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Abstract

Indirect Inference has been found to have much greater power than the Likelihood Ratio in small
samples for testing DSGE models. We look at asymptotic and large sample properties of these tests to
understand why this might be the case. We �nd that the power of the LR test is undermined when
reestimation of the error parameters is permitted; this o¤sets the e¤ect of the falseness of structural
parameters on the overall forecast error. Even when the two tests are done on a like-for-like basis
Indirect Inference has more power because it uses the distribution restricted by the DSGE model being
tested.

Keywords: Indirect Inference; Likelihood Ratio; DSGE model; structural parameters; error processes
JEL classi�cation: C12, C32, C52, E1

1 Introduction

This paper addresses the issue of how best to test an already estimated macroeconomic model as judged by
the power properties of the test. This problem has particular relevance for DSGE models. It is rare for these
models to be tested because they are commonly estimated by Bayesian methods with the validity of the
speci�cation of the model and the prior information being taken as given. Both, however, may be incorrect.
It would not, for example, be surprising to �nd that incorporating incorrect prior information would cause
the Bayesian-estimated model to be rejected against maximum likelihood estimates of the model. Le et al.
(2011), for example, rejected the Smets-Wouters (2007) model (SW). There is, however, an argument for
not testing DSGE models. As noted by Sargent (see Evans and Honkapohja, 2005), the �rejection of too
many good models� was what led Lucas and Prescott to reject classical estimation methods in favour of
calibration. The use of Bayesian estimation derives from a similar concern; the di¤erence arises from the
weight given to the prior information.
Although it is not common to test DSGE models estimated by Bayesian methods, it is nonetheless

possible to do so. One way is to perform a likelihood ratio (LR) test of the model against its unrestricted
solution using the observed data set. Another way, proposed by Le et al. (2011), is to use an indirect
inference test. This method of testing may be applied to any given set of estimates of a model, and not just
DSGE models, or models estimated using Bayesian methods. The basic idea here is to simulate the already
estimated model and compare the properties of an auxiliary model estimated on actual and simulated data.
Using Monte Carlo experiments, Le et al. (2015) found that in small samples LR tests of DSGE models may
have weaker power than an indirect inference test based on comparing particular features of an auxiliary
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model estimated on actual and simulated data sets, such as its coe¢ cients or impulse response functions,
and using a Wald-type test statistic. The attraction of this approach is that it can be tailored to speci�c
properties of the auxiliary model rather than its overall �t, as in an LR test. In this way it may be possible
to test those features of a DSGE model that are thought to be �good�and avoid rejecting the model on the
basis of other features which may be thought to be inessential.
Canova and Sala (2009) have suggested that the low power of LR tests may be due to the likelihood

surface of the data being rather �at � a result they put down to poor identi�cation.1 Another possible
explanation arises from the way that the DSGE model is speci�ed. The equation dynamics of most DSGE
models are usually rather simple, having just �rst-order dynamics. This is probably because the underlying
theory usually has little to say about the lag dynamic structure. The estimated equations are, however,
often found to have highly serially correlated disturbances. The SW model is a good example; most of
the equations have serially correlated errors, some with serial correlations as high as 0.97. Allowing the
disturbances to be serially correlated greatly improves �t and so raises the likelihood of the model �tting
the data.
In e¤ect, due to the form of the solution to DSGE models, an LR test is based on one-period ahead

�forecasts�. It seems possible that the weak power of LR and the �at likelihood surface for DSGE models
may come from the way in which false structural parameters may have their �tracking performance�failure
disguised by re-estimated error processes. Thus, a model�s false structural parameters will imply di¤erent,
false, error processes; these processes will give rise to newly estimated autoregressive parameters which will
bring the model back on track in its ability to �forecast�next-period outcomes, this being what likelihood
is based on. If we interpret modelling a DSGE model�s structural errors as autoregressive processes in
order to improve its �t as an integral part of its dynamic speci�cation, then this would suggest that, when
carrying out power calculations � which involves simulating false versions of the model by using alternative
values of the structural coe¢ cients � the autoregressive coe¢ cients of the new structural errors should be
re-estimated in order to maximise �t. This too will help �bring the model back on track� in its ability to
�forecast�next-period outcomes, but it will also be likely to reduce the power of the test.
In contrast, the indirect inference Wald (IIW) test does not use tracking performance as a measure of �t.

Instead it compares the reduced form � or an auxiliary model that is a close approximation � found in the
data with that implied by simulations of the DSGE model derived from the false parameter values generated
to make the power calculations. The error processes are not re-estimated and will therefore no longer be best
�t for these simulations of the false models. This is likely to improve the power of the test. For example,
Le et al. (2015) allowed the estimated model parameters to be arbitrarily moved towards greater falseness
by small percentages; as falseness rose the models were rejected with fast-increasing frequency, showing the
power of the test. Le et al. (2015) also found that making the structural parameters of the model more
false caused the autoregressive parameters of the false model to di¤er signi�cantly from those of the original
estimates which made the test reject more powerfully still.
Unless the priors used in Bayesian estimation are uninformative (or di¤use), Bayesian estimates will

usually di¤er from maximum likelihood estimates, and so will not maximise the likelihood function. Conse-
quently, applying an LR test to a model estimated by Bayesian methods is likely to raise the power of the
LR test compared to the use of maximum likelihood estimation. In e¤ect, the posterior mode is a weighted
average of the mode of the prior distribution and the maximum likelihood estimate with the weights de-
termined roughly by their relative precisions. The greater the in�uence of the prior information relative to
the sample information, the more likely is an LR test to reject the model when the posterior distribution is
centred di¤erently from the maximum likelihood estimator.
In this paper we investigate the power of two tests of an already estimated DSGE model. One is an LR

ratio test in which the autoregressive processes generating the structural disturbances are re-estimated to
maximise �t. The other is the IIW test in which the error autoregressive processes are not re-estimated.

