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Causes of the 2000s Food Price Surge:
Insights from Structural VAR

Daniel Grabowski
Justus-Liebig-Universität Gießen

July 20, 2016

Abstract

In 2001 began a rise in the prices of food commodities not seen since the
1970s. The prices of grains—the major staple foods—increased fivefold be-
tween 2003 and 2008, leading to the additional malnutrition of millions around
the world. Many observers attribute the strong increase in part to specula-
tion in derivatives markets. We examine this hypothesis by comparing the
impact of speculation to that of fundamental supply and demand forces. We
estimate the share of the price increase attributable to the respective market
forces using a sign identified structural vector autoregressive model. Specula-
tion is identified using storage data, though a residual price shock is allowed
to ensure the robustness of the findings.

1 Introduction

Grain Prices gradually decreased between 1974 and 2001 in real terms. The growth
in world population was outweighed by breeding and adopting higher-yielding crop
varieties (see Wright 2011). After the turn of the millennium, however, a sustained
increase of prices and price volatility began. Between 2005 and 2008 alone, the food
price index of the Food and Agriculture Organization of the United Nations (FAO)
increased by 71 percent. The index of real prices rose 46 percent (see figure 1).
After a short but steep break prices continued climbing up. The price increase was
particularly high for grains. As staple foods, these are of great importance. The
three grains rice, corn and wheat alone cover around half of the worldwide human
calorie consumption. Real prices for these three grains doubled between 2005 and
2008.

While the price increases that happened for other commodities may had important
consequences for the world economy, the surge in staple food prices entailed more
immediate and imminent threats. According to Rosen et al. (2008) the number of
undernourished people has risen by 30 million following the 2008 price pike. FAO
(2008) even puts the number at 75 million. Since people in developing countries
have to spend up to 70 percent of their income on food, a price increase also has a
significant impact on the living standards of those who can still afford an adequate
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Figure 1: FAO Food Price Index in nominal and real terms.

diet. According to estimates by the World Bank (2008), over 100 million people
might have fallen into poverty due to the price spikes in 2007/08. The renewed
spike in 2010 might have driven 44 million people into extreme poverty (Ivanic et al.
2011). Headey and Fan (2008) pointed out that those figures ignore that many
poor farmers benefited from rising prices and thereby escaped poverty. In any case
it is clear that for many, especially for the urban poor, the price increases caused
serious harm. Rising food prices are regarded as having triggered political unrest in
over 40 countries, including the uprisings in the Middle East known as Arab Spring
(Breisinger et al. 2011; von Braun and Tadesse 2012).

The price boom also affected other foods beside grains as well as other commodities
like oil and metals. Here, we focus on grains to represent food prices. In addition to
the importance in feeding mankind, there are other reason to focus on grains instead
of a broader group of foods. Grains were among the most affected foods and also it
seems plausible that the price increase of foods like meat and diary products is in
part attributable to the transmission of grain price increases. Grains are a major
driver of the production costs through their role as animal feed (von Braun and
Tadesse 2012).

A multitude of possible drivers for the rising commodity prices of the past thirteen
years has been discussed. For a summary of the possible causes see, for example,
Wright (2008) or Headey and Fan (2008). A particularly controversial explanation
assumes that a sharp rise in the trading volume in commodity derivatives was a
major cause. As a result of financial market liberalizations and the development
of exchange traded funds, large sums have been invested into commodity futures.
This allegedly has caused increases in the futures prices or at least in the price
volatility. The price pressure could then have been transmitted to the spot market.
Market participants and experts have since demanded tightened regulation of com-
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modity markets (see, e.g. Masters 2008) and non-governmental organizations have
demanded financial institutions active in this market to refrain from commodities
trading.

Since 2008, numerous studies have emerged that evaluate the impact of derivatives
trading on commodity prices. The results regarding the impact of derivatives trad-
ing are, however, quite mixed. For more details the reader is referred to one of
the many reviews, for example von Braun and Tadesse (2012), Baffes and Haniotis
(2010), Bass (2011), Branson et al. (2010), and Irwin and Sanders (2010, 2011). Ex-
isting empirical studies often use single equation models to examine the explanatory
power of futures prices, or another set of variables, for commodity prices. Granger
causality tests are frequently employed. In most cases though, they do not allow
for a clear causal interpretation and merely provide information about correlation.
An alternative to the prevailing approach in the literature is offered by Kilian and
Murphy (2012, 2013). They propose a structural vector autoregression (VAR) model
to investigate the impact of speculation on oil prices, allowing the decomposition
of the price of oil into the effects of speculation, consumption-demand and produc-
tion. To this end, they use a structural model identified by sign restrictions. The
identification of the causal structure using sign restrictions is less restrictive with
regard to simultaneous changes in the variables. It thus allows a better—i.e. more
agnostic—identification in spite of strong interdependences. A major issue using
sign restrictions stems from the large number of identified models (Fry and Pagan
2011). This model identification problem can be reduced with the approach proposed
by Kilian and Murphy (2012, 2013). The resemblance in the price determination
for different commodities makes the approach of Kilian and Murphy appealing for
grain markets (see for example Williams and Wright 1991, p. 8-9). We follow Kilian
and Murphy (2013) in using inventory data to control for expectations and thus
speculation.

