Make Your Publications Visible. A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Caballero, Julián; Panizza, Ugo; Powell, Andrew #### **Working Paper** The Second Wave of Global Liquidity: Why Are Firms Acting Like Financial Intermediaries? IDB Working Paper Series, No. IDB-WP-641 #### **Provided in Cooperation with:** Inter-American Development Bank (IDB), Washington, DC Suggested Citation: Caballero, Julián; Panizza, Ugo; Powell, Andrew (2016): The Second Wave of Global Liquidity: Why Are Firms Acting Like Financial Intermediaries?, IDB Working Paper Series, No. IDB-WP-641, Inter-American Development Bank (IDB), Washington, DC, https://hdl.handle.net/11319/7638 This Version is available at: https://hdl.handle.net/10419/146447 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode IDB WORKING PAPER SERIES Nº IDB-WP-641 # The Second Wave of Global Liquidity: Why Are Firms Acting Like Financial Intermediaries? Julián Caballero Ugo Panizza Andrew Powell Inter-American Development Bank Department of Research and Chief Economist # The Second Wave of Global Liquidity: Why Are Firms Acting Like Financial Intermediaries? Julián Caballero* Ugo Panizza** Andrew Powell* ^{*} Inter-American Development Bank ^{**} The Graduate Institute, Geneva, and Centre for Economic Policy Research (CEPR) Cataloging-in-Publication data provided by the Inter-American Development Bank Felipe Herrera Library Caballero, Julián The second wave of global liquidity: why are firms acting like financial intermediaries? / Julián Caballero, Ugo Panizza, Andrew Powell. p. cm. — (IDB Working Paper; 641) Includes bibliographic references. 1.Corporations—Finance . 2. Bonds. I. Panizza, Ugo. II. Powell, Andrew (Andrew Philip). III. Inter-American Development Bank. Department of Research and Chief Economist. IV. Title. V. Series. IDB-WP-641 #### http://www.iadb.org Copyright © 2016 Inter-American Development Bank. This work is licensed under a Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives (CC-IGO BY-NC-ND 3.0 IGO) license (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) and may be reproduced with attribution to the IDB and for any non-commercial purpose, as provided below. No derivative work is allowed. Any dispute related to the use of the works of the IDB that cannot be settled amicably shall be submitted to arbitration pursuant to the UNCITRAL rules. The use of the IDB's name for any purpose other than for attribution, and the use of IDB's logo shall be subject to a separate written license agreement between the IDB and the user and is not authorized as part of this CC-IGO license. Following a peer review process, and with previous written consent by the Inter-American Development Bank (IDB), a revised version of this work may also be reproduced in any academic journal, including those indexed by the American Economic Association's EconLit, provided that the IDB is credited and that the author(s) receive no income from the publication. Therefore, the restriction to receive income from such publication shall only extend to the publication's author(s). With regard to such restriction, in case of any inconsistency between the Creative Commons IGO 3.0 Attribution-NonCommercial-NoDerivatives license and these statements, the latter shall prevail. Note that link provided above includes additional terms and conditions of the license. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the Inter-American Development Bank, its Board of Directors, or the countries they represent. #### Abstract* Recent work suggests non-financial firms have acted like financial intermediaries particularly in emerging economies. This paper corroborates these findings but then asks "why?" The results indicate evidence for carry-trade activities, but they are focused on countries with higher levels of capital controls, particular controls on inflows. There is little evidence for such activities given other potential motives. It is posited that this phenomenon is due more to the reaction of countries in the face of low global interest rates, quantitative easing and strong capital inflows than incomplete markets or the retreat of global banks due to impaired balance sheets or tighter regulations. **JEL classifications:** E51, F30, F33 Keywords: Corporate finance, Bond issuance, Currency mismatch, Carry trade, Capital controls _ ^{*} We would like to thank Jorge Carrera, Claudio Raddatz, Dave Seerattan and other participants at the IDB's Network of Central Banks and Finance Ministries of Latin America in Lima, October 2015, participants at seminars at FGV Sao Paulo, University of St. Gallen and IDB for comments. We would also like to thank Jaime Ramírez and Daniela Sánchez for excellent research assistance. The views expressed are strictly those of the authors and do not necessarily reflect the views of the Inter-American Development Bank, its Board of Directors or the countries they represent. Contact author Andrew Powell at andrewp@iadb.org. #### 1. Introduction The recent fall in international bank lending and the rise of dollar-denominated international bond issuance, particularly from non-financial corporations based in emerging economies, has been labelled "the second phase of global liquidity" (Shin and Zhao, 2013). Since 2010 international bond issuances by non-financial corporates based in emerging economies has nearly doubled, reaching \$400 billion by the end of 2014 (Acharya et al., 2015; see also Turner, 2013, and IMF, 2015). What did firms do with the proceeds of these bond issues? Bruno and Shin (2015) show that bond issuance has not been used solely for real investment but also to increase cash holdings or other liquid assets. Powell (2014) documents a positive correlation among U.S. dollar issuances in Latin America, corporate deposits in Latin American and Caribbean (LAC) financial systems and domestic credit. This behavior is consistent with the idea that, by acting as financial intermediaries, non-financial firms have replaced banks as the conduit through which international financial conditions affect domestic liquidity and credit growth in emerging economies. In this paper we ask why non-financial firms have taken on this role. We suggest that non-financial firms are more likely to act like financial intermediaries in countries with tighter capital controls because non-financial corporates have a comparative advantage in arbitraging capital controls or other regulations that have prevented banks from pursuing what appear to be profitable opportunities. Low interest rates in advanced economies fueled the fear in emerging economies that strong capital inflows, including carry-trade type activities, would led to credit booms and currency appreciation. Some emerging economies responded to this situation with tighter regulations on capital movements. However, non-financial firms may have ways of escaping such controls as they can issue bonds in offshore financial centers and then bring the proceeds of that issuance into the home country via an inter-company loan which in the balance of payments is normally counted as FDI and may thus elude capital controls or taxes levied on portfolio flows (see McCauley, Upper, and Villar, 2013). We test if the presence of capital controls increases the likelihood that non-firms act like financial intermediaries by using data for the period 2000-14 covering 766 non-financial firms located in 18 emerging market countries. We show that these corporations are more likely to hold the resources obtained from foreign currency bond issuances in liquid assets when potential returns from carry trade are high *and* there are capital account restrictions on inflows. We conjecture that in countries with no or few capital controls, banks remain the main conduit for transmitting global financial conditions to domestic markets but in those countries that have adopted tighter capital controls (especially controls on inflows) this role is at least to some degree being played by corporates. We also show that our main result is not driven by the fact that global banks have been retreating from lending to emerging market countries. Our paper is related to several strands of the literature spanning financial depth and corporate financial structure, the role of international banks, and the credit cycle and systemic macroeconomic financial risks. A useful starting point is the corporate finance literature that discusses a "pecking order" for firm financing. This implies that a firm would normally use internal sources to finance projects or operations and only seek outside funds when those are exhausted (Myers, 2003). An implication is that, unlike financial intermediaries, non-financial
corporations' liabilities and liquid financial assets should be negatively correlated (Shin and Zhao 2013). While this is the case for US firms, in emerging economies there is a positive correlation between debt and liquid assets (Shin and Zhao, 2013, and Bruno and Shin, 2015). Bruno and Shin (2015) is perhaps the paper which is closest to ours. This paper also considers the rise in issuance of non-financial corporates and, in analyzing the determinants of issuance, finds evidence in favor of carry trade activities. Our data and methodology in identifying carry trade activities are somewhat different but still we corroborate their findings in this regard. More importantly, we highlight the importance of capital controls and conclude that carry trade activities by non-financial firms are consistent with the presence of regulatory arbitrage. We also test for alternative hypotheses focusing on the retreat of global banks or credit market imperfections but find no evidence in these directions. A related strand of literature focuses on recent trends in international credit flows. Turner (2013) highlights the shift from bank financing to bond financing, particularly for emerging economies. Chung et al. (2014) document the importance of this trend in terms of overall global liquidity and discuss the potential ramifications for financial stability. Powell (2014) considers the case of four large Latin American economies (Brazil, Chile, Colombia and Mexico) and documents a strong increase in issuance from non-financial firms, particularly in US dollars (Rodrigues-Bastos, Kamil, and Sutton 2015 show that this pattern also holds for a larger sample of Latin American economies). He also presents evidence of an increase in local currency denominated domestic credit which appears to be financed by corporate deposits and documents a deterioration of firms' balance sheets due to a combination of rising dollar amortization schedule and falling earnings ratios. In our paper, we move beyond cross-country correlations and use firm-level data to document when and why non-financial firms act as financial intermediaries. Our paper also relates to the literature on the links between offshore bond issuances and capital controls Shin (2013) and McCauley, Upper, and Villar (2013) document the recent increase in issuance of Brazilians and Chinese non-financial firms through subsidiaries in offshore financial centers and suggest that issuances through foreign subsidiaries may enable firms to evade capital controls or taxes on certain inflows. Powell (2014) considers this issue in the case of Latin America and shows that while in the case of Brazil issuance on a nationality basis exceeds issuance on a