1 Identi�cation is a theoretical property of the (DSGE) model when data is unlimited; it exists when the reduced form of a
model cannot be generated by a di¤erent model. While it is possible that lack of this theoretical property is what lies behind the
�at likelihood surface, in a recent paper Le, Minford and Wickens (2013) suggested that two macro models in wide current use,
those of Smets and Waouters (2003, 2007) and Clarida, Gali and Gertler (1999), were highly over-identi�ed; they tested both of
them by indirect inference to see whether in Monte Carlo samples they generated data whose reduced form (or approximations
to it) could also be generated by other DSGE model versions; had it been possible to �nd such a model it would be rejected the
same percent of the time as the true original model. Yet the nearest model they could �nd in both cases was rejected nearly
100% of the time on a 5% test when of course the true model is only rejected 5% of the time.
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We begin by examining their asymptotic or large sample properties. The IIW test is based on the distance
between the data descriptors implied by the true model and those implied by the false model; this distance
depends on the degree of falseness of the model�s structural parameters and error processes � both their AR
parameters and their innovation moments. The LR test is based on the distance between the two models�
forecasting errors. This depends on the falseness of the structural parameters. It is also a¤ected by re-
estimating the AR parameters of the error processes which partly o¤sets the e¤ect on the overall forecast
error of the false parameters. We �nd that the powers of the two tests turns on two factors. The �rst is
whether the LR test is preceded by re-estimation of the model or of its error processes; if it is, the LR test�s
power is substantially weakened. The second is the way the IIW test is implemented: whether it is based
on the variance matrix of the coe¢ cients of the auxiliary VAR model estimated from the observed data,
or, as is done by Le et al. (2011, 2015), on data simulated from the DSGE model with its false structural
parameters. Using the former the powers of the LR and the indirect inference tests are roughly equivalent,
but using the latter endows the IIW test with more power. The latter IIW test is the one that is referred to
as �the IIW test�in what follows unless otherwise speci�ed.
The remainder of the paper is organised as follows. In section 2 we discuss the idea of using indirect

inference in carrying out hypothesis tests of estimated structural models and, in particular, DSGE models.
In section 3 we consider, with a simple example, how best to form the auxiliary model for a DSGE model.
In section 4 we describe the two tests � the LR and the indirect inference IIW test � and we examine their
distributions both analytically and numerically using the SW model. In section 5 we investigate the power
of these two tests using numerical procedures. Our conclusions are reported in section 6.

2 Indirect inference tests

The IIW test focuses on speci�c features of the DSGE model, such as impulse response functions, rather than
the overall �t of the full model as in an LR test. A justi�cation for this is provided by Lucas and Prescott
who objected to likelihood ratio tests of DSGE models on the grounds that �too many good models are
being rejected by the data�. Their point is that the DSGE model may o¤er a good explanation of features
of interest but not of other features of less interest, and it is the latter that results in the rejection of the
model by conventional hypothesis tests.
In an indirect inference test the parameters of the structural model are taken as given. The aim is

to compare the performance of the auxiliary model estimated on simulated data derived from the given
estimates of a structural model �which is taken as the true model of the economy (the null hypothesis)
�with the performance of the auxiliary model (here a VAR model) when estimated from actual data (the
alternative hypothesis). If the DSGE model is correct then the simulated data, and the VAR estimates based
on these data, will not be signi�cantly di¤erent from those derived from the actual data. The method is in
essence extremely simple. The idea is to bootstrap the estimated DSGE model. These bootstraps provide
simulations of the data that represent what the model and its implied shocks could have generated for the
sample historical period of the data. The test then compares the VAR coe¢ cients estimated on the actual
data with VAR coe¢ cients estimated using the simulated data.
The choice of auxiliary model is a compromise between a model that exactly represents the DSGE model

and a model that captures its key properties of interest and is easy to estimate. In the original real business
cycle analysis based on calibration the auxiliary model consisted of the moments of the data and a comparison
of these moments on observed and simulated data. The drawback with this is that it limits the properties of
the DSGE model that can be investigated. Instead we use a VAR as the auxiliary model since the solution
of a DSGE model can be represented as a VAR, or closely approximated by one. In the next section we show
how this VAR may be obtained.

3 The auxiliary model: a VAR representation of a DSGE model

There are several ways of deriving a VAR representation of a DSGE model. We make use of the ABCD
framework of Fernandez-Villaverde et al. (2007). We consider solely what these authors call the �square�
case, where the number of errors and the number of observable variables are the same. We also consider only
DSGE models with no observable exogenous variables. Both the Smets-Wouters model (Smets and Wouters,
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2003;2007) and the 3-equation model New Keynesian model used by Le et al. (2013) and Liu and Minford
(2014) for their numerous IIW tests �t this framework. (Other classes of models, for example those with
�news shocks�, require a di¤erent treatment which is beyond our scope here.)
To illustrate, consider the 3-equation New Keynesian model of Le et al. (2013):2

�t = !Et�t+1 + �yt + e�t; ! < 1 (1)

yt = Etyt+1 �
1

�
(rt � Et�t+1) + eyt

rt = �t + �yt + ert

eit = �iei;t�1 + "it (i = �; y; r)

