), equations (1), (2) and (7) then determine the entire optimal

equilibrium. One way to find x∗ (0), π∗ (0) and t∗ is to use the maximum principle, as in

Werning (2011).

Figure 1 shows representative optimal paths for three parameter configurations in a π-x

phase diagram. It is most easily understood in three stages, starting from the last one and

working backwards in time. The beginning and end times for each stage are determined by

the discontinuities of r (t) and i∗ (t).

In the third and last stage, when t ≥ t∗, the economy has positive natural and nominal

rates. The dynamics of (π∗ (t) , x∗ (t)) are saddle-path stable for t ≥ t∗, with saddle given by

x = φπ, (8)

where

φ =
1

2κ

(
ρ+

√
4λκ2 + ρ2

)
> 0. (9)

To ensure that inflation and output remain bounded so as to satisfy the asymptotic conditions

(4) and (5), the economy must move towards the unique steady-state (πss, xss) = (0, 0) along

the saddle path. If and only if κσλ = 1, the economy reaches its steady state exactly at t∗

and therefore does not need to travel along the saddle path to reach the steady-state. The

blue path in figure 1 shows such a case. The other two cases keep all parameters unchanged

except for λ, the relative weight given to deviations of output and inflation from zero. As can

be seen in the figure, the optimal paths with larger λ tolerate smaller deviations of inflation

from zero. Because the ZLB does not bind after t∗, the solution in this third stage is always

independent of the process for the natural rate.

The second stage is t ∈ [T, t∗), when the natural rate is positive but the nominal rate

is zero. Starting at a given (π (T ) , x (T )), inflation and output move so as to minimize the

time it takes to reach the saddle path x = φπ. This is accomplished by pegging nominal

rates to zero.When x (t) and π (t) hit the saddle path, the third stage begins.

In the first stage, given by t ∈ [0, T ), the natural rate is negative and the nominal rate

is at the ZLB. The zero nominal rates in the first two periods imply a low real interest rate

that reduces the incentive to save, producing high consumption. As a result, inflation and

output eventually become positive before T . The initial point (π∗ (0) , x∗ (0)) is determined

by optimality conditions that trade off deviations of inflation and output from zero at each

of the three stages.
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λ=20
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π

x

Figure 1: Optimal paths for inflation (in the horizontal axis) and the output gap (in the
vertical axis) for three values of λ, the weight that the central bank places on inflation relative
to output. The rest of the parameters used are taken from Werning (2011) (T = 2, σ = 1,
κ = 0.5, ρ = 0.01, rh = 0.04 and rl = −0.04).

4 Calendar-based Forward Guidance Leads to Indeter-

minacy

In this section, I study a central bank that attempts —yet fails— to implement the optimal

equilibrium as the unique equilibrium of the economy by means of an interest rate rule in

which the time of liftoff is a constant. From now on and for the rest of the paper, the central

bank has perfect commitment and credibility.6

An initial natural candidate rule is based on equation (7):

i (t) =

{
0 , 0 ≤ t < t∗

(1− κσλ) π∗ (t) + rh , t ≥ t∗
. (10)

Although equations (7) and (10) look very similar, they are conceptually different. While

equation (7) describes the single optimal path i∗ (t), equation (10) is a rule —a policy

response function— by which the central bank commits to set interest rates in all possible

states of the world. It therefore provides both the on and off-equilibrium behavior of the

central bank. For this particular rule, the behavior of the central bank is the same for

all states of the world. The central bank announces that that interest rates will follow

6 Without them, there is no hope of implementing the optimal equilibrium.
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the optimal path of nominal interest rates described in the last section, which is the same

in all states of the world, come what may. If the central bank follows rule (10), then

it can clearly implement the optimal equilibrium whenever (π (0) , x (0)) = (π∗ (0) , x∗ (0)).

However, Cochrane (2013) shows that many other equilibria are also consistent with this rule,

leading to an indeterminate outcome. In fact, he goes further and shows that if the central

bank commits to any given non-explosive path of nominal rates, irrespective of its optimality

or the central bank’s commitment ability, the economy suffers from indeterminacy. More

formally, rules of the form i (t) = f (t) that are explicitly only dependent on t (as opposed

to dependent on x (t) or π (t)) produce indeterminacy for any bounded choice of f . This

means that forward guidance that makes no explicit reference to the state of the economy

can never anchor expectations.

The intuition for this result is as follows. By virtue of equations (1) and (2), the choice

of i (t) directly affects —we may even say controls— inflation and output for all t > 0, but

not for t = 0. The path of nominal interest rates only affects changes in x and π starting

at t = 0, but cannot directly influence x (0) or π (0). Initial inflation and output, instead

of being control variables like in the last section, are now non-predetermined or “jump”

variables. The inability to affect current inflation and output with current interest rates,

economically speaking, stems from the forward-looking nature of the IS equation. Can the

central bank nevertheless induce x (0) and π (0) to be optimal in some way? For the rules

we examine in this section, which are functions of time only, the answer is no. In the

following sections, I characterize a class of rules that can indeed uniquely implement the

desired equilibrium by guaranteeing that (π (0) , x (0)) = (π∗ (0) , x∗ (0)).

To understand the inability of the central bank to influence x (0) or π (0) with a rule

like (10), one can interpret i (t) = (1− κσλ)π∗ (t) + rh or, more generally, i (t) = f (t) as a

Taylor rule with a time-varying intercept equal to f (t) and coefficients of zero on inflation

and output. Such a rule does not satisfy the Taylor principle. If f (t) is such that the ZLB

does not bind after t∗, as is the case for the rule in equation (10), the classical analysis

of determinacy in log-linear New Keynesian model without a ZLB applies. The dynamics

of (π (t) , x (t)) are saddle-path stable for t ≥ t∗. The existence of a saddle path breeds

indeterminacy. Indeed, there is one equilibrium for each point in the saddle path. Pick a point

(π̃, x̃) on the saddle path and consider a candidate equilibrium with (π (t∗) , x (t∗)) = (π̃, x̃).

For t ≥ t∗, the economy follows the dynamics of the IS equation and the NKPC with

i (t) = (1− κσλ) π∗ (t) + r (t) by moving along the saddle path towards the steady state

(or, if (π̃, x̃) = (πss, xss), it hits the steady-state directly at t∗). Now trace the dynamics of

the IS and the NKPC backwards in time with i (t) = 0, from t = t∗ to t = T , starting at

(π (t∗) , x (t∗)) = (π̃, x̃) and ending at some (π (T ) , x (T )). Again, setting nominal rates to

zero, follow the dynamics of the IS and the NKPC backwards in time from t = T to t = 0,
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now with initial condition (π (T ) , x (T )) inherited from the previous step. The resulting path

is bounded, continuous, obeys the IS equation, the NKPC and the ZLB: It is an equilibrium.

Because of the linearity of the system, the saddle path and the set of initial conditions

x (0) and π (0) that put the system on the saddle path at t∗ are both lines in the π-x plane.

The equilibria are thus indexed by points in a line, which we can take to be the saddle path

or the π (0)-x (0) line that gets the economy to the saddle path at t∗. Figure 2 shows these

two lines together with paths for inflation and output from equilibria that start at different

x (0) and π (0). All of these equilibria are obtained using identical parameters and the same

interest rate rule, given by (10). They are different equilibria of the same economy, unlike

those in figure 1, which show the optimal equilibria for different parameter configurations.

The green line is the optimal equilibrium that starts at (π∗ (0) , x∗ (0)). The parameters

in figure 2 are the same as those used to get the green line in figure 1, and so the green

paths in both figures are the same. The red line is an equilibrium that reaches steady state

(πss, xss) = (0, 0) at t∗, just when the ZLB period ends. The yellow line is one of the “local-

to-frictionless” equilibria from Cochrane (2013) in which inflation and output do not explode

backwards in time. The remaining paths have two arbitrary values for π (0) and illustrate

the kinds of behavior that the various equilibria can exhibit.

Optimal path

Steady-state on exit of ZLB

No explosion backward in time

Low π0

High π0

π

x

Figure 2: Multiple equilibria when the central bank chooses a rule for interest rates that
sets them equal to the optimal path for all realizations of inflation, output and their expec-
tations. Interest rate rules that are not contingent on the sate of the economy never anchor
expectations.

I now extend the results from Cochrane (2013) to Taylor rules. Consider a central bank

that commits to keeping interest rates at zero until some time t and follows a Taylor rule

14



that respects the ZLB forever after. I call t the liftoff date even though the Taylor rule may

prescribe zero interest rates for some time after t. Therefore, liftoff may or may not coincide

with interest rates becoming positive for the first time after the liquidity trap is over. Liftoff

in this context is defined as the end of a commitment to zero interest rates, not as the actual

end of zero interest rates.

The next proposition establishes that following any Taylor rule after a constant liftoff

date does not solve the problem of indeterminacy. One direct implication is that following

the Taylor principle outside the ZLB does not guarantee a unique equilibrium, as is the case

in models without the ZLB. I allow the Taylor rule coefficients to be arbitrary functions

of inflation and output realized at time zero, R0 = (π (0) , x (0)) , to highlight that the key

obstacle for determinacy is a constant liftoff date and not the choice of coefficients. When

the liftoff date is constant and the economy is deterministic, conditioning the Taylor rule

coefficients on R0 is the same as conditioning on the entire path {π (t) , x (t)}t∈[0,∞). Although

not exactly the same as allowing for a general non-linear rule, being able to have state-

dependent Taylor-rule coefficients offers the central bank significant flexibility. For example,

it gives the central bank the freedom to pick coefficients as if it knew which of the many

potential equilibria will be realized. Despite these faculties, indeterminacy obtains.Calendar-

based forward guidance, in which liftoff is announced for a particular date without making

reference to the state of the economy, can therefore never anchor expectations, irrespective

of what Taylor rule is followed afterwards.

Proposition 1 (Calendar-based forward guidance leads to indeterminacy). Let t≥ T be a

constant7. Let ξπ (R0) and ξx (R0) be arbitrary functions. If κσλ 6= 1, the rule

i (t) =

{
0 , 0 ≤ t < t

max {0, ξπ (R0) π (t) + ξx (R0)x (t) + rh} , t ≤ t <∞
(11)

cannot implement the optimal equilibrium as the unique equilibrium of the economy.

Proof. Assume that rule (11) implements the optimal equilibrium. I show that it also im-

plements a different second equilibrium. Because the rule (11) implements the optimal

equilibrium, we have t= t∗. Consider the path that starts at (π (0) , x (0)) and reaches

(πss, xss) = (0, 0) at t = t∗ when following (1), (2) and (11). This path always exists, since

we can find it by starting at (0, 0) at t = t∗ and running time backwards until t = 0 using

i (t) = 0 throughout. Since the point (0, 0) is a steady-state after t∗ for any choice of ξπ (R0)

7 Throughout the paper, I show results that assume the liftoff date does not occur before T , as even without
commitment a central bank trying to minimize the social loss function in equation (6) would set i (t) = 0
for t < T , when the natural rate is negative. However, none of my results depend on this assumption;
extending results to allow for any liftoff date is straightforward. They key for the relevant proofs is that
the liftoff day is bounded below (which it always is, by zero).
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and ξx (R0), (π (t) , x (t)) remains bounded. If κσλ 6= 1, (x (t) , π (t)) = (π (t∗) , x (t∗)) =

(0, 0) 6= (π∗ (t∗) , x∗ (t∗)) (see Werning (2011) for a proof). Hence, when κσλ 6= 1, the path

that starts at the (π (0) , x (0)) that reaches (0, 0) at t = t∗ constitutes an equilibrium dif-

ferent from (x∗ (t) , π∗ (t)) for any choice of functions ξπ (R0) and ξx (R0). When κσλ = 1,

the optimal equilibrium happens to have (x∗ (t) , π∗ (t)) = (0, 0) for all t ≥ t∗ and the op-

timal equilibrium is indeed implementable as the unique equilibrium (Appendix A.2 shows

how). �

5 Rules with State-Dependent Liftoff Date

I now introduce interest rate rules that allow for liftoff to be contingent on the state of the

economy. As in the last section, liftoff refers to the time when the central bank switches

from committing to zero interest rates to following a Taylor rule and not necessarily to the

first time interest rates turn positive after the liquidity trap. Unlike the case of a constant

liftoff time, the initial state of the economy, (π (0) , x (0)), is no longer a full description of

the state of the economy. Expectations of the future can be important determinants of when

liftoff occurs, even after x (0) and π (0) are realized. In order to study equilibria in which

expectations matter, I start by defining a a rational expectations equilibrium.

5.1 Rational Expectations Equilibrium

Let t1 be the actual time of liftoff that is realized in the economy andRs = (π (0) , x (0) , π (s) , x (s))

the vector containing realized inflation and output at times t = 0 and t = s. Conditional

on time t-information, the private sector has subjective expectations given by a condi-

tional expectations operator Et [·]. Private sector expectations are public knowledge. As

of time t = 0, the private sector expects liftoff from the ZLB at time E0 [t1]. The time-

0 expectation for the values that inflation and output will take at t = 0 and t = t1 are

E0 [Rt1 ] = (π (0) , x (0) , E0 [π (t1)] , E0 [x (t1)]).

Before t = 0, a central bank with perfect commitment announces a liftoff rule. The rule

is a function f : R4 → R that specifies a time of liftoff for each possible combination of

current private sector expectations of time-0 and time-t1 inflation and output. The rule for

liftoff works as follows. At t = 0, inflation and output are realized to some specific values,

say π0 and x0. Also at t = 0, the private sector forms expectations of Rt1 , say E0 [Rt1 ] =

(π0, x0, π1, x1), which are observed by the central bank. The central bank then computes the

number f (π0, x0, π1, x1). If f (π0, x0, π1, x1) = 0, the central bank lifts off now (at t = 0) and,

by definition, t1 = 0. If f (π0, x0, π1, x1) 6= 0, the central bank does not lift off and repeats

the same procedure in the future. Specifically, for any time s such that liftoff has not yet
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occurred, having observed private sector expectations Es [Rt1 ] given by, say, (π̃0, x̃0, π̃1, x̃1),

the central bank computes the number f (π̃0, x̃0, π̃1, x̃1). If f (π̃0, x̃0, π̃1, x̃1) = s, then the

central bank lifts off at time s and consequently t1 = s. If f (Et [Rt1 ]) 6= t for all t, then the

central bank never lifts off and i (t) = 0 for all t. As before, I assume f ≥ T .

Definition. A rational expectations equilibrium is an equilibrium in which private

sector expectations are validated, i.e. for all t, s ≥ 0

Es [x (t)] = x (t) , (12)

Es [π (t)] = π (t) , (13)

Es [f (Rt1)] = f (Rt1) , (14)

and central bank announcements are credible, i.e. for all t ≥ 0 nominal interest rates follow

the central bank’s announced rule and

t1 = f (Rt1) . (15)

The condition that t1 = f (Rt1) in equation (15) is not tautologically satisfied. Indeed,

the central bank can choose a rule f for which there is no t1 such that t1 = f (Rt1). To

drive home this idea, consider the function f (Rt1) = t + 1. The central bank commits to

liftoff one year from the current date, for all future dates. Clearly, there is no solution to

t1 = f (Rt1) = t1 + 1. In this case, liftoff never occurs8. More generally, the liftoff date t1 in

a rational expectations equilibrium is a fixed point of

t1 = f (π (0) , x (0) , π (t1) , x (t1)) . (16)

Because, as described earlier, the central bank lifts off at the earliest time for which t1 =

f (Rt1), t1 is actually the smallest fixed point of equation (16).

Because I only analyze rational expectations equilibria, from now on I directly write x (t)

instead of Es [x (t)] and π (t) instead of Es [π (t)]. However t is useful to keep in mind for the

interpretation of many of the results below that x (t1) and π (t1) are the actual realization

of inflation and output at t1 just as much as they are, as of some time t < t1, expectations

of future inflation and output at liftoff.

8 One technicality is worth pointing out. If t1, f (Rt1) ∈ R, the definition of rational expectations equilib-
rium does not allow for an equilibrium in which liftoff never occurs, since condition (15) would not hold.
Allowing for t1, f (E) = ∞ restores this possibility. When liftoff never occurs, the economy converges
to the non-optimal deflationary steady-state (πzlb, xzlb) =

(
−rh,− ρ

κrh
)
6= (0, 0) and, in addition, there

always is indeterminacy.

A central bank hoping to avoid non-optimal equilibria and/or indeterminacy will never pick a rule where
this happens, so there is little loss in assuming liftoff must occur in finite time.
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5.2 A Neo-Fisherian Rule

The smallest necessary deviation from the constant liftoff date rule (10) that produces a

determinate optimal equilibrium is to change liftoff so that it is equal to t∗, t∗ + 1 or t∗ + 2

depending on the values of x (0) and π (0). More precisely, the interest rate rule is

i (t) =

{
0 , 0 ≤ t < f (Rt1)

(1− κσλ)π∗ (t) + rh , t ≥ f (Rt1)
, (17)

where

f (Rt1) =



t∗ ,
if (π (0) , x (0)) = (π∗ (0) , x∗ (0)) or

Ax (0) +Bπ (0) 6= C

t∗ + 1 ,
if (π (0) , x (0)) 6= (π∗ (0) , x∗ (0)) and

Ax (0) +Bπ (0) = C and Dx (0) + Eπ (0) 6= F

t∗ + 2 , otherwise

(18)

for some constants A, B, C, D, E, F given explicitly in Appendix A.3. This example shows

that a state-dependent liftoff time is a powerful tool to fight indeterminacy at the ZLB. It

also shows that when a binding ZLB is introduced, following the Taylor principle is no longer

necessary for determinacy (in the next section, I show it is also not sufficient). The rule in

equation (17) can be thought of as a Taylor rule with coefficients of zero on inflation and

output and a time-varying intercept equal to r̂ (t) = (1− κσλ) π∗ (t) + r (t) > 0.

In this rule, the central bank commits to following the optimal path after liftoff irrespec-

tive of the state of the economy. The only state-dependent part of the rule is the time of

liftoff. Since the optimal rule has positive interest rates after t∗, the economy under the rule

given by equations (17)-(18) is always outside the ZLB for all t ≥ t1 and thus has the same

behavior as the optimal equilibrium explained in section 3: The dynamics of the economy are

saddle path stable, with a linear saddle that goes through the steady state (πss, xss) = (0, 0).

When π (0) = π∗ (0) and x (0) = x∗ (0), the rule gives f (Rt1) = t∗, i (t) = i∗ (t) and

therefore the optimal equilibrium is a rational expectations equilibrium. In all other cases,

the choice of f ensures no equilibrium is possible. To see why, consider a candidate equilib-

rium with initial conditions π (0) and x (0) different from (π∗ (0) , x∗ (0)). There are three

cases. First, if the economy is not on the saddle path at t∗, then the rule prescribes liftoff at

t∗. The equation Ax (0) + Bπ (0) 6= C in rule (18) describes the set of points (π (0) , x (0))

for which this happens. Figure (2) is a useful guide. The condition Ax (0) + Bπ (0) 6= C

means that (x (0) , π (0)) cannot be on the line where all the paths in the figure begin. But

if paths do not start on the line Ax (0) + Bπ (0) = C, they do not end up on the saddle

path, the line to which all the paths in the figure go to. Because the economy is not on its
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saddle path at the time of liftoff, either inflation and output instantaneously jump a discrete

amount to reach the saddle path, or else inflation and output become unbounded. In either

case, an equilibrium cannot form. For the second case, focus on the points (π (0) , x (0)) that

take the economy to the saddle path at t∗ but not at t∗ + 1. In rule (18), this corresponds

to the case Ax (0) +Bπ (0) = C and Dx (0) +Eπ (0) 6= C. For these points, the rule assigns

f (Rt1) = t∗ + 1 and equilibria are precluded by the same argument as in the first case. The

points (π (0) , x (0)) that reach the saddle path at t∗ + 1 constitute the third case, for which

the central bank picks f (Rt1) = t∗ + 2. There is at most one point in this category, since it

is given by the intersection of two distinct lines: The line of initial conditions that reaches

the saddle path at t∗ and the one that reaches it at t∗ + 1. This point, if it exists, cannot

reach the saddle path at t∗+ 2, the time of liftoff, and is therefore not an equilibrium. Since

I have covered all possible π (0) and x (0) in the plane, I have shown that the rule does not

implement any sub-optimal equilibrium.

The way equilibria are eliminated can alternatively be cast in terms of rational expecta-

tions. Suppose agents have expectations πe0 and xe0 for initial inflation and output (these can

be ex-ante expectations, or concurrent with t = 0). If the central bank is credibly committed

to rule (18), liftoff will be rationally expected to be at f (πe0 , x
e
0). On the other hand, an

equilibrium also requires bounded paths for inflation and output. Therefore, agents have two

rational ways to form expectations for x (t1) and π (t1). The first is to trace the evolution of

x (t) and π (t) from t = 0 until t = f (πe0 , x
e
0) starting at (πe0 , x

e
0), giving an expected out-

come of (πe1 , x
e
1). The second is to realize that non-explosive paths are expected to be on the

saddle path at t1, giving a second set (π̃e1 , x̃
e
1) of expectations for x (t1) and π (t1). If (πe1 , x

e
1)

is not on the saddle path, we cannot have an equilibrium, since then (πe1 , x
e
1) 6= (π̃e1 , x̃

e
1) and

the two rational computations give contradictory expectations. By appropriately picking

the value of f (πe0 , x
e
0), the central bank can always create the expectation that liftoff will

occur at a time when the economy is not on the saddle path, thus eliminating any undesired

equilibria.