residency basis the opposite is true for Chile. As Chile does not have capital controls, while Brazil does, this difference provides prima facie evidence for the potential importance of such controls. In this paper, we test this hypothesis and find that capital controls do indeed increase financial firms' incentives to act as financial intermediaries. Finally, our paper relates to the recent literature attempting to explain relatively high corporate cash holdings in the United States. Bates, Kahle and Stulz (2009), for example, argue that precautionary motives may play an important role in explaining U.S. firms' high cash-to-assets ratios. As corporates in emerging economies are operating in an environment of incomplete financial markets, their actions may well be different than those of corporates in advanced economies. Large corporates, for instance, may have better access to capital markets than smaller firms that they have relationships with, such as suppliers, and hence might borrow more to be able to pass the proceeds on in the form of direct loans to these firms exploiting the business relationships. In this manner larger firms may attempt to complete financial markets in environments where financial depth is limited (Petersen and Rajan, 1997; Demirgüç-Kunt and Maksimovic, 2001; Fisman and Love, 2003; Levine, 2005). This line of argument suggests that there might then be a link between the financial structure of large corporates in emerging economies and financial depth. The lower is financial depth the more we may expect to see larger corporates borrowing to be able to correct such market failures in financial markets. We test whether the incentives of non-financial firms to act as financial intermediaries depend on credit market imperfections (as proxied by financial depth or creditors' rights) and do not find any evidence supporting this hypothesis. Another literature focuses on the role of international banks. International banks expanded during the 1990s and early 2000s through increased direct lending to clients in other countries, through establishing branches and subsidiaries in host nations, and hence collecting deposits and lending, and through the purchase of securities and structured products issued by foreign entities.1 However, the global financial crisis severely hit banks' balance sheets, provoking a reduction in leverage and a retreat from international activities such that banks focused more on core assets and provoked a fundamental rethink of regulation. García-Luna and Van Rixtel (2014) provide a description of the retreat of global banks and discuss motivations including impaired balance sheets and regulatory developments, and Karam et al. (2014) consider changes in country ratings and their impacts on bank funding. If the rise of corporates as financial intermediaries is related to the retreat of global banks, then we would expect to see a relation with risk. In other words, if banks retreated more quickly from countries with lower ratings, then perhaps it is in those countries where corporates are now acting more like financial intermediaries. In what follows we test this proposition and we also test directly if corporates are behaving like financial intermediaries where international bank claims have fallen the most. #### 2. Data We collected annual data for the period 2000-2014 on firms' balances sheets and bond issuances from two different sources. We focus on a sample composed of the 50 largest listed non-financial and non-foreign owned firms in each of 18 emerging markets. The baseline analysis includes a total of 766 firms.² Bond issuance by our sample of firms was on a rising trend before the global financial crisis hit; it contracted in 2008 and then boomed over 2009-2013 (Figure 1). We obtained annual data on firms' liquid financial assets and other balance sheet variables from the Thomson-Reuters Worldscope database and sourced data on bond issuances ¹ On the expansion and role of foreign banks in emerging economies see for example Goldberg (2002), Martínez-Peria, Powell and Vladkova (2005) and Galindo, Micco and Powell (2005). ² We have fewer than 50 firms in countries where there are less than 50 listed domestically owned non-financial corporations. from Dealogic's DCM database.³ Table A2 lists the 18 markets and gives details of the sample in each. As detailed in the table the sample accounts for over 90 percent of market capitalization in most markets. Note that we are not interested in a representative sample of firms but rather in large firms that are active in capital markets and that have good access to finance and hence may contemplate a variety of different types of market transactions. Our interest is precisely in understanding the behavior of these large firms. We also feel that the large listed firms are likely to have better-quality data, as their accounts are prepared in a professional manner and audited and studied by outside analysts. Given different spellings and abbreviations of firm names in each dataset, the data from Worldscope and Dealogic were merged manually, making sure that we were able to either find a match in the issuance data for each listed firm in our sample or that we could assign zero issuance with confidence because the firm did not have any issuance reported in Dealogic. We matched the two datasets using the names and nationalities of the firms included in the two databases. In a few cases we were unable to identify a clear match based solely on the information contained in the two datasets, so we searched the Internet for different spellings and abbreviations and were able to match all firms in this way. We built our dataset of bond issuance at the parent level. Therefore our measure of bond issuance for each firm includes any bond issued under the name of the firm itself and any bond issued through a subsidiary in any part of the world. In our analysis we give equal weight to bonds issued through a subsidiary, perhaps in an offshore financial center, and bonds issued directly by the parent. The parent's nationality of operations reported in Dealogic was used to assign a particular firm to a particular country. We constructed measures of bond issuance based . ³ We downloaded data for all firms listed in the 18 emerging markets of interest. The universe of firms was identified using Worldscope's constituent lists for all country exchanges in a given country (e.g., firms listed in Sao Paulo or Rio de Janeiro were assigned Brazil as nationality). The largest firms were identified based on market capitalization as of end of 2014. We then used Thomson Reuters' business classification to exclude firms classified as Financials. We used data from Worldscope on foreign ownership of shares to identify firms with foreign majority ownership. Firms with no foreign ownership reported or with less than 50 percent foreign ownership were classified as domestic. After excluding non-financial firms and foreign firms we are left with 803 firms in the 18 countries of interest; although only 766 firms have data on sales, leverage and other required variables. In some countries, there are less than fifty non-financial, non-foreign firms; yet, in all cases, with the exception of South
Korea, coverage by market capitalization is above 80 percent. We also use a set of country-level data to describe potential returns from carry trade and capital controls; we describe these when we use and provide a detailed list of sources in Table A1. ⁴ Dealogic's DCM database reports issuances at the tranche level. We computed a measure of annual issuance in local and foreign currency by parent after downloading all issuances reported in the world for the period 2000-2014. We then collapsed the data using the parent listed in Dealogic. We assign currencies to nationalities based on the on the currency of denomination of the bond and further decomposed foreign currency issuance between hard currencies (USD, EUR, GBP, JPY, and CHF) and other currencies. Issuance in hard currencies (FXB) is our key variable of interest. We complemented the firm-level and bond-level data with country-level data on capital controls, spreads, carry trade profitability, credit ratings, financial depth, creditors' rights and external liabilities. These data and their sources are described in Table A1. #### 3. Bond Issuance and Holdings of Liquid Financial Assets We start by testing whether non-financial corporations based in emerging markets keep the proceedings of foreign currency bond issuances in cash or other liquid financial assets. We use a specification similar to that in Bruno and Shin (2015). Specifically, we estimate the following model: $$ln\left(\frac{c}{SA}\right)_{i,c,t} = FXB_{i,c,t}\left(\beta + \delta\widetilde{SP}_{c,t}\right) + X_{i,c,t}\Gamma + \alpha_i + \theta_{c,t} + \varepsilon_{i,c,t}$$ (1) The dependent variables is the log of liquid financial assets scaled by sales of firm i, in country c, in year t. The explanatory variables are firm-level foreign currency bond issuances (FXB), the demeaned spread between either the local currency deposit rate or the money market rate (we choose the higher of the two) in country c and borrowing costs in the United States for either the sovereign of country c or BAA-rated corporations (we use the lower of the two), a set of time-variant firm-specific controls (the matrix $X_{i,c,t}$ includes the log of debt over sales, log sales, and leverage), a set of firm fixed effects (α_i), and a set of country-year fixed effects ($\theta_{c,t}$; among other considerations the country-year fixed effects fully absorb the main effect of \widetilde{SP}). We employ the demeaned spread $(\widetilde{SP}_{c,t} = SP_{c,t} - \overline{SP})$ and in the set-up of equation (1) β captures the marginal effect of bond issuances on holdings of liquid financial assets when $SP_{c,t} = \overline{SP}$ (if we had used $SP_{c,t}$ instead of $\widetilde{SP}_{c,t}$, β would have captured the marginal effect of bond currency in use as of end-of-2014. We include in the measure of local currency issuance of bonds indexed and non-indexed to inflation. issuances on holdings of liquid financial assets when $SP_{c,t} = 0$), and δ captures how spreads affect the marginal effect of bond issuances on holdings of liquid financial assets.