This has the solution 24 �t
yt
rt

35 = KH
24 e�t
eyt
ert

35 (2)

where

K =

24 1 + �
� � �� � ��

�
� 1
� ( � ��) 1� !�y � 1

� (1� !�r)
 � ( � �

� )�� � + � � �!�y 1� (1 + ! + �
� )�r + !�

2
r

35 ;
H =

24 H11 0 0
0 H22 0
0 0 H33

35 ;
H11 =

1

1 + �+�
� � [�� + !(1 +

�
� )]�� + !�

2
�

H22 =
1

1 + �+�
� � [�� + !(1 +

�
� )]�y + !�

2
y

H33 =
1

1 + �+�
� � [�� + !(1 +

�
� )]�r + !�

2
r:

or

zt = �et (3)

et = Pet�1 + "t (4)

where z0t = [�t; yt; rt]; e
0
t = [e�t; eyt; ert];� = K �H: Thus the matrix � is restricted, having 9 elements but

consists of only 5 structural coe¢ cients (the �i can be recovered directly from the error processes), implying
that the model is over-identi�ed according to the order condition (Le et al., 2013, also establish that it is
identi�ed using the IIW test in unlimited-size sampling).
The solved structural model can be written in ABCD form as follows where y (replacing z above) is now

the vector of endogenous variables and x (replacing e above) is the vector of error processes:

(1) xt = Axt�1 +B"t

(2) yt = Cxt�1 +D"t

where A = P =

24 �� 0 0
0 �y 0
0 0 �r

35 ;B = I;C = �P ;D = �:

2Further lags in both endogenous variables and the errors could be added; but for our main treatment we suppress these.
Our results can be extended to deal with them, without essential change.
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Note that yt = �xt is the (solved) structural model. Hence xt = ��1yt. The VAR representation is 3

yt = �P�
�1yt�1 +�"t = V yt�1 + �t (5)

We may also note that

yt = �
1X
i=0

P i"t�i =
1X
i=0

P i�t�i:

More generally, the solution of a linearised DSGE model (including the SW model and the 3-equation
model) can be summarised by a state-space representation:4

xt = Axt�1 +B"t

yt = Cxt

where xt is an n�1 vector of possible unobserved state variables, yt is a k�1 vector of variables observed by
an econometrician, and "t is an m� 1 vector of economic shocks a¤ecting both the state and the observable
variables, i.e., shocks to preferences, technologies, agents�information sets, and economist�s measurements.
The shocks "t are Gaussian vector white noise satisfying E("t) = 0; E("t"0t) = I. The matrices A;B and C
are functions of the underlying structural parameters of the DSGE model. Using the ABCD framework of
Fernandez-Villaverde et al. (2007), the state-space representation can be written as the VAR

yt = V yt�1 + �t (6)

where E(�t�
0
t) = ��

0 = �.
We have assumed that the DSGE model includes no observable exogenous variables. If it does then the

solution to the DSGE model also contains exogenous variables: in general, lagged, current and expected
future exogenous variables. If, however, the exogenous variables are assumed to be generated by a VAR
process then the combined solution of both the endogenous and exogenous variables can be represented as a
VAR.5

4 Indirect inference test statistics

In indirect inference we do not impose the restrictions on the coe¢ cients of the auxiliary model that are
implied by the structural model. Instead, we estimate the auxiliary model on data simulated from the
structural model and compare these estimates with those obtained from using the observed data. In both
cases the auxiliary model is estimated without any coe¢ cient restrictions. The restrictions imposed by the
DSGE model are re�ected in the simulated data and not through explicit restrictions on the auxiliary model.
Since both the LR test and the IIW test involve estimation of an unrestricted VAR, �rst we brie�y review

the maximum likelihood estimation (MLE) of a standard unrestricted VAR. Consider a randomly generated
sample of yt of size T . If �t is assumed to be NID (0;�) then the log-likelihood function is

lnL(V;�) = �[Tn
2
ln(2�) +

T

2
ln j�j+ 1

2

TX
t=1

(yt � V yt�1)0��1(yt � V yt�1)]

Maximising with respect to ��1 gives

@ lnL(V;�)

@��1
=
T

2
�� 1

2

PT
t=1(yt � V yt�1)(yt � V yt�1)

0

3 If the DSGE model also had one-period lags in one or more of the equations so that the solution became zt = �et +�zt�1
then we would obtain a VAR(2) as follows:
(1) xt = Axt�1 +B"t
(2) yt = Cxt�1 +D"t + �yt�1
Using xt�1 = ��1(yt�1 � �yt�2) we obtain
yt = (�P��1 + �)yt�1 � ��1�yt�2 +�"t
4The solution of the model can be obtained by using either Blanchard and Kahn (1980) or Sims (2002) type of algorithms.
5For further discussion on the use of a VAR to represent a DSGE model, see for example Canova (2005),Dave and DeJong

(2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al. (2007a,b) (together with the comments by Christiano
(2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian (2007)), and Wickens (2014).
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Setting this to zero and solving gives the MLE estimator of � as

^

� =
1

T

PT
t=1(yt � V yt�1)(yt � V yt�1)

0 (7)

Substituting this back into the likelihood function gives the concentrated likelihood

lnL(V;
^

�) = �[Tn
2
ln(2�) +

T

2
ln j

^

�j+ Tn
2
]

Maximising this with respect to V is identical to minimising ln j
^

�j with respect to V . Thus

@ ln j
^

�j
@V

= 2
^

��1
PT

t=1(yt � V yt�1)y
0

t�1 = 0

and hence the MLE of V is bV = (PT
t=1 yty

0

t�1)(
PT

t=1 yt�1y
0

t�1)
�1

and can be calculated by applying OLS to each equation separately. The MLE of � becomes