Such an application has—to the best of our knowledge—not been undertaken in
the literature thus far. In an unpublished paper, Carter et al. (2013) estimate a
sign-identified structural VAR to investigate the influence of biofuel production on
food prices. Their approach is also partially building on Kilian and Murphy (2013)
but differs distinctly from ours due to the different underlying question. Hausman
et al. (2012) also examine the effects of biofuel production on the price of grain by
means of a structural VAR but use a different identification strategy. Both studies
do not evaluate the impact of speculation. The present work thus complements the
existing literature by using a framework especially suited to study the causal effect
of speculation and applying it to grain markets. For this purpose, a structural vector
autoregression is estimated for the most important food markets— the prices of the
three grains corn, rice, and wheat.

The remainder is structured as follows: Section 2 briefly introduces a theoretical
framework of commodity and derivatives markets. Section 3 explains the method-
ological framework used in estimating the structural VAR. The data and the model
specification are presented in 3.1. In Section 4 the estimation and identification
procedure is presented and section 5 provides and discusses the results. Section 6
provides a summary and conclusions.
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2 Basic Relations of Grain Markets

The history of derivatives trading is closely linked to grain markets. The first futures
trading at organized exchanges took place in the beginning of the 18th century
in Osaka, Japan; the underlying commodity was rice (Schaede 1989). About one
century later in Europe and the United States, organized futures trading also evolved
around grain markets. With the emergence of speculative markets soon professional
speculators also became to play an important role. It didn’t take long for heated
debates about their economic and moral legitimation to erupt (see Jacks 2007).
Given this controversial background, it is important to find some common ground
regarding the functioning of grain markets to build our model on. The challenge
is to deduce causal relationships from the data without imposing strong economic
assumptions. For the identification of our model, we need theoretical assumptions
about the signs of the effects of shocks. These should not depend on the exact
theoretical notion of the researcher. In the following we will therefore present a very
general and basic framework to build our econometric model on.

The agricultural price determination was first addressed theoretically for example
by Working (1953), Vaile (1948), and Kaldor (1939). A comprehensive account can
be found in Williams and Wright (1991). Building on this work, we will briefly
sketch a basic supply and demand model with storage.

We assume three groups that constitute the market for grains. These are producers,
consumers, and speculators. The producers decide at the end of a year about the
planned production (seed) for next year, St. The realised production, the harvest
Ht, then depends on the planned production and a stochastic component νt that
might be interpret as a weather shock. Thus, we have

Ht = St ∗ νt. (1)

If we assume rational expectations we do not need to assume the weather compo-
nent νt to be independently distributed with mean zero.1 Instead, we assume the
forecast error for the weather made by the producers is iid with mean zero. From
profit maximization in a competitive market it follows that planned production is a
function of the expected price, i.e.

St = S(Et−1[Pt]) , (2)

with first order condition
∂St

∂Et−1[Pt]
> 0 .

Further, we assume demand to be a function of prices Pt and income Yt, this is

Dt = D(Pt, Yt) , (3)

with

1The assumption of rational expectations also ensures internal consistency of the model
(Williams and Wright, 1991, p. 33). Internal consistency means, producers take into account
that other producers will react to a change in the expected price by adjusting their production—
which in turn changes next periods expected price.
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∂Dt

∂Pt

< 0 and
∂Dt

∂Yt
> 0 .

Because households are able to save and to some extend to borrow money, past values
of P and Y as well as expectation of future income and prices should be incorporated
in equation (3). Past values will be covered by lags in our VAR specification. Insofar
expectations are a linear function of past values, they also are covered by the model.
In addition, we control for expectations by including storage, which should reflect
expectations about future supply and demand if speculators conduct consumption
smoothing. The quantity harvested—resulting from equation (1) and (2)—can be
consumed or stored. In addition to this years harvest, there may thus also be
inventory from the last year. For the available quantity in each year we therefore
have

Ht + It−1 ≡ Dt + It

i.e. Ht ≡ Dt + ∆It ,
(4)

where It represents the inventory at the end of year t.2 The inventories are subject to
a non-negativity constrained, i.e. It > 0 at all times t. In our empirical investigation
we do not incorporate this nonlinearity into the model.

The storage decision is made by profit-maximizing speculators. By trying to buy
low and sell high their profit depends on the current and future grain (spot) prices.
In addition, they bear the costs for storing the commodity from one period to the
next, the so-called Cost-of-Carry (CoC). Oftentimes it is furthermore assumed that
physical ownership of a commodity also provides advantages—for example enabling
the owner to profit from short-time price spikes or to cover supply shortfalls in
a production process. These advantages are termed convenience yield (cf. Kaldor
1939). We simplify the convenience yield to a dividend from storage and as a part of
the Cost-of-Carry. Clearly, storage is more attractive if next periods expected price
is high and the current price and the CoC are low. Thus, the profit maximization
of speculators leads to the inventory demand function

It = I(Pt, Et[Pt+1], CoCt) , (5)

with
∂It

∂Et[Pt+1]
> 0 ,

∂It
∂Pt

< 0 and
∂It

∂CoCt

< 0 .

Speculators will store if and only if the expected profit from buying, storing and
selling the commodity exceeds the Cost-of-Carry. If we assume furthermore that all
speculators have identical expectations we have the intertemporal equilibrium

Pt = Et[Pt+1]/(1 + rt) − CoCt, assuming It > 0 . (6)

We now allow trading contracts that guarantee delivery of an agreed quantity at
a future date. Assuming risk neutral speculators, the equilibrium futures price for
delivery in the next year should equal the expected price, i.e.

