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Abstract
This paper proposes a new non-parametric method of constructing joint con-
fidence bands for impulse response functions of vector autoregressive models.
The estimation uncertainty is captured by means of bootstrapping and the
highest density region (HDR) approach is used to construct the bands. A
Monte Carlo comparison of the HDR bands with existing alternatives shows
that the former are competitive with the bootstrap-based Bonferroni and
Wald confidence regions. The relative tightness of the HDR bands matched
with their good coverage properties makes them attractive for applications.
An application to corporate bond spreads for Germany highlights the poten-
tial for empirical work.

Key Words: Impulse responses, joint confidence bands, highest density re-
gion, vector autoregressive process
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1 Introduction

During the last few years, a substantial number of methods for construct-
ing joint confidence bands for impulse response functions (IRFs) of vector
autoregressive (VAR) models has been proposed. Adding to previous ap-
proaches based on asymptotic considerations, the more recent proposals are
based on bootstrap methods to obtain a better approximation for the sample
sizes typically considered in applied macroeconomic studies. For an overview
and comparison of these methods see Lütkepohl et al. (2015a, 2015b) and
the papers cited therein.

Several of the bootstrap based methods have been shown in Monte Carlo
studies to outperform asymptotic methods and the simplified approach of
constructing the bands pointwise. The actual coverage of the bands is found
to be closer to the nominal level for these methods. In particular, Lütkepohl
et al. (2015b) found that Bonferroni based methods are competitive with
other more refined methods, although – as expected – they provide exces-
sively conservative bands. Taking into account the dependency over the
horizon of impulse response functions relying on a Wald type approach did
not improve the properties of the regions. One of the reasons for this a priori
unexpected result is seen in the given geometric form of the Wald ellipse in
the parameter space, which has to be mapped to a multidimensional box in
the space of the IRFs corresponding to the bands.

As an alternative to the parametric Wald approach, the construction of a
set of IRFs might be tackled directly in a non-parametric way. In this paper,
we use the highest density region (HDR) approach proposed by Hyndman
(1995, 1996) and also discussed in the context of VAR analysis in Fresoli et al.
(2015). In contrast to the Wald approach, for this non-parametric method,
the scaling of the variables or error terms, respectively, might influence the
outcome. Consequently, for our analysis we consider both a straightforward
implementation of the HDR method and two versions including different
versions of a scaling step.

The paper is structured as follows. Section 2 presents the model and
selected existing methods of constructing confidence bands for impulse re-
sponses. In Section 3, we describe the proposed non-parametric method and
how it relates to the benchmark approaches. The relative performance of the
method is analyzed by means of a Monte Carlo study. Section 4 provides
the setup and results of this analysis. An application to the modeling of
corporate bond spreads highlights that the choice of an appropriate method
might also affect qualitative conclusions. The application and estimation re-
sults are presented in Section 5. Finally, Section 6 provides a summary of
the main findings and an outlook to future research.
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2 Inferences about Impulse Response Func-

tions

The methods proposed in the literature for constructing joint bands for
IRFs might be classified into three groups. First, there are methods relying
on asymptotic considerations (e.g., Jordà (2009) and Staszewska-Bystrova
(2013)). These methods have been shown to exhibit an unsatisfactory per-
formance for typical sample sizes.1 A second group of methods relies on the
bootstrap to approximate the distribution of the estimators. Then, classical
methods for joint inference are used to construct the bands (see Lütkepohl
et al. (2015b) and Inoue and Kilian (2016)). Lütkepohl et al. (2015a) present
simulation evidence on these two approaches. Given that traditional meth-
ods, e.g., based on Bonferroni’s inequality might result in too conservative,
i.e., excessively wide bands, in a third class of methods, the focus of the
construction procedures is on the width of the bands. However, explicit opti-
mization methods as the ones presented in Staszewska-Bystrova and Winker
(2013) for the case of the related problem of constructing prediction bands
come at substantial computational cost and tend to be too aggressive, i.e.,
tend to produce bands with an actual coverage below the nominal level.
While further research is required to better understand the reasons for the
shortcomings of the existing methods, which might help to adjust them in an
appropriate way, a distinct approach of constructing highest density bands
is followed in this paper.

Before presenting the method in Section 3 below, we first describe the
impulse responses of structural VARs and two approaches to constructing
confidence bands used as benchmarks in the Monte Carlo study.

2.1 Impulse Response Analysis

In the following we consider a K-dimensional reduced form VAR(p) process:

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut , ut ∼ (0,Σu) , (2.1)

where Ai for i = 1, . . . , p, are square parameter matrices of order K, ν
represents a vector of intercepts and the reduced form errors, ut, are an
independent white noise process. Possible other deterministic terms, like a
trend or appropriate dummy variables are neglected as they are not relevant
for the methods discussed below.

If the stability condition, i.e.,

detA(z) = det(IK − A1z − · · · − Apzp) 6= 0 for z ∈ C, |z| ≤ 1 , (2.2)

is met, the process can be represented as a moving average:

yt = µ+
∞∑
i=0

Φiut−i , (2.3)

1See, e.g., Staszewska-Bystrova and Winker (2013).
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where µ = (IK − A1 − . . . − Ap)
−1ν, Φ0 = IK and Φi =

∑i
j=1 Φi−jAj for

i = 1, 2, . . . (Lütkepohl 2005, p. 23).
Uncorrelated structural innovations with zero means and unit variances

are often obtained from the reduced form errors as εt =B−1ut, where B is
the matrix of impact effects. In order to identify B, at least K(K − 1)/2
restrictions have to be imposed. If justified, this can be achieved, e.g. by
assuming a recursive structure of the variables, that is by obtaining a lower
triangular matrix B from a Cholesky decomposition of Σu. In the paper we
focus on this identification scheme, however all the methods are applicable
also for other sets or types of identifying restrictions. Responses to structural
shocks can be found from (2.3) by replacing ut with Bεt,

yt = µ+
∞∑
i=0

ΦiBεt−i = µ+
∞∑
i=0

Θiεt−i . (2.4)

Our interest is in the impulse responses Θi = ΦiB, i = 0, 1, . . ..
Inferences on the structural impulse responses are performed as follows.