⁵ We use three different measures of foreign currency bond issuances: the log of the dollar value of such issuance plus one (as we have many zeros this allows us to use logs without problems); the log of the ratio of foreign currency issuances to sales (this is our baseline); and a dummy variable that takes a value of one if firm i issued a foreign currency bond in year t. When we use our baseline specification (i.e., when FXB is based on the log of the ratio between bond issuances and sales), we are estimating an elasticity and β captures the percentage change in the liquid financial assets to sales ratio brought about by a one percent increase in the bond issuance to sale ratio when the spread is at its mean value. The parameter δ , instead, measures by how much a one-percentage-point increase in the spread affects the elasticity of holdings of liquid financial assets to bond issuances. When we estimate equation (1) without the interactive term (i.e., when we set $\delta = 0$), we find that foreign bond issuances are always positively correlated with holdings of liquid financial assets (Table 2, columns 1, 4, and 7). Therefore, our results, with an independently constructed dataset, corroborate Bruno and Shin's (2015) finding that in emerging markets non-financial corporations keep a substantial share of foreign currency bond proceeds as cash or other liquid financial assets. The point estimate of column 1 suggests that a 10 percent increase in bond issuances is associated with an eight percent increase in holdings of liquid financial assets. When we allow for the correlation between bond issuances and holdings of liquid financial assets to vary with the spread between borrowing costs in the United States and return on local currency-denominated liquid assets, we find that δ is always positive (which is *prima facie* evidence for carry trade activities), but never statistically significant (columns 2, 5, and 8 of Table 2). The effect, however, is qualitatively large because the point estimates suggest that at the mean one standard deviation increase in spread (4.5 percentage point) would increase the elasticity of holdings of liquid financial assets to bond issuance from 0.8 to 1.2. ⁵ Alternatively, δ measures how bond issuances affect the marginal effect of spreads on holdings of liquid financial assets. Formally, $\delta = \partial \left(\frac{\partial ln\left(\frac{C}{SA}\right)}{\partial FXB} \right) / \partial SP = \partial \left(\frac{\partial ln\left(\frac{C}{SA}\right)}{\partial SP} \right) / \partial FXB$. Note that the marginal effect of spreads on holdings of liquid financial assets is absorbed by the country-year fixed effects. ⁶ When we take logs, we add one to total bond issuances because approximately 95 percent of our observations have a value of zero for bond issuances. Bruno and Shin (2015) use the same strategy. We also interact foreign bond issuances with a dummy variable that takes a value of one when our spread indicator is below the sample median (LS) and a dummy variable that takes value of one when the spread is above the sample median (HS). Columns 3, 6, and 9 of Table 2 show that the coefficient of FXB*HS is always positive and statistically significant and that the coefficient of FXB*LS is never statistically significant. This finding is consistent with the result in Bruno and Shin (2015) that, in emerging market countries, bond issuances are significantly correlated with holdings of liquid financial assets when a carry trade indicator is above the median, and they are not significantly correlated with holdings of liquid financial assets when the carry trade indicator is below the median. The effect is also quantitatively important. In column 3, the elasticity of holdings of liquid financial assets to bond issuance in the high spread regime is twice the elasticity in the low spread regime. So far, we have established that emerging market-based firms that issue in foreign currency tend to hold more liquid financial assets and that the relationship between bond issuances and holdings of liquid financial assets is increasing in the spread between local deposit rates and the cost of borrowing in the United States. We also showed that the effect of spreads is quantitatively large but not statistically significant. In the next section we will explore potential heterogeneity in this relationship. Before doing so, we check if there is something special about foreign currency bonds or whether non-financial corporations always keep a share of bond issuances in cash or other liquid financial assets, no matter whether they are issuing in domestic or in foreign currency. The first two columns of Table 3 estimate the models of the first two columns of Table 2 but substitute foreign currency bond issuances with domestic currency bond issuances. We find that domestic bond issuances are never significantly correlated with holdings of liquid financial assets. In the last three columns of the table we jointly control for domestic and foreign bond issuances (we use the same definitions of foreign bond issuances of Table 2), we find that foreign bond issuances are always significantly correlated with holdings of liquid financial assets and that domestic issuances are never significantly correlated with holdings of liquid financial assets. The coefficients of FXB are also essentially identical to what we found in Table 2. 7 ⁷ However, the two coefficients are not significantly different from each other, a fact consistent with our results that δ is not statistically significant. #### 4. Carry Trade Opportunities and Capital Controls Over the period of analysis (2000-2014) there have been significant changes in capital account openness among emerging countries in different directions. Post 2000 there was a general move towards more openness but after the global financial crisis many countries tightened capital controls (see Figure 2, which uses data from Chinn and Ito, 2006, and Fernández et al., 2015). Data from Fernández et al. (2015) show that 16 out of the 18 emerging economies studied in this paper introduced at least one tightening measure to capital account transactions over 2008-2013 (a larger sample of 41 emerging economies shows that nearly 80 percent of countries introduced at least one tightening measure). Figure 3 illustrates the distribution of capital account openness across countries in 2007 and in 2013. Each plot shows a solid box covering the interquartile range of the capital controls measure, from the lower quartile to the upper quartile and the median. These graphs show a shift in the distribution towards greater capital controls comparing these two years. When capital account transactions are heavily regulated, it may be difficult or expensive for banks to pursue carry trade
activities. However, it may be harder to regulate the transactions of non-financial corporations that can use current account transactions or inter-company loans (which are normally considered as FDI) to transfer financial resources across countries. In such a setting, non-financial firms may become the channel through which capital inflows take place. If this is the case, we should find that the presence of capital controls amplifies the correlation between foreign bond issuances and holdings of liquid financial assets when there are large differences between domestic and foreign interest rates. We test if the incentives of non-financial corporation to act akin to a financial intermediary are stronger in the presence of capital controls by estimating the following model: $$ln\left(\frac{c}{SA}\right)_{i,c,t} = FXB_{i,c,t}\left(\beta + \delta\widetilde{SP}_{c,t} + \eta K_{c,t} + \phi\left(\widetilde{SP}_{c,t}K_{c,t}\right)\right) + X_{i,c,t}\Gamma + \alpha_i + \theta_{c,t} + \varepsilon_{i,c,t}$$ (2) where K is a continuous measure of capital account openness that ranges between 0 (closed capital account) and 1 (open capital account) and the remaining variables are the same as in Equation (1). Our parameter of interest is ϕ . A positive value of ϕ would suggest that non-financial corporations are more likely to exploit interest rate differentials when the capital account is open, a negative value of ϕ , instead, would be consistent with Shin and Zhao (2013) and Chung et al.'s (2014) hypothesis that firms use within-company loans to elude capital controls (the returns of eluding capital controls are higher because banks, which in general face lower transaction costs, cannot arbitrage interest rate differentials). Before estimating the model with the triple interaction, we check whether interacting foreign bond issuances with capital account openness alters the results of Table 2. In columns 1, 3, and 5 of Table 4 we set ϕ =0 and show that once we control for capital account openness, the main effect of FXB is no longer significant and the interaction effects are not statistically significant. When we allow for the triple interaction, however, our results change dramatically (columns 2, 4, and 6 of Table 4). The parameter δ is always positive and statistically significant, indicating that in countries with a closed capital account (i.e., when K=0), the likelihood that the proceeds of foreign currency bond issuances are kept in cash or other liquid financial assets is increasing in the spread between the local deposit rate and foreign currency borrowing costs (a behavior consistent with the presence of carry trade activities). The effect is also quantitatively large. The point estimates of column 2 suggest that when the spread is at its mean value and the capital account is fully closed a one percent increase in bond issuances is associated with a 0.3 percent increase in holdings of liquid financial assets. A one-percentage point increase of the spread, however, would increase the elasticity of holdings of liquid financial assets to 0.8. We also find that ϕ is always negative, statistically significant and with point estimates close to $-\delta$ (in fact, we cannot reject the hypothesis that $\delta + \phi = 0$; we report the test at the bottom of Table 4). This finding is consistent with the hypothesis that non-financial corporations do not engage in carry trade activities when they operate in countries with an open capital account (K=1). Panel A of Figure 4 plots how the sensitivity of the relationship between foreign bond issuances and holdings of liquid financial assets to our spread variable varies with capital account openness (the figure is based on the model in column 2 of Table 4). We find that $\frac{\partial \left(\frac{\partial Cash}{\partial FXB}\right)}{\partial SP}$ is positive and statistically significant when K<0.5 (the mean value in our sample is 0.51 and the median 0.44), the derivative is positive but not statistically significant when 0.5<K<0.7, and becomes negative (but never statistically significant) when K>0.7. ⁻ ⁸ In Table 4, we follow Shin and Zhao (2013) and scale our variables by sales. Our results are robust to following Bruno and Shin (2015) and scaling our variables by assets (see columns 1-3 of Table A1 in the Appendix) In Table 4, we measured capital account openness using the updated version of the Chinn and Ito (2006) aggregate index. This data source does not contain separate indicators for controls on inflows as opposed to controls on outflows. It is, however, plausible that controls on inflows are more relevant for non-financial firms that are trying to elude capital controls to exploit carry trade opportunities. To test this hypothesis, we use the Fernández et al. (2015) database on capital controls, which does contain separate measures for controls on outflows and on inflows. Table 5 reports the results using our baseline measure of FXB (the results are robust to using the other definitions). In the first column of Table 5, we estimate the same model of column 2, Table 4 by replacing the Chinn and Ito index with the overall measure (inflows and outflows) of capital account openness of Fernández et al. (2015). The results are similar to those of Table 4 (Panel B of Figure 3, plots the results), but the coefficients are not as precisely estimated as when we use the Chinn and Ito index (δ and ϕ are statistically significant at the 10 percent confidence level while they were significant at the one percent confidence level in Table 4). Next, we use the Fernández et al. (2015) measures of openness to inflows (KI, Column 2) and outflows (KO, column 3). We find that the regression