Ft = Et[Pt+1] (7)

2 We confine our presentation to between-harvest changes. Within each harvest year, the
amount stored will experience obvious declines starting after the harvest season and lasting until
the next harvest. These regular patterns are of no particular relevance to our investigation.
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By substituting (7) into equation (6) we get

Pt = Ft/(1 + rt) − CoCt, assuming It > 0 . (8)

Equation (6) establishes a connection between expected prices and current prices
via speculation and (8) establishes the same connection through arbitrage. Put
differently, the basic predictions of the model are independent of the existence or
functioning of derivatives markets if we maintain the assumption of risk neutral
speculators (cf. Williams and Wright, 1991).

This has important implications. The link between derivatives and spot markets
is established through cash-and-carry arbitrage. If this links was not functioning,
derivatives trading would be irrelevant and the discussion about the distorting in-
fluence of derivatives trading ungrounded. If the link exists and thus futures prices
can guide spot markets, the influence of derivatives can be captured by controlling
for storage. Our model thus includes all major market forces including derivatives
without explicitly including futures prices. Our model offers theoretically sound pre-
dictions of the sign of effects of one variable onto another without requiring strong
assumptions.

Now consider the predictions of the model regarding the question of interest, i.e. the
effects of speculation and derivatives trading on spot prices. After all, the model
has to allow both views about these effects to be true. This is, we do not want to
”get out what has been stuck in, albeit more polished and with numbers attached”
(Uhlig 2005).

Building up stocks will raise the price. The usual presumption is that this will
happen in times of low prices and the opposite happens in times of high prices.
This means dampened price fluctuations. However, we do not restrict storage (and
thus speculation) to only occur when prices are low. This is, we do not make
any assumptions about when or why speculation takes place. We only identify
speculation by its effects: It increases inventories and lowers the available supply,
thus raising the price. In the empirical model, we even account for the possibility
that speculation is not captured by the inventory data and thus only affects prices.3

Hence, our assumptions remain very agnostic with regard to the role speculation
and derivatives markets play.4

3 Structural VAR Methodology

We estimate a vectorautoregressive model for the three grain markets wheat, corn,
and rice, respectively and identify the structural form following the line of Kilian
and Murphy (2013). The identification builds on the conclusions from chapter 2.
We use the model to evaluate different explanations of the 2007/08 price spike.

3This comes, of course, at the price of a broader set of possible (identified) structural models.
But, this also reduces the risk of incorrectly excluding the true model from the set of identified
models.

4 Still, the model described is drawing on a number of assumption for which it is not clear
whether or not they are fulfilled. For example, Newbold et al. (1999) find mixed evidence for the
rational expectations hypothesis for commodity futures markets.
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We try to estimate the effects of supply, demand, and speculation on the price of
the aforementioned grains. If the inventory data can sufficiently approximate the
privately and publicly held stocks we will be able to capture the effects of physical
speculation on the price of grains. If futures and spot markets are linked by arbitrage
relationships, as implied in equations (8) and (7), we will also capture the effects of
derivatives trading. If this arbitrage channel does not exist, it is difficult for futures
prices to influence spot price. It is argued that this may still happen, though, via
an information channel. Since we want to allow for this possibility, we can only
determine a wider range for the magnitude of the price effect of speculation. This
approach is less precise then other estimates in the literature but also much more
careful in the interpretation and very much in line with the original idea of Faust
(1998). Faust intended the sign identification approach to be used in an agnostic
way, only ruling out hypotheses that clearly do not match the data at hand.

3.1 Data

We examine the three major grain markets—the markets for corn, rice, and wheat—
using data covering the period 1961 to 2013. 1961 is the first year for which global
production and inventory data is available.

The four (endogenous) variables used in our vectorautoregressive model are – for
each of the three grains respectively – the yearly grain production (calendar year),
the harvest-year ending stocks, the average price of the calendar-year, and world
real GDP at year end. The choice of variables thus by and large follows Kilian and
Murphy (2013). The only exogenous variables included is a constant term.

The price data are obtained from the World Bank and are measured is US-Dollar.
We deflate the price series using the US-CPI, also obtained from the World Bank.
We use only spot prices because, as argued above, futures prices are redundant if
storage is well captured by the inventory data (cf. Alquist and Kilian; Kilian and
Murphy 2013). This is particularly convenient since futures data is not available for
all grains from the beginning of the sample period.

We use GDP data to control for demand effects. We do not use per-capita GDP in
an attempt to capture total demand, i.e. the combined effect of income per head and
the world population count. For the same reason, we do not use the Kilian (2009)
index of real economic activity as used by Kilian and Murphy (2013) for the case of
oil prices and also by Carter et al. (2013) for agricultural prices. Furthermore, this
index starts only in 1967 and more importantly is not as applicable to food markets
as it is to oil markets, because business cycles are not as important for the former
as they are for the latter. These considerations make world real GDP the variable
of choice. The data is obtained from the World Bank.

The production data is obtained from FAO. The data is somewhat unreliable as it
is based on official announcements from governments around the world. The USDA
also publishes production data that is mostly similar but also includes inofficial
information from market analysts in some cases. Despite this, we do not use the
USDA data because it is aggregated over harvest years rather then calendar years.
These differ between individual countries/regions and are thus inconsistent after
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being aggregated over all countries.

Inventory data is obtained from United States Department of Agriculture’s Foreign
Agricultural Service (USDA FAS) and represents the stocks at the end of the respec-
tive harvesting cycle. The data for grain inventories is somewhat unreliable as it
is mainly based on information provided by government officials from all countries.
The extend to which it reflects the true storage, including inventories held by private
companies or individual farmers, is hence dubious. We do not include cost of carry,
assuming that they are either constant in real terms or do not play an important
role.