An alternative perspective is to start by considering only bounded paths. Inflation and

output expected to prevail at t1, (πe1 , x
e
1), must be on the saddle path. Assume (πe1 , x

e
1) 6=

(π∗ (t∗) , x∗ (t∗)) and consider first expectations of liftoff occurring at t∗. Starting at the

given (πe1 , x
e
1) on the saddle path, trace the dynamics of the economy backwards using

the IS, the NKPC and i (t) = (1− κσλ) π∗ (t) + rh for t ≥ t∗ and i (t) = 0 for t < t∗.

At time t = 0, the economy is expected to be at (πe0 , x
e
0). However, by equation (18),

f (πe0 , x
e
0, π

e
1 , x

e
1) 6= t∗ = t1 and thus t∗ cannot be the time of liftoff in a rational expectations

equilibrium. Now consider liftoff at t∗ + 1 or t∗ + 2. The same logic indicates these cannot

be rational expectations equilibria liftoff times. In brief, the proposed interest rate rule

guarantees that, except for (π∗ (t∗) , x∗ (t∗)), there are no initial conditions dire enough to
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justify the degree of forward guidance stimulus promised by the central bank (or, if I had

picked values lower than t∗ for liftoff, there would be no initial conditions good enough to

justify the lack of stimulus).

Although instructive and simple in many dimensions, a rule like (18) raises some impor-

tant practical challenges. The core of this rule is Neo-Fisherian and is the same in spirit

to that in Schmitt-Grohé and Uribe (2014). It relies on the idea that if the central bank

raises interest rates, inflation will follow. The key for determinacy is that there are paths

for which the central bank makes nominal interest rates positive even in the presence of a

large deflation and negative output. While being currently studied and taken seriously by

the literature, it remains controversial9. More importantly, Neo-Fisherianism, while it may

turn out to be borne out by empirical evidence, is far from central bank orthodoxy. Judging

by the lack of mention of Neo-Fisherism in official statements, it appears that most major

central banks at the ZLB today would be reluctant to put this theory into practice or at least

are not currently considering it10. One of the main motivations of this paper is to put forth

a rule that can be readily applied and that requires as little deviation from current prac-

tices as possible. Irrespective of whether Neo-Fisherian ideas become the consensus among

academics or policymakers in the future, the rule in equation (18) is certainly a leap from

current practice, while the rule I present in the next section is not.

9 Schmitt-Grohé and Uribe (2014) and Schmitt-Grohé and Uribe (2012) have nominal interest rates that
increase in a pre-determined fashion (irrespective of the behavior and output) and succeed in increasing
inflation. Cochrane (2015) explores in depth many theoretical variations in which the Neo-Fisherian logic
holds. Cochrane (2014) shows how fiscal-monetary cooperation in a model with interest on reserves also
has higher interest rates causally raising then inflation.

In a model with a ”liquidity effect”, Andolfatto and Williamson (2015) obtain Neo-Fisherian results after
a permanent increase in interest rates.

Kocherlakota (2016b) and Kocherlakota (2016a) question the the validity of the neo-Fisherian hypothesis
by arguing that, in finite horizon models, its relevance depends on an empirical question: how do long-run
inflation expectations depend on the central bank’s peg?

Evans and McGough (2015b), Evans and McGough (2015a) and Evans, Honkapohja, and Mitra (2015)
contend that introducing learning argues against the Neo-Fisherian view.

Garca-Schmidt and Woodford (2015) introduce a new boundedly rational cognitive process for agents
and show that it eliminates the Neo-Fisherian predictions.

10 The president of the Federal Reserve Bank of St. Louis, James Bullard, considers Neo-Fisherianism in
Bullard (2016). Although his remarks are personal and do not represent the views of the Federal Reserve,
they can perhaps be viewed as Neo-Fisherian ideas percolating to some policymaking circles. Narayana
Kocherlakota, the former president of the Federal Reserve Bank of Minneapolis, has expressed skepticism
to Neo-Fisherianism in Kocherlakota (2016b) and Kocherlakota (2016a). To my knowledge, these are the
only two public instances of a discussion of Neo-Fisherian issues by someone connected to a large central
bank.
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5.3 A Rule for Today’s Central Banks

For the rest of the paper, I focus on a rule that is much closer to current central bank practice

and is given by

i (t) =

{
0 , 0 ≤ t < f (Rt1)

max {0, ξπ (Rt1)π (t) + ξx (Rt1)x (t) + rh} , f (Rt1) ≤ t <∞
, (19)

where f , ξπ and ξx are functions of Rt1 chosen by the central bank. The rule has a for-

ward guidance period followed by a standard Taylor rule period. The Taylor rule guarantees

that interest rates do not become positive for “unconventional” states of the economy, pre-

cluding the Neo-Fisherian behavior of the rule in equations (17)-(18). In addition to a

state-dependent liftoff rule, I allow for Taylor rule coefficients that depend on Rt1 . Similarly

to the optimal equilibrium, this rule can be understood in three stages. The first stage is

from t = 0 to T , when the natural rate is negative. The central bank sets i (t) = 0 for the

entirety of this stage (recall f (Rt1) ≥ T by assumption). The dynamics of the economy

are exactly as in the “first stage” of the optimal equilibrium in section 3. In this stage, the

central bank never changes its behavior. Each point (π (0) , x (0)) maps to one and only one

(π (T ) , x (T )) and the mapping is unaffected by expectations or outcomes. From T to t1,

the dynamics follow those of the “second stage” of the optimal equilibrium, with the only

difference that the dynamics are maintained until t1, which depends on Rt1 , instead of until

the constant liftoff time t∗. In equilibrium t1 = f (Rt1) so the duration of this stage depends

on the announced liftoff rule. In the last stage, from t1 onward, the central bank follows a

Taylor rule that respects the ZLB, allowing for endogenous entry and exit from the ZLB.

Just as before, it is easiest to understand the last stage first and then work backwards, as I

now do.

To study the economy after t1, I split the π-x plane into two regions depending on whether

the ZLB is binding:

Ωzlb (Rt1) = {(x, π) : ξπ (Rt1) π + ξx (Rt1)x+ rh ≤ 0} , (20)

Ωss (Rt1) = {(x, π) : ξπ (Rt1) π + ξx (Rt1)x+ rh > 0} , (21)

where zlb stands for zero lower bound and ss stands for “intended steady-state”, as the

region Ωss (Rt1) contains (πss, xss) = (0, 0), the steady-state that the central bank would like

the economy to converge to in the long run if the optimal equilibrium obtains. The boundary

between the regions Ωzlb (Rt1) and Ωss (Rt1) is a line

∂Ω (Rt1) = {(x, π) : ξπ (Rt1) π + ξx (Rt1)x+ rh = 0} ⊂ Ωzlb (Rt1) . (22)
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Henceforth, I suppress the dependence of ξx, ξπ, Ωzlb, Ωss and ∂Ω on Rt1 for ease of notation

whenever it is not relevant.

Time changes in output and inflation, (π̇ (t) , ẋ (t)), inherit the properties of i (t) and are

therefore not differentiable on ∂Ω as a function of time. However, they are always continuous,

ensuring a continuous path for (π (t) , x (t))11. Clearly, after t1,

i (t) = 0 ⇐⇒ (π (t) , x (t)) ∈ Ωzlb (23)

i (t) = ξππ (t) + ξxx (t) + rh ⇐⇒ (π (t) , x (t)) ∈ Ωss (24)

When using equations (23) and (24) in the IS and NKPC, the dynamics of the economy

inside each of the two regions are given by a system of linear first-order ordinary differential

equations in x (t) and π (t), each of which is easy to analyze inside its respective region with

common methods. However, when analyzing the two regions together, the global dynamics

are piecewise linear. Behavior of piecewise linear dynamical systems can, in general, exhibit

a rich variety of non-linear phenomena such as limit cycles, bifurcations and chaos. The

global properties can also behave quite differently from those of each individual region. For

example, it is possible to construct bounded orbits for systems in which each region has

explosive dynamics12. To tackle the non-linearities of the New Keynesian economy at hand,

I first analyze the properties of each of the two regions as if they held in the entire π-x plane

and then combine them to understand the global behavior of the economy. Readers familiar

with New Keynesian models without a ZLB should find the analysis of each of the separate

regions familiar. The differences in this third stage, when t ≥ t1, arise when I combine the

two regions and when I consider the effects of making Taylor rule coefficients depend on Rt1 .

Inside Ωss, there is always a single steady state, (πss, xss) = (0, 0). The dynamic behavior

of the economy depends on the choice of Taylor rule coefficients ξπ and ξx. I focus on Taylor

rule coefficient combinations that, in the absence of the ZLB, give either saddle-path or

unstable dynamics, since the central bank would not pick stable dynamics that have no

explosive paths as they always lead to indeterminacy13. The Taylor principle is the key

concept needed to differentiate between saddle and unstable dynamics, and between locally

11 In fact, (ẋ (t) , π̇ (t)) is Lipschitz continuous in (x (t) , π (t)) and continuous in t, guaranteeing global
existence and uniqueness of the continuous solution.

12 For one standard reference, see Bernardo, Budd, Champneys, and Kowalczyk (2008).
13 See Lemma 9. I also exclude, for the same reason, the knife-edge case in which there is a line whose

points are all steady-states, but the dynamics are otherwise explosive.
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determinate and indeterminate equilibria. The Taylor principle holds if and only if

κ (ξπ (Rt1)− 1) + ρξx (Rt1) > 0

and (25)

ξx (Rt1) + σρ > 0.

Note that whether the Taylor principle holds depends on Rt1 so the same economy can have

on and off-equilibrium paths that do not all satisfy the Taylor principle. In other words, the

central bank can decide whether to follow the Taylor principle depending on the state of the

economy (but must announce the specific form of this dependence before t = 0 and commit

to it). When ξx = 0, the Taylor principle is equivalent to ξπ > 1, one of its most used forms.

If the dynamics of the Ωss region were extended to the entire plane and nominal interest

rates were allowed to be negative, or if I considered a small enough neighborhood of (πss, xss)

that lies entirely in Ωss, the dynamics of the system would be unstable when the Taylor

principle holds. All paths would be unbounded —or exit the small neighborhood— unless

(π (t) , x (t)) = (πss, xss) = (0, 0) for all t. Figure 3 shows representative phase diagrams

of two such economies. On the left-hand side diagram, the Taylor rule coefficients satisfy

(ξx − σρ)2−4κσ (ξπ − 1) < 0 and paths “slowly” spiral outward from the steady-state. When

the reverse inequality holds, the steady-state is instead a source, shown in the right-hand

side diagram. Without a ZLB, the Taylor principle is a necessary and sufficient condition

for local determinacy. When the ZLB is re-introduced, since there always is a small enough

neighborhood of (πss, xss) that it is contained entirely in Ωss, the Taylor principle is still a

necessary and sufficient condition for local determinacy of an equilibrium with (π (t) , x (t)) =

(πss, xss) for all t ≥ t1. This is no longer the case for global determinacy, as was briefly

discussed before and will be expanded on later.

The Taylor principle does not hold if and only if

κ (ξπ (Rt1)− 1) + ρξx (Rt1) < 0. (26)

If the dynamics of the Ωss region were extended to the entire plane and interest rates were

allowed to be negative, or if I considered a small enough neighborhood of (πss, xss) that lies

entirely in Ωss, the dynamics of the system would be saddle path stable. I denote the ss

saddle path by Υss. It is a line through the origin whose slope depends on ξx and ξπ. Paths

are bounded —or stay in the small neighborhood of (πss, xss)— if and only if they start on

the saddle. Figure 4 displays a typical phase diagram when the Taylor principle does not

hold.

Inside Ωzlb, the system is always saddle path stable. Since i (t) = 0 inside Ωzlb, the
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Figure 3: Dynamics of the economy when the Taylor principle holds and there is no ZLB.
The dynamics of the left-hand side diagram have imaginary eigenvalues while the right-hand
side has real ones. When there is no ZLB, the Taylor principle is necessary and sufficient
for local determinacy. Unless the economy starts at (0, 0), inflation and output become
unbounded.

dynamics are akin to those of following a Taylor rule with ξπ = ξx = 0 for which the Taylor

principle does not hold, but with a different steady state. A large part of the challenge of

ridding the economy of indeterminacy stems from the unresponsiveness of interest rates to

inflation and output inside Ωzlb. I denote the stable zlb saddle path by

Υzlb =

{
(π, x) : x =

φ1

κ
π − φ2

κ
rh

}
, (27)

where

φ1 =
1

2
ρ+

1

2

√
ρ2 + 4

κ

σ
> 0, (28)

φ2 =
1

2
ρ− 1

2

√
ρ2 + 4

κ

σ
< 0, (29)

are the two eigenvalues of the system dynamics inside Ωzlb. The unstable zlb saddle path,

Ψzlb =

{
(π, x) : x =

φ2

κ
π − φ1

κ
rh

}
, (30)

is the saddle path that would be stable if the system evolved backward in time. The zlb

saddle path, a line with positive slope, intersects the unstable zlb saddle path, a line with
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Figure 4: Dynamics of the economy when the Taylor principle does not hold and there is no
ZLB. Unless the economy starts on its saddle path Υss, shown in green, inflation and output
become unbounded.

negative slope, at the zlb steady state

(πzlb, xzlb) =
(
−rh,−

ρrh
κ

)
. (31)

The point (πzlb, xzlb) is the only possible steady-state under the zlb dynamics and always lies

in the third quadrant of the π-x plane. Neither the location of (πzlb, xzlb) nor the slopes of

Υzlb or Ψzlb depend on Taylor rule coefficients or other policy choices of the central bank;

they are fully specified by the parameters κ, ρ, σ and rh. Figure 5 shows the phase diagram

of x (t) and π (t) when the zlb dynamics hold in the entire π-x plane.

After having analyzed the Ωss and Ωzlb regions separately, I combine the two and describe

some of the global properties of the economy. The left-hand side panel of figure 6 shows

an example in which the Taylor principle holds, while the right-hand side panel shows an

example in which the Taylor principle does not hold. When the Taylor principle holds, the

dynamics inside Ωss look like those in figure 3. When the Taylor principle does not hold,

they look like those in figure 4. Of course, whether the Taylor principle holds or not, the

dynamics in Ωzlb always look like those in figure 5, as they are not affected by ξx or ξπ.

However, the coefficients ξx and ξπ do have a crucial effect on the behavior of the economy

at the ZLB, as they determine the location of the boundary ∂Ω and, consequently, whether

an undesirable deflationary steady-state can exist in this economy. If the Taylor principle

holds, the zlb steady-state (πzlb, xzlb) is in Ωzlb, while when the Taylor principle does not
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Figure 5: Dynamics of the economy when i(t) = 0 for all π(t) and x(t) and r(t) = rh > 0.
The red line, labeled Υzlb, is the saddle path. If the economy starts on Υzlb, it converges to
the deflationary steady-state (πzlb, xzlb). The blue line, labeled Ψzlb, is the “unstable saddle
path”. If the economy starts on Ψzlb, it stays on Ψzlb and moves away from the deflationary
steady-state (πzlb, xzlb). If the economy is not on Υzlb, then inflation and output become
unbounded.

hold, it is not. To see this, compute

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρrh

κ

)
+ rh (32)

= −rh
κ

(κ (ξπ − 1) + ρξx) (33)

The sign of this expression determines whether the zlb steady state (πzlb, xzlb) is inside or out-

side Ωzlb. In turn, the sign of κ (ξπ − 1) + ρξx is determined by whether the Taylor principle

holds. When the Taylor principle holds, (πzlb, xzlb) is a steady state of the global dynamics.

Because of its saddle dynamics, equilibria are locally indeterminate around (πzlb, xzlb). To-

gether with the intended steady-state (πss, xss), they are the two global steady-states of the

economy. On the other hand, if the Taylor principle does not hold, (πzlb, xzlb) ∈ Ωss. Under

the Ωss dynamics, the point (πzlb, xzlb) is not a steady-state. In this case, the only steady

state for the global dynamics is the desired one, (πss, xss).

The result that following the Taylor principle outside the ZLB induces a deflationary

steady-state inside Ωzlb is similar to Benhabib et al. (2001). They show that an infinite num-

ber of equilibria arise that can start arbitrarily close to the intended steady-state (πss, xss)
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Figure 6: Non-linear dynamics of the economy after liftoff. The central bank follows the
Taylor rule i(t) = max {0, ξππ(t) + ξxx(t) + rh}. When ξππ(t)+ξxx(t)+rh > 0, the economy
is in the region Ωss and follows the solid black flow lines. When ξππ(t) + ξxx(t) + rh ≤ 0,
it is in the region Ωzlb and follows the dashed blue flow lines. The boundary between the
two regions is the line ∂Ω. The point (πss, xss), shown in red, is always a steady-state of the
economy. The point (πzlb, xzlb), shown as a black square, is a steady-state of the economy
if and only if the Taylor principle holds, as in the left-hand side panel. When the Taylor
principle does not hold, as in the right-hand side panel, (πzlb, xzlb) is not in Ωzlb and is
therefore not a steady-state.

yet still fall into an expectational trap and converge to (πzlb, xzlb). The same possibility is

present here. To construct these equilibria in the NK model I analyze, first pick two numbers

r and q such that q, r > T and r − q > T and let14 (πb, xb) = ∂Ω ∩Υzlb. Assume the Taylor

principle holds. For the next steps, refer to figure 7. Using (π (r) , x (r)) = (πb, xb) as the

starting point, trace the dynamics of (π (t) , x (t)) backwards in time using the interest rate

specified by (24) for a length of time q. As in Benhabib et al. (2001), these equilibria can

get arbitrarily close to the intended steady-state. Because the dynamics of (π (t) , x (t)) are

unstable when going forward in time, they are stable backward in time and (π (t) , x (t)) con-

verges to (πss, xss) as q →∞15. At time r− q, trace the dynamics of (π (t) , x (t)) backward

14 If κξπ+φ1ξx 6= 0, then the zlb boundary and the zlb saddle path do not intersect, i.e. ∂Ω∩Υzlb = ∅. Albeit
not a general strategy to eliminate all non-optimal equilibria, picking ξx, ξπ such that κξπ + φ1ξx = 0
does preclude this particular class of equilibria from forming for any choice of f . This possibility was not
present in Benhabib et al. (2001) as their model did not have both inflation and output as states of the
economy.

15 The result is not immediate, since it may have been possible that (x (t) , π (t)) exits Ωss before getting
close to (xss, πss) and then follow the Ωzlb dynamics for which (xss, πss) is no longer a sink (flowing
backwards in time). However, I show in Appendix A.5, Lemma 8, item 4 that this never happens. For
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in time using (π (r) , x (r)) as the starting point and i (t) = 0 throughout, until t = 0, when

the path reaches (π (0) , x (0)). Of course, the natural rate is negative before T and positive

after T , so the dynamics change. Set t1 = r − q > T . By construction, the path starting

at (π (0) , x (0)) reaches (πb, xb) at time r when following the interest rate rule in equation

(19). Now going forward in time, for t ≥ r, (π (t) , x (t)) ∈ Υss ⊂ Ωzlb, which means the

economy travels on the zlb saddle path towards the unintended steady state (πzlb, xzlb). The

path constructed is continuous, bounded and has consistent expectations: It is a rational

expectations equilibrium. All equilibria in this class can be obtained by picking different q

and r.

■■
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x

Figure 7: An equilibrium analogous to the one studied by Benhabib et al. (2001). The flow
lines correspond to dynamics after liftoff, which occurs at t1. Because the Taylor principle
holds, there is a deflationary steady-state (πzlb, xzlb), shown as a black square. At time t1,
even though the economy is outside the ZLB and can get arbitrarily close to the “desired”
steady-state (πss, xss) = (0, 0), it still converges to the “unintended” steady-state (πzlb, xzlb).
At time r, the economy hits the ZLB and i(t) = 0 forever after.

When ξx = 0 and ξπ > 1, the interest rate rule in equation (19) obeys the Taylor principle,

is non-negative and non-decreasing with respect to π (t). In Benhabib et al. (2001), these

conditions were sufficient to produce indeterminacy. Attempting to eliminate the undesired

deflationary equilibria by not following the Taylor principle does succeed in Benhabib et al.

any q, the path of (x (t) , π (t)) remains entirely in Ωss.
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(2001)’s framework, but at the cost of introducing another type of multiple equilibria arising

from the local indeterminacy around the intended steady state. In contrast, in section 6.3,

I show that all Benhabib et al. (2001) equilibria can be ruled out while following the Taylor

principle by picking an appropriate liftoff rule and that not following the Taylor principle

does not necessarily lead to Benhabib et al. (2001)-like equilibria.