^

� =
1

T

PT
t=1(yt � bV yt�1)(yt � bV yt�1)0 (8)

In order to �nd the variance matrix of bV it is convenient to re-express the VAR. Denoting the T obser-
vations on the ith element of yt as the T � 1 vector yi and of �t as �i, each equation of the VAR may be
written as

yi = Zvi + �i (9)

where v0i is the i
th row of V and Z is a T � k matrix with tth row yt�1. The VAR may now be written in

matrix form as
Y = Xv + � (10)

where

Y =

24 y1
:
yT

35 ; X=

24 Z ::: 0
:: :: ::
0 ::: Z

35 = Ik 
 Z; ...� =
24 �1

:
�T

35 ; :::v =
24 v1

:
vk

35

 denotes a Kronecker product. Hence � is N(0;
) where 
 = � 
 IT . Generalised least estimation gives
the MLE of v as

^
v = (X 0
�1X)�1X 0
�1Y

= [Ik 
 (Z 0Z)�1Z 0]Y
= v + [Ik 
 (Z 0Z)�1Z 0]�

In general
^
v is a biased estimate of v as Z consists of lagged endogenous variables, but plim

^
v = v and the

limiting distribution of
p
T (

^
v � v) is N(0;W ) where

W = plim T [Ik 
 (Z 0Z)�1Z 0](�
 IT )[Ik 
 (Z 0Z)�1Z 0]0

= �
 (plim T�1Z 0Z)�1

4.1 LR test

The LR test for a DSGE model based on the observed data compares the likelihood function of the auxiliary
VAR derived from the DSGE model with the likelihood function of the unrestricted VAR computed on the
observed data. The former is based on the estimate of the variance matrix of the structural errors from the
solution to the DSGE model. On the assumption that the auxiliary model is the solution to the DSGE model
and is a VAR, this is also the error variance matrix of a restricted version of the auxiliary VAR. The latter
is based on the estimate of the error variance matrix of the unrestricted auxiliary VAR. As the auxiliary
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model is a VAR, the LR test is, in e¤ect, based on the one-period ahead forecast error matrix. Thus, the
logarithm of the likelihood ratio test is

LR = 2(lnLU � lnLR)

= T
�
ln j�Rj � ln

���b����� (11)

where LR and LU denote the likelihood values of the restricted and unrestricted VAR, respectively, and �R
and b� are the restricted and unrestricted error variance matrices. Note that, given estimates of the DSGE
model, we can solve the model for v, and hence we can calculate �t and �R = T�1

PT
t=1 �t�

0
t. Note also

that the LR test can be routinely transformed into a (direct inference) Wald test between the unrestricted
and the restricted VAR coe¢ cients, v.
To obtain the power function of the LR test we endow the structural model with false values of the

structural coe¢ cients and compare the restricted VAR with the unrestricted VAR on the observed data
which are assumed to be generated by the true model. The implied false model has the VAR

yt = VF yt�1 + �Ft (12)

The forecast errors for the false model are

�Ft = yt � VF yt�1 = �t + (V � VF )yt�1 = �t + qt

where qt = Yt�1(v � vF ): If we let

�F =
1

T

TX
t=1

�Ft�
0
Ft =

1

T

TX
t=1

(�t + qt) (�t + qt)
0

then the LR test for the false model is given by:

LRF = T [ln j�F j � ln
���b����] (13)

Thus the power of the test derives from the distance

ln j�
F
j � ln j�

R
j : (14)

4.2 The IIW test

In the IIW test we simulate data from the solution to the already estimated DSGE, randomly drawing the
samples from the DSGE model�s structural errors. We then estimate the auxiliary VAR using these simulated
data. We repeat this many times to obtain the average estimate of the coe¢ cients of the VAR which we
take as the estimate of the unrestricted VAR. The simulated VAR may be written

yS;t = VSyS;t�1 + �St

where yS;t is the data simulated from the DSGE model and VS is the (average estimate of v) or, in the form
of equations (9) and (10), as

yS;i = ZSvS;i; + �S;i

YS = XSvS + �S

where E(�S;i�
0
S;i) = �S . The IIW test statistic, which computes the distance of these estimates from the

unrestricted estimates based on the observed data, is:

IIW = [bv � vS ]0W�1
S [bv � vS ] (15)

where WS is the variance matrix of the limiting distribution of vS , and is given by

WS = �S 
 (plim T�1Z 0SZS)
�1 (16)
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On the null hypothesis that the DSGE model � and hence the auxiliary VAR � are correct, the asymptotic
distribution of the estimate of vS is the same that of the MLE bv. Moreover, asymptotically, this IIW statistic
will have the same distribution as [bv�v]0W�1[bv�v] and hence will have the same critical values.6 In general,
the IIW statistic di¤ers from a standard Wald statistic in indirect inference which is [bv � vS ]0W�1[bv � vS ]
where W is the variance matrix of the unrestricted model; we refer to this as the unrestricted IIW statistic.
The power of the IIW test is calculated, like that for the power calculations for the LR test, by simulating

the DSGE model using false values of its coe¢ cients and now using these data to estimate the unrestricted
VAR from equation (12). The IIW statistic is then computed from

IIW = [bv � vF ]0W�1
F [bv � vF ] (17)

where vF is the mean vector of coe¢ cients and WF is their variance matrix, which corresponds to WS .
Consider the decomposition bv � vF = (bv � v) + (v � vF ):
It follows that the IIW statistic can be decomposed as

[bv � vF ]0W�1
F [bv � vF ] (18)

= �0[Ik 
 (Z 0Z)�1Z 0]0W�1
F [Ik 
 (Z 0Z)�1Z 0]�

+[v � vF ]0W�1
F [v � vF ]