Figure 2: Corn market data on production, inventories and prices, 1961 to 2013.
Production in million metric tons (left axis), prices in 2006 USD (right axis).

We test all variables for Unit Roots. Augmented Dickey Fuller tests and KPSS-
tests clearly confirm all variables are integrated of order one (see Appendix A).
We therefore also test for cointegration. Theory suggests there might be a stable
long-term relationship, especially between production and inventories. We conduct
Johansen system cointegration tests for a variety of specifications. The results were,
however, also inconclusive. Noteably, referring to the Maximum Eigenvalue test and
the Trace test leads to opposing results (see Appendix B for a selection of results).
Given the inconclusive theoretical and empirical guiding, we hesitate to assume
cointegration. Hence, we decided to specify one model using natural logarithms of all
variables and an alternative model with log-differences for all variables. Information
criteria suggest lag lengths between one and six lags (see Appendix ??. Due to
the small sample size we refrain from including six lags. Tests for autocorrelation
and normality of the residuals suggest, on the other hand, that one and two lags
are insufficient. We therefore incorporate three lags for all grains—irrespective of
whether we specify the model in logs or in log differences.
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Figure 3: Rice market data on production, inventories and prices, 1961 to 2013.
Production in million metric tons (left axis), prices in 2006 USD (right axis).

Figure 4: Wheat market data on production, inventories and prices, 1961 to 2013.
Production in million metric tons (left axis), prices in 2006 USD (right axis).
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3.2 Structural VAR methodology

We estimate the reduced form VAR-model as

yt = α+B1yt−1 +B2yt−2 +B3yt−3 + εt , (9)

with yt =


productiont

gdpt
pricet
stockst

 for t = 1964, ..., 2013 .

Thus, yt is the (k × 1) vector of endogenous variables, α represents a constant,
B1, ...,Bp are the (k × k) coefficient matrices for the lags of the endogenous
variables and εt represents the (k × 1) vector of the reduced form error terms.
These are distributed as iid(0,Σε). As explained above, the variables are in one
case specified in logarithms and in one case as first differences of their logarithm,
i.e. as growth rates. We estimate equation (9) using Least Squares. In case of
serially uncorrelated, homoscedastic and normally distributed error terms, the least
squares estimate is equivalent to the Maximum Likelihood estimator and results in
asymptotically normally distributed, consistent estimates (cf. Amisano and Giannini
1997). The ML estimate we use for Σε is given by

Σ̂ε = T−1
T∑
t=1

ε̂tε̂
′
t. (10)

To interpret the results of the VAR model we present Impulse Response Functions
(IRF). These can be computed using the Wold Moving-Average representation of
the process yt, i.e.

yt = εt + Φ1εt−1 + Φ2εt−2 + . . . (11)

with

Φs =
s∑

j=1

Φs−jBj for s = 1, 2, ... and Φ0 = Ik . (12)

For a shock to be interpreted under a ceteris paribus assumption it is required,
however, that the shocks are uncorrelated between the individual equations in (9).
This is not the case in our model. The existing correlation between the individual
error terms indicates a causal relationship between the variables that is not captured
in the regression coefficients (Uhlig 2005). We hence need identifying assumptions
to orthogonalize the reduced form error terms and thus receive structural form error
terms. The assumptions we will use are grounded on the considerations of section 2.

3.3 Identification of the structural shocks

We need the theoretical basis of section 2 in order to shrink the free parameter space
to a degree were the structure is either uniquely defined or at least narrowed down to
the extend that some hypotheses can be ruled out and other kept as plausible. This
means, we try to narrow the number of explanations for the phenomenon of interest

10



down to those that are in accordance with the data and the a priori assumption. The
hereby identified structural form then allows a quantitative estimate of the influence
of different drivers on the development of the grain prices in the sample period in
general and the time around the spikes of 2007/08 in particular.

The especially agnostic approach of using sign restrictions for identification was
originated by Faust (1998). In order to evaluate a hypothesis, Faust suggested to
estimate a model using only weak and uncontroversial assumptions and to then test
whether the hypothesis falls within the set of identified structural models. Uhlig
(2005) advanced the method to yield a more narrow set of structural models. This,
however, still leads to a large number of identified, possible models that are consis-
tent with the data and theory. This identification problem stems from the reduced
form error terms, εt, in (9). We want to identify the still unexplained causal rela-
tionship between the variables in yt, i.e. create uncorrelated innovations. This can
be achieved by multiplying with a matrix, say D, to create a contemporaneously
uncorrelated structural error term ut = Dεt. Our task at hand is now to find a
matrix D that satisfies this requirement. Consider the structural form VAR model
from the reduced form model (9) by substitution B0ut for εt, where B0 = D−1.
This gives

B0yt = B∗1yt−1 +B∗2yt−2 +B∗3yt−3 + ut , (13)

where B∗i = B0Bi for i = 1, ..., 3 and

ut := Dεt ∼ (0,Σu = B0ΣεB
′
0) . (14)

Assuming B0 to be invertible, we can obtain a MA representation of the structural
form analogous to (11) as

yt = Θ0ut + Θ1ut−1 + Θ2ut−2 + . . . (15)

with
Θj = ΦjB

−1
0 for j = 0, 1, 2, ... .