Estimation of ν,A1, . . . , Ap is done using multivariate ordinary least squares
with the bias-correction based on a closed form bias formula presented by
Nicholls and Pope (1988). If the bias-correction causes nonstationarity (as
compared to the system estimated by OLS), the stationarity correction de-
scribed by Kilian (1998) and consisting in reducing the value of bias esti-
mates, is applied. The residuals are used to compute an estimate of Σu.
These estimators are denoted by ν̂, Â1, . . . , Âp and Σ̂u. If a model selec-
tion step is performed, the lag length p is chosen on the basis of the Akaike
information criterion (AIC). The estimates for the impulse responses for an

assumed propagation horizon H are computed as functions of Â1, . . . , Âp and

Σ̂u and denoted by Θ̂0, Θ̂1, . . . , Θ̂H .
The methods for constructing confidence bands are based on standard

residual-based bootstraps (for details see, e.g., Lütkepohl et al. (2015a)).

Application of the bootstrap method results in N replicates of Â1, . . . , Âp
and Σ̂u, denoted by Ân1 , . . . , Â

n
p , Σ̂

n
u and the same number of replicates of

Θ̂0, Θ̂1, . . . , Θ̂H , denoted by Θ̂n
0 , Θ̂

n
1 , . . . , Θ̂

n
H for n = 1, . . . , N .

2.2 Benchmark Methods for Constructing Joint Con-
fidence Bands

In the Monte Carlo simulations, we compare the HDR bands with two bench-
marks. The alternatives are: the bootstrap-based Bonferroni band and the
Wald band considered, e.g., by Lütkepohl et al. (2015b). These methods have
been shown to have coverage levels for impulse responses that usually exceed
the nominal level, but are often quite close to it. The drawback of the bands
is their large width, which is especially true for the Wald band. Excessive
width is a problem, as it implies that the band becomes less informative
about the true shape of the response function.

The Bonferroni band, denoted by B, computed for the nominal confidence
level of 1 − γ is obtained by forming intervals with appropriately adjusted

3



coverage rates for individual values of the response function of interest. For
the response of the j-th variable to the k-th shock, the band is calculated as:

[Bl
jk,0, B

u
jk,0]× [Bl

jk,1, B
u
jk,1]× · · · × [Bl

jk,H , B
u
jk,H ] ,

where Bl
jk,h and Bu

jk,h for h = 0, . . . , H are the γ/2(H + 1) and 1− γ/2(H +

1) quantiles of the bootstrap distribution of θ̂jk,h, where θ̂jk,h is the jk-th

element of Θ̂h. If the effect on impact is zero (by assumption), the interval
[Bl

jk,0, B
u
jk,0] is not formed and the remaining intervals for h = 1, . . . , H have

nominal coverage rates of 1− γ/H.
The Wald band is based on the bootstrapped Wald statistic formulated

with respect to the VAR parameters. For δ denoting the vector of VAR
coefficients A1, . . . , Ap and the appropriate parameters from the matrix B,
the method relies on the following asymptotic result:

√
T (δ̂ − δ) d→N (0,Σδ) , (2.5)

where T is the sample size.
Computation of the Wald band (W) for the response of variable j to shock

k and confidence level of 1− γ, involves the following steps:

1. For the bootstrap replication n = 1, . . . , N , obtain

wn = T (δ̂n − δ̂)′Σ̂δ(n)−1(δ̂n − δ̂) ,

and Θ̂n
0 , Θ̂

n
1 , . . . , Θ̂

n
H .

2. Find wn1−γ, denoting the (1 − γ) quantile of the bootstrapped values

wn and select θ̂njk,0, . . . , θ̂
n
jk,H obtained in bootstrap replications with

wn < wn1−γ.

3. Form the band

[W l
jk,0,W

u
jk,0]× [W l

jk,1,W
u
jk,1]× · · · × [W l

jk,H ,W
u
jk,H ] ,

by finding the smallest and the largest values from the selected θ̂njk,h
for each h = 0, . . . , H.

3 Using Highest Density Regions

The proposed method exploits ideas from non-parametric modeling of mul-
tivariate distributions. The starting point is a set of IRFs obtained from N
bootstrap replications for horizon H. The aim is to find a hyperrectangle in
the (H + 1)-dimensional space which is not excessively large and comprising
at least (1−γ)N elements, where 1−γ is the nominal coverage level.2 In order
to reach this goal, it appears natural to focus on those areas, where a high

2If the response on impact is restricted to 0, the dimension of the analysis is given by
H instead of H + 1.
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concentration of the generated points can be found, and to neglect points
which are rather far off. Obviously, an operationalization of this concept is
not straightforward in higher dimensions.

In Fresoli et al. (2015), the authors use highest density regions to illus-
trate the joint predictive distribution for two variables. The method has been
proposed by Hyndman (1996). Fresoli et al. conclude that this method is
infeasible in higher dimensions. In fact, the actual estimation of the multi-
variate density function and the derived highest density region would require
a huge number of points when the dimensions grow beyond three or four. In
the application to IRFs, the dimension is given by the horizon considered for
a single IRF, and by a multiple of this horizon if several IRFs are considered
jointly. Thus, the actual dimension might be rather large. In principle, given
that the number of bootstrap replications N can go to infinity even for a
small data set, this constraint might not be considered as binding. However,
in order to estimate precisely a multivariate density, e.g., in dimension 10
or 20, the number of replications required becomes too large given available
computational resources.

Nevertheless, a non-parametric estimate of the density for each of the
generated bootstrap vectors (IRFs) can be calculated at rather low compu-
tational cost. Furthermore, for the construction of bands, it is not required
to identify the highest density region as a whole, but to find a hyperrectan-
gle covering a share of (1 − γ) of the density. Instead of constructing this
hyperrectangle from the approximated density function, it will be obtained
directly from the bootstrap replications by selecting the (1− γ)N generated
points with highest density and the construction of the smallest rectangular
box including all these points. This box corresponds to a band in the time
dimension, which is labeled HDR-band in the following.

The construction of HDR-bands consists of the following steps:

1. Given a matrix D of dimensions N× (H+1) corresponding to N boot-
strap replicates of a (H+ 1)-dimensional vector (each corresponding to
an IRF), calculate the N ×N matrix E of pairwise squared Euclidean
distances.

2. Let ŝ =
√

1
H+1

∑H+1
i=1 var(D.,i) be the square root of the mean of the

variances across dimensions; it is considered as a proxy of the variation
in each dimension used to obtain a bandwidth estimator for the kernel
density estimates.

3. The bandwidth hS according to Scott’s rule for a multivariate normal
distribution (Scott 1992, p. 152) is given by

hS = ŝN−
1

H+5 .