= �0[��1 
 plim T (Z 0Z)�1]� + [v � vF ]0W�1
F [v � vF ] (19)

where the last term is based on the di¤erence between the true and the false values of the coe¢ cients. Hence
the power of the IIW test derives from the second term on the right-hand side of equation (19).
We note two things. First, both the sign and size of the change in the �rst term on the right-hand side of

equation (19) as the false model changes cannot be evaluated analytically; it depends on how the covariance
weighting matrix of the false parameters, W�1

F ; changes and interacts with [Ik 
 (Z 0Z)�1Z 0]�, the sample
di¤erences on the true data of the estimated v from the true v. If WF were diagonal then the false weighting
matrix would, in e¤ect be dividing each element by its false standard deviation, thereby converting them
into false t-values; some elements will have t-values that are too large, others that are too small. vF , the
vector of VAR parameters implied by the false model, depends on two false elements: � ( the DSGE model�s
structural parameters) and P (the time-series parameters of the errors). Second, in the New Keynesian
model above, vF is a row in the matrix V = �P��1 where � depends on �; P . In small samples we use
the mean of the estimated vF , and hence a third false element � " (the vector of innovations in the DSGE
model�s structural errors) � a¤ects the power through its properties (i.e. its variance matrix, skewness and
kurtosis). For small samples Le et al. (2015) were able via Monte Carlo experiments to generate some orders
of magnitude for the contribution of the di¤erent elements to the power of the IIW test. Essentially they
found that they are all of some importance � Table 1 shows their �ndings for the 3-equation New Keynesian
model on stationary data.

6The IIW test can also be carried out for a sub-set of v.

8



ALL ELEMENTS Level of Falseness
1% 3% 5% 7% 10% 15% 20%

2 variable VAR(1) 16:8 82:6 99:6 100:0 100:0 100:0 100:0
3 variable VAR(1) 25:1 97:7 100:0 100:0 100:0 100:0 100:0
3 variable VAR(2) 16:1 77:2 98:4 100:0 100:0 100:0 100:0
3 variable VAR(3) 14:4 73:0 97:5 99:7 100:0 100:0 100:0

STRUCTURAL PARAMETERS
2 variable VAR(1) 7:3 8:7 12:6 19:3 40:4 76:1 92:7
3 variable VAR(1) 6:2 10:1 25:5 53:7 80:7 99:4 100:0
3 variable VAR(2) 6:8 9:3 12:8 20:6 45:9 77:2 95:0
3 variable VAR(3) 5:8 7:5 12:0 21:7 45:8 74:0 95:5

AR PARAMETERS
2 variable VAR(1) 16:2 86:3 99:7 100:0 100:0 100:0 100:0
3 variable VAR(1) 18:8 96:8 100:0 100:0 100:0 100:0 100:0
3 variable VAR(2) 16:5 87:3 99:9 100:0 100:0 100:0 100:0
3 variable VAR(3) 18:9 81:6 99:5 100:0 100:0 100:0 100:0

SHOCKS
2 variable VAR(1) 5:6 6:8 5:7 10:1 15:0 27:3 46:7
3 variable VAR(1) 5:4 6:0 8:4 8:7 11:7 26:7 48:8
3 variable VAR(2) 5:6 5:4 5:1 9:0 13:1 31:0 41:8
3 variable VAR(3) 4:9 6:1 4:1 9:0 12:4 29:5 48:2

Table 1: 3-EQUATION MODEL, STATIONARY DATA: Decomposition of the power of IIW

4.3 Comparing the two tests

We have seen that the LR test compares the one-step ahead forecast error matrix of the unrestricted VAR
with that of the model-restricted VAR using the observed data, whereas the IIW test asks whether the
distribution of the VAR coe¢ cients based on the simulated data (the restricted model) covers the VAR
coe¢ cients based on the observed data (the unrestricted model). We have also found that on the null
hypothesis that the DSGE model is true the limiting distributions of the two sets of estimates are the same.
It follows from equation (7) that, on the null hypothesis, the error variance matrix using simulated data is

�S =
1

T

PT
t=1(ySt � VSyS;t�1)(ySt � VSyS;t�1)

0

=
1

T

PT
t=1(yt � VSyt�1)(yt � VSyt�1)

0 +�

=
^

�+ (bV � VS) 1
T

TX
t=1

yt�1y
0
t�1(bV � VS)0 +�

where b� is the error variance matrix of the unrestricted VAR using the observed data and � is Op(T�
1
2 ).

Using the result that vec(AXB) = (B0 
A)vec(X), and vec(V 0) = v, it can be shown that

vec[(bV � VS) 1
T

TX
t=1

yt�1y
0
t�1(bV � VS)0] = v0(I 
 1

T

TX
t=1

yt�1y
0
t�1)v
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Hence,

LR = T
�
ln j�S j � ln

���b�����

= T [ln j1 +
(bV � VS) 1T TX

t=1

yt�1y
0
t�1(

bV � VS)0 +����b���� j]

= T [ln j1 + (bv � vS)0(b�
 1

T

TX
t=1

yt�1y
0
t�1)

�1(bv � vS) + ����b���� j]
! IIW +Op(T

� 1
2 )

In other words, on the null hypothesis that the DSGE model is the true model, the LR test based on observed
data is asymptotically equivalent to using the IIW test, which is based on simulated data.
In the power calculations we use

LR = T
�
ln j�F j � ln

���b�����
= T

�
ln j�S j � ln

���b�����+ T (ln j�F j � ln j�S j)
The power of the test derives from the last term which re�ects the di¤erence between VS and VF . This
makes � of order Op(1), which does not vanish as T !1, but causes the power of the test to tend to unity.