We already have ML estimates of the reduced form coefficientsBi and the covariance
matrix Σε. The off-diagonal elements of the structural form covariance matrix
Σu are zero by assumption of orthogonal shocks. The diagonal elements can be
normalized to one. Both settings do not pose limits on Σε since there will always
exist a matrix B0 such that Σu = B0ΣεB

′
0. The structural parameters B0 are

unknown, though, and cannot be computed from Σu = B0ΣεB
′
0 even after the

restrictions on Σu. They can only be identified using model-external information.

Out of the existing possibilities we choose the sign restriction approach due to it’s
sparse use of prior information. But, we additionally employ a Cholesky decompo-
sition as a robustness check. The latter represents a triangular factorization which
requires a causal ordering between the impacts of the shocks. The sign restric-
tions only imposes restrictions on the signs of the coefficients of the shocks for the
immediate impact and possibly on their long-term impact (Uhlig 2005).

The procedure can be carried out as follows (Kilian and Murphy 2013): We start
from the structural from VAR (13), i.e.

B0yt = B∗1yt−1 +B∗2yt−2 + ...+B∗pyt−p + ut .

11



As above, we have ut := Dεt, or equivalently εt := B−10 ut. We simplify the notation
to B̃ ≡ B−10 and thus

εt := B̃ut . (16)

The fundamental shocks ut are assumed to be mutually uncorrelated with their
variance normalized to one. We now have to find the matrix B̃ that satisfies (16).
We can decompose the covariance as

Σu = PΛP ′ , (17)

with B = PΛ1/2 such that
Σε = BB′ . (18)

Then, for each orthogonal (k × k) matrix D

Σε = BD(BD)′ = BDD′B′ = BB′ . (19)

We can simply compute B as the square root of Σ̂ε. Because B is not uniquely
defined, we set the matrix of the structural form parameters we are looking for to

B̃ = BD . (20)

We can thus compute the coefficient matrix if we know D because

Σε = B̃B̃′ . (21)

Using (14), i.e. Σu = B0ΣεB
′
0 we thus have the structural covariance matrix as

Σu = B0B
−1
0 B

−1′
0 B′0 = Ik (22)

as desired.

4 Identification of the Structural Model

4.1 Identification Algorithm

Because (19) holds for any orthogonal matrix D we can draw indefinitely many can-
didate matrices for the structural parameters B0. For that, we can draw at random
from the set of orthogonal (k × k) matrices and compute B0 = B̃−1. The obtained
structural parameters suffice Σu = B0ΣεB

′
0 but satisfy no further restrictions. We

can then, for every candidate, compute the orthogonalized IRFs and check for each
whether or not the sign restrictions are satisfied. We only retain those matrices that
suffice as potentially true and dismiss the others.

We follow the algorithm of Rubio-Ramirez et al. (2010, p. 688) to efficiently generate
the candidate matrices. This means we generate the (k × k) orthogonal matrix D
from a MatrixW with independently standard normally distributed elements. W is
decomposed by the QR-factorization into an orthogonal Matrix Q (i.e. QQ′ = Ik)
and a lower triangular matrix R.5 By setting Q = D′ we are able to compute

5The QR-decomposition is based on a Householder transformation. Rubio-Ramirez et al. pro-
pose using the Givens transformtaion instead. Both yield equivalent results, the Givens method
however is computationally more expensive (Fry and Pagan 2007, 2011).
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the IRFs bsed on (20), B̃ = BD. This step is conducted many times, in our
case 1 million times. Each time, the results are examined with regard to the sign
restrictions and those that satisfy the restrictions are stored (following the algorithm
of Kilian and Murphy, 2013). The result is a set of candidate structural coefficient
matrices.

It follows, that in our sign identified structural VAR we have a great many obser-
vationally equivalent structural form parameters.6 Hence, Fry and Pagan (2011)
describe sign identified SVARs as set identified but not model identified. Different
approaches for interpreting the set of admissible models are discussed in the litera-
ture. A common way is to look at the median IRF. This median cannot, however be
interpreted as a mid point of the distribution in the classical sense (Fry and Pagan,
2011). Another problem regarding the interpretation is related to the often used
quantiles of the IRF distribution. These represent point-specific intervals and it is
therefore not guaranteed—or even unlikely—that the different points all stem from
the same impulse function (Fry and Pagan, 2011). Since confidence bands for small
samples cannot reliably be computed from a frequentist point of view, Bayesian
confidence bands are often used instead (Sims and Zha 1999, p. 1114). For these
reasons, we also adopt Bayesian bands.

4.2 Identifying Restrictions

We identify four structural shocks. The identifying restrictions are varied between
three different scenarios in order to account for different possibilities of the true
model and to stay true to our intention of being agnostic.

Scenario I
Scenario I is a minor adjustment of the oil market specification of Kilian and Murphy
(2013). They identify a flow supply shock, a flow demand shock, a speculative
demand shock and a residual shock. Why do we adopt the oil market specification
for grain markets? There are enough similarities to make an adoption feasible. For
example, both are storeable commodities produced and consumed worldwide. Also,
this serves as a good starting point and a way of making our approach and results
transparent and comparable with those of Kilian and Murphy. We are, however
more hesitant in imposing restrictions and do not clearly separate all shocks from
each other within this scenario.

A speculative demand shock in this scenario is defined as causing an increase in
inventories for any future purpose. Thus, there exists no discrimination between
”excessive” and ”normal” speculation or between storage by ”hedgers” and ”finan-
cial speculators” as in other studies related to speculation in agricultural markets.