For alternative distributional assumptions, different bandwidths might
be selected. However, preliminary experiments show that the effect on
the HDR-band are rather negligible unless the bandwidth is changed
by an order of magnitude.
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4. The density estimate for each single bootstrap replication i (row of
matrix D) is obtained by

di =
1

N(hS)H+1

N∑
n=1

1

(2π)(H+1)/2
e−

1

2hS
Ein .

5. For a given confidence level 1− γ, the points with highest density are
obtained by excluding the γN points with the lowest density values.3

6. The hyperrectangle corresponding to the HDR-band is obtained by us-
ing the minimum and maximum of the included highest density points
in each dimension. Obviously, if all these points are included in the
box, their convex hull is also included.

For illustrating the method, we start with a simplified setting, where the
known distribution is given by a two-dimensional standard normal distri-
bution with (auto)correlation of ρ = 0.8. Figure 1 shows the outcome of
a Monte Carlo simulation, drawing N = 2 000 realizations from the given
distribution. As nominal coverage level, we set (1− γ) = 0.95.

The figure shows the simulated data points (which would correspond to
one IRF over two periods each for the application in the VAR setting). The
grey shaded points are those with the highest non-parametric density esti-
mates (their number is given by 1900 = (1 − γ)N), while the black points
are the excluded points with low density. The black dot-dashed line shows
the smallest rectangular box containing all the highest density points, i.e., it
corresponds to the HDR-band. For comparison purposes, we also show the
boxes constructed following alternative methods. First, the box labeled as
“näıve” (dotted lines) is given by a centered 1−γ interval for each dimension
separately. It becomes obvious by visual inspection that its actual coverage
might be too low. The Bonferroni band (solid black lines) is obtained by
using centered 1 − γ/2 intervals for each dimension separately in order to
guarantee a coverage of at least 1 − γ, while the Wald band (grey dashed
lines) results from determining the smallest hyperrectangle comprising the
1− γ central confidence ellipse (grey) based on the Wald statistic.4

The straightforward implementation of the method as described above
seems to give sensible results for the simplified situation of a multivariate
normal distribution with equal variances across dimensions. If those vari-
ances differ substantially as is typically the case for IRFs, the quality of the
approximation might deteriorate as indicated by the example shown in the
left panel of Figure 2. The data points in this figure correspond to boot-
strapped IRFs of length 11 (horizon 10 plus initial response) of the first
variable to the first shock generated from a two dimensional VAR introduced

3Note that for the construction of the HDR-band, an explicit definition of a highest
density region (HDR) is not required. A natural candidate would be the convex hull of
the highest density points.

4For some arguments explaining the larger size of the Wald band as compared to the
Bonferroni band, see Lütkepohl et al. (2015b).
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−3.5 0 3.5
−3.5

0

3.5

rejected data naive Wald Bonferroni HDR

Figure 1: Comparison of alternative confidence sets for a 2-dimensional nor-
mal distribution

in Section 4 with ϕ = 0.9. The projection is done for horizons h = 0 and
h = 6 and the confidence level is set to 0.9.

In order to avoid a bias stemming from differences in variances or specific
covariance structures, either the non-parametric estimator might be adjusted,
e.g., by using the actual standard deviation per dimension instead of identical
values for all dimensions, or the data have to be standardized prior to the
application of the HDR method. The latter is the approach followed here
making use of two different strategies.

The first strategy focuses only on the standard deviations. Consequently,
prior to the application of the algorithm for the construction of HDR bands,
the bootstrapped values are standardized by the bootstrap standard devia-
tion for each horizon. After the calculation of the HDR band, the resulting
values are multiplied with the same standard deviation mapping the band
back to the original space. This improved HDR band, which might be more
appropriate in situations with substantially differing standard deviations of
IRFs across horizons, is labeled HDRs in the following. The middle panel
in Figure 2 shows the impact on the form of the band taking into account
the higher variance for the second horizon and thereby achieving a more even

7



rejected data Wald Bonferroni HDR HDRs HDRw

Figure 2: Comparison of alternative bands for an IRF from bivariate VAR

rejection of data points with regard to both horizons shown in the projection.
A second strategy takes into account the full variance-covariance matrix

of the bootstrapped values. In the first step, the bootstrapped IRFs are
whitened and then used in the search of the highest density region. After
rejecting the required number of bootstrap vectors, the reverse transforma-
tion is applied with respect to the retained vectors to restore their original
values. The band obtained using the bootstrap IRFs selected in this way is
denoted by HDRw and illustrated, for the example considered in Figure 2, in
the right hand panel. It can be seen that the HDRw band is similar to the
HDRs region in rejecting data points for both horizons, but is larger than
the latter region.

The detailed steps used in the computation of HDRs and HDRw bands
are as follows.

1. Compute a bootstrap estimate of the variance matrix of impulse re-
sponses, Ω̃, using the shrinkage estimator (Ledoit and Wolf 2003):

Ω̃ = λ diag(ω̂11, . . . , ω̂H+1,H+1) + (1− λ)Ω̂,

where Ω̂ is an unbiased bootstrap estimator of the covariance ma-
trix with element ij computed as: ω̂ij = 1

N−1
∑N

n=1 v
n
ij, where vnij =

(dni− di)(dnj − dj) and dni is the ni-th element of matrix D. diag(ω̂11,
. . . , ω̂H+1,H+1) denotes a diagonal matrix whose main diagonal is the

same as in Ω̂.
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2. For the HDRs method set λ = 1.

3. For the HDRw method estimate λ as proposed by Schäfer and Strimmer
(2005) for the case of a diagonal target matrix with unequal variances:

λ̂ =

∑
i 6=j v̂ar(ω̂ij)∑

i 6=j ω̂
2
ij

,

where v̂ar(ω̂ij) stands for the unbiased variance estimator of the indi-

vidual element of Ω̂ calculated as:

v̂ar(ω̂ij) =
N

(N − 1)3

N∑
n=1

(vnij − vij)2 .

4. Perform the Cholesky decomposition: Ω̃ = LL′ and transform the boot-
strap paths: D(L′)−1.

5. Apply the algorithm for constructing the HDR bands to the trans-
formed paths to reject γN paths.

6. Denote the matrix containing the remaining paths as DHDR, compute
DHDRL

′ and construct the band by finding the smallest and largest
values for each horizon.