5 Numerical comparison of the powers of the LR and IIW test

In power calculations we deliberately falsify the DSGE model and seek to discover the probability that the
model will be rejected. In this case the LR test and the IIW test are no longer asymptotically equivalent.
The IIW test as carried out by Le et al. (2015) uses the distribution of the model-restricted VAR coe¢ cients.
This increases the precision of the variance matrix of the coe¢ cients of the auxiliary model and so improves
the power of the IIW test. Thus the IIW test asks whether the distribution of the model-restricted VAR
coe¢ cients covers the unrestricted VAR coe¢ cients found in the data. The distribution of the resulting
IIW statistic is asymptotically chi�squared. As in practice we are usually dealing with small samples, the
distribution of the test statistic will be better determined numerically as below.

5.1 Numerical comparison of the distribution of the estimates

In our numerical comparison of the two tests our structural model is the Smets-Wouters model (2007). This
is a DSGE model which has a high degree of over-identi�cation (as established by Le et al., 2013). It has
12 structural parameters and 8 parameters in the error processes. It implies a reduced-form VAR of order
4 with seven observable endogenous variables, i.e. a 7VAR4, (Wright, 2015). This has 196 coe¢ cients. The
size of the VAR in a IIW test and the number of variables is usually lower than a 7VAR4.
We concentrate on the dynamic response to own shocks of in�ation and the short-term nominal interest

rate. We focus on the three variables of the above New Keynesian model: in�ation, the output gap and
the nominal interest rate. We use a 3VAR1 in these variables as the auxiliary model. We then examine the
own-lag coe¢ cients for in�ation and the short-term interest rate.
We estimate the coe¢ cients of the 3VAR1 using the observed data for these three variables. We then �nd

the distribution of the estimates of the two coe¢ cients of interest by bootstrapping the VAR innovations.
Next, we estimate the 3VAR1 using data for these three variables obtained by simulating the full SW
model. The distribution of these estimates of the two coe¢ cients is obtained by bootstrapping the structural
innovations generating that sample. The graphs below show the densities of the joint distribution of the two
coe¢ cients.
Figure 1 displays the joint distributions of the two VAR coe¢ cients based on 1) the observed data (the

unrestricted VAR), 2) simulated data from the original estimates of the structural model (the restricted
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VAR), and 3) false speci�cations of the structural models by 5% and 10% (the 5% false and 10% false
restricted VARs). One can see clearly that 2), the joint distribution based on simulated data from the
original structural model, is both more concentrated and more elliptical (implying a higher correlation
between the coe¢ cients) than 1), that using the observed data. Increasing the falseness of the model causes
3), the joint distributions from the 5% and 10% false DSGE model, to become a little more dispersed and
more elliptical; they are also located slightly di¤erently but this is not shown as the distribution is centred
on zero in all cases.
Figure 2 shows how this a¤ects the power of the Wald test for a model that is 5% false. The green dot

in the Figure is the mean of the distribution. The test of this false model can be carried out in two ways.
We have drawn the diagram as if the joint test of two VAR coe¢ cients chosen have the same power as the
overall test of all VAR coe¢ cients.
The �rst way is to use the unrestricted Wald, using the observed data to estimate a 3VAR1 representation

and to derive the joint distribution of the two coe¢ cients by bootstrapping. The 5% contour of such a
bootstrap distribution is given by the dashed green line; the thick green line shows the critical frontier at
which the 5% false model is just rejected.
The second way is to use the restricted Wald, using the distribution implied by the simulated data. The

red ellipse shows the 5% contour of the resulting joint distribution. The results show that the second method
has nearly double the power of the �rst. (Increasing the degree of falseness to 10% raises the power of both
to 100%.)

Figure 1: Restricted VAR and Unrestricted VAR Coe¢ cient Distributions

5.2 Numerical comparison of the power of the test statistics

In the above comparison of the joint distribution of the two coe¢ cients of interest, the data simulated from
the structural model gave serially correlated structural error processes. In order to make the estimates of their
joint distribution compatible with the original Smets-Wouters estimation strategy, �rst-order autoregressive
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Rejection Frontier
5% False (unrestricted)

Figure 2: Two 95% contours for tests of 5% False Model- Green=Unrestricted; Red=Restricted.

processes were �tted to these structural errors for each bootstrap sample. In calculating the power of the
tests we proceed a little di¤erently in order that the tests are based on the same assumptions when the
structural model is falsi�ed. We now �x both � (the vector of structural coe¢ cients of the DSGE model)
and � (the vector of coe¢ cients of the autoregressive error processes). Each is falsi�ed by x%. We do not,
however, falsify the innovations, maintaining them as having the original true distribution. This last is a
matter of convenience as we could extract the exact implied false error innovations, as implied by each data
sample, � and �. But this extraction is a long and computationally-intensive process requiring substantial
iteration. We simply assume, therefore, that the model is false in all respects except for the innovations.
Generally, we �nd that if only the innovations are false this generates little power under either test (see Le
et al., 2015) so this omission should make no di¤erence to the relative power calculation. We use the SW
model as the true model with a sample size of 200 throughout. Our �ndings are reported in Table 2.
We �nd, as we would expect, that the two test statistics generate similar power when the IIW test is

based on the observed data (the unrestricted VAR). Focusing on the main case, which is a 3VAR1, and
taking 5% falseness as our basic comparison, we see that the rejection rate for the LR test is 38%. For the
IIW test based on an unrestricted VAR the rejection rate is 31% while using a restricted VAR (simulated
data) for the IIW test it is 85%. The orders of magnitude of the rejection rates are therefore similar for LR
test and a IIW test based on the observed data7 , while for the a IIW test based on simulated data they are
very considerably higher, implying greater power. In what follows we will refer to this last, the IIW test
based on the restricted VAR, as �the�IIW test.