The dynamics of the economy between T and t1, the second stage, are the same as those

in Ωzlb during t ≥ t1 but now apply to the entire π-x plane. The central bank is committed

to i (t) = 0 between T and t1 for any realizations of inflation and output. Two key objects

to interpret expectations and the interest rate rule between T and t1 are:

dexit (t) = x (t)− φ1

κ
π (t) +

φ2rh
κ

(34)

= [x (t)− xzlb]−
φ1

κ
[π (t)− πzlb] (35)

dtrap (t) = x (t)− φ2

κ
π (t) +

φ1rh
κ

(36)

= [x (t)− xzlb]−
φ2

κ
[π (t)− πzlb] (37)

The value of dexit is a measure of the (signed) distance to the stable zlb saddle path Υzlb

defined in equation (27). Similarly, dtrap gives a measure of distance from (π (t) , x (t)) to the

unstable saddle path Ψzlb, defined in equation (30). A dexit closer to zero means the economy

is closer to Υzlb and hence will behave more similarly to an economy that is on Υzlb, at least

for some time. A dexit closer to zero also implies that the economy at some point gets closer

to the unintended steady-state (πzlb, xzlb). In fact, dexit (t) = 0 indicates the economy is

exactly on Υzlb at time t and converging towards (πzlb, xzlb). In contrast, a dtrap closer to

zero implies the dynamics of the economy look more like those of the unstable saddle path

Ψzlb, pushing the economy further away from (πzlb, xzlb). These informal observations can

be made precise and given clearer economic meaning by understanding the eigenvectors of

the system. For t ∈ [T, t1), the eigenvectors of the system are

vexit =

[
− φ2
φ1−φ2
− κ
φ1−φ2

]
and vtrap =

[
φ1

φ1−φ2
κ

φ1−φ2

]
. (38)

The eigenvector vexit is associated with the “explosive” eigenvalue φ1 > 0 and lies on the

unstable saddle path Ψzlb. The eigenvector vtrap is associated with the “stabilizing” eigen-

value φ2 < 0 and lies on the stable saddle path Υzlb. The dynamics of the economy can

be described as the combination of two forces: vtrap is the “trap factor” driving the econ-

omy into the expectational trap and (πzlb, xzlb), while vexit is the “exit factor” pulling the

economy away from it. After a change of coordinates that makes (πzlb, xzlb) the origin and

29



the eigenvectors of the system the basis vectors, the vector (π (t) , x (t)) has coordinates

(dexit (t) , dtrap (t)) [
− φ2
φ1−φ2

φ1
φ1−φ2

− κ
φ1−φ2

κ
φ1−φ2

]−1 [
x (t)− xzlb
π (t)− πzlb

]
=

[
dexit (t)

dtrap (t)

]
(39)

and [
x (t)− xzlb
π (t)− πzlb

]
= dexit (t) vexit + dtrap (t) vtrap. (40)

In other words, projecting (π (t) , x (t)) onto the eigenvalues gives loadings of (dexit (t) , dtrap (t)).

This linear two-factor representation is exact in the sense that there is no residual left once

x (t) and π (t) are expressed as a linear combination of the factors plus a constant. Because

eigenvectors are defined only up to a multiplicative constant, it is the the ratio of loadings at

different points in time and not their specific magnitude at some particular time that gives

the relevant information about the strength of expectations to either go towards or away

from the unintended deflationary state. The necessary and sufficient conditions for determi-

nacy in Section 6.3 are most simply expressed as functions of these ratios, highlighting not

just the mathematical convenience but also the economic importance of dexit and dtrap. The

level of current inflation and output are, on their own, not very informative about whether

the economy is in a liquidity trap, at risk of converging to (πzlb, xzlb) or on a desirable policy

path, as has been already pointed out through various other arguments by Benhabib et al.

(2001), Werning (2011) and others. The above decomposition suggests that, in the context

of the basic New Keynesian model, the right empirical objects to pay attention to are the

linear combinations dexit and dtrap in equations (34) and (36).

The case in which dexit = 0 is of special importance to questions of determinacy, so it

is worth developing some economic intuition about it. Falling into the expectational trap

requires being on Υzlb at a future time, which is equivalent to a zero future loading on the

exit factor vexit, or a future distance of dexit = 0 to Υzlb. In this case, the expectations of a

future dexit = 0 are always strong enough to feed back into today’s expectations and sustain

a rational expectations equilibrium that ends up in (πzlb, xzlb). We can see this directly in

the IS and NKPC with i (t) = 0 by evaluating them at t = s− dt and re-arranging, to get

π (s− dt) = (1− ρdt) π (s) + κx (s) dt (41)

x (s− dt) = x (s) + σ−1 (rh + π (s)) dt (42)

These two equations show the expectations of inflation and output at time s − dt that can

sustain some given expectations of inflation and output at time s. With expectations of π (s)
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and x (s) such that

dexit (s) = 0, (43)

the IS and NKPC become

π (s− dt) = π (s)− φ2κ

φ1 − φ2

dtrap (s) dt (44)

x (s− dt) = x (s)− φ2φ1

φ1 − φ2

dtrap (s) dt (45)

Looking backward from time s to s−dt, the last two equations reveal that dtrap (s) determines

what expectations of inflation and output at s−dt can sustain the prospective time-s inflation

and output. These time s− dt expectations satisfy

dexit (s− dt) = x (s− dt)− φ1

κ
π (s− dt) +

φ2rh
κ

= 0 (46)

Equation (46) means that expectations of not being able to exit the trap at some time s

are possible to sustain in equilibrium solely with earlier beliefs of not being able to exit the

trap. Repeating the same procedure shows that, dexit (s−∆) = 0 for all ∆ > 0 (such that

s −∆ is in the second stage I am analyzing, between T and t1). This is the exact sense in

which expectations of a future dexit = 0 have a “strong enough” feedback to sustain dexit = 0

today. Standing at time s − dt, equations (44) and (45) say that inflation and output over

the next instant dt are expected to change only to the extent that future expectations of

falling into the trap, given by dtrap (s), are different from zero. Interpreted this way, the

only reason inflation and output are moving is because of the expectation of falling into the

trap. The coefficients in front of dtrap (s) in equations(44) and (45) are both positive. A

dtrap (s) further from zero implies x (s− dt) and π (s− dt) are further from x (s) and π (s).

It takes stronger expectations of falling into the trap when the economy is further away from

it for expectations to be supportive of the economy actually falling into the trap. As the

economy approaches (πzlb, xzlb), dtrap endogenously gets closer to zero. When there are no

expectations of falling into the trap, dtrap (s) = 0 implies x (s− dt) = x (s). The economy

is in steady state and must already be at (πzlb, xzlb). As dexit = dtrap = 0, there are no

expectations of either falling into or escaping the liquidity trap so the only option is to be

at (πzlb, xzlb). From the perspective of a time before s− dt, dtrap (s) conveys the revision in

expectations from s−dt to s needed to support the equilibrium with dexit (s) = 0. Of course,

in a purely mathematical sense, all I have done in this paragraph is to trace the dynamics

of the system backward or forward, deducing that an economy already on Υzlb at some time

s must have been there before and will also be there after.

The magnitude of the coefficients in front of dtrap in equations (44) and (45) are also
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important to assess how fast expectations must be changing over time and with respect to

the current state of the economy in order to be rational. Since φ2 is the eigenvalue associated

with vtrap,

ḋtrap (s) = φ2dtrap (s) . (47)

The eigenvalue φ2 < 0 is the modulator for how strongly expectations of falling into the trap

must be if they are rational. The eigenvalue φ2 is decreasing in κ and σ−1 but increasing

in ρ. Given an initial level of expectations, more price flexibility and a larger elasticity of

intertemporal substitution imply larger changes in expectations for a given length of time

and a faster convergence to (πzlb, xzlb). A more patient representative consumer, on the other

hand, revises expectations more slowly.

Finally, in the first stage, when t < T , the economy behaves exactly as in the optimal

equilibrium, since i (t) = 0 by assumption and there are no other decisions for the central

bank to make. Figure (8) shows the phase portrait. It is similar to the phase portrait for

the second stage, but because the natural rate is negative, the steady-state, labeled (πl, xl)

in the figure, is in the first quadrant.

▲▲

π

x

Figure 8: Dynamics of the economy when i(t) = 0 for all π(t) and x(t) and r(t) = rl < 0.
The green line is the saddle path and the orange triangle, labeled (πl, xl) is the steady-state.
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6 How to Implement the Optimal Equilibrium without

Indeterminacy

In this section, I prove the main result of the paper: Allowing the liftoff rule f to depend

on Rt1 , the state of the economy, makes it possible to implement the optimal equilibrium

without indeterminacy by means of the rule in equation (19).

Having assumed that expectations are rational from the beginning, there are, by defini-

tion, two other ways in which paths that follow the IS equation, the NKPC and the interest

rate rule in equation (19) can fail to be an equilibrium. They can be unbounded or discon-

tinuous. Understanding when paths are continuous and bounded is therefore a necessary

step towards finding a rule that can always guarantee that the optimal equilibrium is the

only equilibrium of the economy.

6.1 Continuous Pasting

In each of the intervals [0, T ), [T, t1) and [t1,∞), paths for (π (t) , x (t)) are automatically

continuous because they are the solution to a standard system of linear ODEs in which

(π̇ (t) , ẋ (t)), given by equations (1), (2) and (19), are appropriately smooth functions of

π (t), x (t) and t. At t = T , when r (t) jumps, and perhaps at t = t1, when i (t) may jump,

(π (t) , x (t)) is not necessarily continuous. To have a continuous path for (π (t) , x (t)), the

solutions to the classical ODEs on t ∈ [0, T ), t ∈ [T, t1) and t ∈ [t1,∞) have to agree at T

and t1. The continuous pasting conditions for this to happen are

lim
t↑T

(π (t) , x (t)) = (π (t) , x (t)) , (48)

lim
t↑t1

(π (t) , x (t)) = (π (t1) , x (t1)) . (49)

In economic terms, as explained in section 2, the continuous pasting conditions are no arbi-

trage conditions that must hold because of the representative consumer’s Euler equation (or

its log-linear version, the IS equation). Equivalently, continuous pasting means that expec-

tations do not change abruptly

lim
t↑T

(dexit (t) , dtrap (t)) = (dexit (T ) , dtrap (T )) , (50)

lim
t↑t1

(dexit (t) , dtrap (t)) = (dexit (t1) , dtrap (t1)) . (51)

Let t1 be a number greater than or equal to T and let R = (π0, x0, π1, x1) be a vector

of four numbers. I characterize the constraints that R and t1 must satisfy for a path with

Rt1 = R and f (Rt1) = t1 to be continuous. To do so, I first solve the system of ODEs given
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by equations (1), (2) and (19) for t ∈ [0, T ) using (π0, x0) as initial conditions. I then take

the limit of this solution as t→ T to get (πT , xT ) and use this point as the initial condition

when solving the ODEs for t ∈ [T, t1). Continuous pasting at t1 requires that the limit of

this last solution as t → t1 is (π1, x1). Graphically, continuous pasting requires stitching

together the dynamics of figures (8) and (5) at T and of figures (5) and (6) at t1.

The goal of this section is to use the continuous pasting conditions to derive

P
(
R
)

= 0, (52)

t1 ∈ T
(
R
)
, (53)

where P is a function and T is a set, both of which I explicitly find below. Assuming con-

tinuous pasting already happens at T , equations (52) and (53) are equivalent to continuous

pasting at t1. Equation (52) depends only on R and not on t1. It gives a family of points

x0, π0, x1, π1 that can be part of a continuous path for some t1 ≥ T . Equation (53) then

describes the specific points in that family that are consistent with liftoff at a specific t1.

Separating R and t1 in this way will make it easier and more intuitive to prove determinacy.

On a first pass, the reader can skip to the last paragraph in this section without any loss of

continuity.

To derive equations (52) and (53), and to solve for P and T , I consider four cases

separately. The first case corresponds to the economy reaching (πzlb, xzlb) at t1; the second

and third, to the economy reaching, respectively, Υzlb and Ψzlb at t1; the fourth case considers

all remaining R.

The first case, shown in green in figure 9, is defined by (π0, x0) such that16

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (54)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (55)

In the figure, the line defined by equation (54) is the black dashed line while the line in

equation (55) is the dashed gray line. This first case corresponds to (π0, x0) at the intersection

of the two lines. The economy reaches the zlb steady-state (πzlb, xzlb) at t = T . Since between

T and t1 the point (πzlb, xzlb) is a steady-state, the economy just sits there for all t ∈ [T, t1).

16 With slight abuse of notation, in this section I write dexit (π0, x0) instead of dexit (t) to emphasize that
dexit (π0, x0) is not a function of time since (π0, x0) is a vector of two numbers, as opposed to (π (0) , x (0)),
which is a function of time evaluated at t = 0. This is important because it clarifies that the continuous
pasting conditions are not time-varying and that P and T do not depend on the actual path Rt1 , which
is needed in some of the proofs. The same notation applies to dtrap and πT , xT , π1, x1.
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The continuous pasting conditions are

dexit (πT , xT ) = dtrap (πT , xT ) = 0, (56)

dexit (π1, x1) = dtrap (π1, x1) = 0, (57)

i.e. (πT , xT ) = (π1, x1) = (πzlb, xzlb). In figure 9, the lines described in equations (56)

and (57) are shown in the solid black and gray lines, and correspond to Υzlb and Ψzlb.

Expectations to fall into or exit the expectational trap are both zero. Equations (56) and

(57) define the function P for this case

P
(
R
)

= 1 {dtrap (π1, x1) 6= 0 or dtrap (π1, x1) 6= 0} ,

where 1 {E} is the indicator function for event E, which is equal to 1 if E is true and zero

otherwise. P
(
R
)

= 0 if and only if dtrap (π1, x1) and dtrap (π1, x1) are both zero and if and

only if equations (56) and (57) hold. Graphically, the set of R such that P
(
R
)

= 0 are the

two points in figure 9 where the lines intersect and where the green path begins and ends.

Changing t1 can change neither the time of arrival to (πzlb, xzlb), which is equal to T , nor

the actual set of points in the π-x plane visited by the economy from t = 0 to t1. A larger

t1 only guarantees that the economy is at (πzlb, xzlb) longer. Once (56) and (57) hold, any

t1 ≥ T is consistent with continuous pasting and thus

T
(
R
)

= [T,∞).

Because t1 ∈ T
(
R
)

does not introduce any additional restrictions on t1, this case will present

an important obstacle for a central bank trying to avoid the deflationary expectational trap

by means of a liftoff rule. In the three remaining cases, T
(
R
)

is single-valued and depends

on R.

In the second case, the economy reaches some point in the zlb saddle path Υzlb at t1,

except for (πzlb, xzlb), which was just analyzed. This case, shown in red in figure 9, occurs

when

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
(58)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] 6=

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
(59)
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Figure 9: Continuous pasting conditions when (π1, x1) is in Υzlb or Ψzlb. Continuous pasting
requires that paths that are on the zlb saddle path (the black solid line) at times T and
t1, such as the red one, be on the dexit (π0, x0) = φ2

κ
(rh − rl)

(
1− e−Tφ1

)
line (the black

dashed line) at time t = 0. For these paths, expectations of falling into the deflationary
equilibrium (πzlb, xzlb) are self-fulfilling. To be continuous, paths like the blue that start on
the dtrap (π0, x0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
line (the gray dashed line) at t = 0 must be on

Ψzlb at times T and t1. These paths escape the deflationary trap. The green path originates
at the intersection of the two dashed lines. Continuous pasting requires that it reaches the
deflationary steady-state at T .

Continuous pasting at T requires

dexit (πT , xT ) = [xT − xzlb]−
φ1

κ
[πT − πzlb] = 0, (60)

T =
1

φ2

log

(
dtrap (πT , xT )

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
. (61)
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Continuous pasting at t1 requires

dexit (π1, x1) = [x1 − xzlb]−
φ1

κ
[π1 − πzlb] = 0 (62)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (πT , xT )

)
(63)

= T +
1

φ2

log

(
π1 − πzlb
πT − πzlb

)
(64)

where the last line uses equations (60) and (62) to write the expression in the previous line as

a function of πT and π1 only. Equations (58), (60) and (62) describe the continuous pasting

constraints on (π0, x0) without any reference to t1. Combinations (π0, x0) that satisfy these

equations can be part of a continuous path for some t1. Equations (61) and (63) then show

which specific point is reachable with a specific t1. Any continuous path in this case must

start in the black dashed line of figure 9 and be on the solid black line at times T and t1.

For a specific t1, or for a specific point in one of the two lines, only one path is continuous.

As discussed in the previous section, when expectations of exiting the trap are zero at

some point between T and t1, they must be zero for the entire interval [T, t1). Continuity

at t1 requires that the same is true at t1, at the endpoint of the interval. Since t1 ≥ T and

φ2 < 0,
dtrap (π1, x1)

dtrap (πT , xT )
=
π1 − πzlb
πT − πzlb

≤ 1. (65)

There are no continuous paths that reach Υzlb at T and go through πT and π1 when the

above inequality does not hold. When equation (62) holds but the inequality in equation

(65) does not hold, (π1, x1) is on Υzlb but not on the segment of Υzlb between (πT , xT ) and

(πzlb, xzlb). Since (π (t) , x (t)) always moves from (πT , xT ) towards (πzlb, xzlb), there is no

way to reach (π1, x1) after T . In figure 9, this would occur if (π1, x1) were on the black

line, but to the northwest of the red path. Equation (65) reaffirms that for expectations to

be self-fulfilling, being further away from (πzlb, xzlb) requires stronger expectations of falling

into the trap in order to support future expectations of falling into the trap. Additionally

dtrap (π1, x1)

dtrap (πT , xT )
=
π1 − πzlb
πT − πzlb

> 0 (66)

is required to make the logarithm in equations (63) and (64) well-defined. If the sign of

dtrap (π1, x1) and dtrap (πT , xT ) are different, expectations at T and t1 are contradictory in

the direction from which the economy is expected to approach (πzlb, xzlb) when traveling on

Υzlb. For values that satisfy equations (65) and (66), the continuous pasting condition in

equation (63) describes the exact change in expectations required to move from πT to π1 in

an amount of time t1−T . When πT is further from π1, it is intuitive that the time required to
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go from one to the other increases. The size of the change in expectations required to support

the path from T to t1 with rational beliefs is controlled by φ2, the eigenvalue associated with

vtrap. In fact, (64) is equivalent to

dtrap (πT , xT ) = eφ2(t1−T)dtrap (π1, x1)

which is just a different incarnation of equation (47) with continuous pasting at t1. Lastly,

combining equations (58)-(63) gives

P
(
R
)

= dexit (π1, x1) + 1 {dtrap (π1, x1) = 0} ,

T
(
R
)

=
1

φ2

log

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
.

The indicator 1 {dtrap (π1, x1) = 0} in the equation for P is there to guarantee that equation

(58) holds. Graphically, the points R such that P
(
R
)

= 0 are given by the dashed and solid

black lines, with the exception of the points where the black lines intersect the gray lines.

The third case is similar to the second and is represented by the blue line in figure 9.

Instead of reaching Υzlb at t1, the economy reaches the unstable zlb saddle path Ψzlb at t1,

with the exception of (πzlb, xzlb), which was already covered. This case is defined by

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] 6=

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
(67)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
(68)

Continuous pasting at T occurs if and only if

dtrap (πT , xT ) = [xT − xzlb]−
φ2

κ
[πT − πzlb] = 0, (69)

T =
1

φ1

log

(
dexit (πT , xT )

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
. (70)

while continuous pasting at t1 occurs if and only if

dtrap (π1, x1) = [x1 − xzlb]−
φ2

κ
[π1 − πzlb] = 0 (71)

t1 = T +
1

φ1

log

(
dexit (π1, x1)

dexit (πT , xT )

)
(72)

= T +
1

φ1

log

(
π1 − πzlb
πT − πzlb

)
(73)
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It follows that

P
(
R
)

= dtrap (π1, x1) + 1 {dexit (π1, x1) = 0} ,

T
(
R
)

=
1

φ1

log

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
.

Compared to the last case, because the unstable saddle has dynamics that move (π (t) , x (t))

away from (πzlb, xzlb), the inequalities and comparative statics are reversed.

The fourth and last case corresponds to all remaining choices for R that can be part of

a continuous path. The continuous pasting conditions are(
dtrap (π0, x0) + φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)
dtrap (πT , xT )

)φ1

=

(
dexit (π0, x0) + φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)
dexit (πT , xT )

)φ2

, (74)

T =
1

φ2

log
dtrap (πT , xT )

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)
, (75)

for T and (
dtrap (π1, x1)

dtrap (πT , xT )

)φ1
=

(
dexit (π1, x1)

dexit (πT , xT )

)φ2
(76)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (πT , xT )

)
(77)

for t1. As in the last two cases cases, the continuous pasting conditions can be separated into

those that does not involve t1, equations (74), (75) and (76), and one that explicitly solves

for t1, equation (77). Unlike the previous cases, none of the equations without t1 are linear in

x0, π0, xT , πT , x1 and π1, since the economy is not on either saddle path, which are the only

linear orbits of the economy between T and t1. Figure 10 is helpful in gaining some intuition.