Obviously, the proposed HDR approaches allow for further modifications.
In particular, a more refined analysis of the impact of the choice of kernel
functions and bandwidth selection could be of interest. Furthermore, sim-
ilar adjustments as for the variances by HDRs and the variance-covariance
by HDRw could also be considered with regard to higher moments, e.g., if
the distribution of the IRFs turns out to be more heavily skewed at some
horizons. Such extensions of the analysis are left for future research.

4 Monte Carlo Analysis

4.1 Monte Carlo Design

For the Monte Carlo analysis, we use the same setting as in Lütkepohl et
al. (2015a, 2015b) and complement it by a substantially larger VAR (both in
terms of dimension and lag length) inspired by a real application (Staszewska-
Bystrova and Winker 2014).

The first setting (labeled DGP1) consists in a bivariate DGP with one lag
taken originally from Kilian (1998). It is given by:

yt =

[
ϕ 0

0.5 0.5

]
yt−1 + ut, ut ∼ iid N

(
0,

[
1 0.3

0.3 1

])
, (4.1)

where the parameter ϕ takes on values in {−0.95,−0.9,−0.5, 0, 0.5, 0.9, 0.95, 1}.
It determins the persistence of the process. For ϕ = 1, the process is non-
stationary, but cointegrated. For a discussion of this special case and the
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singularity for ϕ = 0 see Lütkepohl et al. (2015b). As in previous research,
sample sizes used are T = 50, 100 and 200. The orthogonal IRFs with hori-
zonsH = 10 andH = 20, respectively, are obtained by applying the Cholesky
decomposition of the estimated residual covariance matrix imposing a zero
constraint on the reaction of the first variable on impact of the second shock.

The second DGP (DGP2) provides some insights on the relative perfor-
mance of methods for a substantially more complex VAR model which might
be relevant for empirical applications. It is based on the example described
in Section 5. The model for German corporate bond spreads includes six
variables. Model selection criteria suggest a lag order of four. The rounded
estimates of the corresponding 144 parameters describing the dynamics of
the DGP, the six constants and the 6×6 variance-covariance matrix are pro-
vided in Appendix A. Given the complexity of the model, we consider sample
sizes of T = 200 and 400 for horizons H = 12 and H = 24 corresponding
to one and two years, respectively. Again, orthogonal impulse responses are
calculated (for details see Section 5).

All simulations for both DGPs were done twice: first under the assump-
tion that the true lag order is known and used, and second, by selecting the
lag order based on Akaike’s information criterion. For the latter approach,
the maximum lag length was set as a function of the sample size and the
VAR dimension. It is given by 10, 12, and 14 for samples of 50, 100, and 200
observations for DGP1 and by 8 and 10 for sample sizes of 200 and 400 for
DGP2. Furthermore, the number of bootstrap replications is N = 2 000, and γ
is set to 0.1 corresponding to 90% confidence bands. Finally, for each setting,
2 000 Monte Carlo replications are generated and used for the analysis.

Two features of the confidence bands are evaluated, namely their actual
coverage rates with respect to true response functions and their mean widths.
The width is computed by adding the lengths of the intervals around indi-
vidual impulse response parameters over the periods from 0 to H.

4.2 Simulation Results

Table 1 summarizes the results for DGP1 with T = 50 observations, a horizon
for the IRFs of H = 10 and the lag order estimated by Akaike’s information
criterion. The results for larger sample sizes and the longer horizon H = 20
are given in Appendix B, while all results for DGP1 and the case of known lag
order are provided in Appendix C.

Results from Table 1 indicate that for a small sample size of 50 observa-
tions no method is able to deliver bands with the expected actual coverage
for all the cases. Out of the three HDR methods, the best results in terms
of estimated coverage probabilities are obtained for HDRw, while the HDR
and HDRs bands perform worse and rather similarly. As can be expected,
the better coverage properties of HDRw come at the cost of a larger band
width as compared to HDR and HDRs. HDRw is also uniformly superior to
the traditional Bonferroni method. The HDRw bands have more precise cov-
erage rates accompanied by similar and sometimes even smaller width than
the Bonferroni regions. Overall, the best coverage results are obtained by

10



Table 1: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 50, H = 10 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 79.95 (9.18) 87.70 (5.98) 91.75 (4.14) 79.95 (4.56)
HDRs 79.15 (10.03) 86.55 (6.13) 95.30 (4.27) 78.70 (4.66)
HDRw 85.50 (11.74) 88.85 (6.60) 98.60 (5.77) 81.75 (5.15)
W 89.10 (13.90) 92.70 (7.64) 98.30 (6.73) 85.85 (6.10)
B 82.40 (11.77) 85.70 (6.34) 95.35 (5.55) 78.15 (5.21)

ϕ = −0.90
HDR 74.60 (8.86) 87.50 (5.94) 92.40 (3.71) 79.40 (4.46)
HDRs 78.90 (9.62) 86.90 (6.06) 96.00 (3.82) 78.70 (4.57)
HDRw 84.80 (11.12) 88.95 (6.53) 98.45 (4.98) 81.35 (5.07)
W 88.70 (12.90) 92.80 (7.50) 98.00 (5.89) 85.85 (5.97)
B 82.70 (11.00) 86.70 (6.25) 95.10 (4.87) 78.00 (5.14)

ϕ = −0.50
HDR 85.15 (4.33) 91.35 (4.96) 93.60 (2.26) 80.65 (4.09)
HDRs 85.20 (4.44) 91.80 (5.06) 98.20 (2.27) 79.75 (4.21)
HDRw 87.65 (4.98) 92.60 (5.57) 98.40 (2.49) 83.65 (4.90)
W 90.80 (5.72) 95.55 (6.42) 98.20 (3.00) 87.40 (5.74)
B 84.75 (4.93) 90.35 (5.36) 94.80 (2.48) 80.75 (4.97)

ϕ = 0.00
HDR 85.80 (3.54) 88.45 (5.48) 93.35 (2.28) 81.40 (4.47)
HDRs 88.10 (3.56) 88.40 (5.61) 97.90 (2.27) 80.15 (4.58)
HDRw 87.25 (3.74) 92.45 (6.32) 98.20 (2.47) 84.35 (5.27)
W 89.90 (4.33) 95.00 (7.27) 97.90 (3.00) 88.00 (6.23)
B 83.40 (3.63) 89.45 (6.10) 94.25 (2.50) 80.90 (5.37)