7This test uses the variance matrix of the VAR coe¢ cients for the observed data. When this VAR has a very large number
of coe¢ cients the variance matrix of the coe¢ cients has a tendency to become unstable; this occurs even when the number of
bootstraps is raised massively (e.g. to 10000). This is due to over-�tting in small samples (here the sample size is 200); there
is then insu¢ cient information to measure the variance matrix of the VAR coe¢ cients.
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VAR � no of coe¤s TRUE 1% 3% 5% 7% 10% 15% 20%
IIW TEST with unrestricted VAR
2 variable VAR(1) � 4 5:0 6:2 20:3 69:6 61:0 99:8 100:0 100:0
3 variable VAR(1) � 9 5:0 3:4 7:5 30:7 75:0 97:4 100:0 100:0
3 variable VAR(2) � 18 5:0 3:8 5:2 19:1 57:5 84:3 98:4 99:5
3 variable VAR(3) � 27 5:0 3:9 6:4 21:6 54:5 84:0 97:5 98:7
5 variable VAR(1) � 25 5:0 2:8 3:2 2:6 5:4 6:2 4:5 100:0
7 variable VAR(3) � 147 5:0 5:1 3:4 1:4 0:9 0:2 0:0 100:0
IIW TEST with restricted VAR
2 variable VAR(1) � 4 5:0 9:8 37:7 80:8 96:8 100:0 100:0 100:0
3 variable VAR(1) � 9 5:0 9:5 36:1 71:0 98:1 100:0 100:0 100:0
3 variable VAR(2) � 18 5:0 8:3 35:5 80:9 96:9 100:0 100:0 100:0
3 variable VAR(3) � 27 5:0 9:2 32:9 78:0 95:1 100:0 100:0 100:0
5 variable VAR(1) � 25 5:0 17:8 85:5 99:8 100:0 100:0 100:0 100:0
7 variable VAR(3) � 147 5:0 77:6 99:2 100:0 100:0 100:0 100:0 100:0
LIKELIHOOD RATIO TEST
2 variable VAR(1) � 4 5:0 12:0 28:3 45:9 63:4 83:2 97:0 99:7
3 variable VAR(1) � 9 5:0 9:4 21:8 37:5 58:9 84:0 99:0 100:0
3 variable VAR(2) � 18 5:0 8:9 20:7 36:8 57:6 82:9 98:7 100:0
3 variable VAR(3) � 27 5:0 8:9 20:4 36:7 56:7 82:2 98:7 100:0
5 variable VAR(1) � 25 5:0 8:9 22:4 44:3 68:6 89:6 99:6 100:0
7 variable VAR(3) � 147 5:0 5:7 10:6 23:6 46:3 83:2 99:6 100:0

Table 2: Comparison of rejection rates at 95% level for Indirect Inference and Direct Inference

5.3 Why does the IIW test have more power in small samples than the Likeli-
hood Ratio test?

Although the LR and IIW tests are asymptotically equivalent when the structural model is the true model
and so generating the observed data, the two tests have di¤erent power, as we have seen. We consider two
possible reasons for this: a) they are carried out with di¤erent procedures; b) even when the same procedures
are followed, the two tests di¤er in power by construction.

5.3.1 Reason a): di¤erent procedures

We noted earlier that in order to improve the �t of a DSGE model it is usual to respecify the structural
errors as being serially correlated by adding to the model the assumption that the errors are generated by
�rst-order autoregressive processes. Accordingly, in calculating the power of the LR test, we re-estimated
the error processes in order to �bring the model back on track�. This will clearly reduce the power of the LR
test as it will make it less likely that a false model will be rejected. This can be illustrated by comparing
the power of the LR test in which the autoregression coe¢ cients are re-estimated, as above, with an LR
test in which the degree of falsi�cation of the autoregressive coe¢ cients is pre-speci�ed, as for the IIW test
above. We employ a 3-equation NK model for the comparison. As expected, the results in Table 3 show
that the LR test with pre-speci�ed autoregressive coe¢ cients has considerably greater power than the test
using re-estimated autoregressive coe¢ cients.

5.4 Reason b): comparison when the same procedures are followed

In our numerical comparison above of the LR and the two IIW tests, we noted that the power of the LR and
the IIW test using the unrestricted VAR coe¢ cient distribution were similar when testing a DSGE model
on a like-for-like basis (i.e. using the same procedure). We also noted the IIW test carried out by Le et al.
(2011, 2015) using the VAR coe¢ cient as restricted by the DSGE model was substantially more powerful
than the other form of the IIW test and hence than the LR test even when using the same procedure. This
therefore is the second reason for the greater power of the IIW test as they carry it out: that it is carried
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3-equation NK model (no lags)
Rejection rate of false models at 95% con�dence: T=200

Re-estimated �0s Pre-speci�ed �0s
True 5:0 5:0
1% 5:0 5:0
3% 5:3 9:6
5% 6:1 20:2
7% 8:0 39:1
10% 15:4 63:7
15% 48:1 90:7
20% 75:6 98:9