The black and gray lines are the same as in figure 9. The solid lines intersect at (πzlb, xzlb)

and split the π-x plane into four sections. The dashed lines also split the plane into four

sections. Points starting below both of the dashed lines are in the “south” region and have

dtrap (π0, x0) + φ1
κ

(rh − rl)
(
e−Tφ2 − 1

)
< 0 and dexit (π0, x0) + φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)
< 0.

They always paste continuously to points (πT , xT ) and (π1, x1) in the corresponding south

region that is below the solid lines, given by dexit (πT , xT ) < 0 and dtrap (πT , xT ) < 0. The

same is true for each of the remaining three regions. For example, the blue path has (π0, x0)

in the “east” region of the dashed lines, so (π (T ) , x (T )) and
(
π
(
t1
)
, x
(
t1
))

must be in the
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corresponding east region of the solid lines.
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Figure 10: Continuous pasting conditions when (π1, x1) is neither in Υzlb nor in Ψzlb. The
black and gray lines are as in figure 9. The black square at the intersection of the two
solid lines is (πzlb, xzlb), the deflationary steady-state. For a given (π0, x0), the set of points
(π1, x1) that can be part of a continuous path are those reachable by following the flow line
determined by (πT , xT ). The time of liftoff then determines which point in this family occurs
in the economy.

Assuming continuous pasting at T , equations (74)-(76) reveal the set of points (π0, x0, π1, x1)

that can be reached through continuous paths for some t1, which then give

P
(
R
)

=

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ1 − 1)

)φ2

−

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)φ1

+ 1 {dexit (π1, x1) = 0 or dtrap (π1, x1) = 0}

As before, the indicator function in the last term is there only to exclude previously consid-

ered cases. To understand what P
(
R
)

= 0 implies, refer to the blue path in figure 10. When

the economy starts at the blue dot labeled (π (0) , x (0)), continuous paths must go through

the blue dot labeled (π (T ) , x (T )). Between T and t1, the economy follows its dynamics with
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r (t) = rh > 0 and i (t) = 0, represented by the flow line that goes through (π (T ) , x (T )).

Continuous paths have
(
π
(
t1
)
, x
(
t1
))

on the same flow line as (π (T ) , x (T )). Which exact

point in the flow line is realized in the economy is determined by equation (77), which gives

T
(
R
)

=
1

φ1

log
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ1 − 1)
.

As t1 grows larger, the economy spends more time traveling on the flow line. Figure 10 shows

one specific choice for t1. A larger t1 would put
(
π
(
t1
)
, x
(
t1
))

somewhere in the dashed

blue line.

As t1 → ∞, the economy approaches the unstable saddle and dtrap (π1, x1) → 0 while

dexit (π1, x1)→∞. This aspect is crucial for the analysis of determinacy. Delaying the time

of liftoff steers expectations away from the trap factor and into the exit factor. Because

t1 ≥ T , the side of flow line to the north of (πT , xT ) is not reachable when starting at the

given (π0, x0). The red path shows another continuous path that starts in the “north” region

of the dashed lines and converges to Ψzlb in the opposite direction of the blue path.

To sum up, I have derived a function P and a set T that characterize continuity of

paths. Assuming paths are already continuous at T , P (π0, x0, π1, x1) = 0 gives the collection

of points (π0, x0, π1, x1) that can be part of some continuous path that starts at (π0, x0)

and reaches (π1, x1) at some time larger than or equal to T . For (π0, x0, π1, x1) such that

P (π0, x0, π1, x1) = 0, T (π0, x0, π1, x1) gives the time it takes to go from (π0, x0) to (π1, x1).

Note that neither P nor T depend on f (Rt1) or the choice of Taylor rule coefficients ξπ (Rt1),

ξx (Rt1). They are fully determined by (π0, x0, π1, x1) and parameters of the model. Of

course, in a rational expectations equilibrium, paths are continuous and thus

0 = P (π (0) , x (0) , π (t1) , x (t1)) , (78)

f (π (0) , x (0) , π (t1) , x (t1)) = t1 = T (π (0) , x (0) , π (t1) , x (t1)) . (79)

It is these equilibrium conditions that connect the policy actions that the central bank takes

after time T to the continuous pasting conditions.

6.2 Boundedness of Continuous Paths

Because of the non-linear dynamics after t1, characterizing boundedness of continuous paths

is the most difficult step towards obtaining a rule that gives global determinacy. When the

Taylor principle holds, the results in this section rely on the Poincaré-Bendixson theorem, a

powerful tool that classifies all possible dynamics of two dimensional systems. On the other

hand, when the Taylor principle does not hold, the results can be obtained by straightforward
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computations.

Before stating the propositions, recall that whether the Taylor principle holds depends

on Rt1 . In addition, when paths are continuous, Rt1 defines the entire path. The first two

elements of Rt1 determine (π (0) , x (0)) and the last two give (π (t1) , x (t1)); equation (79)

then gives t1. Let Ωss = Ωss ∪ ∂Ω be the closure of Ωss.

Proposition 2 (Continuous bounded paths when the Taylor principle does not hold). For

a continuous path defined by Rt1, if the Taylor principle does not hold, the path is bounded

if and only if there exists r ≥ t1 such that (π (r) , x (r)) ∈ Υss ∩ Ωss.

Proof. Appendix A.4. �

When the Taylor principle does not hold, continuous paths are bounded if and only if

they reach the ss saddle path outside (or on the boundary of) the ZLB region at t1 or later.

There are two ways in which this can happen, depicted in figure 11. The flow lines in the

background show the dynamics after t1. The green path shows the first case. The economy

finds itself outside the ZLB at t1. If it is on the saddle path Υss, then it stays on it and

travels towards (πss, xss), remaining bounded as in the figure. If the economy is not on the

saddle path Υss, paths for (π (t) , x (t)) can either become unbounded or eventually enter

the ZLB region Ωzlb. Because the Taylor principle does not hold, the zlb steady-state is not

inside Ωzlb. Thus, when the economy enters Ωzlb, paths can either become unbounded (when

they stay inside Ωzlb) or eventually exit the ZLB and return to Ωss. Proposition 2 states

that the process of moving from one region to the next has to stop and some point — there

are no limit cycles. The proof in the appendix reveals that, in fact, there can be at most

one transition; once the economy leaves Ωss and enters Ωzlb, it remains there. The red line

in figure 11 shows the second way in which the economy can reach Υss. At t1, the economy

is inside the ZLB region Ωzlb. As it follows the dynamics specified by i (t) = 0, it eventually

hits the boundary ∂Ω at some time r > t1 exactly where it intersects Υss. From there

on, the analysis is identical to that of the first case. Proposition 2 shows the benefits and

challenges of not following the Taylor principle. On the one hand, for continuous bounded

paths that can be part of an equilibrium, the economy always exits the ZLB. On the other,

the saddle dynamics outside the ZLB are conducive to (both local and global) indeterminacy,

since being on any point of the saddle at t1, or on any point of the path inside the ZLB that

eventually reaches the saddle, gives continuous bounded paths and hence potential equilibria.

In contrast, when the Taylor principle holds, the benefit is to have no saddle path equi-

libria outside the ZLB, but at the cost of introducing them inside the ZLB, as I show next.

Proposition 3 (Continuous bounded paths when the Taylor principle holds). For a con-

tinuous path defined by Rt1, if the Taylor principle holds, the path is bounded if and only if

either (π (t1) , x (t1)) = (πss, xss) or there exists r ≥ t1 such that (π (r) , x (r)) ∈ Υzlb ∩ Ωzlb.
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Figure 11: When the Taylor principle does not hold, there are only two kinds of continuous
bounded paths, shown in the figure. The flow lines in the background are for the dynamics
after liftoff, which occurs at t1.

Proof. Appendix A.5. �

When the Taylor principle does not hold, Proposition 3 states that continuous paths are

bounded if and only if they either reach the intended steady state (πss, xss) exactly at t1,

or if they eventually reach the zlb saddle path Υzlb while inside the ZLB region Ωzlb (the

boundary ∂Ω is part of Ωzlb). If (π (t1) , x (t1)) = (πss, xss), then paths are clearly bounded

since (πss, xss) is a steady-state. If (π (t) , x (t)) is in Ωss but is not equal to (πss, xss), the only

way for continuous paths to remain bounded is to eventually enter Ωzlb, since the dynamics in

Ωss are otherwise explosive. Once in Ωzlb, boundedness requires that the economy follows the

saddle path towards the zlb steady-state (πzlb, xzlb). The red line in figure 12 illustrates this

case. Because the Taylor principle holds, (πzlb, xzlb) is inside Ωzlb and is therefore a steady-

state of the system, as discussed first in section 5.3. The economy converges to (πzlb, xzlb) as

t → ∞. This is the Benhabib et al. (2001)-type equilibrium shown in figure 7. The closer

(π (t) , x (t)) gets to (πss, xss), the longer it will take the economy to reach Ωzlb. Although

listed separately and at first sight different, the case for which (π (t1) , x (t1)) = (πss, xss) can

be seen as the limit of this type of equilibria when the time to reach Ωzlb goes to infinity.

Proposition 3 reveals another type of potential equilibrium that converges to the unintended
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steady-state (πzlb, xzlb) and shown in the green line of figure 12. The economy is always

at the ZLB. At T , the economy is already on Υzlb and stays on it for all t ≥ T , traveling

towards (πzlb, xzlb). At t1, even though liftoff occurs, the Taylor rule prescribes i (t1) = 0,

since the economy is in Ωzlb. Proposition 3 also proves that there are no continuous bounded

paths other than the ones I have described. In particular, there are no closed loops, no

limit cycles and no chaos, unlike the setup in Benhabib et al. (2002b), in which the Taylor

principle gives rise to chaotic trajectories. One direct implication is that whether following

the Taylor principle leads to chaotic interest rate rules depends on the specific setup. For this

economy, the Taylor principle is actually the exact condition needed to make the divergence

of (πT , xT ) positive everywhere. By Green’s theorem, a positive divergence automatically

eliminates bounded orbits, since the line integral around a closed loop is positive17. Without

a ZLB, a positive divergence is equivalent to the Taylor principle and to explosive dynamics.

Proposition 3 shows that having a ZLB does not break this link. Thus, even though the

system includes a binding ZLB, the Taylor principle is still the right concept to assess the

tendency of the system to move away from the intended steady-state. The major change

from the case without the ZLB is that the Taylor principle now induces (πzlb, xzlb) to be a

steady-state of the global dynamics.

6.3 Implementing the Optimal Equilibrium

Even though the optimal equilibrium is unique, I now show there are many choices for the

interest rate rule I study to implement it. Let R∗ = (π∗ (0) , x∗ (0) , π∗ (t∗) , x∗ (t∗)) be the

vector Rt1 evaluated at the optimal equilibrium.

Proposition 4 (Implementation of the optimal equilibrium). If κσλ 6= 1, the rule in equa-

tion (19) implements the optimal equilibrium if and only if

f (R∗) = t∗ (80)

ξπ (R∗) + φξx (R∗) = (1− κσλ) (81)

If κσλ = 1, the rule implements the optimal equilibrium if and only if equation (80) holds

(i.e. equation (81) is no longer needed and any ξπ (R∗), ξx (R∗) implement the optimal

equilibrium).

Proof. Appendix A.6. �

The proposition states that to implement the optimal equilibrium, liftoff has to occur at

t∗ when Rt1 = R∗. Since the optimal equilibrium features i∗ (t) > 0 for t ≥ t∗, liftoff after

17 The proof of item 6 in Appendix A.5 has more details.
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Figure 12: When the Taylor principle holds, there three kinds of continuous bounded paths.
Two of them are shown in the figure. The flow lines in the background are for the dynamics
after liftoff, which occurs at t1. In the third kind, the economy reaches the steady-state
(πss, xxx) = (0, 0) at t1 and stays there forever after.

t∗ would imply i (t) = 0 when i∗ (t) > 0. Conversely, liftoff before t∗ would imply i (s) > 0

for all s < t∗ such that ξππ (s) + ξxx (s) + rh > 0, while i∗ (s) = 0. Such an s always exists

because the optimal equilibrium features forward guidance. Werning (2011) shows that the

optimal equilibrium features a promise to zero interest rates when (1− κσλ) π∗ (t)+r (t) > 0

for at least some t ∈ (T, t∗).

When κσλ 6= 1, the Taylor rule coefficients have to be picked according to equation (81),

where recall that φ is the slope of the optimal saddle path defined in equation (8) and 1−κσλ
is the coefficient in front of π∗ (t) in the optimal interest rate path in equation (7). Picking

ξπ (R∗) and ξx (R∗) that generate the correct slope for the optimal saddle path is all that

is required to implement the optimal equilibrium. Because there are two coefficients and

a single slope to match, there is one degree of freedom in the choice of rule at R∗. When

κσλ = 1, the optimal equilibrium never travels along the saddle path, as the economy reaches

the steady state exactly at t∗. In this case, it does not matter what the slope of the saddle

path is; all that matters is that the economy reaches (πss, xss) at t∗, which is guaranteed by

equation (80). For this case only, the optimal equilibrium is therefore implementable while

following the Taylor principle.
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Even though there is one degree of freedom in picking ξπ (R∗) and ξx (R∗), condition (81)

does imply that, when κσλ 6= 1, the Taylor principle does not hold. Thus, any implemen-

tation of the optimal equilibrium with κσλ 6= 1 necessarily requires something akin to local

indeterminacy around (πss, xss). However, local indeterminacy in this context says nothing

about uniqueness of equilibria. In fact, the Taylor principle not holding is neither necessary

nor sufficient for uniqueness of equilibria, as the next section shows. Suppose the economy

at time t ≥ t1 finds itself close enough to (πss, xss) and traveling on the optimal saddle path.

Locally, the economy looks like an economy without a binding ZLB in which the Taylor

principle does not hold. Standard analysis may then seem to suggest that there are multiple

equilibria in the economy. However, unlike in the standard analysis, x (t) and π (t) are not

jump (or non-predetermined) variables. Actually, x (t) and π (t) are predetermined variables

for all t > 0. The only jump variables are x (0) and π (0). After the intial instant, inflation

and output are both predetermined by the history of the economy. Of course, if at some time

t > 0 the central bank reneged on its commitment and announced a new rule that does not

satisfy the Taylor principle, or if anything else suddenly changed in the economy, then it is

possible that new expectations can form in which local indeterminacy actually translates to

multiplicity of equilibria. But this is strictly outside the model; if anything unexpected can

happen after (π (0) , x (0)) or if equilibria are required to be robust to perturbations after t1,

then the analysis must be performed in a different setting.

6.4 Eliminating Non-Optimal Equilibria

What should the central bank do for Rt1 6= R∗? What should its off-equilibrium threats be if

it wants to eliminate indeterminacy? The next proposition gives the necessary and sufficient

conditions to rule out non-optimal equilibria.

Proposition 5 (Eliminating non-optimal equilibria). The rule in equation (19) implements

no equilibria with Rt1 6= R∗ if and only if:

1. The Taylor principle does not hold when (π (t1) , x (t1)) ∈ Ωzlb ∩Υzlb.

2. The liftoff rule satisfies

f (Rt1) 6= T (Rt1) (82)

for any Rt1 6= R∗ fulfilling one of the three conditions below:

(a) The Taylor principle holds and there exists r ∈ (t1,∞) such that (π (r) , x (r)) ∈
∂Ω ∩Υzlb;

(b) The Taylor principle does not hold and (π (t1) , x (t1)) ∈ Ωss ∩Υss;
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(c) The Taylor principle holds and (π (t1) , x (t1)) = (πss, xss).

3. The liftoff rule satisfies

f (Rt1) >
1

φ1

log

(
dexit (r)

dexit (t1)

)
(83)

for any Rt1 6= R∗ such that the Taylor principle does not hold and there exists r ∈
(t1,∞) such that (π (r) , x (r)) ∈ ∂Ω ∩Υss.

Proof. I present a sketch of the proof, the full one is in Appendix 5. For Rt1 such that

P (Rt1) 6= 0, paths are not continuous and hence not an equilibrium. Consider then all

Rt1 6= R∗ such that P (Rt1) = 0. Items 1, 2a-2c and 3 classify these Rt1 into five disjoint

sets. Using Propositions 2 and 3, items 1-3 guarantee that continuous paths are unbounded

and that bounded paths are discontinuous.

Item 1: If the Taylor principle holds and (π (t1) , x (t1)) ∈ Ωzlb ∩ Υzlb, paths are always

continuous and bounded. This case corresponds to the green path in figure 12. Earlier or later

liftoff while inside Ωzlb does not change paths in any way since max {0, ξππ (t) + ξxx (t) + rh} =

0. When the Taylor principle holds, (π (t) , x (t)) remains in Ωzlb ∩Υzlb for all t ≥ t1. Thus,

picking a different f cannot eliminate these equilibria. The only option is to not have the

Taylor principle hold so that (πzlb, xzlb) /∈ Ωzlb and (π (t) , x (t)) eventually exits Ωzlb and

becomes unbounded.

Item 2: By Propositions 2 and 3, paths are continuous and bounded if and only if equation

(82) does not hold. The case in item 2a corresponds to the red path in figure 12 while the

case in item 2b corresponds to the green path in figure 11.

Item 3: This case corresponds to the red path in figure 11. Liftoff occurs inside Ωzlb if

and only if inequality (83) does not hold (note r > t1). In this case, paths are continuous

without further conditions on f since max {0, ξππ (t) + ξxx (t) + rh} = 0 and Proposition 2

shows such paths are bounded. �

The proposition offers a taxonomy of potential equilibria and how to prevent them from

forming by choosing Taylor rule coefficients and an appropriate liftoff rule. It can be seen

as a menu for central banks that prescribes different communication strategies for different

private sector expectations.

The first class of equilibria, described in item 1, is defined by (π (t1) , x (t1)) ∈ Ωzlb∩Υzlb.

In this class, the economy is against the ZLB at all times. Expectations of falling into

(πzlb, xzlb) are the strongest they can be. In the introduction, I referred to this case as the

one with “strong” expectations of falling into the deflationary trap. Indeed, the loading

dexit on the exit factor vexit is zero for all t ≥ T and the economy is solely driven by the

trap factor vtrap. For all other cases in Proposition 5, the economy is in Ωss —and the
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loading on vexit is non-zero— for at least some of the time. When expectations are such

that (π (t1) , x (t1)) ∈ Ωzlb ∩ Υzlb, the only way to avoid the expectational trap is to have

the Taylor principle not hold. A central bank that reacts weakly enough to deviations of

inflation from zero outside the ZLB is necessary and sufficient to eliminate this undesirable

class of deflationary equilibria. Neither a time nor a state-dependent commitment to delay

liftoff can rescue the economy from reaching (πzlb, xzlb). The promise of a longer ZLB period

only confirms the already strong deflationary expectations.

Item 2 defines what in the introduction I called “weak” expectations of falling into the

deflationary trap. Unlike the case in item 1, in which not following the Taylor principle is

the only option, there are two different ways to eliminate the class of equilibria in items 2

and 3. The first way is to choose Taylor rule coefficients that make the Taylor principle hold

or not hold depending on the case at hand. For example, for all continuous paths for which

there exist r ∈ (t1,∞) such that (π (r) , x (r)) ∈ ∂Ω∩Υzlb, item 2a shows that equilibria can

be precluded by not following the Taylor principle. The second way to eliminate equilibria

is to choose an appropriate rule for liftoff by satisfying equations (82) and (83).

Whenever the Taylor principle does not hold, equilibria involving the expectational trap

are eliminated, as discussed before. Following the Taylor principle is an equally powerful

tool to rid the economy of suboptimal equilibria that converge to the intended steady-state

(πss, xss). By Proposition 1, not all suboptimal equilibria can be eliminated simultaneously

by an appropriate choice of Taylor rule coefficients. Thus, despite the broad effectiveness

of using appropriate Taylor rule coefficients to eliminate equilibria, some of the potential

equilibria must be ruled out by a state-contingent liftoff rule. This conclusion can also be

reached directly in Proposition 5. For example, when (π (t1) , x (t1)) = (πss, xss), if item 2b

does not hold, then item 2c holds, and vice-versa. Following or not following the Taylor

principle merely changes which case is the relevant one. For paths with (π (t1) , x (t1)) =

(πss, xss), the only way to stop equilibria is to abide by equation (82).

Item 2a corresponds to the Benhabib et al. (2001) equilibria discussed in Section 5.3.