that uses controls on inflows yields results which are similar to those obtained for the overall index, but the coefficient are more precisely estimated (they are statistically significant at the 5 percent confidence level). The regression that uses controls on outflows, instead, yields results that are qualitatively similar to the regression that uses the overall index but with statistically insignificant coefficients for δ and ϕ . In fact, in this case we find that capital account openness affects the elasticity of holdings of liquid financial assets to bond issuances but that the spread does not matter. The fact that openness to inflows and openness to outflows yield different results is particularly telling as the two components of the index are highly correlated (the correlation coefficient is 85 percent and a regression of one KI over KO yields a coefficient of 0.7, with a t-statistics of 70 and an R-squared of 0.7). If we include both components in a horserace regression, we still find that openness to inflows decreases the sensitivity of holdings of liquid financial assets to spreads but openness to outflows does not (column 4). In fact, the two bottom panels of Figure 4 suggest that the effect of openness to outflows goes in the opposite direction. ⁹ Note that the original Fernández et al. (2015) index gives higher values for countries with a closed capital account. We rescaled the index such that 1 means open capital account and 0 means closed capital account. Panel C plots the coefficient for openness to inflows. We find the usual negative relationship of Panels A and B, but the curve is steeper, and the point at which the coefficient becomes insignificant is higher than in the regressions that use total openness. Panel D, instead, shows that openness to outflows is positively correlated with our measure of carry trade activity, but the coefficient is never statistically significant. To probe further, we regress the inflow and outflows measures on the overall index of capital controls and use the errors of this regression as measures of controls on inflows and outflows that are orthogonal to overall capital controls (again, we rescale these two measures to range between 0 and 1, with 1 indicating maximum openness). In column 5 of Table 5, we control for both overall capital account openness and for openness to inflows that is orthogonal to overall openness (KI_R), we find that what matters is openness to inflows. In column 6, we repeat the experiment but now we include openness to outflows (KO_R). We find that the effect goes in the opposite direction, indicating that openness to outflows actually amplifies carry trade activities (this finding is consistent with what we showed in panel D of Figure 4). Our results are consistent with the idea that firms are unlikely to engage in carry trade activities if they have doubts on their ability to repatriate profits. It may also mean that controls on outflows are more tightly enforced (or enforceable) than controls on inflows. Next, we substitute our spread variable with a measure of potential carry trade returns. We use the Bloomberg Carry Return Index (CTI). CTI is a proxy of the carry-to-risk ratio obtained by summing the returns from interest rate differentials and exchange rate movements. The CTI is often interpreted as an ex ante measure of the attractiveness of carry trade. Table 6 shows that high carry trade returns increase the correlation between foreign bond issuances and holdings of liquid financial assets in country-years with a closed capital account but have no effect on the elasticity of holdings of liquid financial assets in country-years with an open capital account (column 1). We also find that the result holds for openness to inflows (column 2), but does not hold for openness to outflows (column 3) and that the result is robust to running a horserace that includes openness to both inflows and outflows (column 4). # **5.** Alternative Explanations: Incomplete Capital Markets and the Retreat of Banks The presence of capital controls is just one of several potential explanations for non-financial firms to act as financial intermediaries. Non-financial corporations may also
be playing this role because emerging countries have under-developed capital markets or because international banks have retreated. We posit that financial depth and creditor rights are reasonable proxies for the lack of complete financial markets and that banks suffering from either impaired balance sheets or increased regulation are likely to retreat more from countries with lower credit ratings on long-term foreign currency bonds. ¹⁰ Hence we test for these alternative views by estimating equation (2) replacing capital account openness with a measure of creditor rights, a measure of financial depth, and two indicators for the retreat of global banks, country ratings (risk) and international bank claims. In column 1 of Table 7, we use the index of creditors' rights compiled by the Doing Business report. We rescale the variable to range between 0 and 1 (1 meaning stronger creditor rights). We find that creditor rights do not affect the correlation between foreign bond issuance and holdings of liquid financial assets of non-financial corporations (column 1). Next, we use a standard measure of financial depth (credit to the private sector as a percent of GDP) as a proxy of financial development. We find that financial depth does not affect the correlation between foreign bond issuances and holdings of liquid financial assets (Column 2). Finally, in columns 3 and 4 we run two horserace regressions that include financial development (creditors' rights in column 3 and financial depth in column 4) and capital account openness (we use controls on inflows, but the results are robust to using overall capital account openness). We find that the effect of capital account openness is robust to controlling for financial depth, while the . ¹⁰ Powell and Martínez (2008) in particular argue that ratings are actually fairly easy to model as rating agencies give considerable information as to what factors drive their ratings and hence suggest that ratings may be considered a convenient summary of those macroeconomic fundamentals and judgements regarding political and other less quantifiable risks. Cavallo, Powell and Rigobón (2013), within an errors in measurement-type methodology, show that sovereign ratings do add value in the sense that market variables are found to respond on average to changes in ratings. These results indicate that ratings may indeed be considered on average as at least a useful summary of fundamentals that drive more market measures of country risk. ¹¹ As Doing Business data for creditors' rights start in 2005, we use 2005 values for the 2000-2004 period. The results are robust to dropping the 2000-2004 period. As cash deposits of corporations that borrow abroad may have an impact on the provision of domestic credit, we set FD to be equal to credit to the private sector in the year 2000. coefficients have similar magnitude but are not statistically significant when we control for creditors' rights (column 3). In Table 8 we look at the role of sovereign risk using both Standard and Poor's and Moody's credit ratings (again, we rescale the index to range between 0 and 1). Column 1 of Table 8 uses S&P ratings and shows that credit ratings are not statistically significant in our model. Column 2 includes both credit ratings and capital controls and shows that our baseline results are robust to controlling for credit ratings interactions. Columns 3 and 4 repeat the experiment with Moody's ratings and find identical results. We also check to see whether our results are driven more directly by changes in the behavior of global banks. Specifically, we augment our model with a variable (which we call BIS) which measures the change in a country's liabilities vis-à-vis BIS reporting banks divided by GDP. We try several different measures of liabilities employing the BIS locational banking statistics, namely: i) total liabilities; ii) liabilities of non-banks; iii) total loans; and iv) loans of the non-bank sector. We find that none of the BIS variables are statistically significant in our regressions and that there are no qualitative changes in our baseline results (Table 9). #### 6. Further Robustness Checks We further check if our results are robust to a series of alternatives specifications and subsamples. First, we split our sample into three different regions: Latin America (six countries, 261 firms and 2,940 observations), Asia (five countries, 237 firms and 2,512 observations), and Europe (5 countries, 158 firms and 1,404 observations).¹³ Table 9 shows that our results are robust in all sub-regions, but that they are weaker in Europe. This might be due to the fact that in our regressions we use U.S. dollar borrowing rates, but for European emerging markets the relevant currency is likely to be the Euro. ¹⁴ Moreover, three of the countries included in the European subsample (Czech Republic, Hungary, and Poland) are part of the European Union, and this may cause differences with other emerging markets. To check whether our results are driven by influential observations, we estimate our benchmark regression by dropping one country at a time. Table A4 reports the results for the ¹³ We exclude South Africa and Israel, which do not belong to any of the geographical regions of Table 7. ¹⁴ In Table 8, we use openness to inflows, but the results are robust to using overall openness. FXB*SP*KI coefficient. It shows that the coefficient is always negative (ranging between 0.01 and -0.03) and statistically significant. We also run a set of placebo regressions (we run 500 regressions that randomly allocate capital controls across country-periods) and find that the average placebo coefficient is centered at zero and that only 5 percent of the placebo regressions (4.7 percent to be precise) are statistically significant at the 5 percent confidence level. This is exactly what one would expect to find if the coefficient is not statistically significant. Next, we split the sample in two sub-periods, 2007-2014 and 2000-2006, and find that the results for inflows hold for both sub-periods, but the results for overall capital account openness only hold for 2000-06 (Table A5). One possible issue with the carry trade interpretation of our results is that, rather than engaging in carry trade activities, non-financial corporations hold the proceedings of bond issuances in liquid financial assets because it takes some time between the moment in which they borrow and the moment in which they need the funds to finance an investment project (of course, it is not obvious why this lag should depend on the spread or why this result should only hold for foreign bond issuances). To check if our results are driven by this possibility, we look at holdings of liquid financial assets one year after bond issuances. We start by showing that our results are robust to regressing holdings of liquid financial assets at time t on all controls at time t-1. The first two columns of Table A6 estimate the model of columns 1-2 of Table 5 but with lagged explanatory variables and find results which are essentially identical to those of Table 5. The last two columns of Table A6 measure all explanatory variables at time t with the exception