The sign restrictions are shown in table 1. Here and later, all shocks are normalized
to imply a price increase. A ’+’ denotes a positive instantaneous effect of the shock

6The problem is that two parameters, say (B0,B+) and (C0,C+), are observationally equivalent
if and only if they imply the same reduced form parameters (Rubio-Ramirez et al., 2010, p. 669).
This is the case if an orthogonal matrix P exists such that B0 = (C0P and B+ = (C+P .
A global identification of (B0,B+) only exists if no observationally equivalent parameter exists
(Rubio-Ramirez et al., 2010, p. 669).
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on the respective variable and a ’-’ denotes a negative effect. A blank cell indicates
that no restriction was imposed. An example for interpreting table 1: A flow supply
shock, normalized to be some kind of crop failure or bad harvest, will cause grain
production and the world GDP to drop, while the price is assumed to increase. The
effect on inventories is not restricted as a bad harvest might draw on inventories
while it may also incite speculators to store more in anticipation of further crop
failures.

Flow Supply Flow Demand Speculative Demand Residual
Shock Shock Shock Shock

Production -
GDP - + -
Price + + +

Inventories +

Table 1: Sign Restrictions for scenario I, following Kilian and Murphy (2013).

Most restriction are supposedly trivial and need little further justification beyond
that given in section 2. The negative effect of a supply disruption is a necessary
restriction because agricultural production is a part of GDP.

In addition to the impact sign restrictions, we impose restrictions on the relative
size of an impact. We restrict a flow supply shock to have a smaller percentage
effect on GDP than on production. This is, we restrict the quotient B̃2,1/B̃1,1 to

−1 < B̃2,1/B̃1,1 < 1, where the subscripts denote the element of the matrix B̃.
Equivalently, a demand shock should mainly affect GDP and not production, i.e.
−1 < B̃2,3/B̃2,4 < 1. Also a speculative shock cannot have an instantaneous impact
on production or GDP. Therefore, we limit the impact of speculative shocks to less
then one percent of production and less then one percent of GDP. This is, we impose
−0.01 < B̃1,3 < 0.01 and −0.01 < B̃2,3 < 0.01. These assumption should not lead
to the exclusion of any realistically conceivable structural form.

Scenario II.A
In our second scenario, we impose more demanding restrictions. First, we allow the
storage data to reflect primarily public storage. Thus, changes in inventories are
only in part represented by the data. We have to allow for another shock on prices
from private speculation. These can, for example, be arbitrage buys triggered by
rising futures prices or information conveyed from futures markets through other
channels. We abandon the unrestricted residual shock in favor of such a residual
price shock already advertised in section 2. This shock will capture all effects on
the price that go beyond those explained by supply and demand shocks, including
non speculative shocks. It can thus only be seen as a sort of ’worst case’ scenario
in terms of the possible role that speculation may have played. The impact sign
restrictions are as presented in table 2.

Again, we also restrict supply and demand shocks to mainly impact production
and GDP, respectively. We also restrict speculative shocks to not having a strong
immediate impact on production and GDP. Since we now have two speculative
shocks, we have the additional restriction −0.01 < B̃1,4 < 0.01 and −0.01 < B̃2,4 <
0.01 for the residual price shock.
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Supply Demand Speculative Residual
Shock Shock Inventory Shock Price Shock

Production -
GDP - +
Price + + + +

Inventories +

Table 2: Sign Restrictions for scenario II, using a residual price shock.

Scenario II.B
We expect a demand shock to not affect production within the same year. As just
outlined, we also do not expect speculative shocks to impact production and GDP
and do not necessarily expect the speculative price shock to impact storage. Look-
ing at table 2 and taking into account that we ideally expect the effect of most
shocks to be close to zero, we may assume that we should be able to use a Cholesky
decomposition in order to identify the structural shocks by assuming a causal or-
dering between the variables. This is done as a robustness check and to evaluate
how plausible our sign restrictions are. We can compare the signs obtained (without
restrictions) from the Cholesky factorization with the assumptions made in table 2.
If our presumptions are right, we should see the same signs for the instantaneous
impacts. The causal ordering we assume is, following the aforementioned line of
reasoning: A supply shock can immediately impact all four variables, demand is
restricted to not immediately influencing production, an inventory shock only has
an impact on prices within the same year and the residual price shock has not
immediate impact on the other three variables.

Scenario III
In scenario three we are more specific in the identification of the shocks. We now
require inventories to react to supply and demand shocks in order to counteract price
swings and smooth consumption over time. The inventories also react in accordance
to speculative shocks. This is, we assume storage represents mainly public storage
and is aimed on reducing price fluctuations. If private speculators drive up prices,
through storage not captured by the data or by other means, governments will sell of
stocks to dampen the price swings. This assumption is crucial as we would otherwise
reverse causality in our interpretation: If stocks are sold in times of rising prices and
this were indeed captured by the inventory data, the residual price shock would
be incorrectly identifying a reversed causal chain. Our sign restriction are shown in
table 3. As in scenario II, we again impose signs on the relative impact of supply and
demand shocks and restrict the impact of the two speculative shocks on production
and GDP.