Although the economy has succeeded in escaping Ωzlb by time t1 and (π (t1) , x (t1)) can get

arbitrarily close to (πss, xss), self-fulfilling expectations of reaching (πzlb, xzlb) nevertheless

take hold. At some time r > t1, the economy enters Ωzlb through Υzlb and converges to

the unintended steady-state. For t ≥ r , the loading on the exit factor is zero and trap

expectations are maximal. The expectation as of time t1 of a future (at time r) loading of

zero on the exit factor requires a small enough loading on the exit factor at t1 in order to be

validated. On the other hand, the exit factor is large enough between T and t1 to allow the

economy to be outside the ZLB between t1 and r. In this class of equilibria, expectations of

entering and exiting the trap are both present, and the former end up dominating. Because

there is at least some tension between the trap and exit factors, this class of equilibria is
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not as severe as the one in item 1 in terms of avoiding (πzlb, xzlb). As such, it is possible

to preclude it without having to abandon the Taylor principle if f is chosen so as to satisfy

equation (82). This result is different from Benhabib et al. (2001), where the Taylor principle

necessarily implied the existence of these equilibria. The difference arises because I consider

a broader set of rules that the central bank can follow by allowing state-dependent liftoff.

Despite this difference, item 1 does support the conclusion in Benhabib et al. (2001) that it

is not possible to have determinacy while always following the Taylor principle outside the

ZLB.

Why does equation (82) preclude equilibria for item 2a? For each Rt1 , by Proposition

3 and the continuous pasting condition in equation A.27, there is a single value of f (Rt1)

that leads to continuous bounded paths. Liftoff at any other time therefore impedes these

type of equilibria from happening; a well-timed liftoff by the central bank avoids validating

expectations of a suboptimal path. When f (Rt1) < T (Rt1), the economy undershoots

∂Ω ∩ Υzlb at r, while when f (Rt1) > T (Rt1), the economy overshoots it. Both under and

overshooting ∂Ω∩Υzlb lead to a non-zero loading on the exit factor at time r, which is enough

to stop the economy from falling into (πzlb, xzlb). Alternatively, the central bank can preclude

the equilibria in item 2a by not following the Taylor principle, a result also consistent with

Benhabib et al. (2001). Unlike Benhabib et al. (2001), however, not following the Taylor

principle does not necessarily introduce other sub-optimal equilibria.

Item 2b describes an economy that converges to the desired steady-state (πss, xss) after

having successfully escaped Ωzlb by time t1. Expectations of escaping (πzlb, xzlb), captured

by the value of the loading dexit on the exit factor, are always strong enough to take the

economy far enough from Υzlb during t ∈ [T, t1), allowing it to escape the expectational trap.

Even though the economy converges to the intended steady-state, it does so by following a

suboptimal path. These equilibria can be precluded by following the Taylor principle or by

choosing f (Rt1) 6= T (Rt1). Just as for item 2a, f < T and f > T correspond to under and

overshooting the trajectories that result in continuous bounded paths.

Item 2c considers equilibria in which the Taylor principle holds and the economy is on

(πss, xss) exactly at liftoff. The intuition for why equilibria are eliminated by using equation

(82) are analogous to the other cases in item 2.

The case described in item 3 is somewhat different from the previous ones. It corresponds

to the case of “medium” strength expectations of falling into the deflationary trap. For each

Rt1 that satisfies the assumptions in item 3, any low enough value of t1 gives a continuous

bounded path. When the economy is inside Ωzlb, pegging interest rates at zero or following

i (t) = max {0, ξππ (t) + ξxx (t) + rh} are equivalent. Liftoff while ξππ (t) + ξxx (t) + rh < 0

produces the same path as lifting off exactly at time r, when ξππ (r) + ξxx (r) + rh = 0. At

time r, the economy is on ∂Ω∩Υss. For all liftoff times t1 ≤ r, the economy follows the stable
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saddle-path towards (πss, xss), staying bounded and continuous. To stop this equilibrium

from forming, the central bank first computes how long it takes to reach ∂Ω∩Υss starting at

the (π (0) , x (0)) given by the first two components of Rt1 . It then picks a liftoff that exceeds

that time. Equation (83) expresses exactly this strategy. The lower bound for f (Rt1) in

equation (83) is a function of how strong the trap factor expectations are at the time of

exiting the ZLB compared to those at liftoff. For a given (π (t1) , x (t1)) or, equivalently, for

a given dexit (t1), larger trap expectations at time r, given by dexit (r), imply a longer time

inside the ZLB. On the other hand, for a given dexit (r), a larger loading dexit (t1) on the exit

factor implies a shorter time at the ZLB.

Even though Proposition 5 gives exact ways in which to eliminate each type of potential

equilibria, it also offers broader, more conceptual lessons. It gives general properties any

interest rate rule must have and can have to produce a determinate optimal outcome. When

combined with Proposition 4, it gives the following result.

Proposition 6 (General properties for global determinacy of the optimal equilibrium). If

κσλ 6= 1, when the optimal equilibrium is the unique equilibrium:

1. The liftoff rule cannot be purely forward-looking, i.e. f (Rt1) cannot be constant in

(π (0) , x (0)), the first two elements of Rt1.

2. The interest rate rule can be purely backward-looking, i.e. ξπ (Rt1), ξx (Rt1) and f (Rt1)

can be constant in (π (t1) , x (t1)), the last two elements of Rt1.

3. The interest rate rule can be memoryless after liftoff, i.e. Taylor rule coefficients

ξπ (Rt1) and ξx (Rt1) be constant (and hence state and path independent).

4. If the interest rate rule is continuous with respect to the state of the economy, i.e. if

ξπ (Rt1), ξx (Rt1) and f (Rt1) are continuous in Rt1:

(a) The Taylor principle never holds.

(b) The interest rate rule must be forward and backward-looking, i.e. ξπ (Rt1), ξx (Rt1)

and f (Rt1) can be constant neither in (π (0) , x (0)) nor in (π (t1) , x (t1)).

(c) Proposition 5 holds by replacing equation (82) with

f (Rt1) > T (Rt1) . (84)

Proof. Appendix A.8. �
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The first two items in Proposition 6 state that an interest rate rule that brings about

global determinacy of the optimal equilibrium must be path dependent but need not be for-

ward looking. More precisely, there exist functions f (Rt1), ξx (Rt1) and ξπ (Rt1) that do not

depend on (are constant in) x (t1) and π (t1) that produce a unique optimal equilibrium, but

the same is not true for functions that do not depend on (are constant in) π (0) and x (0).

When the central bank explains why it will promise to keep interest rates at zero for some

time, determinacy requires that it refers to the level of inflation and output that prevail at

the beginning of the liquidity trap. Even more, it requires that the length of time promised

for zero interest rates changes as a function of π (0) and x (0). Note that if t1 is known,

either (π (0) , x (0)) or (π (t1) , x (t1)) fully determine the path of the economy. If f (Rt1) is

purely backward looking, knowing (π (0) , x (0)) immediately pins down t1 and thus the entire

path. If f (Rt1) is purely forward looking, the same reasoning applies. Given (π (t1) , x (t1)),

liftoff is then determined by f (Rt1), which is solely a function of (π (t1) , x (t1)). The rele-

vant difference for determinacy between purely backward-looking and purely forward-looking

rules is not whether there is a unique path for a given (π (0) , x (0)) or (π (t1) , x (t1)). The

key difference is that, for purely forward-looking rules, no matter what form f (Rt1) takes,

there always are some (π (t1) , x (t1)) that support non-optimal equilibria. Perhaps the eas-

iest example is when (π (t1) , x (t1)) = (πss, xss). By the definition of rational expectations

equilibrium, f (Rt1) <∞ for all Rt1 . Consider the value t̂1 = f (a, b, πss, xss), which will be

the same for all a, b since the rule is purely forward-looking. Using the continuous pasting

conditions, it is always possible to find (π̂0, x̂0) such that when (π (0) , x (0)) = (π̂0, x̂0), the

economy follows a continuous path that reaches (πss, xss) at t = t̂1. Indeed, all it takes is to

trace the IS and NKPC backward in time starting at (πss, xss) for a period of time t̂1 while

setting i (t) = 0 throughout. Because t̂1 < ∞, it is always possible to find such (π̂0, x̂0).

The key for this argument to work is that t̂1 is the same for all a and b. The path of the

economy when tracing the dynamics backwards in time is fully determined by the value of

(π (t1) , x (t1)). If the rule has a backward-looking component, finding the path by traveling

backward in time from liftoff until t = 0 is a fixed-point problem, since the amount of time

elapsed before reaching (π (0) , x (0)) depends on (π (0) , x (0)) itself. If the central bank

picks an appropriate rule, the fixed-point problem can be guaranteed to have no solution.

In economic terms, no solution to the fixed-point problem means that are no rational expec-

tations for (π (0) , x (0)) that get the economy to (πss, xss) at time f (π (0) , x (0) , πss, xss).

This type of logic implies that if f (Rt1), instead of being a function of Rt1 , were a function

of (π (s) , x (s) , π (t1) , x (t1)) for some s ∈ (0, t1), Propositions 5 and 6 would still apply. It is

thus not necessary for the central bank to make its policy contingent on exactly (π (0) , x (0)).

It can make it contingent on inflation and output for some other time s, as long as s < t1.

If the central bank is willing to accept an indeterminate path between t = 0 and s, there is
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actually no need to announce f until s.

Item 3 of Proposition 6 shows that it is possible to make monetary policy after liftoff be

independent of what happens before liftoff and still provide determinacy. Forward guidance

need not affect monetary policy forever, as would occur if, for example, the central bank

increased the inflation target. What is crucial is that there is path dependence for some time

after the natural rate becomes positive, but not necessarily after the nominal rate becomes

positive. The proof in Appendix A.8 makes clear that determinacy can be obtained with any

combination of constant coefficients that do not satisfy the Taylor principle. Of course, if

the central bank wishes to implement the optimal equilibrium, then it must pick coefficients

in accordance with Proposition 4. Lastly, constant Taylor rule coefficients may be desirable

from a communications standpoint, as the complexity of the rule is reduced.

Another way to conceivably simplify communication is to have a rule that is continuous

with respect to the state of the economy. Empirically, at least during non-crisis times, small

changes in economic conditions generally lead to changes in monetary policy of commensurate

size. To the best of my knowledge, all interest rate and targeting rules in the literature also

share this reasonable feature. On the other hand, Proposition 5 allows for discontinuity of

the rule even though the fundamentals of the economy, x (t) and π (t), are continuous as a

function of time and i (t) and r (t) each jump at most once. The rule in equation (18), in

which the liftoff times were arbitrary as long as they avoided a specific value, reveals why it

is possible to have a discontinuous f and still get determinacy. Taylor rule coefficients are

also not required to be continuous by Proposition 4. As long as the central bank follows or

does not follow the Taylor principle when required, determinacy can be achieved.

When f (Rt1), ξx (Rt1) and ξπ (Rt1) are assumed to be continuous, 6 shows that the

rules become more dovish. Item 4a states that the Taylor principle cannot hold for any

Rt1 . If the Taylor principle holds for one Rt1 , it must hold for all Rt1 and the same is true

when the Taylor principle does not hold. Because implementing the optimal equilibrium

requires that the Taylor principle does not hold for R∗ (except when κσλ = 1, which is

excluded from Proposition 6), the Taylor principle never holds. If the Taylor principle holds

for some points but not for others, we have that κ (ξπ − 1) + ρξx > 0 for some points and

κ (ξπ − 1) + ρξx < 0 for some others. By continuity of ξπ and ξx, there must then be a point

for which κ (ξπ − 1) + ρξx = 0. For that point, there always is an equilibrium of the kind

described in item 1 of Proposition 5 with the only difference that when κ (ξπ − 1) + ρξx =

0, the unintended steady state (πzlb, xzlb) is in Ωzlb ∩ Υzlb, so any continuous path with

(π (t1) , x (t1)) ∈ Υzlb is an equilibrium.

According to item 4b, continuity also implies that the rule must now necessarily be

both forward and backward-looking. By item 1, we already know the rule cannot be purely

forward-looking. The reason it can no longer be purely backward-looking is that suboptimal
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equilibria would emerge in a neighborhood of R∗, the optimal equilibrium. Because the

optimal equilibrium (with κσλ 6= 1) must be implemented without following the Taylor

principle, it always induces saddle-path dynamics. First imagine that Taylor rule coefficients

are constant, so that the slope of the saddle path is the same for all Rt1 . With a continuous

f , points (π (0) , x (0)) around (π∗ (0) , x∗ (0)) always land close to (π∗ (t∗) , x∗ (t∗)). In a

neighborhood of (π∗ (t∗) , x∗ (t∗)), the dynamics are saddle-path stable. For a small enough

ε > 0, there always is a point (π∗ (t1) , x
∗ (t1)) ∈ Υss that is close enough to (π∗ (t∗) , x∗ (t∗))

and can be reached at time t∗ ± ε when starting at an (π (0) , x (0)) close to (π∗ (0) , x∗ (0)).

This situation is similar to that in Figure 2, only that instead of a constant liftoff time, liftoff

times change an arbitrarily small amount as the economy approaches R∗. The small change

in liftoff time is not enough to overcome the indeterminacy. The presence of a saddle path

breeds indeterminacy; liftoff slightly earlier or later simply puts the economy on different

nearby points on the saddle. This is one of the reasons why the discontinuous Neo-Fisherian

rule in equation (18) has discrete jumps (t∗, t∗+1 and t∗+2) for the liftoff times in the three

different cases. Paths with Rt1 very close to R∗ look so much like the optimal equilibrium

that they themselves are equilibria. When the Taylor rule coefficients are not constant but

instead a continuous function of (π (0) , x (0)), the only change is that now the saddle path

starting at (π∗ (0) , x∗ (0)) is slightly different from the saddle path starting at (π (0) , x (0)).

This is still not enough to eliminate the equilibria. Points near R∗ can still be part of

an equilibrium with liftoff arbitrarily close to t∗ and a saddle path arbitrarily close to the

optimal one.

Lastly, item 4c sharpens equation (82) and states that for the cases described by item 2

of Proposition 5, liftoff must be “late enough”. Because for item 3 of the same Proposition

they also need to be “late enough”, continuous rules can produce determinacy by promising

a long enough period of zero interest rates together with a commitment to not following the

Taylor principle once the promise expires. The precise meaning of “long enough” is given

by equations (83) and (84). Even though these two lower bounds for liftoff are relatively

simple functions of expectations of falling and exiting the expectational trap, the freedom to

overshoot the lower bound and still get determinacy significantly reduces the informational

requirements of the central bank. It is not necessary to know the precise parameters of the

model or the functional form of T .

Why does continuity change equation (82) into equation (84)? Consider a point R =

(π0, x0, π1, x1) that fulfills one of the three conditions in item 2 of Proposition 5 but does

not satisfy equation (84). Let p be the set of points (π (t) , x (t) , π1, x1) with 0 < t < T (R)

and (π (0) , x (0)) = (π0, x0). In other words (π (t) , x (t)) is in the path between (π0, x0) and

(π1, x1). If there is some P = (π (p) , x (p) , π1, x1) ∈ p that satisfies equation (84), then by

continuity there is some point in the path between (π0, x0) and (π (p) , x (p)) with f = T , a
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suboptimal equilibrium. So equation (84) not holding for R means it does not hold for all

points in p. But this cannot happen, since the point with T =T cannot have f < T =T ,

since liftoff cannot happen before T 18. So R cannot violate inequality (84) and eliminate

indeterminacy.

Less formally, for all paths that reach the same (π1, x1) at time T , the central bank cannot

have liftoff be above T for some paths and below T for some other. For if it does, continuity

implies at least one point has liftoff at T , which produces a suboptimal equilibrium. So all

paths must have either early liftoff (before T ) or late liftoff (after T ). If there is early liftoff

for all paths, then as we consider shorter and shorter paths (paths with smaller and smaller

T ), then liftoff also must be happening earlier and earlier. But there is always a path with

T =T for which the central bank, by assumption, cannot set f < T . Promising early liftoff

for one state forced the central bank to promise an even earlier liftoff for similar but less dire

states. As the central bank considers states that are less and less dire, the promise of liftoff

gets so short that, for some states, it must happen before T . But it does not make sense to

lift off when the natural rate is negative, so it does not make sense to have early liftoff for

any states19.

7 Conclusion

I have presented necessary and sufficient conditions for global determinacy of the optimal

equilibrium in a New Keynesian economy with a binding ZLB. The central bank sets interest

rates according to a state-dependent forward guidance rule followed by a traditional Taylor

rule. Forward guidance entails a promise to keep interest rates pegged at zero for some

time; making that length of time depend on private sector expectations, inflation and the

output gap make the forward-guidance state-dependent. When deflationary expectations

of the private sector are the strongest they can be, the only way to eliminate self-fulfilling

deflations is to commit to not following the Taylor principle once the forward guidance period

is over. When deflationary expectations are present but not as strong, a state-dependent

extension of the forward guidance period becomes the crucial element.

The model I have used is one of the simplest models in which New Keynesian forces

and rational expectations are present. The relative simplicity makes it possible to write

down the solution of the model in closed form and fully characterize global determinacy. On

the other hand, there are a myriad of important ways examined in the literature in which

this baseline model can be extended, refined and modified. Investment dynamics, imports

18 The same argument applies if liftoff is allowed to happen even before T . The key is that liftoff is bounded
below, which it always is, by t = 0.

19 As mentioned in the introduction, the key assumption is not that f ≥ T but that f is bounded below.
Since liftoff cannot occur before t = 0, f is always bounded below.

54



and exports, coordination with fiscal policy, limited commitment, imperfect credibility, het-

erogeneous agents, financial intermediation and financial stability concerns, informational

frictions, learning and other departures from rational expectations are, among other, com-

ponents of a more realistic version of the model than can affect determinacy and optimality

of equilibria. Nevertheless, the “three equation” New Keynesian model seems like the natural

place to start, a necessary step towards deeper analysis, as the mechanisms presented in this

paper are likely at play in any model with a New Keynesian core. Assessing the robustness

and welfare properties of the interest rate rules I have considered in various versions on the

model —and different models as well— is a required next step towards real-world use.
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A Proofs of Propositions

A.1 Preliminaries

Transition times. Let τ (t) be the largest of t1 and the last time (π (t) , x (t)) entered the

region Ωzlb from Ωss before or at time t. More formally20

τ (t) = max {t1, τ zlb (t)} , (A.1)

τ zlb (t) = sup
{
s ≤ t | (x (s) , π (s)) ∈ ∂Ω and

(
x
(
s−
)
, π
(
s−
))
∈ Ωss

}
, (A.2)

Let η (t) be the largest of t1 and the last time (π (t) , x (t)) exits the region Ωzlb (or enters

the region Ωss) before or at time t, i.e.

η (t) = max {t1, ηss (t)} , (A.3)

ηss (t) = sup
{
s ≤ t | (x (s) , π (s)) ∈ ∂Ω and

(
x
(
s+
)
, π
(
s+
))
∈ Ωss

}
. (A.4)

Note that τ (t) and η (t) are piece-wise constant and thus for all t 6= τ (t) we have τ̇ (t) = 0

and for all t 6= η (t) we have η̇ (t) = 0.

Solution to IS and NKPC. Let

Azlb =

[
0 − 1

σ

−κ ρ

]
,

Ass =

[
1
σ
ξx

1
σ

(ξπ − 1)

−κ ρ

]
.

The matrix Azlb has eigenvalues φ1 and φ2 defined in equations (28)-(29). The eigenvalues

of Ass are

α1 =
1

2σ

(
ξx + σρ+

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
, (A.5)

α2 =
1

2σ

(
ξx + σρ−

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
. (A.6)

Because stable dynamics always produce indeterminacy, I restrict all analysis to cases in

which either detAss > 0 and traceAss > 0, or detAss < 0.

20 Recall that the supremum of the empty set is −∞. If there is no s such that (x (s) , π (s)) ∈ ∂Ω and
(x (s−) , π (s−)) ∈ Ωss, then τzlb (t) = −∞ and τ (t) = t1.
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For t ∈ [0, T ) the solution to (1)-(2) is

x (t) = − φ2

(φ1 − φ2)

(
dexit (0)− φ2

κ
(rh − rl)

)
eφ1t

+
φ1

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − ρ

κ
rl, (A.7)

π (t) = − κ

(φ1 − φ2)

(
dexit (0)− φ2

κ
(rh − rl)

)
eφ1t

+
κ

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − rl. (A.8)

For t ∈ [T, t1) the solution is

x (t) = − φ2

(φ1 − φ2)
dexit (T ) eφ1(t−T ) +

φ1

(φ1 − φ2)
dtrap (T ) eφ2(t−T ) − ρ

κ
rh (A.9)

π (t) = − κ

(φ1 − φ2)
dexit (T ) eφ1(t−T ) +

κ

(φ1 − φ2)
dtrap (T ) eφ2(t−T ) − rh (A.10)

For t ∈ [t1,∞), when (π (t) , x (t)) ∈ Ωzlb, the solution is

x (t) = −φ2dexit (τ (t))

(φ1 − φ2)
eφ1(t−τ(t)) +

φ1dtrap (τ (t))

(φ1 − φ2)
eφ2(t−τ(t)) − ρ

κ
rh, (A.11)

π (t) = −κdexit (τ (t))

(φ1 − φ2)
eφ1(t−τ(t)) +

κdtrap (τ (t))

(φ1 − φ2)
eφ2(t−τ(t)) − rh. (A.12)

For t ∈ [t1,∞), when (π (t) , x (t)) ∈ Ωss, I distinguish three cases:

Case I: ξπ 6= 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 .