of bond issuances, which are measured at time t-1. Again, the results are robust to this specification. It is possible that countries introduce capital controls exactly to limit the type of carry trade activities that we describe in this paper. If this were the case, our estimates would be upward biased. While the use of country-year fixed effects should allay most concerns of reverse causality, we also use two strategies to assess whether our results are robust to controlling for the endogeneity of capital controls. First, we restrict our sample to 10 years of data and estimate our model for the period 2004-14 by using the level of capital controls in 2003. If changes in capital controls were a reaction to the massive inflows that followed the global financial crisis, using their 2004 values should address any endogeneity concern. The first two columns of Table 11 show that our results are robust to this specification. Second, we use the results of Table 5, which show that, while controls on inflows are highly correlated with controls on outflows, controls on outflows do not matter when our regressions include controls on inflows. Therefore, we instrument controls on inflows with control on outflows (specifically we instrument FXB*KI and FXB*KI*SP with FXB*KO and FXB*KO*SP). Column 3 of Table 11 shows that in the IV regression the triple interaction coefficient has the right sign but it is no longer statistically significant. This may be due to the loss of efficiency of the IV estimator. In fact, if we limit our sample to Asia and Latin America (the regions for which our results are stronger, see Table 10), the results are also statistically significant in the IV regression (Column 4 Table 11).¹⁵ #### 7. Conclusions This paper adds to the growing literature considering the increase in issuance of non-financial firms, particularly in dollars and especially from emerging economies. There are several potential implications of this phenomenon which is seen as central to the characteristics of the second phase of global liquidity. However, in order to draw the right conclusions and to assess potential risks it is important to understand firms' motives and heterogeneous behaviors. We first corroborate two results already found in the literature, namely i) that firms are issuing and some are clearly not using the proceeds solely for real investment but also to maintain liquid financial assets and ii) that they appear to be doing so when the conditions for pursuing carry trade activities are more attractive. This suggests, as others before us have also indicated, that these firms are behaving like financial intermediaries. However, non-financial firms may be behaving like financial intermediaries for various motives. A benign
view would be that they are attempting to correct market failures and hence serving a role in trying to complete incomplete financial markets. However, when we attempt to test such a view considering how such behavior varies with financial depth, or by creditor rights, we do not find any statistically significant results. Alternatively, non-financial firms may be taking the place of global banks that have been retreating due to impaired balance sheets or ¹⁵ In the IV regressions we end the sample in 2013 because the capital controls data for 2014 are imputed to be equal to the 2013 values. increased regulatory pressure. If this were the case, then we would expect some relation to risk and hence we attempt to find a pattern using sovereign credit ratings, which are commonly used by banks and by bank regulators to proxy risk, but again we find no statistically significant results. Under this view, we would also expect to find a relation with the change in cross-border banking liabilities but again we find no significant relationship. A third view is that as a response to low global interest rates and quantitative easing in advanced economies, several emerging economies have imposed or tightened capital controls and that non-financial firms have mechanisms that are not available to banks to evade such controls. We argued that controls on inflows would be particularly relevant in this case. We find strong statistical evidence in favor of the view that non-financial firms are acting like financial intermediaries in countries with relatively high capital controls, particularly where there are controls on capital inflows. We leave an in-depth discussion of the policy implications of these results for future work (see Acharya et al., 2015, and IMF 2015). Suffice to summarize here however that while our results do not back the view that non-financial firms are attempting to complete incomplete markets nor take on a role left by global banks retreating, they do suggest that firms are attempting to gain from carry trade type activities where capital controls, particularly controls on inflows are prevalent. In turn, this suggests that any evaluation of the efficacy of capital controls should take into account the possibility that they may be evaded through such means. Indeed, to the extent that non-financial firms may issue abroad and are able to deposit the funds in the local financial system, evading any capital controls in place, then arguably macro-prudential policies applied on local financial systems may be more effective tools to limit capital inflows and reduce the risks of credit booms. In countries where non-financial firms are behaving in this fashion it may thus appear that corporates are highly liquid and hence may be expected to have the resources to repay those external liabilities. However, if the profitability of the carry trade diminishes and firms decide to withdraw their liquidity en masse then this might provoke problems for the domestic financial system. Moreover, the information on whether firms have hedged currency risks remains very partial. Finally, foreign currency bond issuance in countries with open capital accounts has also been strong, but in these cases our results indicate firms have been not been building financial reserves and hence that issuance has been more for real investment. In those countries the risks may then be different, such firms may not be as liquid and risks may relate more to the underlying profitability of the investments. As commodity prices have plummeted and currencies depreciated, the risks created by such swings in relative prices may bring large profits or losses; such risks should also then be carefully monitored. #### References - Acharya, V. et al. 2015. "Corporate Debt in Emerging Economies: A Threat to Financial Stability?" Washington, DC, United States: Brookings Institution: Committee for International Policy Reform. Available at: http://www.brookings.edu/research/papers/2015/09/corporate-debt-emerging-economies - Afonso, A., P. Gomes and P. Rother. 2007. "What 'Hides' behind Sovereign Debt Ratings?" Working Paper 711. Frankfurt, Germany: European Central Bank. - Bates, T.W., K.M. Kahle and R.M. Stulz. 2009. "Why Do US Firms Hold So Much More Cash Than They Used To?" *Journal of Finance* 64(5): 1985-2021. - Bruno, V., and H.S. Shin. 2015. "Global Dollar Credit and Carry Trades: A Firm-Level Analysis." Washington, DC, United States: American University. Mimeographed document. - Caballero, R., and A. Krishnamurthy. 2003. "Excessive Dollar Debt: Financial Development and Underinsurance." *Journal of Finance* 58: 967–893. - Cavallo, E., A. Powell and R. Rigobón. 2013. "Do Credit Rating Agencies Add Value? Evidence From The Sovereign Rating Business." *International Journal of Finance & Economics* 18(3): 240-265. - Chinn, M.D., and H. Ito. 2006. "What Matters for Financial Development? Capital Controls, Institutions, and Interactions." *Journal of Development Economics* 81(1): 163-192. - Chung, K. et al. 2014. "Global Liquidity through the Lens of Monetary Aggregates." IMF Working Paper 14/9. Washington, DC, United States: International Monetary Fund. - Claessens, S., and N. van Horen. 2012. "Foreign Banks: Trends, Impact and Financial Stability." International Monetary Fund Working Paper 12/10. Washington, DC, United States: International Monetary Fund. - De Haas, R., and N. van Horen. 2011. "Running for the Exit: International Banks and Crisis Transmission." DNB Working Paper 279. Amsterdam, The Netherlands: De Nederlandsche Bank. - Demirgüç-Kunt, A., and V. Maksimovic. 2001. "Firms As Financial Intermediaries: Evidence from Trade Credit Data." Washington, DC, United States: World Bank. Mimeographed document. - Dittmar, A., J. Mahrt-Smith and H. Servaes. 2003. "International Corporate Governance and Corporate Cash Holdings. *Journal of Financial and Quantitative Analysis* 38(1): 111-134. - Fernández, A. et al. 2015. "Capital Controls Measures: A New Dataset." NBER Working Paper 20970. Cambridge, United States: National Bureau of Economic Research. - Fisman, R.J., and I. Love. 2003. "Trade Credit, Financial Intermediary Development, and Industry Growth." *Journal of Finance* 58: 353–374. - Galindo, A., A. Micco and A. Powell. 2005. "Loyal Lenders or Fickle Financiers: Foreign Banks in Latin America." Research Department Working Paper 529. Washington, DC, United States: Inter-American Development Bank. - García-Luna, P., and A. Van Rixtel. 2014. "International Interbank Activity in Retreat." *BIS Quarterly Review* March 2014: 14-15. Available at: http://www.bis.org/publ/qtrpdf/r_qt1403x.htm - Goldberg, L. 2002. "When Is U.S. Bank Lending to Emerging Markets Volatile?" In: S. Edwards and J.A. Frankel, editors. *Preventing Currency Crises in Emerging Markets* Chicago, United States: University of Chicago Press. - González-Miranda, M. 2012. "Nonfinancial Firms in Latin America: A Source of Volatility?" IMF Working Paper 12/279. Washington DC, United States: International Monetary Fund. - International Monetary Fund (IMF). 2015. "Corporate Leverage in Emerging Markets: A Concern?" In: *Global Financial Stability Report*. Washington, DC, United States: IMF. - Karam, P. et al. 2014. "The Transmission of Liquidity Shocks: The Role of Internal Capital Markets and Bank Funding Strategies." IMF Working Paper 14/207. Washington DC, United States: International Monetary Fund. - Levine, R. 2005 "Finance and Growth: Theory and Evidence." In: P. Aghion and S. Durlauf, editors. *Handbook of Economic Growth*. Volume 1A. Amsterdam, The Netherlands: Elsevier. - Martínez-Peria, S., A. Powell and I. Vladkova. 2005. "Banking on Foreigners: The Behavior of International Bank Lending to Latin America, 1985-2000." IMF Staff Papers 52(3): 430-461. - McCauley, R., C. Upper and A. Villar. 2013. "Emerging Market Debt Securities Issuance in Offshore Centres." *BIS Quarterly Review* September 2013: 22-23. Available at: http://www.bis.org/publ/qtrpdf/r_qt1309w.htm - Myers, S.C. 2003. "Financing of Corporations." In: G.M. Constantinides, M. Harris and R. M. Stulz, editors *Handbook of the Economics of Finance: Corporate Finance*. Volume 1A. Amsterdam, The Netherlands: Volume 1, Part A, 215–253. - Petersen, M.A. and R.G. Rajan. 1997. "Trade Credit: Some Theories and Evidence." *Review of Financial Studies* 10: 661–692. - Powell, A. 2014. "Balance Sheets and Credit Growth." In: A. Powell, coordinator. "Global Recovery and Monetary Normalization: Escaping a Chronicle Foretold?" 2014 Latin American and Caribbean Macroeconomic Report. Washington, DC, United States: Inter-American Development Bank. - Powell, A. 2015. "The Labyrinth: How Can Latin America and the Caribbean Navigate the Global Economy?" 2015 Latin American and Caribbean Macroeconomic Report. Washington, DC, Unite States: Inter-American Development Bank. - Powell, A., and J.F. Martínez. 2008. "On Emerging Economy Sovereign Spreads and Ratings." Research Department Working Paper 629. Washington, DC, United States: Inter-American Development Bank. - Rajan, R., and L. Zingales. 1995. "What Do We Know About Capital Structure? Some Evidence from International Data." *Journal of Finance* 5: 1421–60. - Rodrigues-Bastos, F., H. Kamil and B. Sutton. 2015. "Corporate Financing Trends and Balance Sheet Risks in Latin America: Taking Stock of "The Bon(d)anza." IMF Working Paper 15/10. Washington, DC, United States: International Monetary Fund. - Shin, H.S., and L. Zhao. 2013. "Firms as Surrogate Intermediaries: Evidence from Emerging Economies." Princeton, United States: Princeton University. Mimeographed document. - Turner, P. 2013. "The Global Long-Term Interest Rate, Financial Risks and Policy Choices in EMEs." Paper prepared for the Inter-American Development Bank Meeting of Chief Economists of Central Banks and Finance Ministries, Washington, DC, United States, October 2013. ###