ϕ = 0.50
HDR 85.10 (5.24) 86.45 (7.39) 94.60 (3.19) 81.85 (5.32)
HDRs 84.70 (5.41) 86.55 (7.70) 97.50 (3.19) 81.30 (5.53)
HDRw 87.25 (6.03) 90.80 (8.78) 98.35 (3.66) 85.80 (6.36)
W 91.25 (7.03) 93.25 (9.98) 98.15 (4.59) 88.65 (7.47)
B 84.95 (6.01) 89.25 (8.53) 94.80 (3.88) 80.20 (6.41)

ϕ = 0.90
HDR 74.80 (9.88) 78.70 (10.55) 94.20 (5.86) 80.50 (7.18)
HDRs 74.20 (10.71) 79.40 (11.38) 96.60 (6.02) 78.00 (7.70)
HDRw 83.10 (12.62) 85.95 (13.29) 98.75 (7.66) 82.10 (9.18)
W 86.75 (14.13) 89.85 (14.58) 98.35 (9.52) 85.55 (10.58)
B 80.95 (11.99) 83.70 (12.33) 96.10 (7.84) 78.00 (8.84)

ϕ = 0.95
HDR 70.95 (10.34) 74.40 (10.69) 92.95 (6.32) 81.25 (7.43)
HDRs 71.35 (11.27) 76.50 (11.59) 95.60 (6.52) 77.65 (8.02)
HDRw 80.20 (13.40) 84.50 (13.63) 98.15 (8.50) 82.40 (9.64)
W 84.50 (15.16) 88.90 (15.05) 98.20 (10.52) 86.25 (11.13)
B 77.70 (12.75) 81.75 (12.65) 95.60 (8.60) 78.25 (9.23)

ϕ = 1.00
HDR 61.10 (10.42) 63.20 (10.51) 91.15 (6.72) 81.50 (7.67)
HDRs 64.25 (11.37) 68.55 (11.41) 93.85 (6.95) 77.85 (8.30)
HDRw 75.30 (13.66) 78.85 (13.58) 98.00 (9.23) 83.55 (10.04)
W 81.05 (15.79) 84.70 (15.19) 97.95 (11.34) 86.95 (11.54)
B 70.40 (13.16) 74.75 (12.66) 94.75 (9.24) 78.75 (9.55)
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the Wald band which is also the widest of all. This inflation of width seems
to be justified for the smallest samples analyzed in Table 1.

Tables 4–8 in Appendix B show how the conclusions change if larger
samples and longer propagation horizons are investigated. First, for larger
sample sizes (T = 100 and T = 200) all the coverage probability estimates
go up. In effect, the Wald method is no longer best, as both the HDRw and
B bands have more precise coverage rates and are at the same time narrower
than the Wald bands. This indicates, that for more realistic sample sizes,
the Wald bands are excessively large which is not attractive for empirical
applications. Second, for T = 100, 200 and H = 10 the dominance of the
HDRw method over the Bonferroni method is less clear than for T = 50, as
the coverage probabilities of the two types of bands become more similar.
The HDRw regions may be still found superior as in many cases they have
coverage exceeding 90% and smaller widths. Third, the HDRw bands gain
advantage over the Bonferroni bands as H increases. A longer propagation
horizon brings the nominal coverage levels of the intervals making up the
Bonferroni band closer to 1, which may result in large width of the B bands.
This can be seen in Tables 7 and 8, where the HDRw bands are more precise
both in terms of coverage and width than the Bonferroni bands. Fourth, the
HDR and HDRs regions perform better for larger T and continue to be the
narrowest. However, especially for more persistent processes, their coverage
rates may still fall below the nominal level.

The findings are qualitatively almost the same if the true lag order of
1 is used in the simulations (Tables 9–14 in Appendix C). As theoretically
justified, given more information on the model, the coverage probabilities
increase and the mean width estimates decrease. In effect, the Wald bands
become too wide and cease to be competitive even for T = 50.

As a robustness check, we repeated all the simulations for DGP1 without
the assumption regarding the normal distribution of the error terms. Allow-
ing for skewness, fat tails or bimodality in the distribution of the innovations
did not affect the relative performance of the methods.

The results for DGP2 with estimated lag order, T = 200 and H = 12 are
shown in Table 2, while Appendix D provides additional results on DGP2 for
T = 200 and T = 400, horizons H = 12 and H = 24 and both assuming the
true lag order and using the estimated lag order. All results for DGP2 refer
only to the responses of the corporate bond spreads aaa and bbb, which are
in the focus of the empirical application.

Results from Table 2 show that capturing uncertainty associated with
response parameter estimates is more difficult in a larger and very persistent
system. For T = 200 and H = 12 all the methods fail to achieve the target
of 90% coverage for all the cases. The undercoverage is a function of the
width of the bands and so, the largest deviations from the nominal level
are observed for the narrowest bands (HDR and HDRs) and the smallest
deviations correspond to the widest Wald band. The HDRw is larger in these
settings than the Bonferroni region which allows to bring up the coverage
rates of this band in the most problematic cases.
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Table 2: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 200, H = 12 and estimated lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 81.50 (1.74) 85.55 (1.86) 94.75 (2.47) 96.80 (2.80) 91.25 (2.17)
shock 2 98.10 (397.22) 98.35 (384.72) 99.35 (411.61) 99.65 (454.42) 95.20 (352.71)
shock 3 92.35 (0.85) 94.35 (0.87) 98.40 (1.10) 98.90 (1.21) 95.25 (0.94)
shock 4 84.90 (1.17) 86.40 (1.23) 95.50 (1.64) 97.90 (1.82) 90.65 (1.41)
shock 5 73.80 (88.09) 66.85 (90.47) 79.15 (114.54) 85.90 (126.00) 68.45 (98.78)
shock 6 81.15 (288.82) 77.45 (273.95) 89.55 (347.74) 93.30 (384.54) 82.10 (302.06)

responses of bbb
shock 1 92.25 (1.50) 94.20 (1.61) 98.70 (2.13) 99.25 (2.42) 96.75 (1.87)
shock 2 98.05 (356.23) 98.45 (347.62) 99.10 (368.21) 99.30 (408.83) 95.65 (316.47)
shock 3 92.05 (0.76) 93.35 (0.78) 98.45 (0.99) 98.85 (1.09) 94.15 (0.84)
shock 4 90.45 (1.04) 91.65 (1.10) 97.85 (1.47) 98.70 (1.64) 94.50 (1.26)
shock 5 94.05 (72.18) 94.00 (73.24) 98.70 (96.44) 99.25 (107.14) 96.15 (82.74)
shock 6 78.95 (247.46) 67.10 (239.35) 77.95 (301.77) 85.90 (335.69) 67.65 (262.89)

Conclusions from further results obtained for DGP2 and the case of un-
known lag length (Tables 15–17 in Appendix D) are as follows: doubling the
sample size, makes it possible to increase all the coverage rates above 80%.
Using the HDR, HDRs and even B methods is still, however, associated with
a risk of giving a false impression about the estimation precision. Another
consequence of increasing the sample size is that the Wald bands become
too wide as compared to the HDRw bands. Increasing the horizon H to 24,
works in favor of the Bonferroni band which can be considered competitive
with the HDRw band in this case.