Case II: ξπ = 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 .

Case III: 4κσ (ξπ − 1) = (ξx − σρ)2 .

For Case I, the solution is

x (t) = −
(1− ξπ) πη(t) + (σα2 − ξx)xη(t)

σ (α1 − α2)
eα1(t−η(t))

+
(1− ξπ) πη(t) + (σα1 − ξx)xη(t)

σ (α1 − α2)
eα2(t−η(t)), (A.13)

π (t) =
(1− ξπ)πη(t) + (σα2 − ξx)xη(t)

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1(t−η(t))

−
(1− ξπ) πη(t) + (σα1 − ξx)xη(t)

σ (ξπ − 1) (α1 − α2)
(ξx − σα2) e

α2(t−η(t)). (A.14)
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For Case II, the solution is

x (t) = xη(t)e
1
σ
ξx(t−η(t)), (A.15)

π (t) =
πη(t) (ξx − σρ) + κσxη(t)

ξx − σρ
eρ(t−η(t)) −

κσxη(t)
ξx − σρ

e
1
σ
ξx(t−η(t)). (A.16)

For Case III, the solution is

x (t) =

(
1 +

1

2σ
(ξx − σρ) (t− t1)

)
xη(t)e

1
2(ρ+ 1

σ
ξx)(t−η(t))

+
1

κ

(
1

2σ
(σρ− ξx)

)2

(t− t1) πη(t)e
1
2(ρ+ 1

σ
ξx)(t−η(t)), (A.17)

π (t) = −κ (t− t1)xη(t)e
1
2(ρ+ 1

σ
ξx)(t−η(t))

+

(
1− 1

2σ
(ξx − σρ) (t− t1)

)
πη(t)e

1
2(ρ+ 1

σ
ξx)(t−η(t)). (A.18)

Continuous pasting. Because solutions to (1)-(2) must be continuous, any equilibrium

path (π (t) , x (t)) must paste continuously at t = T and at t = t1:

lim
t↑T

(π (t) , x (t)) = (π (t) , x (t)) , (A.19)

lim
t↑t1

(π (t) , x (t)) = (π (t1) , x (t1)) . (A.20)

After t1, continuous paths require that whenever (π (t) , x (t)) transitions between Ωss and

Ωzlb, the paths paste continuously at the boundary ∂Ω:

lim
t−τ t↓0

(π (t) , x (t)) = (x (τ t) , π (τ t)) , (A.21)

lim
t−ηt↓0

(π (t) , x (t)) = (x (ηt) , π (ηt)) . (A.22)

In equilibrium, the continuous pasting conditions at t = T and at t = t1 imply

x (0) =
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

x (t1)−
1

σ

e−φ1t1 − e−φ2t1
φ1 − φ2

π (t1) (A.23)

+
rh
κ

φ2
1e
−φ2t1 − φ2

2e
−φ1t1

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π (0) = −κe
−φ1t1 − e−φ2t1
φ1 − φ2

x (t1) +
φ1e

−φ1t1 − φ2e
−φ2t1

φ1 − φ2

π (t1) (A.24)

+rh
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl.
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Solving for (π (t1) , x (t1)) gives, in matrix notation,[
x (t1)

π (t1)

]
=
e(φ1+φ2)t1

φ1 − φ2

[
φ1e

−φ1t1 − φ2e
−φ2t1 1

σ

(
e−φ1t1 − e−φ2t1

)
κ
(
e−φ1t1 − e−φ2t1

)
φ1e

−φ2t1 − φ2e
−φ1t1

][
x (0)− h (t1)

π (0)−m (t1)

]
,

(A.25)

where

h (t1) = rh
φ2
1e
−φ2t1 − φ2

2e
−φ1t1

κ (φ1 − φ2)
+ (rh − rl)

φ2
2e
−Tφ1 − φ2

1e
−Tφ2

κ (φ1 − φ2)
− rlρ

κ
,

m (t1) = rh
φ1e

−φ2t1 − φ2e
−φ1t1

(φ1 − φ2)
+ (rh − rl)

φ2e
−Tφ1 − φ1e

−Tφ2

(φ1 − φ2)
− rl.

Solving for e−φ1t1 and e−φ2t1 , and then eliminating t1 from one of the equations, gives the re-

sult of section 6.1 that equilibrium paths that are already continuous at T are also continuous

at t1 if and only if

0 = P (Rt1) , (A.26)

t1 = T (Rt1) , (A.27)

where

P (Rt1) =



1 {dtrap (t1) 6= 0 or dtrap (t1) 6= 0} , if dexit (0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap (0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dexit (t1) + 1 {dtrap (t1) = 0} , if dexit (0) = φ2

κ
(rh − rl)

(
1− e−Tφ1

)
and dtrap (0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dtrap (t1) + 1 {dexit (t1) = 0} , if dexit (0) 6= φ2

κ
(rh − rl)

(
1− e−Tφ1

)
and dtrap (0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
(

dexit(t1)

dexit(0)+
φ2
κ
(rh−rl)(e−Tφ1−1)

)φ2
,

if dexit (0) 6= φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap (0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
−
(

dtrap(t1)

dtrap(0)+
φ1
κ
(rh−rl)(e−Tφ2−1)

)φ1

,
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and

T (Rt1) =



[T,∞) , if dexit (0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap (0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ2

log dtrap(t1)

dtrap(0)+
φ1
κ
(rh−rl)(e−Tφ2−1)

, if dexit (0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap (0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ1

log dexit(t1)

dexit(0)+
φ2
κ
(rh−rl)(e−Tφ2−1)

, otherwise

.

Saddle path in Ωss. The saddle path Υss is the set of points (π, x) such that

π =


(ξx−σα2)
(1−ξπ)

x , if detAss < 0 and ξπ 6= 1
κσ

(σρ−ξx)
x , if detAss < 0 and ξπ = 1

κ
ρ
x , if detAss = 0 and traceAss ≥ 0

∅ , otherwise

. (A.28)

A.2 Case κσλ = 1 in Proposition 1

The next example shows that when κσλ = 1, it is indeed possible to implement the optimal

equilibrium uniquely with a constant liftoff time. Let t= t∗ and κσλ = 1. Pick

(ξx (R0) , ξπ (R0)) =

{
(0, 0) , if (x (t) , π (t)) = (0, 0) or ρπ (t) 6= κx (t)(

1,− ρ
κ

)
, otherwise

. (A.29)

Then the rule

i (t) =

{
0 , 0 ≤ t < t

max {0, ξπ (R0) π (t) + ξx (R0)x (t) + r (t)} , t ≤ t <∞
(A.30)

implements the optimal equilibrium as the unique equilibrium of the economy.

When (π (t) , x (t)) = 0, the rule implements the optimal path. First, since t= t∗ and

(π (t) , x (t)) = (π∗ (t∗) , x∗ (t∗)) = (0, 0), (π (t) , x (t)) = (π∗ (t) , x∗ (t)) for t < t∗. By equation

(A.29), ξx (R∗) = ξπ (R∗) = 0 and thus i (t) = i∗ (t) = rh > 0 for t ≥ t1. As (0, 0) is a steady

state, (π (t) , x (t)) = (0, 0) for all t ≥ t1, which shows that (π (t) , x (t)) = (π∗ (t) , x∗ (t)).

No other equilibrium exists since, for all R0 6= R∗, continuous paths are unbounded. If

ρπ (t) 6= κx (t), equation (A.29) gives (ξx, ξπ) = (0, 0) and by equation (A.28) the saddle

path is ρπ = κx. It follows that (π (t) , x (t)) /∈ Υss. In addition, i (t) = rh > 0 for t ≥t and

thus (π (t) , x (t)) ∈ Ωss for all t ≥t since Ωzlb is empty. The global saddle path dynamics

and (π (t) , x (t)) /∈ Υss imply that (π (t) , x (t)) explodes as t → ∞. If (π (t) , x (t)) 6= 0

64



and ρπ (t) = κx (t), (ξx, ξπ) =
(
1,− ρ

κ

)
implies that the Taylor principle does not hold, since

κ (ξπ − 1) + ρξx = −κ < 0. In addition, (π (t) , x (t)) ∈ Ωss since ξππ (t) + ξxx (t) + r (t) =

rh > 0 and (π (t) , x (t)) /∈ Υss by equation (A.28). Because the dynamics are saddle path

stable and (π (t) , x (t)) is not on the saddle path, (π (t) , x (t)) either explodes or enters Ωzlb

in finite time. But by item 3 in Proposition 7, if (π (t) , x (t)) enters Ωzlb it also explodes.

A.3 Constants in the Neo-Fisherian Rule of Section 5.2

To be on the saddle at time t1, π (t1) = φx (t1). Using the continuous pasting conditions in

equation (A.25) to express π (t1) = φx (t1) in terms of x (0) and π (0) gives

p (t1)x (0) + q (t1) π (0) = v (t1) ,

where

p (t1) = κσ
(
(φ1 − κφ) e−φ1t1 − (φ2 − κφ) e−φ2t1

)
,

q (t1) = κ
(
(σφφ2 + 1) e−φ1t1 − (σφφ1 + 1) e−φ2t1

)
,

v (t1) = −
(

(κ+ σφ1 (ρ− κφ)) rl +
(rh − rl)φ1

φ1 − φ2

(
κ+ σφ2

1 − κσφ (φ1 − φ2)
)
e−Tφ2

)
e−φ1t1

+

(
(κ+ σφ2 (ρ− κφ)) rl −

(rh − rl)φ2

φ1 − φ2

(
κ+ σφ2

2 + κσφ (φ1 − φ2)
)
e−Tφ1

)
e−φ2t1

+
(σρ2 + 4κ) (ρ− κφ) rh

(φ1 − φ2)
e−φ1t1e−φ2t1 .

Evaluating these functions at t1 = t∗ and t1 = t∗ + 1 determines the constants A, B, C, D,

E, F .

A.4 Proof of Proposition 2

I first prove a lemma and then proceed to the proof of Proposition 2.

Lemma 7. When the Taylor principle does not hold, the following are true:

1. (πzlb, xzlb) /∈ Ωzlb.

2. If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1, (π(t), x(t)) either explodes as t → ∞ or exits

Ωzlb in finite time.

3. If (π(s), x(s)) ∈ Ωss for some s ≥ t1 and (π(q), x(q)) ∈ Ωzlb for some q > s, then

(π(t), x(t)) explodes as t→∞.
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4. If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist no r ≥ q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then (π(t), x(t)) explodes as t→∞.

5. If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist r > q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then there exist no t ∈ [q, r) such that (π(t), x(t)) ∈ Υss.

Proof of Lemma 7. 1. Plugging the steady-state from equation (31) into the Taylor rule

gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −rh
κ

(κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

> 0.

where detAss < 0 because the Taylor principle does not hold.

2. The saddle path stable dynamics in Ωzlb and (πzlb, xzlb) /∈ Ωzlb immediately imlpy that

paths starting in Ωzlb either explode or exit Ωzlb in finite time.

3. Let n̂ be a unit vector normal to ∂Ω pointing towards Ωss. Because (π(t), x(t)) tran-

sitions from Ωss to Ωzlb and its path is continuous, there exist ω ∈ (s, q] such that

ξππω + ξxxω + rh = 0, (A.31)

n̂ · (π̇ω, ẋω) ≤ 0. (A.32)

Equation (A.31) says that (xω, πω) ∈ ∂Ω. The non-positive dot product in equation

(A.32) says that (xω, πω) is not moving towards Ωss (and moving towards Ωzlb when

the dot product is negative). Writing out the dot product gives

 ξx√
ξ2π+ξ

2
x

ξπ√
ξ2π+ξ

2
x

T [ − 1
σ

(πω + rh)

ρπω − κxω

]
= −πω (ξx − σρξπ) + ξxrh + κσξπxω

σ
√
ξ2π + ξ2x

≤ 0,

or, simplifying,

πω (ξx − σρξπ) + ξxrh + κσξπxω ≥ 0. (A.33)

The Taylor principle (TP) not holding, equation (A.31), equation (A.33) and φ1, rh > 0
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imply that

− rh (κ (ξπ − 1) + ρξx)︸ ︷︷ ︸
<0 as TP does not hold

−κ (rh + ξππω + ξxxω)︸ ︷︷ ︸
=0 by eq. (A.31)

+ φ1 (πω (ξx − σρξπ) + ξxrh + κσξπxω)︸ ︷︷ ︸
≥0 by eq. (A.33)

> 0. (A.34)

Equation (A.34) is a sufficient condition for (πT , xT ) to be in Ωzlb for all t ≥ ω. To see

this, use the dynamics in equations (A.11) and (A.12) to write

ξππt + ξxxt + rh = W (t− ω) ,

where

W (t− ω) = Aeφ1(t−ω) +Beφ2(t−ω) + C,

A = − (φ1πω − κxω − φ2rh)
ξx − σφ1ξπ
σφ1 (φ1 − φ2)

,

B = (φ2πω − κxω − φ1rh)
ξx − σφ2ξπ
σφ2 (φ1 − φ2)

,

C =
rh
κ

(κ (1− ξπ)− ρξx) .

By definition, (π(t), x(t)) ∈ Ωzlb iff W (t− ω) ≤ 0. Therefore, if W (t− ω) has no zeros

for t > ω, (π(t), x(t)) remains in Ωzlb forever. Since φ2 < 0 < φ1, W (0) = 0 by (A.31)

and W ′ (0) ≤ 0 by (A.32), a sufficient condition for W (u) to have no zeros for u > 0

is that A < 0. After some manipulations, it can be seen that (A.34) is equivalent to

A < 0. By 3, since (πT , xT ) never transitions to Ωss after ω, it follows that (π(t), x(t))

explodes as t→∞.

4. By 3, if (π(t), x(t)) does not exit Ωzlb, it explodes. If (π(t), x(t)) exits Ωzlb at some time

η and (πη, xη) is not on the ss saddle path, due to the saddle path dynamics inside

Ωss, (π(t), x(t)) either explodes or returns to Ωzlb in finite time. If (π(t), x(t)) returns

to Ωzlb, by item 3, it explodes.

5. By equations (A.28), Υss is a line through the origin, which can be written as Aπ−x = 0

with A 6= 0. If ξπ 6= 1 then A = (1− ξπ) / (ξx − σα2) and if ξπ = 1 then A =

(σρ− ξx) /κσ. Let

F (t) = Aπt − xt. (A.35)

The path of (π(t), x(t)) intersects Υss at some time t̄ iff F (t̄) = 0.

Using equation (22) in the IS and NKPC after t1, it can be seen that (πT , xT ) is
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continuous on ∂Ω for all t ≥ t1. It follows that the right and left derivatives of F (t)

are equal at t = r. By equations (A.13)-(A.18) and (A.28), (πT , xT ) remains on Υss

after intersecting it at t = r. Hence, the right derivative of F (t) at t = r is zero. To find

the left derivative, first note that between times q and r, the dynamics of (π(t), x(t))

are given by equations (A.11) and (A.12). Using these dynamics in equation (A.35)

gives

F (t) = Peφ1(t−τ(t)) +Qeφ2(t−τ(t)) +R, (A.36)

where

P =
φ2 − Aκ
κ (φ1 − φ2)

(
φ2rh − φ1πτ(t) + κxτ(t)

)
,

Q = − φ1 − Aκ
κ (φ1 − φ2)

(
φ1rh − φ2πτ(t) + κxτ(t)

)
,

R =
rh (ρ− Aκ)

κ
.

Note that P and Q cannot both be zero. Indeed, P = Q = 0 implies R = 0 since

F (r) = 0. But then
(
xτ(t), πτ(t)

)
= (πzlb, xzlb) = (xq, πq) ∈ Ωzlb contradicts item 1.

Using equation (A.36) to compute the left derivative of F (t) at t = r and setting it

equal to zero (the value of the right derivative) gives

F ′ (r) = 0 = φ1Pe
φ1(r−τ(r)) + φ2Qe

φ2(r−τ(r)). (A.37)

In other words, the path for (π(t), x(t)) must be tangent to the ss saddle path at t = r.

Since φ2 < 0 < φ1, equation (A.37) implies that P and Q have the same sign (and the

sign is not zero since P and Q cannot both be zero). In turn, P and Q having the

same sign implies that

F ′′ (t) = φ2
1Pe

φ1(t−τ(t)) + φ2
2Qe

φ2(t−τ(t)) (A.38)

has the same (non-zero) sign for all t ∈ [q, r], so F ′ (t) is strictly monotonic. A contin-

uous and strictly monotonic F ′ (t) in t ∈ [q, r], together with F (r) = F ′ (r) = 0, imply

that the only solution to F (t) = 0 for t ∈ [q, r] is r. �

Proof of Proposition 2. Consider the following condition:

(π(t1), x(t1)) ∈ Ωss ∩Υss,

or

(π(t1), x(t1)) ∈ Ωzlb and (π(r), x(r)) ∈ ∂Ω ∩Υss for some r ∈ [t1,∞).

(A.39)
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I first show that condition (A.39) implies paths are not explosive. If (π(t1), x(t1)) ∈ Ωss

and (π(t1), x(t1)) ∈ Υss, then (πT , xT ) ∈ Υss for all t ≥ t1. If (xt1 , πt1) ∈ Ωzlb and (xr, πr) ∈
∂Ω ∩ Υss for some r ∈ [t1,∞), (π(t), x(t)) ∈ Υss for all t ≥ r. In either case, the path

converges to (0, 0) and therefore does not explode.

To prove the converse, I prove the contrapositive. There are three cases to consider.

Case 1: If (π(t1), x(t1)) /∈ Ωss and there exist no r ∈ [t1,∞) such that (xr, πr) ∈ ∂Ω∩Υss,

then (πT , xT ) explodes by item 5 of Lemma 7.

Case 2: If (π(t1), x(t1)) /∈ Υss and (π(t1), x(t1)) /∈ Ωzlb, (πT , xT ) either explodes or enters

Ωzlb. If it enters Ωzlb, it also explodes by item 3 of Lemma 7.

Case 3: If (π(t1), x(t1)) /∈ Υss and there exist no r ∈ [t1,∞) such that (xr, πr) ∈ ∂Ω∩Υss,

consider two sub-cases. The first sub-case, given by (π(t1), x(t1)) /∈ Ωss, was already covered

in case 1. For the second sub-case, given by (π(t1), x(t1)) /∈ Ωzlb, case 2 implies (π(t1), x(t1))

explodes. �

A.5 Proof of Proposition 3

I first prove a lemma and then proceed to the proof of Proposition 3.

Lemma 8. When the Taylor principle holds, the following are true:

1. (πzlb, xzlb) ∈ Ωzlb.

2. If (xm, πm) ∈ Ωzlb ∩Υzlb with m ≥ T , then (πT , xT ) ∈ Ωzlb ∩Υzlb for all t ≥ m.

3. There exist (π0, x0) such that (π(T ), x(T )) ∈ Ωzlb ∩Υzlb.

4. If (π(s), x(s)) ∈ ∂Ω for some s ≥ t1, there is no p > 0 such that (π(t), x(t)) ∈ Ωss for

t ∈ (s, s+ p) and (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

5. If (π(q), x(q)) ∈ Ωss for q ≥ t1 with (π(q), x(q)) 6= (πss, xss) and there is no p >

0 such that [(π(t), x(t)) ∈ Ωss for t ∈ (q, q + p) and (π(q + p), x(q + p)) ∈ Υzlb ∩ ∂Ω],

then (π(t), x(t)) explodes as t→∞.

6. There is no chaos (in the sense of R. Devaney21).

21 See Banks, Brooks, Cairns, Davis, and Stacey (1992) for a definition.
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Proof of Lemma 8. 1. Plugging the steady-state (31) into the Taylor rule gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −1

κ
rh (κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

< 0.

where detAss > 0 because the Taylor principle holds.

2. Let (x, π) be a point in the line segment with endpoints (xm, πm) and (πzlb, xzlb), i.e.

(x, π) is in the portion of the zlb saddle path between (xm, πm) and (πzlb, xzlb). Then

(x, π) = a (xm, πm) + (1− a) (πzlb, xzlb) ,

for some a ∈ [0, 1]. It follows that

ξππ + ξxx+ rh = ξπ (aπm + (1− a)πzlb) + ξx (axm + (1− a)xzlb) + rh,

= a (ξππm + ξxxm + rh) + (1− a) (ξππzlb + ξxxzlb + rh) ,

< 0, (A.40)

where the last line uses that (xm, πm) and (πzlb, xzlb) are both in Ωzlb. The line segment

with endpoints (xm, πm) and (πzlb, xzlb) is thus entirely in Ωzlb. For t ∈ [T, t1), the

dynamics of (π(t), x(t)) are given by (A.9)-(A.10) and thus (πT , xT ) travels along the

zlb saddle path. For t ≥ t1, equation (A.40) implies that max {0, ξππt + ξxxt + rh} = 0

so that (π(t), x(t)) follows the same dynamics given by (A.11)-(A.12), which means

(π(t), x(t)) stays on the zlb saddle path and travels on it towards (πzlb, xzlb).