Tables and Figures **Table 1. Summary Statistics** | | N. | Mean | Std. | Min | Max | |--|-------------|-------------|------------|-------|-------| | Full s | ample | | | | | | Total Bond Issuances | 8248 | 117.09 | 693.32 | 0.00 | 15332 | | Local Currency Bond Issuances | 8248 | 71.88 | 497.02 | 0.00 | 14820 | | Foreign Currency Bond Issuances | 8248 | 45.21 | 369.38 | 0.00 | 11000 | | Total Assets | 8248 | 5393.02 | 17298.5 | 3.87 | 40846 | | Total Debt | 8248 | 1485.29 | 4521.64 | 0.00 | 11216 | | Firm-years with issuance | es (13% c | of observat | ions) | | | | Total Bond Issuances | 1041 | 927.69 | 1749.01 | 0.07 | 15332 | | Total Assets | 1041 | 18890.8 | 38251.7 | 46.49 | 40846 | | Total Debt | 1041 | 5769.81 | 9928.07 | 12.15 | 11216 | | Firm-years with local currency | issuances | (10% of o | bservation | s) | | | Local Currency Bond Issuances | 854 | 694.19 | 1398.51 | 0.07 | 14820 | | Total Assets | 854 | 18649.1 | 38824.3 | 46.49 | 40846 | | Total Debt | 854 | 5754.07 | 9702.23 | 12.15 | 94793 | | Firm-years with foreign currence | ev issuanc | es (5% of c | bservation | ıs) | | | Foreign Currency Bond Issuances | 392 | 951.24 | 1419.07 | 1.50 | 11000 | | Total Assets | 392 | 35144.7 | 56808.2 | 454.1 | 40846 | | Total Debt | 392 | 10476.8 | 14239.9 | 21.40 | 11216 | | Macro-level variable | es (270 cou | ıntry-years | s) | | | | Spread | 8248 | 1.56 | 4.51 | -2 | 13 | | Carry trade index | 5730 | 2.10 | 1.39 | 0.67 | 6.79 | | Cap. Account Openness Chinn and Ito | 8248 | 0.51 | 0.29 | 0 | 1 | | Cap. Account Openness Fernandez et al. | 8248 | 0.50 | 0.28 | 0 | 1 | | Cap. Account Openness Fernandez et al. | 8248 | 0.44 | 0.27 | 0 | 1 | | Cap. Account Openness Fernandez et al. | 8248 | 0.56 | 0.32 | 0 | 1 | Table 2. Foreign Currency Bond Issuances and Holdings of Liquid Financial Assets This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio holdings of liquid financial assets and sales, and the explanatory variables are three definition of foreign currency bond issuances (FXB), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), a dummy variable that takes a value of one if SP is above the sample median (HS), a dummy variable that takes a value of one if SP is below the sample median (LS), the log of total debt over sales, the log of total sales, and leverage. All regressions control for firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |---------------|---------|--------------------------------------|---------|----------|------------|---------|----------|-----------|---------| | FXB | 0.791** | 0.851** | | 0.015* | 0.015* | | 0.110** | 0.114** | | | | (0.399) | (0.353) | | (0.009) | (0.009) | | (0.0504) | (0.0504) | | | FXB*SP | | 0.0912 | | | 0.002 | | | 0.0107 | | | | | (0.0692) | | | (0.002) | | | (0.00988) | | | | | ` / | | | ` / | | | `) | | | FXB*HS | | | 1.231** | | | 0.023* | | , | 0.164** | | | | | * | | | | | | | | | | | (0.322) | | | (0.012) | | | (0.066) | | FXB*LS | | | 0.617 | | | 0.011 | | | 0.085 | | THE ES | | | (0.487) | | | (0.010) | | | (0.062) | | ln(debt/sales | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | |) | 0.01) | 0.017 | 0.019 | 0.01) | 0.017 | 0.01) | 0.019 | 0.017 | 0.017 | | , | (0.012) | (0.019) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | | ln(sales) | (0.012) | (0.01) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | | m(saics) | 0.285** | 0.285** | 0.285** | 0.285** | 0.285** | 0.285** | 0.285** | 0.285** | 0.286** | | | * | * | * | * | * | * | * | * | * | | | (0.054) | (0.054) | (0.054) | (0.0535) | (0.054) | (0.054) | (0.054) | (0.054) | (0.054) | | Leverage | -644.6 | -642.1 | -645.5 | -648.7 | -642.9 | -647.8 | -650.8 | -645.8 | -650.4 | | Leverage | (459.9) | (461.2) | (460.4) | (460.8) | (461.8) | (461.2) | (460.8) | (461.9) | (461.3) | | Observation | 8,243 | 7,881 | 8,243 | 8,243 | 7,881 | 8,243 | 8,243 | 7,881 | 8,243 | | S | 0,243 | 7,001 | 0,243 | 0,243 | 7,001 | 0,243 | 0,243 | 7,001 | 0,243 | | Number of | 766 | 749 | 766 | 766 | 749 | 766 | 766 | 749 | 766 | | firms | 700 | 747 | 700 | 700 | 747 | 700 | 700 | 747 | 700 | | Firm Fixed | Yes | effects | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 103 | 1 03 | | Country | Yes | year Fixed | 168 | 168 | 168 | 168 | 168 | 168 | 168 | 168 | 1 68 | | effects | | | | | | | | | | | | | | 0.26 | | | 0.41 | | | 0.24 | | P value test | | | 0.26 | | | 0.41 | | | 0.34 | | HS-LS=0 | | , EVD |) , | , | (4 000 | 1) | | D | | | FXB is | lr | $n\left(1 + \frac{FXB}{Sale}\right)$ | 1 | ι | n(1 + FXB) | () | | Dummy | | #### **Table 3. Domestic versus Foreign Currency Bonds** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are domestic currency bond issuances (DCB), three definitions of foreign currency bond issuances (FXB), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), a dummy variable that takes a value of one if SP is above the sample median (HS), a dummy variable that takes a value of one if SP is below the sample median (LS), the log of total debt over sales, the log of total sales, and leverage. All regressions control for firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | (5) | |--------------------|----------------------------|-----------|--|-------------|-----------| | DCB | 0.001 | 0.004 | 0.001 | 0.001 | 0.0004 | | | (0.006) | (0.007) | (0.006) | (0.006) | (0.006) | | DCB*SP | | 0.003 | | | | | | | (0.002) | | | | | FXB | | | 0.790** | 0.015* | 0.110** | | | | | (0.399) | (0.008) | (0.0504) | | ln(debt/sales) | -0.019 | -0.019 | -0.019 | -0.019 | -0.019 | | | (0.020) | (0.020) | (0.020) | (0.020) | (0.020) | | ln(sales) | -0.283*** | -0.284*** | -0.285*** | -0.285*** | -0.285*** | | | (0.053) | (0.053) | (0.054) | (0.054) | (0.054) | | Leverage | -648.4 | -660.3 | -645.9 | -649.4 | -651.3 | | | (460.5) | (460.7) | (459.7) | (460.6) | (460.7) | | Observations | 8,243 | 8,243 | 8,243 | 8,243 | 8,243 | | Number of firms | 766 | 749 | 766 | 766 | 766 | | Firm Fixed effects | Yes | Yes | Yes | Yes | Yes | | Country year | Yes | Yes | Yes | Yes | Yes | | Fixed effects | | | | | | | DCB is | DCB | | | | | | | $ln\left(1+{Sales}\right)$ | | | | | | FXB is | | | $ln\left(1 + \frac{FXB}{Sales}\right)$ | ln(1 + FXB) | Dummy | #### **Table 4. The Role of Capital Account Openness** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are three definition of foreign currency bond issuances (FXB), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Chinn and Ito index of capital account openness (K). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects, and country-year fixed effects. | | (1) | (2) | (3) | (4) | (5) | (6) | |----------------------------|---------|----------------------|---------|----------------|---------|---------| | FXB | -0.213 | 0.334 | 0.0231 | 0.027 | 0.122 | 0.078 | | | (0.667) | (0.655) | (0.019) | (0.017) | (0.111) | (0.115) | | FXB*SP | 0.097 | 0.514*** | 0.002 | 0.009** | 0.010 | 0.045** | | | (0.070) | (0.156) | (0.002) | (0.004) | (0.010) | (0.022) | | FXB*K | 2.260 | 1.089 | -0.015 | -0.026 | -0.047 | 0.026 | | | (1.160) | (1.086) | (0.037) | (0.033) | (0.205) | (0.213) | | FXB*SP*K | | -0.817*** | | -0.015** | | -0.076* | | | | (0.282) | | (0.007) | | (0.041) | | Observations | 7,881 | 7,881 | 7,881 | 7,881 | 7,881 | 7,881 | | Number of firms | 749 | 749 | 749 | 749 | 749 | 749 | | Firm Fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | | $\phi + \delta$ | | -0.303 | | -0.006 | | -0.031 | | p-value | | 0.12 | | 0.17 | | 0.22 | | FXB is | ln(1 - | $+\frac{FXB}{Sales}$ | ln(1 - | - <i>FXB</i>) | Dur | nmy | #### **Table 5. Different Types of Capital Controls** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as ln(1+issuances/sales)), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. index of capital account openness to inflows (KI), the Fernández et al. index of capital account openness to inflows (KI), the Fernández et al. index of capital account openness to outflows (KO), the residuals of a regression of KI over K (KI_R), and the residuals of a regression of KO over K (KO_R). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. | (6) | (5) | (4) | (3) | (2) | (1) | | |------------|----------|-------------------------|---------------------|----------|---------|----------------------------| | 4* 0.962** | -0.604* | 0.0059 | 0.384*** | 0.138 | 0.332** | FXB | | 0) (0.410) | (0.360) | (0.196) | (0.145) | (0.167) | (0.151) | | | -0.128 | 0.255*** | 0.103*** | 0.052 | 0.083** | 0.067* | FXB*SP | | 1) (0.126) | (0.081) | (0.036) | (0.039) | (0.033) | (0.034) | | | -0.076 | -0.061 | | | | -0.409 | FXB*K | | 7) (0.391) | (0.387) | | | | (0.267) | | | 9 -0.055 | -0.049 | | | | -0.101* | FXB*SP*K | | 7) (0.088) | (0.087) | | | | (0.052) | | | | | 0.977** | | 0.006 | | FXB*KI | | | | (0.457) | | (0.285) | | | | | | -0.276*** | | -0.111** | | FXB*SP*KI | | | | (0.099) | | (0.048) | | | | | | -0.849** | -0.583** | | |