There are no big changes in results under the more idealized condition of
knowing the true order of the VAR (Tables 18–21 in the Appendix). Thus,
the same conclusions as formulated for the lag length p estimated using AIC
hold.

5 Application to Corporate Bond Spreads

The empirical example, which also served as blueprint for the more com-
plex DGP2 in the Monte Carlo analysis, is based on a model proposed by
Bundesbank (2005) and studied with regard to its forecasting performance
by Staszewska-Bystrova and Winker (2014). In the context of analyzing the
stability of the financial system, the model focused on determinants of cor-
porate bond spreads, i.e., the gap between the returns on bonds considered
as “safe” (German government bonds) and on more risky corporate bonds.

The model builds on a theoretical base discussed in detail in Bundesbank
(2005, pp. 141ff). However, the reduced form VAR used for the empiri-
cal analysis includes also some additional variables, which are considered as
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potentially relevant. In particular, based on arguments from option price the-
ory and macroeconomic portfolio theory, the model comprises a short-term
money market rate as a monetary policy indicator and two corporate bond
spreads corresponding to different levels of perceived risk. The growth rate
of a stock market index reflects expectations concerning the business cycle
and prices of assets as alternative to corporate bond spreads. Stock market
volatility is used as proxy for uncertainty, which through its effect on firms’
value, i.e., distance-to-default, will affect corporate bond spreads. Finally,
the interest rate curve is represented by the spread between 2- and 10-year
government bonds.

The VAR model discussed in Bundesbank (2005, pp. 141ff) includes two
additional endogenous variables, which are not considered in the present ap-
plication due to problems with data availability and in order to limit the
model dimension. The first variable is a measure of gross emissions of cor-
porate bond spreads, which can be seen as a proxy for market liquidity, and
the second variable relates outstanding loans to corporate profits.

Apart from the omission of the two variables, our implementation follows
the original VAR model as closely as possible, given available data. For
the option adjusted spreads for Euro area corporate bonds with AAA and
BBB rating, we choose a time to maturity of 5 to 7 years, instead of the 7
to 10 years in the original paper. This change is a consequence of limited
availability of corporate bonds with time to maturity above 7 years after the
financial market crisis which precludes the calculation of an index. Data are
obtained from the Bank of America/Merrill Lynch global index system5 and
denoted by aaa and bbb, respectively. Data for all other variables included
in the VAR model are obtained from Datastream. The 3-month Euribor is
chosen as short-term interest rate, which reflects both monetary policy and
conditions on the interbank market. It is denoted as r3m. The monthly
growth rate of the Dow Jones Stoxx 50, denoted as d dj50 is used as a
stock market indicator. For stock market volatility representing a proxy for
uncertainty, we use the logarithm of the implied volatility of the Dow Jones
Stoxx 50, which is denoted by lvola. Finally, slope stands for the interest
rate spread between 2- and 10-year government bonds. We decided to use
the spread on German government bonds rather than the spread on all Euro
denoted government bonds in order to exclude the effects of the sovereign
debt crisis. Table 3 summarizes the data used for the VAR model.

The model includes six variables in the order r3m, d dj50, lvola, slope,
aaa, and bbb. This ordering corresponds to the one suggested in Bundesbank
(2005, pp. 141ff). The model is estimated with monthly data for the sample
starting with the introduction of the Euro in January 1999 and ending in June
2015. The sample size is T = 197, i.e., it is similar to the smaller sample
size considered in the Monte Carlo simulations. Model selection based on
the AIC with a maximum lag length of 8 months suggests a lag order of
four. The estimation results for the 144 parameters describing the dynamics,
the six constants and the 6× 6 variance covariance matrix (rounded to four

5See http://www.mlindex.ml.com/gispublic/default.asp.
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Table 3: Labels, definition and source of series used for the VAR(4) model

Variable Description Source Label

aaa OAS for EMU Corp. AAA Rated 5-7 Yr BoA/ML GIS ER 13
bbb OAS for EMU Corp. BBB Rated 5-7 Yr BoA/ML GlS ER 43
r3m 3-month Euribor Datastream EIBOR3M
dj50 Dow Jones Stoxx 50 Datastream DJSTO50
d dj50 Month to month growth rate of dj50
vola implied volatility of Dow Jones Stoxx 50 Datastream VSTOXXI
lvola logarithm of vola
slope difference between returns on 2 and Datastream GBBD02Y

10 years German government bonds GBBD10Y
Notes: • OAS – option-adjusted spreads

• BoA/ML GIS – Bank of America/Merrill Lynch Global Indicator System

digits) are presented in Appendix A.
As for the Monte Carlo simulation, we consider impulse responses for

horizons H = 12 and H = 24 corresponding to one and two years, respec-
tively. Orthogonal impulse responses are calculated assuming the ordering
of the variables mentioned earlier: r3m, d dj50, lvola, slope, aaa, and bbb.
This ordering ensures that change in the monetary policy instrument r3m

can have a contemporaneous effect on all other variables in the system.
The impulse responses and corresponding joint confidence bands con-

structed making use of the different methods presented in this study are
shown in Figure 3 for H = 12 and in Figure 4 for H = 24, respectively. We
also include the näıve bands in the figures which are constructed by connect-
ing pointwise 90% confidence intervals for each individual impulse response
coefficient. It becomes apparent that while the overall shape of the confi-
dence bands is similar for all methods considered, the widths of the bands
differ substantially. The näıve bands are the smallest but, as argued earlier,
are likely to have a much smaller coverage probability than the desired 90%.
As might have been expected based on the simulation results presented in
Table 2 in the previous section, the bands based on the Wald and on the
HDRw methods are the widest. Given that the smaller bands have a ten-
dency for coverage rates below the desired nominal rate in the simulations,
in particular with regard to the responses of aaa, considering Wald or HDRw

bands may be an appropriate choice. While none of the bands includes the
zero line for all propagation horizons, significantly positive values are much
more common for the narrower bands. The differences between the methods
become even more pronounced, when the upper limit of the confidence bands
is considered. In particular, the HDRw band is smaller than the Wald band
while maintaining an adequate coverage according to the simulation results.
Hence, it seems to be the best choice for the responses of aaa, assuming that
the results from the simulation setting hold for the empirical model.
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Figure 3: 90% confidence bands for responses of aaa and bbb to a monetary
policy shock for the empirical VAR(4) model, H = 12
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Figure 4: 90% confidence bands for responses of aaa and bbb to a monetary
policy shock for the empirical VAR(4) model, H = 24