3. Because (π(T ), x(T )) is in Ωzlb and in Υzlb, it satisfies

0 ≥ ξππT + ξxxT + rh,

xT =
φ1

κ
πT −

φ2

κ
rh.

Solving for (π(T ), x(T )) gives

xT =
φ1

κ
πT −

φ2

κ
rh, (A.41)

(κξπ + ξxφ1) πT ≤ rh (φ2ξx − κ) . (A.42)

If κξπ + ξxφ1 6= 0, it is easy to find (πT , xT ) that satisfies (A.41) and (A.42). If κξπ +
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ξxφ1 = 0, equation (A.42) holds because the Taylor principle holds. Any pair (πT , xT )

that satisfies equation (A.41) will be in Ωzlb and in Υzlb. To find the corresponding

(π(0), x(0)), use the dynamics of (πT , xT ) for t ∈ [0, T ) given by (A.7)-(A.7).

4. By direct computation, the set of points (x, π) ∈ Υzlb ∩ ∂Ω are

(x, π) =

{ (
−rh φ1+φ2ξπ

κξπ+φ1ξx
,−rh κ−φ2ξx

κξπ+φ1ξx

)
if κξπ + φ1ξx 6= 0

∅ if κξπ + φ1ξx = 0
. (A.43)

If κξπ + φ1ξx = 0, there is clearly no p > 0 such that (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

If κξπ + φ1ξx 6= 0, I analyze three cases according to the three different dynamics that

(πT , xT ) can follow in Ωss given in Section A.1).

Case I. Let t = s+ p. Then η (t) = s and (xs+p, πs+p) ∈ Υzlb ∩ ∂Ω gives

xs+p = −rh
φ1 + φ2ξπ
κξπ + φ1ξx

= −(1− ξπ) πs + (σα2 − ξx)xs
σ (α1 − α2)

eα1p

+
(1− ξπ) πs + (σα1 − ξx)xs

σ (α1 − α2)
eα2p,

πs+p = −rh
κ− φ2ξx
κξπ + φ1ξx

=
(1− ξπ)πs + (σα2 − ξx)xs

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1p

− (1− ξπ) πs + (σα1 − ξx)xs
σ (ξπ − 1) (α1 − α2)

(ξx − σα2) e
α2p.

Solving for (π(s), x(s)) as a function of p gives

xs (p) = −rh
σ

(−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh
σ

(κ− κξπ − φ1ξx − φ2ξx + σα1φ1 + σα1φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα2 ,

πs (p) =
rh
σ

(ξx − σα1) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

+
rh
σ

(−ξx + σα2) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2 .
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Let

F (p) = −rh (−ξx + σα1ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh (ξx − σα2ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2

+
rhσ (ξπ − 1) (α1 − α2) (κξπ + φ1ξx)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
.

Then,

F (p) = ξππs (p) + ξxxs (p) + rh,

and since (π(s), x(s)) ∈ ∂Ω, it follows that ξππs (0) + ξxxs (0) + rh = 0 = F (0). I show

there is no p > 0 that satisfies F (p) = 0.

First, note that xs and πs are always real, even when α1 and α2 are complex. By direct

computation, I find that

F (0) = 0. (A.44)

F ′ (p) = 0 has at most one solution for p > 0, (A.45)

F ′ (0) =
rh
σφ1

(κ (ξπ − 1) + ρξx) > 0, (A.46)

lim
p→∞

F (p) = rh > 0. (A.47)

F ′ (0) > 0 because the Taylor principle holds. Together, equations (A.44)-(A.47) and

continuity of F (p) show that there is no solution to F (p) = 0 for p > 0.

Case II. Let t = s+ p. Then η (t) = s and

−rh
ρ

κ+ φ1ξx
= xse

1
σ
ξxp,

−rh
κ− φ2ξx
κ+ φ1ξx

=
πs (ξx − σρ) + κσxs

ξx − σρ
eρp −

κσxη(t)
ξx − σρ

e
1
σ
ξxp.

Using equation (A.43) and that ξππs + ξxxs + rh = 0, I get

−rh
ρ

κ+ φ1ξx
= xse

1
σ
ξxp,

−rh
κ− φ2ξx
κ+ φ1ξx

=

(
(ξx − σρ) ξx − κσ

(ξx − σρ) (κ+ φ1ξx)
rhρe

− 1
σ
ξxp − rh

)
eρp

+
rhκσρ

(ξx − σρ) (κ+ φ1ξx)
.
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Solving for xs in the first equation and plugging it into the second equation gives

xs = ξx (κ− φ2ξx + σρφ2) , (A.48)

ξx (κ− φ2ξx + σρφ2) = epρ (ξx − σρ) (κ+ φ1ξx)

+e
p
σ
(σρ−ξx)ρ

(
−ξ2x + κσ + σρξx

)
. (A.49)

I now show that there is no p > 0 such that equations (A.48)-(A.49) hold. If ξx = σφ1,

then −ξ2x + κσ + σρξx = 0 and the equations become

xs = −ρrh
e−pφ1

σφ2
1 + κ

,

1 = epρ.

The last equation has no solution for p > 0. If ξx 6= σφ1, and recalling that ξx 6= σφ2

so that Υzlb∩∂Ω is non-empty, then −ξ2x+κσ+σρξx 6= 0 and equations (A.48)-(A.49)

become

xs = − rhρ

κ+ φ1ξx
e−

1
σ
ξxp,

0 =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Let

F (p) =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Compute

F ′ (p) =
ρξx
σ

(
e−

p
σ
ξx − σφ2

(ξx − σφ1)
e−pρ

)
,

F ′′ (p) = −ρξx
σ2

(
ξxe
− p
σ
ξx − σ2ρφ2

(ξx − σφ1)
e−pρ

)
,
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and

F (0) = 0, (A.50)

F ′ (0) =
ρξx (ξx − σρ)

σ (ξx − σφ1)
, (A.51)

F ′ (p) = 0⇒ e(ρ−
ξx
σ )p =

σφ2

(ξx − σφ1)
, (A.52)

lim
p→∞

F (p) = φ1

ξx − σρ
ξx − σφ1

, (A.53)

lim
p→∞

F ′ (p) = 0. (A.54)

If ξx − σφ1 > 0, F (p) is monotonic, which combined with F (0) = 0 gives no solutions

to F (p) = 0 for p > 0. If ξx − σφ1 < 0 and ξx − σρ < 0, then the unique local

maximum occurs for some p > 0 and F is positive at that maximum. Using (A.53)

and (A.54) then shows that there is no solution to F (p) = 0 for p > 0. If ξx−σφ1 < 0

and ξx − σρ > 0, an analogous argument applies but instead of a unique maximum,

there is a unique minimum.

Case III. Let t = s+ p. Then η (t) = s and

xp =

((
1 +

1

2σ
(ξx − σρ) p

)
xs +

1

κ

(
1

2σ
(σρ− ξx)

)2

pπs

)
e

1
2(ρ+ 1

σ
ξx)p,

πp =

(
−κpxs +

(
1− 1

2σ
(ξx − σρ) p

)
πs

)
e

1
2(ρ+ 1

σ
ξx)p.

Using equation (A.43) and that ξππs + ξxxs + rh = 0,

− rh
φ1 + φ2ξπ
κξπ + φ1ξx

=

(
1 +

1

2σ
(ξx − σρ) p

)
xse

1
2(ρ+ 1

σ
ξx)p

+
1

κ

(
1

2σ
(σρ− ξx)

)2

p

(
−(ξxxs + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p, (A.55)

− rh
κ− φ2ξx
κξπ + φ1ξx

= −κpxse
1
2(ρ+ 1

σ
ξx)p

+

(
1− 1

2σ
(ξx − σρ) p

)(
−(ξxxs + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p. (A.56)

Combining the two equations, I solve for xs as a function of p

xs =
A0 + A1p

B0 +B1p
, (A.57)
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where

A0 = −4σrh
(
φ2ξ

2
x + σ2ρ2φ2 + 4κσρ− 2σρφ2ξx

)
,

A1 = 2rh
(
ξ2x − σ2ρ2

)
(2κ− φ2ξx + σρφ2) ,

B0 = 4κσ
(
ξ2x + σ2ρ2 + 4κσ − 2σρξx + 4σφ1ξx

)
,

B1 = (ξx + σρ) (2κ− φ2ξx + σρφ2)
(
σ2ρ2 + 4κσ − ξ2x

)
.

Plugging equation (A.57) into equation (A.55), I get

F (p) = 0,

where

F (p) = e
1
2(ρ+ 1

σ
ξx)p − 1 +

(ξx + σρ) (2κ− φ2ξx + σρφ2)

4κσ

(
ξx − σ (φ1 − φ2)

ξx + σ (φ1 − φ2)

)
p.

Since

F (0) = 0,

F ′ (0) = − φ2

4κσ
(ξx + σρ)2 > 0,

F ′′ (p) =
1

4

(
ρ+

1

σ
ξx

)2

e
1
2(ρ+ 1

σ
ξx)p > 0,

the equation F (p) = 0 has no solution for p > 0.

5. The assumptions required for the Poincaré-Bendixson Theorem, Theorem 12 in Section

B, hold. Indeed, because

ẋt = σ−1 (max {0, ξxxt + ξππt + r(t)} − r(t)− πt) , (A.58)

π̇t = ρπt − κxt, (A.59)

are, as functions of xt and πt, continuous and differentiable almost everywhere, they

are Lipschitz. The rest of the conditions are easy to check.

I show that the ω-limit set22 of (π(q), x(q)) contains no steady-states and is not a

periodic orbit. By Theorem 12, (πT , xT ) then explodes.

Because (πss, xss) is a locally unstable steady-state (by the Taylor principle) and

(π(q), x(q)) 6= (πss, xss), the ω-limit set of (xq, πq) does not contain (πss, xss), as

22 See Section B for definitions of ω-limit sets and other concepts needed to state the Poincaré-Bendixson
Theorem.
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(πT , xT ) is bounded away from (πss, xss) for all t ≥ q. Because (πzlb, xzlb) is locally

a saddle-path steady-state, the only paths converging to (πzlb, xzlb) as t → ∞ must

eventually be in Υzlb ∩Ωzlb. By hypothesis,
(
xτ(t), πτ(t)

)
/∈ Υzlb ∩ ∂Ω, where recall τ (t)

is the time of first entry into Ωzlb after t. By item 5, if (π(t), x(t)) enters Ωzlb a second

time after τ (t) (of course, by first visiting Ωss) it is not through Υzlb ∩ ∂Ω. It follows

that the ω-limit set of (π(q), x(q)) does not contain (πzlb, xzlb), as the orbit of (xq, πq)

never intersects Υzlb ∩ Ωzlb.

I now show that there are no closed orbits. The divergence of (πT , xT ) computed in

the distribution sense is

div (ẋt, π̇t) =
∂ẋt
∂xt

+
∂π̇t
∂πt

=


ρ , if (π(t), x(t)) ∈ Ωzlb \ ∂Ω

ξx
2σ

+ ρ , if (π(t), x(t)) ∈ ∂Ω
1
σ
ξx + ρ , if (π(t), x(t)) ∈ Ωss

,

where Ωzlb \ ∂Ω denotes the interior of Ωzlb.

The Taylor principle and ρ > 0 imply that div (πT , xT ) > 0 for all (π(t), x(t)). By

Theorem 11, there are no closed orbits23.

6. The result that there is no chaos is a direct consequence of Theorem 12, which tightly

restricts the behavior of bounded solutions to two cases, none of which is chaotic. For

continuous systems, strange attractors and other chaotic behavior can only emerge

when the dimension of the phase space is three or more. Note that the concept of

chaos I consider here is different from chaos in the sense of Li and Yorke (1975) used

in Benhabib et al. (2002b), which is more appropriate for a discrete time setting.

�
23 The version of the Poincaré-Bendixson theorem I have used is stronger than needed since our vector

field is continuous (but non-differentiable) in ∂Ω while the theorem allows for discontinuities across the
boundary between regions.

In addition, I have used one particular generalized derivative, the ”derivative in the distribution sense”.
However, since the vector field under consideration is continuous, any generalized derivative (such as
viscosity solutions) would still give a finite value for div (ẋt, π̇t) . When the value of div (ẋt, π̇t) is finite
along ∂Ω, because ∂Ω has measure zero, its value does not contribute to the line integral along a closed
loop. By Green’s theorem, it then does not matter which concept of generalized derivative I use for this
particular purpose.
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Proof of Proposition 3. Consider the following condition:

(π(t1), x(t1)) = (πss, xss) ,

or

(π(t1), x(t1)) ∈ Ωzlb ∩Υzlb, (A.60)

or

(π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩Υzlb for some r ∈ (t1,∞).

I first prove that if condition (A.60) holds, then (πT , xT ) is bounded. I consider three

cases.

Case 1: If (π(t1), x(t1)) = (πss, xss), then (π(t), x(t)) is bounded because (πss, xss) is a

steady state.

Case 2: If (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb, then item 3 of Proposition 8 shows, by picking

m = t1, that (πT , xT ) ∈ Ωzlb ∩ Υzlb for all t ≥ t1. The dynamics in equations (A.11)-(A.12)

then show (π(t), x(t))→ (πzlb, xzlb).

Case 3: If (π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩ Υzlb for some r ∈ (t1,∞), item

3 of Proposition 8 shows, by picking m = r, that (πT , xT ) ∈ Ωzlb ∩ Υzlb for all t ≥ r. The

dynamics in equations (A.11)-(A.12) then show (π(t), x(t))→ (πzlb, xzlb).

To prove the converse, I prove the contrapositive. Assume (xt1 , πt1) 6= (πss, xss) and

(π(t1), x(t1)) /∈ Ωzlb ∩Υzlb. I consider two cases.

Case 1: (π(t1), x(t1)) /∈ Ωss. Because of the saddle path dynamics in Ωzlb, if (xt1 , πt1) /∈
Υzlb, then (πT , xT ) either explodes or enters Ωss in finite time. If it enters Ωss by intersecting

∂Ω at some time r, then item 6 of Proposition 8 shows (π(t), x(t)) explodes. We can apply

this item of Proposition 8 because (xr, πr) 6= (πss, xss) (since (πss, xss) is bounded away from

∂Ω) and because, by item 5 of Proposition 8, there is no p > 0 such that (πT , xT ) ∈ Ωss for

t ∈ (r, r + p) and (xr+p, πr+p) ∈ Υzlb ∩ ∂Ω.

Case 2: There is no r ∈ (t1,∞) such that (xr, πr) ∈ ∂Ω ∩ Υzlb. If (π(t1), x(t1)) /∈ Ωss,

case 1 shows (π(t), x(t)) explodes. If (xt1 , πt1) ∈ Ωss, given that (π(t1), x(t1)) 6= (πss, xss),

(π(t), x(t)) either explodes or enters Ωzlb. By assumption, if it enters Ωzlb, it does not intersect

Υzlb. This means (π(t), x(t)) is eventually in the interior of Ωzlb but not in Υzlb. The same

logic applied in case 1 shows that (π(t), x(t)) explodes. �

A.6 Proof of Proposition 4

Assume the rule implements the optimal equilibrium, i.e. {xt, πt, it} = {x∗(t), π∗(t), i∗(t)}
when the central bank follows the rule in equation (19). Werning (2011) shows that i∗(t) =
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(1− κσλ)π∗(t) + r(t) > 0 for t ≥ t∗. It follows that t1 (R∗) ≤ t∗. In addition, t1 (R∗) ≥ s for

all s ≤ t∗ such that (1− κσλ)π∗(t) + r(t) > 0, since otherwise the rule (19) would prescribe

it > 0 while i∗(t) = 0. Pick s = t∗ to get t1 (R∗) ≥ t∗ since (1− κσλ) π∗t∗ + rt∗ > 0. Because

t1 (R∗) ≤ t∗ and t1 (R∗) ≥ t∗, it follows that t1 (R∗) = t∗, and equation (80) holds.

To prove (81), I use t1 (R∗) = t∗ to get that for all t ≥ t∗

max {0, ξπ (R∗) π∗(t) + ξx (R∗)x∗(t) + r(t)} = ξπ (R∗) π∗(t) + ξx (R∗)x∗(t) + rh,

= (1− κσλ) π∗(t) + rh, (A.61)

since otherwise it = i∗(t) would not hold. If κσλ 6= 1, use x∗(t) = φπ∗(t) in equation

(A.61) and then equation (81) follows immediately, as π∗(t) 6= 0 for t ∈ [t∗,∞). If κσλ = 1,

any ξπ (R∗) , ξx (R∗) implement the optimal equilibrium as (0, 0) is a steady state for all

ξπ (R∗) , ξx (R∗).

Now assume that equations (80)-(81) hold. I show rule (19) implements the optimal

equilibrium. When (π0, x0) = (x∗0, π
∗
0), clearly it = i∗(t) = 0 and (π(t), x(t)) = (x∗(t), π∗(t))

for t < t∗. Because (πT , xT ) and (x∗(t), π∗(t)) are continuous as a function of time and their

paths coincide in [t∗ − ε, t∗) for any ε > 0, (xt∗ , π(t∗)) = (x∗(t∗), π∗t∗). As x∗(t∗) = φπ∗(t∗)

for t = t∗,

x(t∗) = φπ(t∗). (A.62)

If κσλ = 1, (x(t∗), π(t∗)) = (x∗(t∗), π∗(t∗)) = (0, 0), because (0, 0) is a steady state,

(πT , xT ) = (x∗(t), π∗(t)) = (0, 0) for all t ≥ t∗ and any ξπ (R∗) , ξx (R∗). In addition, if

(πT , xT ) = (0, 0),

it = max {0, ξπ (R∗) πt + ξx (R∗)xt + r(t)} = rh = i∗(t)

for all t ≥ t∗.

When κσλ 6= 1, using equations (A.13)-(A.18), it can be checked by direct computation

that (πT , xT ) = (x∗(t), π∗(t)) for all t ≥ t∗ where (x∗(t), π∗(t)) is given by

x∗(t) = x∗1 exp

(
−κλ
φ

(t− t1)
)
, (A.63)

π∗(t) = π∗1 exp

(
−κλ
φ

(t− t1)
)
. (A.64)

The following relations may be helpful for the computations: If ξπ (R∗) < κσλ + σφρ + 1,
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then

α1 = ρ+
1− ξπ (R∗)

σφ
, (A.65)

α2 = −κλ
φ
. (A.66)

If ξπ (R∗) > κσλ+ σφρ+ 1, then

α1 = −κλ
φ
, (A.67)

α2 = ρ+
1− ξπ (R∗)

σφ
. (A.68)

If ξπ (R∗) = κσλ+ σφρ+ 1

α1 = α2 = −κλ
φ
. (A.69)

A.7 Proof of Proposition 5

I first assume the rule implements no equilibrium with R 6= R∗ and prove items 1-3 hold.

Item 1: By Proposition 3, if the Taylor principle holds, there exist continuous bounded

paths with (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb. Since for these paths (π(t), x(t)) → (πzlb, xzlb), they

constitute non-optimal equilibria. By item 2 of Proposition 8, (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for

all t ≥ t1, irrespective of the choice of t1. It follows that the only way to preclude these type

of equilibria is to have the Taylor principle not hold for (π(t1), x(t1)) ∈ Ωzlb ∩Υzlb.

Items 2a, 2b and 2c: If there are continuous paths that satisfy the hypotheses of items 2a,

2b or 2c, they are be bounded by Propositions 2 and 3 and constitute non-optimal equilibria.

Thus, all paths that satsify the hypothesis in items 2a, 2b and 2c must be discontinuous,

which implies equation (82) holds.

Item 3: If ∂Ω∩Υss = ∅, then the item is vacuously true. If ∂Ω∩Υss is non-empty then

(π(r), x(r)) =


(
rh

(ξπ−1)
ξx−σα2ξπ

,−rh (ξx−σα2)
ξx−σα2ξπ

)
, if detAss < 0 and ξπ = 1(

−rh (ξx−σρ)
ξ2x−κσ−σρξx

, κσ rh
ξ2x−σρξx−κσ

)
, if detAss < 0 and ξπ 6= 1

(A.70)

Assume that the Taylor principle does not hold for (xt1 , πt1) ∈ Ωzlb and that there exist

some r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ωzlb ∩ Υss. I show that if equation (82) does

not hold, then there exist a non-optimal equilibrium. By assumption, t1 ∈ [T, r). Let P be

the set of points in the continuous path between (π(T ), x(T )) and (π(r), x(r)), which can

be obtained by running the system dynamics backward in time while respecting continuous

pasting. By the dynamics in equations (A.11)-(A.12) and equation (A.70), the time q at
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which (π(t1), x(t1)) ∈ Ωzlb reaches (π(r), x(r)) while following a continuous path is

q =
1

φ1

log

(
dexit (r)

dexit (t1)

)
(A.71)

Note that q is not necessarily equal to r since the hypotheses of item 3 do not require

that paths are continuous. Because equation (83) does not hold, T ≤ t1 ≤ q and thus

(π(t1), x(t1)) ∈ P . By Theorem 2, the continuous path going through (π(t1), x(t1)) and

(π(r), x(r)) is bounded for t ≥ t1. Using the continuous pasting conditions in Section 6.1,

the path can be continuously extended from (π(t1), x(t1)) to (π(0), x(0)) to get a continuous

bounded path for all t ≥ 0. This equilibrium is non-optimal since no optimal path has

(π(t1), x(t1)) ∈ Ωzlb \ ∂Ω.