FXB*KO | | | | (0.416) | (0.278) | | | | | | | 0.174 | -0.094 | | | FXB*SP*KO | | | | (0.135) | (0.074) | | | | | ** | 1.551** | | | | | FXB*KI_R | | 4) | (0.664) | | | | | | | ** | -0.390** | | | | | FXB*SP*KI_R | | 2) | (0.192) | | | | | | | -1.566** | ` , | | | | | FXB*KO R | | (0.672) | | | | | | | | 0.379* | | | | | | FXB*SP*KO R | | (0.193) | | | | | | | | 1 8,241 | 8,241 | 8,241 | 8,241 | 8,241 | 8,241 | Observations | | | 766 | 766 | 766 | 766 | 766 | Number of firms | | Yes | Yes | Yes | Yes | Yes | Yes | Firm Fixed effects | | Yes | Yes | Yes | Yes | Yes | Yes | Country year Fixed | | | | | | | | effects | | | | FXB | Jan (1) | | | FXB is | | | | Sales) | $ln(1+\frac{1}{2})$ | | | | | | Yes | Yes $\frac{FXB}{Sales}$ | $ln(1+\frac{1}{2})$ | Yes | Yes | Country year Fixed effects | #### Table 6. Carry Trade Index Instead of Spread This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as $\ln(1+issuances/sales)$), the demeaned value of the Bloomberg index of carry trade return (CTI), the Fernández et al. index of capital account openness (K), the Fernández et al. index of capital account openness to inflows (KI), the Fernández et al. index of capital account openness to outflows (KO). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |----------------------------|-----------|----------|-----------------------|-----------| | FXB | -0.250 | 0.548 | 0.173 | 0.617 | | | (0.613) | (0.548) | (0.373) | (0.516) | | FXB*CTI | 1.173** | 1.103** | -0.0818 | 0.978** | | | (0.589) | (0.457) | (0.308) | (0.481) | | FXB*K | 1.749 | | | | | | (1.092) | | | | | FXB*CTI*K | -3.402*** | | | | | | (1.290) | | | | | FXB*KI | , , | 0.535 | | -0.641 | | | | (1.124) | | (1.230) | | FXB*CTI*KI | | -2.756** | | -2.673*** | | | | (1.083) | | (0.852) | | FXB*KO | | | 1.941*** | 1.719* | | | | | (0.720) | (0.946) | | FXB*CTI*KO | | | -0.290 | 0.576 | | | | | (1.139) | (1.773) | | Observations | 5,587 | 5,587 | 5,587 | 5,587 | | Number of firms | 523 | 523 | 523 | 523 | | Firm Fixed effects | Yes | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | Yes | | FXB is: | | ln(1 + | $\frac{FXB}{Sales}$) | | Table 7. The Role of Creditors' Rights and Financial Depth This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as ln(1+issuances/sales)), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), The Doing Business index of creditor rights (CR, the index rescaled to range between 0 and 1, with 1 indicating stronger creditors' rights), a measure of financial depth (FD is credit to the private sector over GDP in the year 2000), the Fernández et al. index of capital account openness to inflows (KI). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |----------------------------|--|---------|---------|-----------| | FXB | 0.230 | 0.622 | 0.420 | 0.646 | | | (2.034) | (0.824) | (2.046) | (0.932) | | FXB*SP | 0.409 | 0.123 | 0.834 | 0.668** | | | (0.543) | (0.282) | (0.569) | (0.310) | | FXB*CR | 0.170 | | 0.049 | | | | (0.432) | | (0.528) | | | FXB*CR*SP | -0.040 | | -0.027 | | | | (0.129) | | (0.130) | | | FXB*FD | | -0.089 | | 0.308 | | | | (0.679) | | (0.710) | | FXB*FD*SP | | 0.008 | | 0.039 | | | | (0.216) | | (0.225) | | FXB*KI | | | 0.276 | 1.005 | | | | | (2.411) | (1.125) | | FXB*KI*SP | | | -1.034 | -0.786*** | | | | | (0.608) | (0.202) | | Observations | 5,831 | 6,621 | 5,831 | 6,621 | | Number of firms | 648 | 622 | 648 | 622 | | Firm Fixed effects | Yes | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | Yes | | FXB is | $ln\left(1 + \frac{FXB}{Sales}\right)$ | | | | #### Table 8. Sovereign Risk This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as $\ln(1+ issuances/sales)$), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), numerical credit rating (RATING, the index is rescaled to range between 0 and 1, with 1 indicating AAA), the Fernández et al. index of capital account openness to inflows (KI). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |----------------------------|---------|-----------|-----------------------|-----------| | FXB | -0.478 | -0.199 | -0.056 | 0.522 | | | (1.120) | (1.289) | (1.145) | (1.457) | | FXB*SP | 0.371 | 0.901*** | 0.373* | 1.067*** | | | (0.246) | (0.309) | (0.207) | (0.335) | | FXB*RATING | 2.438 | 1.378 | 1.726 | 0.437 | | | (2.063) | (2.239) | (2.032) | (2.397) | | FXB*RATING*SP | -0.564 | -0.743 | -0.590 | -0.964* | | | (0.560) | (0.534) | (0.484) | (0.515) | | FXB*KI | | 0.576 | | 0.247 | | | | (0.878) | | (0.906) | | FXB*KI*SP | | -0.705*** | | -0.797*** | | | | (0.194) | | (0.241) | | Observations | 7,622 | 7,622 | 7,310 | 7,310 | | Number of id | 716 | 716 | 716 | 716 | | Firm Fixed effects | Yes | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | Yes | | FXB is | | ln(1 + | $\frac{FXB}{Sales}$) | | | RATING is | | S&P | Mo | ody's | **Table 9. Country Liabilities to BIS Reporting Banks** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as ln(1+ issuances/sales)), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. (2015) index of capital account openness to inflows (KI), and the change in the ratio of liabilities versus BIS reporting banks and GDP (BIS). We use four measure for BIS: total liabilities versus BIS reporting banks (column 1); total liabilities of the non-bank sector versus BIS reporting banks (column 2); total loans with BIS reporting banks (column 3); total loans with BIS reporting bank of the non-bank sector (column 4). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |-----------------|-----------------|--------------------|-----------|-------------------| | FXB | 0.708 | 0.954* | 0.609 | 0.515 | | | (0.541) | (0.554) | (0.667) | (0.581) | | FXB*SP | 0.535*** | 0.533*** | 0.593*** | 0.569*** | | | (0.138) | (0.142) | (0.145) | (0.139) | | FXB*BIS | 28.03** | 76.91* | -0.169 | 59.32 | | | (12.73) | (40.66) | (21.36) | (39.01) | | FXB*SP*BIS | -2.288 | 4.516 | -0.958 | -1.630 | | | (2.882) | (11.74) | (4.866) | (8.659) | | FXB*KI | 0.490 | 0.408 | 0.362 | 0.935 | | | (1.036) | (1.004) | (1.355) | (1.135) | | FXB*SP*KI | -0.638*** | -0.614*** | -0.676*** | -0.700*** | | | (0.198) | (0.204) | (0.245) | (0.215) | | Observations | 6,284 | 6,284 | 6,284 | 6,284 | | Number of firms | 650 | 650 | 650 | 650 | | Firm FE | Yes | Yes | Yes | Yes | | Ctry-year FE | Yes | Yes | Yes | Yes | | FXB is | | | | | | BIS is | All Liabilities | All liabilities of | All Loans | All loans of non- | | | | non-banks | | banks | #### **Table 10. Different Regions** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as ln(1+bond issuances/sales)), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. index of capital account to inflows (KI). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects and country-year fixed effects. Column 1 focuses on Latin America, Column 2 on Asia and Column 3 on Emerging Europe. | | (1) | (2) | (3) | |----------------------------|-----------|----------------------------|----------| | FXB | -0.061** | 0.010*** | 0.044 | | | (0.027) | (0.028) | (0.068) | | FXB*SP | 0.023*** | 0.0120** | 0.021 | | | (0.004) | (0.008) | (0.015) | | FXB*KI | 0.138*** | -0.133** | -0.019 | | | (0.047) | (0.064) | (0.113) | | FXB*SP*KI | -0.031*** | -0.026* | -0.056** | | | (0.007) | (0.016) | (0.028) | | Observations | 2,940 | 2,512 | 1,726 | | Number of firms | 261 | 237 | 174 | | Firm Fixed effects | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | | FXB is | | FXB | | | | | $ln\left(1+{Sales}\right)$ | | | Region | LAC | ASIA | EUROPE | #### Table 11. Endogeneity This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as $\ln(1+ issuances/sales)$), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. index of capital account openness (K) in 2003 (column 1), the Fernández et al. index of capital account openness to inflows (K) in 2003 (column 2), the time-varying Fernández et al. index of capital account openness to inflows (K) instrumented with openness to outflows. All regressions control for the log of total debt over sales, the
log of total sales, leverage, firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |-------------------|------------------|-----------------|-------------------|-------------------------------| | FXB | -0.099 | 0.046 | 0.556 | 0.469 | | | (0.583) | (0.616) | (0.854) | (0.800) | | FXB*SP | 0.420** | 0.497** | 0.261* | 0.384** | | | (0.198) | (0.197) | (0.137) | (0.196) | | FXB*K | 0.342 | 0.206 | -1.239 | -0.835 | | | (1.218) | (1.093) | (1.860) | (1.836) | | FXB*K*SPR | -0.732** | -0.693*** | -0.471 | -0.670** | | | (0.342) | (0.238) | (0.360) | (0.320) | | Observations | 6,685 | 6,685 | 6,851 | 4,531 | | Number of firms | 750 | 750 | 735 | 474 | | Firm FE | Yes | Yes | Yes | Yes | | Country-year FE | Yes | Yes | Yes | Yes | | Estimation | OLS | OLS | IV | IV | | Capital account | Capital account | Openness to | Time-varying open | nness to inflows instrumented | | openness | openness in 2003 | inflows in 2003 | with time-vary | ing openness to outflows | | Estimation period | 2003-13 | 2003-13 | 2000-13 | 2000-13 | | Sample | All Countries | All Countries | All Countries | Asia and Latin America | | | | | | | Figure 2. Evolution of Capital Account Openness This figure plots the evolution of different indexes of capital account openness for the sample of countries included in the regressions of this paper. In all graphs the solid line plots the median value of the index and the dashed lines plot the top and bottom 20th percentile of the index. Panel A uses the Chinn and Ito Index, Panel B the aggregate index of Fernández et al., Panel C the Fernández et al. index of openness to inflows, and Panel D the Fernández et al. index of openness to outflows. Figure 3. Distribution of Capital Account Openness across Countries in 2007 and in 2013 This figure plots the evolution of different indexes of capital account openness for the sample of countries included in the regressions of this paper. The box plots the interquartile range and the median and the whiskers the upper and lower adjacent values. Panel A uses the Chinn and Ito Index, Panel B the aggregate index of Fernández et al., Panel C the Fernández et al. index of openness to inflows, and Panel D the Fernández et al. index of openness to outflows. #### **Figure 4. Marginal Effects** This figure plots how the sensitivity of the relationship between foreign bond issuances and holding of liquid financial assets to our spread variable varies with capital account openness. The solid line plots the main effect and the dashed lines are 95 percent confidence intervals. Panel A is uses the model of column 2, Table 4; Panel B uses the model of column 1, Table 5; and panels C and D use the model of column 4, Table 5. ## Appendix **Table A1. Data Description and Sources** | Variable | Description | Source | |----------------|--|--| | ln(C/SA) | Logarithm of liquid financial assets over sales for firm i, country c, year t. | Worldscope | | ln(debt/sales) | Logarithm of debt over sales for firm i, country c, year t. | Worldscope | | ln(sales) | Logarithm of sales for firm i, country c, year t (sales are in millions or USD). | Worldscope | | Leverage | Debt over assets for firm i, country c, year t. | Worldscope | | FXB | Total foreign currency bond issuance for firm i, country c, year t (millions USD). | Own calculations
based on bond-level
Dealogic data | | DCB | Total domestic currency bond issuance for firm i, country c, year t (millions USD). | Own calculations
based on bond-level
Dealogic data | | SP | Spread between local interest rate and the cost of foreign borrowing. In most cases, the local interest rate is proxied by the deposit rate. However, if the local money market rate is higher than the local deposit rate we use the local money market rate. The cost of foreign borrowing is normally proxied by the sovereign yield in USD. However, if the U.S. interest rate on BAA rated bonds is lower than the sovereign yield, we use the BAA yield. S is measured in percentage points. We rescale the spread so that its mean value is zero. Country c, year t. | Local deposit rate is
from the World Bank's
World Development
Indicators. The BAA
yield is from the
FRED database and
sovereign yields are
from Bloomberg | | CTI | Carry trade index. This is an ex ante measure of the attractiveness of carry trades. It is computed by adding the returns from interest rate differentials to the returns obtained in the foreign exchange spot market (i.e., it adds the spot return to the interest earned from the long currency position and subtracts the interest owed from the short currency position). Country c, year t. | Bloomberg. | | K | Overall index of capital account openness. The index ranges between 0 (closed capital account) and 1 (open capital account). Country c, year t. | Chinn and Ito (2006)
and Fernández et al.