17



The qualitative findings concerning responses of bbb, differ even more
markedly given that both the Wald and the HDRw bands include zero for
all periods up to H = 12 or H = 24, respectively. In these cases, one may
conclude that there is no effect of the monetary policy shock on the corporate
bond spread, while the narrower bands exclude zero for at least some of the
propagation horizons. Given that all methods included in the Monte Carlo
study are conservative for this IRF, one might consider resorting to the HDR
or HDRs bands in this case. However, for applied econometric work, the
selection of different methods for constructing bands for a single model may
not be convincing.

To sum up, for a specific empirical application based on a six-dimensional
VAR model, joint confidence bands constructed with different approaches dif-
fer not only quantitatively, but also with regard to the qualitative conclusions
they imply. Based on the Monte Carlo simulation results, the HDRw method
appears to be a sensible choice when strong emphasis is placed on coverage
properties of the bands. Substantially narrower HDRs bands might carry the
risk of underreporting the actual uncertainty.

6 Conclusion

In this study we have proposed and investigated the properties of non-
parametric methods for constructing confidence bands for impulse responses
based on the bootstrap and the highest density region approach. The den-
sity estimation was applied to either unscaled bootstrapped response func-
tions, responses scaled period-wise with the estimated standard deviations
or whitened bootstrap replicates of the impulse responses.

The results of an extensive Monte Carlo study indicate that the HDR
method is a promising tool for computing error bands for structural vector
autoregressive analysis. In particular the method taking into account the
correlation structure between the response parameter estimators (HDRw) is
superior to other methods in several dimensions. This method carries the
smallest risk of underachieving the nominal coverage rate and is competitive
with existing benchmarks, i.e. the Bonferroni and Wald approaches.

The advantages over the rather conservative Wald band can be seen for
sample sizes exceeding very small ones and consist in reduced width and more
precise coverage rates. As a result, the HDRw bands are more informative
than the Wald bands and hence are attractive for empirical applications. The
dominance over the Bonferroni band is less pronounced, as the two types of
bands are often quite similar. Nevertheless, the HDRw method may have
advantages, e.g., if the propagation horizon used in the analysis becomes
large. This directly influences the width of the Bonferroni band which may
easily become wider than the HDRw band.

An empirical application using a six-dimensional VAR model shows that
qualitative findings from impulse response analysis might change depending
on the method used for constructing joint bands. Although no general con-
clusions can be drawn from this example, the outcomes are in line with the
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results from the Monte Carlo simulations.
Further research will address the robustness of the method under depar-

tures from the underlying assumptions. Another extension is to investigate
possible gains from increasing the number of bootstrap replications. This
may improve the non-parametric point-wise approximation of a high dimen-
sional distribution used in the HDR method.
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Appendix

A DGP2 based on Corporate Bond Spreads

For the VAR model of corporate bond spreads discussed in Section 5, the
variables are ordered as y = [r3m d dj50 lvola slope aaa bbb]′ both in
the model and for the calculation of orthogonal impulse response functions.
From the estimation of a VAR(4) model (with intercepts) for the available
data, the following (rounded) OLS parameter estimates result, which are
used for the data based DGP used in Section 4. The modulus of the largest
root of this DGP’s companion matrix is equal to 0.9846.

Â1 =


1.4980 0.0001 0.2083 −0.0194 −0.0049 0.0005

85.0541 0.0946 95.8171 −58.6221 −2.4562 1.0396
−0.1518 −0.0000 0.6512 0.1253 0.0042 −0.0007
−0.1668 −0.0000 0.0592 0.9068 0.0081 −0.0019
11.7445 −0.0036 4.5559 1.7544 0.9544 −0.1109
26.3265 −0.0024 24.0634 20.9788 1.0234 0.8374



Â2 =


−0.6398 −0.0001 −0.2583 −0.0684 0.0013 −0.0008
−78.7624 0.1046 48.5138 −17.5405 −0.1287 −0.7530

0.3310 0.0000 0.1092 −0.0513 −0.0036 0.0004
0.1296 0.0000 −0.0902 0.0216 −0.0073 0.0029
−2.4116 0.0033 −6.5170 1.6486 0.1795 0.1755
−32.4664 0.0002 −32.2479 −20.5660 −0.2242 −0.0399



Â3 =


0.3838 0.0001 0.1862 0.0147 0.0006 0.0004

−20.7017 0.1124 55.7656 135.3880 1.7755 −0.3592
−0.2284 −0.0001 0.0029 −0.1107 0.0007 −0.0005
−0.1356 −0.0004 −0.1141 0.0905 −0.0006 −0.0017
−4.9517 −0.0106 −1.9574 −7.1059 0.0485 −0.1459
−33.0704 −0.0262 −21.9510 −25.1256 0.3955 0.0591



Â4 =


−0.2453 0.0000 −0.1124 0.0775 0.0024 −0.0002
−3.8015 −0.0351 −139.2140 −49.1099 −0.2717 0.2346

0.0620 0.0001 0.0601 0.0250 0.0004 0.0005
0.1620 0.0001 0.2075 −0.1063 0.0007 0.0005
−4.1185 −0.0027 1.4944 1.8785 −0.1641 0.0800
42.4863 −0.0000 17.7850 25.4542 −0.6164 −0.0021



ν̂ =


−0.0120
−138.8264

0.5026
−0.0948

9.1030
29.9061



Σ̂u =


0.0000 0.0001 −0.0000 −0.0000 0.0000 −0.0000
0.0001 1.5924 −0.0013 −0.0001 −0.0398 −0.1265
−0.0000 −0.0013 0.0000 0.0000 0.0001 0.0002
−0.0000 −0.0001 0.0000 0.0000 0.0000 0.0001