Conversely, I now assume items 1-3 hold and prove that the rule implements no equilibria

with Rt1 6= R∗. By Proposition 3 and item 1, there are no equilibria with (xt1 , πt1) ∈
Ωzlb ∩ Υzlb. By Propositions 2 and 3, items 2a-2c and the continuous pasting conditions in

Section 6.1, there are no equilibria when: The Taylor principle holds for (π(t1), x(t1)) ∈ Ωss

and there exist some r ∈ (t1,∞) such that (xr, πr) ∈ ∂Ω∩Υzlb, the Taylor principle holds for

(π(t1), x(t1)) = (πss, xss), or the Taylor principle does not hold for (xt1 , πt1) ∈ Ωss∩Υss. Item

5 of Proposition 2 and item 3 imply that there is no continuous path from (π(t1), x(t1)) ∈ Ωzlb

to (π(r), x(r)) ∈ ∂Ω∩Υss that remains bounded after r, and thus there are no equilibria when

the Taylor principle does not hold for (π(t1), x(t1)) ∈ Ωzlb and there exist some r ∈ (t1,∞)

such that (π(r), x(r)) ∈ ∂Ωzlb ∩ Υss. By Propositions 2 and 3, all other cases lead to paths

that are discontinuous or unbounded.

A.8 Proof of Proposition 6

Item 1. Assume f (Rt1) is constant in (π (0) , x (0)). I show there always exist a non-

optimal equilibrium. Denote the value of f (·, ·, 0, 0) by t̂ (because f is constant in its first

two arguments, f (a, b, 0, 0) = t̂ for all a, b). Define (π0, x0) by

x̂0 =
rh
κ

φ2
1e
−φ2 t̂ − φ2

2e
−φ1 t̂

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
, (A.72)

π̂0 = rh
φ1e

−φ2 t̂ − φ2e
−φ1 t̂

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl. (A.73)

The continuous path starting at (π0, x0) reaches (0, 0) at time t̂ by equations (A.23) and

(A.24). Since (0, 0) is a steady-state, (πt, xt) = (0, 0) for all t ≥ t̂. The path for (π(t), x(t))

is continuous, bounded and follows the IS, the NKPC and the interest rate rule: It is an

equilibrium. If κσλ 6= 1, the equilibrium is not optimal.
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Item 2.Consider a rule with

ξπ (Rt1) = 1− κσλ

ξx (Rt1) = 0

t1 (R∗) = t∗

t1 (R) = τ (π (0) , x (0))

for some function τ : R2 → R. The choice of ξx, ξπ implies

α1 =
1

2

(
ρ+

√
ρ2 + 4κ2λ

)
= κφ > 0 (A.74)

α2 =
1

2

(
ρ−

√
ρ2 + 4κ2λ

)
< 0 (A.75)

α1α2 = −κ2λ < 0 (A.76)

α1 + α2 = ρ (A.77)

The Taylor principle never holds, as κ (ξπ − 1) + ρξx = −κ2σλ < 0.

Item 1 of Proposition 5 is true because the Taylor principle does not hold. Items 2a and

2c do not apply, since the Taylor principle does not hold. I now analyze items 2b and 3 and

show they can be satisfied with an appropriate choice of τ .

Item 2b of Proposition 5. Because (π (t) , x (t)) ∈ Υss,

π1 =
1

φ
x1 (A.78)

and because (π (t1) , x (t1)) ∈ Ωss

(1− κσλ) π1 + rh ≥ 0.

Consider the four cases in the continuous pasting condition in equation (A.26).

Case 1 : If dexit (t1) = 0 and dtrap (t1) = 0, x1 = xzlb = − 1
κ
rhρ and π1 = πzlb = −rh,

which contradicts equation (A.78) and hence there is no equilibrium.

Case 2 : If dexit (t1) = 0 and dtrap (t1) 6= 0,

x1 =
φ1

κ
π1 −

rhφ2

κ
. (A.79)

If σλκ = 1, there is no (π1, x1) that satisfies equations (A.79) and (A.78) simultaneously. If
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σλκ 6= 1, equations (A.79) and (A.78) imply

x1 = rh
φ− σλφ2

(κσλ− 1)
,

π1 =
rh
φ

φ− σλφ2

(κσλ− 1)

But then, since φ2 < 0,

ξxx1 + ξππ1 + rh = (1− κσλ) π1 + rh =
λσφ2rh
φ

< 0

contradicts that (π (t1) , x (t1)) ∈ Ωss and thus there is no equilibrium.

Case 3 : If dexit (t1) 6= 0 and dtrap (t1) = 0,

x1 =
φ2

κ
π1 −

rhφ1

κ
. (A.80)

If σλκ = 1, there is no (π1, x1) that satisfies equations (A.79) and (A.78) simultaneously. If

σλκ 6= 1, equations (A.79) and (A.78) imply

x1 = rh
φ− σλφ1

(κσλ− 1)
, (A.81)

π1 =
rh

κσλ− 1

(φ− σλφ1)

φ
. (A.82)

The pasting condition in equation (A.27) and equation (A.82) give

T (Rt1) = − 1

φ1

log
π0 +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(π1 + rh)

(A.83)

= − 1

φ1

log
π0 +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(

rh
κσλ−1

(φ−σλφ1)
φ

+ rh

) (A.84)

= T (π0, x0) (A.85)

Setting

τ (π(0), x(0)) 6= T (π0, x0)

precludes any equilibrium.

Case 4 : If dexit (t1) 6= 0 and dtrap (t1) 6= 0, using equation (A.78), the continuous pasting
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condition P (Rt1) = 0 is

− 1

φ1

log
x0 − φ1

κ
π0 + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π1 + φ2rh

κ

= − 1

φ2

log
x0 − φ2

κ
π0 + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
+ φ1rh

κ

(A.86)

Let

f (π1, π0, x0) = − 1

φ1

log
x0 − φ1

κ
π0 + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π1 + φ2rh

κ

+
1

φ2

log
x0 − φ2

κ
π0 + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
π1 + φ1rh

κ

Then f (π1, π0, x0) = 0 iff equation (A.86) holds. Since

∂f (π1, π0, x0)

∂π1

= 0 ⇐⇒ rh = (κσλ− 1) π1

the implicit function theorem implies that we can write f (π1, π0, x0) = 0 as

π1 = g (π0, x0)

for some function g (π0, x0), except when

κσλ− 1 6= 0 and π1 =
rh

(κσλ− 1)
(A.87)

If equation (A.87) does not hold, then the continuous pasting conditions are given by

π1 = g (π0, x0)

T (Rt1) = − 1

φ1

log
x0 − φ1

κ
π0 + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π1 + φ2rh

κ

= − 1

φ1

log
x0 − φ1

κ
π0 + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
g (π0, x0) + φ2rh

κ

= T (π0, x0)

If equation (A.87) holds, f (π1, π0, x0) = f
(

rh
κσλ−1 , π0, x0

)
. If there is no (π(0), x(0)) so that
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f
(

rh
(κσλ−1) , π0, x0

)
= 0, then there are no equilibria since no path is continuous. If there

exist (π(0), x(0)) such that f
(

rh
(κσλ−1) , π0, x0

)
= 0, continuous pasting gives

T (Rt1) = − 1

φ1

log
x0 − φ1

κ
π0 + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
rh

(κσλ−1) + φ2rh
κ

= T (π0, x0)

In either case (when equation (A.87) holds and when it does not hold), setting

τ (π(0), x(0)) 6= T (π0, x0)

precludes any equilibrium.

Item 3 of Proposition 5. If κσλ = 1, Υss ∩ ∂Ωzlb = ∅ and thus there are no equilibria. If

κσλ 6= 1, (π (r) , x (r)) ∈ Υss ∩ ∂Ωzlb implies

x (r) =
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

)
(A.88)

π (r) =
rh

κσλ− 1
(A.89)

Using (A.88)-(A.89) and that (π (t) , x (t)) ∈ Ωzlb for t ∈ [t1, r], the continuous pasting

equations (A.23) and (A.24) imply that

x0 =
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
− 1

σ

e−φ1r − e−φ2r

φ1 − φ2

rh
κσλ− 1

+
rh
κ

φ2
1e
−φ2r − φ2

2e
−φ1r

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π0 = −κe
−φ1r − e−φ2r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
+
φ1e

−φ1r − φ2e
−φ2r

φ1 − φ2

rh
κσλ− 1

+ rh
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl.

Solving for r gives

r = ν (π0, x0)
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where

A =
1

κ
ρrl +

1

κ
(rh − rl)

φ2
1e
−Tφ2 − φ2

2e
−Tφ1

φ1 − φ2

B = rl + (rh − rl)
φ1e

−Tφ2 − φ2e
−Tφ1

φ1 − φ2

are two constants and

ν (π(0), x(0)) = − 1

φ2

log

(
κ
σφφ2 + 1

rh (ρ− κφ)
(x0 + A)− φ2 + κφ+ σρφφ2

rh (ρ− κφ)
(π0 +B)

)
is a function of x0 and π0 only (not of x1, π1 or t1). Setting

τ (π(0), x(0)) > ν (π0, x0)

precludes all equilibria.

Item 3. The rule in the last item has constant Taylor rule coefficients.

Item 4a. I start with a Lemma.

Lemma 9. If detAss (R) = 0 for some R = (π0, x0), then there exist a non-optimal equilib-

rium.

Proof of Lemma 9. When detAss (R) = 0, (πzlb, xzlb) ∈ ∂Ω. A continuous path with (π(T ), x(T )) ∈
Υzlb ∩Ωzlb is bounded for any choice of f , since (π (t) , x (t)) ∈ Ωzlb for all t and it converges

to (πzlb, xzlb), which is a steady-state of the economy. �

Since ξπ (Rt1) and ξx (Rt1) are continuous, then either the Taylor principle holds for all

Rt1 , or the Taylor principle does not hold for all Rt1 . To see this, assume for the sake of

contradiction that there exists RTP satisfies the Taylor principle and Rno-TP that does not.

Then

detAss (RTP ) = κ (ξπ (RTP )− 1) + ρξx (RTP ) > 0,

detAss (Rno-TP ) = κ (ξπ (Rno-TP )− 1) + ρξx (Rno-TP ) < 0.

By the Intermediate Value Theorem, there exist anR0 such that detAss (R0) = κ (ξπ (R0)− 1)+

ρξx (R0) = 0. By Lemma 9, there exist a non-optimal equilibrium.

By Proposition 4, when κσλ 6= 1, the Taylor principle does not hold for R∗. Because the

Taylor principle does not hold for one R, then it does not hold for all R.

Item 4b. By item 1, the rule cannot be purely forward-looking.

I show that if the rule is purely backward-looking, that is, if f , ξx and ξπ are constant

in their last two arguments, x (t1) and π (t1), then there exists an equilibrium with R 6= R∗.
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By item 4a, the Taylor principle never holds. I look for an equilibrium with

π (t1) = c (Rt1)x (t1) (A.90)

with the function c (Rt1) > 0 defined by equation A.28. Because ξx and ξπ are continuous in

Rt1 and constant in x (t1), π (t1), so is c. To see that c is continuous when ξπ = 1, compute

lim
ξπ→1

c (Rt1) = lim
ξπ→1

(ξx − σα2)

(1− ξπ)

= lim
ξπ→1
− 1

2 (ξπ − 1)

(
ξx − σρ+

√
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)
= lim

ξπ→1
κσ
(
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)− 1
2

=
κσ

|ξx − σρ|
=

κσ

σρ− ξx

The third line follows by L’Hospital’s Rule; in a small enough neighborhood of ξπ = 1, the

Taylor principle not holding implies ξx < 0 and thus both numerator and denominator in

the second line go to zero as ξπ → 1. The last line follows because ξx < 0 when ξπ = 1,

again because the Taylor principle does not hold. When ξπ 6= 1, c is continuous by equation

A.28.

Let

M (π (0) , x (0)) =
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

c− 1

σ

e−φ1f − e−φ2f

φ1 − φ2

N (π (0) , x (0)) = −κe
−φ1f − e−φ2f

φ1 − φ2

c+
φ1e

−φ1f − φ2e
−φ2f

φ1 − φ2

P (π (0) , x (0)) =
rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

Q (π (0) , x (0)) = rh
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

A =

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ

B = (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl

The functions M , N , P and Q are continuous and depend only on x (0) , π (0) (and not on

x (t1) , π (t1)) because f and c are continuous and constant in π (t1) , x (t1). The continuous

86



pasting conditions (A.23)-(A.24) give

x (0) = Mπt1 + P + A (A.91)

π (0) = Nπt1 +Q+B (A.92)

If M 6= 0 and N 6= 0, the last two equations give

π (t1) =
x (0)− P − A

M
(A.93)

π (0) =
N

M
(x (0)− P − A) +Q+B (A.94)

Fix x (0) to x̂0 = x∗ (0) + ε with ε > 0. The right hand-side of equation (A.94) is a function

of π (0) only. It is bounded above and below, as f ∈ [T,∞) and

lim
f→∞

N

M
(x̂0 − P − A) +Q+B,

=
κσ (ρ− 2φ1) (A− x̂0) +B (2κ+ σρφ1)

φ1 − φ2

lim
f→∞

c

(cσφ1 + 1)

−(2κ+ σρφ2) (A− x̂0) +B (ρ− 2φ1)

(φ1 − φ2)
lim
f→∞

1

(cσφ1 + 1)
,

is finite since c > 0. The left-hand side of equation (A.94), on the other hand, tends to

±∞ as π (0) → ±∞. This means, since N , M , Q and B are continuous in π (0), that

there is at least one π (0), say π̂0, that satisfies equation (A.94). Plugging (π̂0, x̂0) into

equations (A.90) and (A.93) give values for (π (t) , x (t)), say (π̂1, x̂1). By construction, the

path defined by (π̂0, x̂0) is continuous. Picking ε small enough guarantees that (π̂1, x̂1) ∈ Ωss,

since (π∗ (t∗) , x∗ (t∗)) ∈ Ωss is bounded away from ∂Ω. Equation (A.90) implies (π̂1, x̂1) ∈
Υss. Proposition [[xx]] then shows the path defined by (π̂0, x̂0) is bounded and hence an

equilibrium. Because ε 6= 0, the equilibrium is not the optimal equilibrium.

If M = 0 and N 6= 0, the continuous pasting conditions (A.23)-(A.24) give

x0 = P + A (A.95)

πt1 =
π0 − (Q+B)

N
(A.96)

rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

But M = 0 implies

e−fφ2 =
cσφ2 + 1

cσφ1 + 1
e−fφ1
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and thus

lim
f→∞

P + A = lim
f→∞

rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

+ A

= lim
f→∞

rh (ρ− cκ)

κ+ cκσφ1

e−fφ1 + A

= A

is finite. An argument analogous to the one used for M 6= 0 and N 6= 0 shows the existence

of a non-optimal equilibrium. The case M 6= 0 and N = 0 can be treated the same way and

M = N = 0 cannot happen.

Item 4c. By Proposition 5, if items 1-3 hold but with equation (82) replaced with (84),

then there is no equilibrium with R 6= R∗, since (84) implies (82).

Conversely, assume there is no equilibrium with R 6= R∗. I show equation (84) holds.

To do so, I first show that the Intermediate Value Theorem is applicable and then use it to

prove equation (84). Let

Θ =
{
R ∈ R4 : P (R) = 0 and R 6= R∗

}
Because f , ξx and ξπ are continuous, their restriction to Θ are also continuous. In addition,

Θ is path-connected because the solution to the ODE (1)-(2) is continuous with respect to

time, the mapping from (π (0) , x (0)) to (π (t1) , x (t1)) is a continuous bijection for a fixed

t1, f (Rt1) = t1 is continuous in Rt1 and the exclusion of R∗ from Θ does not destroy path-

connectedness because it is a zero-dimensional set while the dimension of Θ is 3. Because

f , ξx and ξπ are continuous in Θ and Θ is path-connected, we can apply the Intermediate

Value Theorem. Assume, for the sake of contradiction, that there exists Rlow ∈ Θ with

f (Rlow) < T (Rlow). The inequality f (Rlow) < T (Rlow) implies f (R) < T (R) for all R ∈ Θ

since otherwise, by the Intermediate Value Theorem, there would be some R0 ∈ Θ with

f (R0) = T (R0), contradicting that there is no equilibrium with R 6= R∗. Consider the

point RT = (π0, x0) defined by

x̂0 =
rh
κ

φ2
1e
−φ2T − φ2

2e
−φ1T

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π̂0 = rh
φ1e

−φ2T − φ2e
−φ1T

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl,

x̂1 = 0,

π̂1 = 0.

By the continuous pasting conditions in equations (A.23)-(A.24), RT ∈ Θ and f (RT ) = T =

88



T (RT ), contradicting that f (R) < T (R) for all R ∈ Θ.

B Non-Linear dynamics – Poincaré-Bendixson Theo-

rem

Assume f : R2 → R2. Consider the two-dimensional system

ẋt = f (xt) . (B.1)

Let φt (p) be a solution to (B.1) for t ≥ 0 with initial condition x0 = p. We assume that for

each p, there is a unique solution φ (t, p). This is the case, for example, if f is Lipschitz.

The positive semi-orbit of f through p is defined as

γ+ (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ [0,∞)

}
.

Similarly, the negative semi-orbit though p is

γ− (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ (−∞, 0]

}
.

The orbit of f through p is the union

γ (p) = γ+ (p) ∪ γ− (p) .

A periodic solution is one for which φt+T (p) = φt (p) for some T > 0 and all t ∈ R. A

periodic orbit is the orbit γ (p) of periodic solution φt (p).

The ω-limit set of p, denoted by ω (p), is the set

ω (p) =
{
x ∈ R2 : ∃ {tk}∞k=0 , tk ∈ R with tk →∞ such that φtk (p)→ x as k →∞

}
.

Consider the following four assumptions:

1. Ω is an open domain in R2, divided into a finite number of open sub-domains Ωi such

that
⋃

Ωi = Ω.

2. If Ωi and Ωj are not disjoint and i 6= j, then Ωi∩Ωj = Γij, where Γij (joint boundaries)

are piecewise smooth.

3. f is Lipschitz in all sub-domains Ωi and possibly discontinuous along Γij.
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4. The vector field f defines a direction at each point in Ω. In particular, at every point

of Γij the vector field f (x) specifies into which Ωi the flow is directed.

Theorem 10 (Extension of the Poincaré-Bendixson theorem). Consider the planar au-

tonomous system (B.1). Let the conditions 1-4 be satisfied and let f be bounded in Ω.

Suppose that K is a compact region in Ω, containing no fixed points of (B.1). If the solution

of (B.1) is in K for all t ≥ t0, then (B.1) has a closed orbit in K.

Theorem 11 (Extension of the Bendixson criterion). Consider the planar autonomous sys-

tem (B.1). Let the conditions 1-4 be satisfied and let f be bounded in the simply connected

region Ω and C1 in each Ωi. If div f (the divergence of f calculated in the distribution sense)

is of the same sign and is not identically zero in Ω, then (B.1) has no closed orbit in Ω.

Remark The requirement that f is bounded is too strong; it suffices that∫∫
D

div f and

∫
C

f · n ds

are well-defined (in the distribution sense) for all smooth closed curves C, where D is the

region enclosed by C and n is a unit vector normal to C.

A proof of both theorems can be found in Melin (2005). Compared to the classical

Poincaré-Bendixson theorem, Melin (2005) allows for some discontinuities in f .

We have cited the theorems exactly as they appear in Melin (2005). However, in this

context, it is perhaps more familiar for economists to refer to points for which f = 0 as

steady-states instead of fixed points and to periodic orbits instead of closed orbits.

We now prove an immediate consequence of this ”extended” Poincaré-Bendixson theorem.

Theorem 12. Assume Theorem 10 holds. If a solution ϕt is bounded for all t ≥ 0, then

either

1. ω (ϕ) contains a steady state

or

2. ω (ϕ) is a periodic orbit

Proof. First, note that because ϕ is bounded, ω (ϕ) is non-empty. Indeed, consider a sequence

xi = ϕti (x) for some x. The sequence {xi} is bounded and infinite, so there exist a convergent

subsequence. If such convergent subsequence converges to p, then p ∈ ω (ϕ) and thus ω (ϕ)

is non-empty.

If ω (ϕ) contains a steady state, item 1 obtains. If ω (ϕ) contains no steady-states (no

fixed points), then Theorem 10 implies that ω (ϕ) is a periodic orbit, corresponding to item

2 (note that because ϕ is bounded we can always find a compact set K that contains it). �
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