(2015). | | KI | Index of capital account openness to inflows. The index ranges between 0 (closed capital account) and 1 (open capital account). Country c, year t. | Fernández et al. (2015). | | КО | Index of capital account openness to outflows. The index ranges between 0 (closed capital account) and 1 (open capital account). Country c, year t. | Fernández et al. (2015). | | FD | Index of financial depth (credit to the private sector over GDP). We rescaled the index to have mean=0. Country c, year t. | World Bank's World
Development
Indicators | | CR | Index of creditors' rights. We rescaled the index to have mean=0. Country c, year t. | World Bank's Doing
Business | | Rating | Numerical code of sovereign credit rating. We followed the common practice of assigning scores from 1 to 21 to the rating categories (21 being the highest quality rating of AAA) and rescaled the resulting index to range between 0 and 1 (Afonso, Gomes and Rohter, 2007; see Powell and Martínez, 2008, and Cavallo, Powell and Rigobón, 2013) for a discussion of using a numerical, cardinal scale for ratings versus other techniques. Country c, year t. | S&P and Moody's | | BIS | Four definitions: Total liabilities versus BIS reporting banks; Total non-bank liabilities versus BIS reporting banks; total loans with BIS reporting banks; total loans of BIS reporting banks to the non-bank sector. Country c, year t. | BIS Statistics. | Table A2. Details Regarding the Sample of Firms Employed in the Regression Analysis This table reports the composition of the sample of firms used in the analysis. The sample includes firms from the 18 emerging economies listed in the table. The analysis is restricted to the largest 5- non-financial, non-foreign listed firms in each country. After the elimination process described in footnote 2, we are left with a total of 766 firms in the 18 countries of interest and with available data for the analysis (the total number of firms after eliminating financials and foreign firms is 803 firms). The table reports the number of firms in each country and also the market capitalization of the final sample relative to the total market capitalization of the subsample of non-financial, non-foreign firms. The table also reports the number of firms in the final sample that report at least one bond issued during the period of analysis (2000-14). | | All firms | % of market | Number of | Number of | |----------------|-----------|----------------|---------------|-------------| | | in sample | capitalization | issuers firms | non-issuers | | Argentina | 47 | 100.0% | 8 | 39 | | Brazil | 49 | 80.2% | 25 | 24 | | Chile | 46 | 92.6% | 17 | 29 | | Colombia | 26 | 100.0% | 6 | 20 | | Czech Republic | 6 | 100.0% | 1 | 5 | | Hungary | 22 | 100.0% | 1 | 21 | | Indonesia | 47 | 81.1% | 12 | 35 | | Israel | 45 | 88.7% | 4 | 41 | | Malaysia | 45 | 81.8% | 24 | 21 | | Mexico | 43 | 96.9% | 23 | 20 | | Peru | 50 | 99.8% | 8 | 42 | | Philippines | 48 | 95.7% | 13 | 35 | | Poland | 48 | 87.7% | 6 | 42 | | Russia | 48 | 96.4% | 19 | 29 | | South Africa | 49 | 88.7% | 13 | 36 | | South Korea | 50 | 66.5% | 24 | 26 | | Thailand | 47 | 82.1% | 23 | 24 | | Turkey | 50 | 87.9% | 3 | 47 | | Total | 766 | | 230 | 536 | #### Table A3. Bruno and Shin Regression This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between the change in holdings of liquid financial assets and assets at time t-1, and the explanatory variables are foreign currency bond issuances scaled by assets at time t-1 (BFX), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), two definition of capital account openness (the Chinn and Ito index in column 3 and the Fernández et al. index of openness to inflows in column 4), the log of total assets, the log of other source of finance over total assets (ln(OTH)). All regressions control for firm fixed effects and country-year fixed effects. | | (1) | (2) | (3) | (4) | |-----------------|-----------|-----------|-----------|-----------| | BFX | 0.112* | 0.126* | 0.191 | 0.162 | | | (0.0679) | (0.068) | (0.128) | (0.131) | | BFX*SP | | 0.0215 | 0.107** | 0.106** | | | | (0.018) | (0.044) | (0.045) | | BFX*K | | | -0.163 | | | | | | (0.215) | | | BFX*K*SP | | | -0.167** | | | | | | (0.079) | | | BFX*KI | | | | -0.0555 | | | | | |
(0.228) | | BFX*K*SP | | | | -0.127** | | | | | | (0.061) | | ln(TA) | -0.039*** | -0.039*** | -0.039*** | -0.039*** | | | (0.011) | (0.011) | (0.011) | (0.011) | | Ln(OTH) | 0.269*** | 0.269*** | 0.269*** | 0.269*** | | | (0.0896) | (0.0896) | (0.0896) | (0.090) | | Observations | 7,929 | 7,579 | 7,579 | 7,579 | | Number of firms | 763 | 763 | 763 | 763 | | Firm FE | Yes | Yes | Yes | Yes | | Country-year FE | Yes | Yes | Yes | Yes | Table A4. Robustness Analysis, Dropping One Country at a Time Append This table reports the coefficients and standard errors of FXB*SP*KI in a set of regression identical to the model of column 2, Table 5. Each regression drops a country. The last column of the table list the country excluded from the regression. | Point estimate of FXB*SP*KI | Standard errors | Excluded Country | | |-----------------------------|-----------------|------------------|--| | -0.0104 | 0.0050** | Argentina | | | -0.0291 | 0.0091*** | Brazil | | | -0.0111 | 0.0045*** | Chile | | | -0.0121 | 0.0044*** | Colombia | | | -0.0088 | 0.0039** | Czech Republic | | | -0.0120 | 0.0044*** | Hungary | | | -0.0118 | 0.0044*** | Indonesia | | | -0.0141 | 0.0044*** | Israel | | | -0.0119 | 0.0045*** | Malaysia | | | -0.0100 | 0.0044*** | Mexico | | | -0.0098 | 0.0045** | Peru | | | -0.0125 | 0.0046*** | Philippines | | | -0.0121 | 0.0044*** | Poland | | | -0.0130 | 0.0044*** | Russia | | | -0.0121 | 0.0044*** | South Africa | | | -0.0149 | 0.0051*** | South Korea | | | -0.0133 | 0.0045*** | Thailand | | | -0.0129 | 0.0043*** | Turkey | | #### **Table A5. Different Periods** This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as $\ln(1+ issuances/sales)$), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. index of capital account openness (K), the Fernández et al. index of capital account openness to inflows (KI). All regressions control for the log of total debt over sales, the log of total sales, leverage, firm fixed effects, and country-year fixed effects. Columns 1 and 2 focus on the 2007-2014 period and columns 3 and 4 on the 2000-2006 period. | | (1) | (2) | (3) | (4) | |--------------------|--------------------------------------|-----------|-----------|-----------| | FXB | 0.026 | 0.018 | 0.032 | 0.026 | | | (0.017) | (0.017) | (0.021) | (0.022) | | FXB*SP | 0.008* | 0.011*** | 0.008* | 0.008* | | | (0.004) | (0.004) | (0.004) | (0.004) | | FXB*K | -0.011 | | -0.027 | | | | (0.038) | | (0.037) | | | FXB*SP*K | -0.013 | | -0.015** | | | | (0.010) | | (0.007) | | | FXB*KI | | 0.003 | | -0.01 | | | | (0.032) | | (0.037) | | FXB*SP*KI | | -0.017** | | -0.012** | | | | (0.007) | | (0.006) | | Observations | 5,109 | 5,109 | 3,132 | 3,132 | | | 756 | 756 | 570 | 570 | | Firm Fixed effects | Yes | Yes | Yes | Yes | | Country year Fixed | Yes | Yes | Yes | Yes | | effects | | | | | | Period | 2007-2014 | 2007-2014 | 2000-2006 | 2000-2006 | | FXB is | $ln\left(1+\frac{FXB}{Sales}\right)$ | | | | #### Table A6. Effect at Time t+1 This table reports a set of firm-level regressions in which the dependent variable is the log of the ratio between holdings of liquid financial assets and sales, and the explanatory variables are foreign currency bond issuances (FXB, defined as $\ln(1+issuances/sales)$), the demeaned spread between local deposit rate and borrowing costs in the United States (SP), the Fernández et al. index of capital account openness (K), the Fernández et al. index of capital account openness to inflows (KI), the log of total debt over sales, the log of total sales, and leverage. All regressions control for firm fixed effects and country-year fixed effects. In columns 1 and 2, all the explanatory variables are lagged, in columns 3 and 4 only FXB is lagged. | | (1) | (2) | (3) | (4) | |----------------------------|--|-----------|--------------------|-----------| | FXB | -0.087 | -0.354 | 0.149 | -0.135 | | | (0.451) | (0.481) | (0.429) | (0.471) | | FXB*SP | 0.385*** | 0.428*** | 0.367*** | 0.377*** | | | (0.137) | (0.153) | (0.129) | (0.136) | | FXB*K | 0.309 | | -0.190 | | | | (0.998) | | (1.002) | | | FXB*K*SP | -0.705*** | | -0.769*** | | | | (0.253) | | (0.244) | | | FXB*KI | | 0.701 | | 0.422 | | | | (0.899) | | (0.957) | | FXB*K*SPI | | -0.617*** | | -0.654*** | | | | (0.205) | | (0.206) | | Observations | 7,435 | 7,435 | 7,454 | 7,454 | | Number of firms | 745 | 745 | 753 | 753 | | Firm Fixed effects | Yes | Yes | Yes | Yes | | Country year Fixed effects | Yes | Yes | Yes | Yes | | Lags | All controls are lagged | | Only FXB is lagged | | | FXB is | $ln\left(1 + \frac{FXB}{Sales}\right)$ | | | |