Supply Demand Speculative Residual
Shock Shock Inventory Shock Price Shock

Production -
GDP - +
Price + + + +

Inventories - - + -

Table 3: Sign Restrictions for scenario III, again using a residual price shock.
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5 Results

Due to the many different scenarios considered we will confine our presentation to
the results from scenario III for the log-level specification. The conclusions do not
change qualitatively if we used the other specifications instead. To document this
point, consider as an example the following two figures of IRFs for all admissible
models resulting from the log-level specification (figure 5) compared to the IRFs ob-
tained from all admissible models using log-differences (figure 6) for the corn market.
The IRFs for differences are displayed as cumulative responses to allow a direct com-
parison. The two figures are very similar. Furthermore, the signs obtained from the
Cholesky factorization mostly coincide with the restrictions imposed under scenario
II.A as well as those of scenario III.7 In moving forward, we are thus confident that
the results presented below are robust to different specifications.

Figure 5: Impulse response functions for the corn market of all admissible models
using the restrictions of scenario III and variables in log-levels.

7Results are available upon request.
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Figure 6: Impulse response functions for the corn market of all admissible models
using the restrictions of scenario III and variables in log-differences.

We now discuss selected IRFs computed under the impact sign restrictions of sce-
nario III for the three grains considered (see figures 7, 8, and 9). Presented is, firstly,
the median of all admissible models out of the one million draws (solid red lines).
The median is computed by first sorting all admissible IRFs according to the impact
of a speculative price shock on the grain price. Second, we present an upper (light
blue dashed line) and a lower (dark blue dashed line) response function. These
are computed as the 10% and 90% percentiles of the posterior distribution. This
is, we multiply the estimated covariance matrix of the VAR model by a Wishart-
distributed random matrix to account for the parameter uncertainty. We draw 200
different random matrices and for each, we again draw 200,000 candidate structural
coefficient matrices following the same algorithm as described in section 4.1. These
are then also sorted according to the size of speculative price shock impact on prices.
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Figure 7: Impulse response functions for the Corn market using the restrictions of
scenario III and variables in log-levels.

Figure 8: Impulse response functions for the Rice market using the restrictions of
scenario III and variables in log-levels.
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Figure 9: Impulse response functions for the Wheat market using the restrictions of
scenario III and variables in log-levels.

5.1 Historical decomposition of prices for 2001-2013

After having gauged the resulting impulse response functions as plausible we turn
to the assessment of the 2007/08 price spikes. To provide an answer as to whether
speculation caused the rise in grain prices we compute a historical variance decom-
position for the three grain markets using the structural models underlying the IRFs
presented in the previous section (i.e. models corresponding to the median and the
10th and 90th percentile IRFs). To examine what drove the grain prices surge we
compute the contribution to the price for each of the four shocks. To be precise,
we compute by how much the actual price deviates from a counterfactual scenario
in which the respective shocks had not occured. We compute the counterfactual
by setting the respective structural shocks to zero for the years from 2001 to 2013
and then compare the resulting hypothetical price to the actual price (both in real
terms).

Displayed in figures 10, 11, and 12 are the price differences caused by the respective
shock based on the structural form identified under scenario III. Since results differ
between the grain markets, we discuss each figure at a time. First, consider the
decomposition for the corn price (see figure 10 below).

It is worth noting that bad harvests seem not to be responsible for the price increase.
It comes somewhat as a surprise that this major price spike went along with positive
supply shocks. However, the time frame evaluated here was a time of increasing
facilitation of biofuel production, which could have led to increased corn production.
Since we consider the total production instead of the production net of biofuel
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Figure 10: Historical decomposition of the real price of corn using the restrictions
of scenario III and variables in log-levels.

disposition, the supply effects after taking biofuel usage into account might well
look distinctly different.

Given the data and model we have, what did then cause corn prices to rise? The
results suggest a major impact of strong economic development—up to 30% of the
price increase is attributed to the effects of demand shocks by the median struc-
tural model. Storage seems to play no role but for the case of the 10th percentile
model, which attributes about 30% to this shock while at the same time attribut-
ing almost nothing to the demand shocks. The residual price shock is estimated
to have had an effect of about plus 10% on the price during 2007 and 2008. Only
the 90th percentile model attributes 30% to this shock. Trying to draw conclusions
from this heterogeneous results is not clear-cut. As a simple first conclusion, we
can most likely rule out bad harvest as drivers of the corn price spike. A possible
impact of biofuel policies remains an open question, though. Second, the median
model suggests strong demand as the single most important driver of corn prices in
the time of the global food crisis. Other admissible models however just assign the
same impact to inventory shocks and to residual price shocks. It thus becomes clear,
that our restrictions are not tight enough to discriminate between the price contri-
bution of these three shocks. The reasons for this become clear when inspecting
table 3 again. The last three shocks remain ambiguous. It is not possible to clearly
distinguish between a demand and a residual price shock on the basis of these re-
strictions. The speculative inventory shock, in addition, can be replicated as a linear
combination of the other two. It thus remains an open question for future research
to more clearly distinguish these shocks while at the same time not restricting the
model in a way that predetermines much of its outcome. However, it is nevertheless
possible to learn something about the impact of speculation: As demonstrated by
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the median model, it is possible to attribute the majority of the price increase to a
well defined demand shock—with only a 10% increase captured by the residual price
shock. Thus, we have proven that the seemingly extreme price spikes can in fact be
largely explained by markets fundamentals—a conjuncture highly controversial and
disputed by many experts. Even under this structural model it remains possible,
however, that speculators did in fact worsen the food crisis by driving up prices for
a couple of years by around 10% in the extreme event.

Figure 11: Historical decomposition of the real price of rice using the restrictions of
scenario III and variables in log-levels.