Table 3: Comparing power due to wrong parameter values

out using the VAR coe¢ cient distribution that is restricted by the DSGE model.
It may be therefore possible to raise the power of this (�restricted�) IIW test further. We suggest two

ways in which this might be achieved: 1) extending this IIW test to include elements of the variance matrix
of the coe¢ cients of the auxiliary model; 2) including more of the structural model�s variables in the VAR,
increasing the order of the VAR, or both.
The basic idea here is to extend the features of the structural model that the auxiliary model seeks to

match. The former is likely to increase the power of this IIW test, but not the LR test, as the latter can
only ask whether the DSGE model is forecasting su¢ ciently accurately; including more variables is likely to
increase the power of both. There is, of course, a limit to the number of features of the DSGE model that
can be included in the test. If, for example, we employ the full model then we run into the objection raised
by Lucas and Prescott against tests of DSGE models that was noted above, that �too many good models
are being rejected by the data�. The point is that the model may o¤er a good explanation of features of
interest but not of other features of less interest, and it is the latter that results in the rejection of the model
by conventional hypothesis tests. Focusing on particular features is a major strength of the restricted IIW
test.
To illustrate the e¤ects of extending the features that are tested, consider again the simple example

explored earlier, namely, the 3-equation NK model. This has a 3VAR(1) reduced-form solution with 9
coe¢ cients each of which is a di¤erent non-linear combination of the 8 structural and AR parameters. No
extra information is therefore obtained by raising the order of VAR. The number of variables in the auxiliary
model is not an issue as all three variables are included. The power of the restricted IIW test is reported in
Table 4. The results show that increasing the order of the VAR from one lag (the number in the solution of
the model) to two lags has no e¤ect on power.

3-equation NK model � no lags (VAR(1) reduced form)
Rejection rates at 95% con�dence: T=200

3 variable VAR(1) 3 variable VAR(2)
True 5:0 5:0
1% 4:9 4:3
3% 7:3 7:1
5% 16:1 21:7
7% 37:0 40:3
10% 73:3 76:3
15% 99:4 99:8
20% 100:0 100:0

Table 4: Comparing power due to VAR order (3-equation NK model with no lags)

Consider now including an indexing lag in the Phillips Curve. This increases the number of structural
parameters to 9 and the reduced-form solution is a VAR(2). The power of the restricted IIW test is reported
in Table 5. Increasing the number of lags in the auxiliary model has clearly raised the power of the test.
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3-equation NK model � with lag (VAR(2) reduced form)
Rejection rates at 95% con�dence: T=200

3 variable VAR(1) 3 variable VAR(2)
True 5:0 5:0
1% 10:6 6:0
3% 20:7 19:5
5% 47:5 57:9
7% 65:6 91:2
10% 89:6 100:0
15% 98:8 100:0
20% 99:9 100:0

Table 5: Comparing power due to VAR order (3-equation NK model with indexing lag)

This additional power is related to the identi�cation of the structural model. The more over-identi�ed
the model, the greater the power of the test. Adding an indexation lag has increased the number of over-
identifying restrictions exploitable by the reduced form. A DSGE model that is under-identi�ed would
produce the same reduced-form solution for di¤erent values of the unidenti�ed parameters and would, there-
fore have zero power for tests involving these parameters.
In practice, most DSGE models will be over-identi�ed, see Le et al. (2013). In particular, the SW

model is highly over-identi�ed. The reduced form of the SW model is approximately a 7VAR(4) which
has 196 coe¢ cients. Depending on the version used, the SW model has around 15 (estimatable) structural
parameters and around 10 ARMA parameters. The 196 coe¢ cients of the VAR are all non-linear functions
of the 25 model parameters, indicating a high degree of over-identi�cation.
The over-identifying restrictions may also a¤ect the variance matrix of the reduced-form errors. If true,

these extra restrictions may be expected to produce more precise estimates of the coe¢ cients of the auxiliary
model and thereby increase its power. It also suggests that the power of the test may be further increased
by using these variance restrictions to provide further features to be included in the test.

6 Conclusions

This paper has addressed the issue of how best to test an already estimated DSGE macroeconomic model
as judged by the power properties of the test. A key �nding is that, in small samples, a test based on
indirect inference (in particular, the IIW test) appears to have much greater power than a likelihood ratio
test based on the observed data. This �nding is at �rst sight a little puzzling as under direct inference with
the observed data an LR test and a Wald test of all of the coe¢ cients are equivalent, while the IIW test using
indirect inference is asymptotically equivalent to the LR test and so has the same power in large samples.
We attempted to explain why this result occurs.
We �nd that the di¤erence in power in small samples of the LR and IIW tests may be attributed to

two things. First, in the power calculations, the simulated data is usually obtained di¤erently for the two
tests. The structural disturbances of DSGE models are commonly found to be serially correlated. In order
to improve the �t of the model, the structural disturbances are speci�ed to allow them to be generated
by autoregressive processes. As the simulated structural errors are also serially correlated, in calculating
the power of the LR test for the false DSGE model, the autoregressive processes of the resulting simulated
structural errors are normally re-estimated. This �brings the model back on track�and as a result undermines
the power of the LR test as it is, in e¤ect, based on the relative accuracy of one-step ahead forecasts compared
with those obtained from an auxiliary VAR model.
Second, the additional power of the IIW test may arise from the use of a variance matrix of the auxiliary

model�s coe¢ cients determined from data simulated using the restrictions on the DSGE model. These may
give both give more precise estimates of these coe¢ cients and provide further features of the model to test.
The greater the degree of over-identi�cation of the DSGE model, the stronger this e¤ect. This suggests that
for a complex, highly restricted, model like that of Smets and Wouters, the power of the indirect inference
IIW test can made very high even in small samples. Because a test of all of the properties of a DSGE model
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is likely to lead to its rejection, it may be preferable to focus on particular features of the model and their
implications for the data. This is where the IIW test has another clear advantage over the LR test.
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