Moving on to the rice market, it is striking that we neither find a major impact of
supply nor of demand for the price increase around the time of 2008 (figure 11).
The price spike for rice, which was largest amongst the three grains, is exclusively
explained by speculative shocks, in particular the residual price shock (plus 60%).
This comes as a surprise because rice is not as actively traded at futures markets as
corn or wheat (Wright 2011). We therefore suspect that our model does not capture
the dynamics of rice markets sufficiently well.8 If this strong impact of the residual
price shock were caused by derivatives trading, we would expect the impact to be
at least equally visible in the price of corn and wheat. It is, on the other hand,
also conceivable that the financialization of grain futures markets had an especially
strong impact on rice due the lower liquidity in the market.

Last, we turn our attention to the wheat market (see figure 12). In sharp contrast
to before, we now see a strong impact of supply disruptions along with demand
shocks of comparable magnitude as to the case of corn. Here, the interpretation is
more straight forward as all three models yield very similar decompositions. Also,
these results shed some light on the results obtained for corn markets: If supply
disruption were responsible in the grain market and not in the corn market while
both experienced similar price patterns, it becomes more likely that we indeed would

8For example, Wright (2008, 2011) stresses the importance of export restriction enacted after
the prices started climbing up.
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Figure 12: Historical decomposition of the real price of wheat using the restrictions
of scenario III and variables in log-levels.

need to control biofuel production in modelling the corn market. Shifts in inventories
and the residual price shift both account for increases of nearly 20%. As in the case
of corn, it is again possible however to attribute the price variance almost exclusively
to the fundamental shocks in supply and demand (see the red-lined median model).
This again constitutes a valuable insight, contributing to the ongoing debate about
what drove food prices.

6 Conclusions

We employed an agnostic approach of identifying structural relationships for the
grain markets for wheat, rice, and corn. We considered a structural VAR using four
endogenous variables. Supply was captured using global production data, demand
was controlled for by using global GDP. We attempted to catch expectations using
storage but also allowed in more lenient scenarios for the storage data to only reflect
government inventories. To stay true to our agnostic approach we considered three
different sets of sign restrictions in identifying the structural models. The restrictions
were based on a basic theoretical model outlined in section 2. To check whether
the derived presumptions would adequately describe the data, we also identified a
possible structural form using a causal ordering between the variables. As a further
safeguard for robustness, we considered both a specification using the log-levels of
the variables and the log-differences as we cannot safely reach a conclusion about
possible long-term (cointegrating) relationships. All these different specifications
lead to fairly similar results. We were thus confident to present to the reader only the
results for our most restrictive—while still very general—scenario of sign restrictions.
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We were able to show for the markets of corn and wheat, that is is possible to
attribute the majority of the price increase to fundamental drivers, i.e. supply
and demand. In both cases, only about 10% were attributed to our residual price
shock, which constitutes the most extreme impact derivatives trader could have.
Our results were less useful for the price of rice. This grain is only thinnly traded
at derivatives markets but our model suggests a major impact of the residual price
shock.

Taking together, we contribute to the ongoing debate on the drivers of food prices
by deriving a plausible structural model for the markets of corn and wheat. These
models allow us to appraise the possible contributions to the price increase during
the time of the price spikes around 2008. We are able to identify models that
assign the major part to fundamental market variables. Thus we refute the claims
of some observers, that the extreme price movements of the last years cannot be
explained by fundamental variables and thus have to be attributed to speculators.
We are, however, not able to rule out a major price increasing impact of speculators,
especially in the case of rice.

Some issues remain open for further research. First, we need to think of a better
model for rice markets. It might be beneficial for all three market models to incor-
porate futures data to more precisely catch the impact of speculation in derivatives
markets. Also, one might wish to distinguish between demand driven by income
and demand driven by population growth.

We could also have investigated possible cointegrating relationships more carefully,
for example even estimating a model with some cointegrated I(1) variables and
some I(0) variables using vector error correction models. Since it is, both from
a theoretical and an empirical point of view, not clear which variables should be
cointegrated, our approach of using two different models seems more informative
and less likely to erroneously exclude the true structural relationships. This last
point is also emphasized by our results, that are relative comparable across models
and grain markets. Our investigation hence delivered useful insights into the drivers
of grain prices. These were shown to be robust to different model specifications as
well as different notions about the functioning of grain and derivatives markets and
also to different notions about the transmission channel of speculative pressure to
the spot price of grains.
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A Unit Root Tests

Level First Differences
ADF KPSS ADF KPSS

(p-Value) (critical value) (p-Value) (critical value)
GDP 1 0.977543 0.0001 0.793504

Corn Production 0.9999 0.9666 0 0.474168
Corn Stocks 0.5212 0.704421 0 0.113172

Corn Price 0.4625 0.69279 0 0.144596
Rice Production 0.9594 0.993712 0 0.105876

Rice Stocks 0.3963 0.741487 0.0244 0.138429
Rice Price 0.3705 0.680963 0 0.340989

Wheat Production 0.6587 0.974093 0 0.5
Wheat Stocks 0.3638 0.839897 0 0.150059

Wheat Price 0.0955 0.672445 0 0.168542

Table 4: Unit Root tests for all variables

B Cointegration Tests

Trace Max-eig
No. CE p-value when rejected No. CE p-value when rejected

Corn 1 0.0901 0 0.2889
Rice 4 na 0 0.1313

Wheat 3 0.0825 1 0.2031

Table 5: Johannsen Cointegration Tests of the log-levels of the variables using three
lags. Specified with a constant but no trend term in both equations.
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