0.0000 −0.0398 0.0001 0.0000 0.0110 0.0118
−0.0000 −0.1265 0.0002 0.0001 0.0118 0.0492

× 104
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B Further Results for DGP1 with Estimated

Lag Order

22



Table 4: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 100, H = 10 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 79.70 (6.13) 88.45 (3.63) 89.40 (2.10) 88.10 (2.55)
HDRs 85.90 (6.69) 88.45 (3.70) 94.05 (2.13) 88.50 (2.58)
HDRw 92.15 (7.80) 91.60 (3.96) 99.15 (2.92) 91.75 (2.78)
W 95.45 (9.40) 94.55 (4.55) 98.55 (3.31) 94.90 (3.21)
B 91.60 (8.33) 90.30 (3.93) 97.35 (3.00) 89.15 (2.91)

ϕ = −0.90
HDR 82.05 (6.04) 88.70 (3.63) 89.10 (1.84) 88.00 (2.46)
HDRs 87.00 (6.58) 88.00 (3.66) 95.50 (1.86) 88.90 (2.50)
HDRw 93.05 (7.52) 92.10 (3.91) 98.95 (2.47) 91.95 (2.70)
W 96.10 (8.78) 95.00 (4.42) 98.45 (2.84) 94.30 (3.14)
B 93.40 (7.88) 91.15 (3.84) 96.80 (2.56) 89.75 (2.84)

ϕ = −0.50
HDR 91.15 (2.35) 92.00 (2.76) 88.85 (0.89) 88.85 (2.15)
HDRs 90.80 (2.39) 92.50 (2.79) 99.20 (0.91) 87.50 (2.20)
HDRw 94.20 (2.66) 93.75 (2.98) 99.30 (0.98) 93.30 (2.51)
W 96.25 (3.03) 96.20 (3.34) 98.65 (1.13) 95.65 (2.90)
B 93.10 (2.77) 93.10 (2.91) 96.95 (1.03) 91.20 (2.66)

ϕ = 0.00
HDR 92.30 (1.84) 92.55 (3.12) 90.95 (0.98) 88.10 (2.39)
HDRs 97.30 (1.85) 90.95 (3.15) 98.75 (0.98) 87.55 (2.43)
HDRw 95.95 (1.90) 94.85 (3.50) 98.80 (1.07) 93.60 (2.74)
W 96.90 (2.13) 97.00 (3.89) 98.20 (1.27) 96.00 (3.19)
B 93.60 (1.89) 95.00 (3.41) 96.55 (1.16) 91.35 (2.91)

ϕ = 0.50
HDR 90.05 (3.05) 90.65 (4.54) 91.35 (1.62) 89.05 (3.06)
HDRs 91.55 (3.11) 90.35 (4.69) 98.35 (1.61) 91.40 (3.14)
HDRw 94.15 (3.41) 93.85 (5.24) 98.60 (1.81) 94.15 (3.52)
W 96.35 (3.81) 96.55 (5.72) 98.40 (2.24) 96.00 (3.99)
B 92.45 (3.47) 93.95 (5.16) 97.25 (2.07) 91.20 (3.65)

ϕ = 0.90
HDR 85.50 (6.93) 86.60 (7.36) 92.20 (3.65) 89.20 (4.64)
HDRs 85.85 (7.57) 87.65 (8.00) 95.70 (3.70) 89.65 (4.97)
HDRw 91.80 (8.69) 92.55 (9.16) 99.40 (4.68) 93.90 (5.83)
W 94.65 (9.61) 94.85 (9.89) 99.25 (5.62) 95.35 (6.41)
B 90.35 (8.78) 92.05 (8.92) 98.00 (5.13) 91.10 (5.83)

ϕ = 0.95
HDR 84.60 (7.32) 86.20 (7.44) 89.95 (4.14) 87.60 (4.97)
HDRs 84.75 (8.02) 86.95 (8.12) 94.05 (4.21) 88.05 (5.37)
HDRw 90.90 (9.40) 91.75 (9.45) 98.85 (5.48) 93.55 (6.37)
W 93.50 (10.51) 94.30 (10.29) 98.25 (6.51) 95.70 (6.96)
B 90.05 (9.52) 90.75 (9.20) 97.15 (5.89) 90.00 (6.27)

ϕ = 1.00
HDR 73.70 (7.12) 76.70 (7.06) 90.50 (4.46) 87.75 (5.15)
HDRs 78.00 (7.80) 80.80 (7.71) 92.90 (4.52) 87.20 (5.60)
HDRw 86.20 (9.36) 88.05 (9.17) 98.60 (6.09) 93.20 (6.73)
W 89.50 (10.80) 91.05 (10.22) 98.20 (7.14) 95.10 (7.29)
B 82.65 (9.66) 85.10 (9.03) 96.95 (6.41) 90.05 (6.55)
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Table 5: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 200, H = 10 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 83.70 (4.34) 89.25 (2.48) 88.40 (1.32) 87.65 (1.65)
HDRs 88.05 (4.71) 89.25 (2.51) 91.80 (1.32) 88.45 (1.67)
HDRw 94.85 (5.44) 92.15 (2.68) 99.30 (1.79) 92.50 (1.76)
W 97.10 (6.66) 95.50 (3.09) 98.40 (2.05) 95.40 (2.05)
B 94.60 (5.94) 91.65 (2.69) 97.20 (1.90) 91.15 (1.87)

ϕ = −0.90
HDR 86.85 (4.17) 90.65 (2.48) 88.05 (1.12) 89.20 (1.59)
HDRs 88.55 (4.53) 90.20 (2.49) 93.40 (1.12) 90.60 (1.62)
HDRw 94.15 (5.12) 92.75 (2.64) 99.30 (1.48) 93.40 (1.71)
W 96.70 (6.03) 94.90 (2.97) 98.45 (1.69) 95.60 (1.99)
B 93.90 (5.52) 92.40 (2.62) 97.45 (1.58) 92.45 (1.82)

ϕ = −0.50
HDR 90.95 (1.55) 93.25 (1.84) 88.55 (0.51) 89.65 (1.42)
HDRs 90.65 (1.58) 93.50 (1.85) 99.00 (0.54) 88.75 (1.44)
HDRw 94.15 (1.74) 94.30 (1.96) 99.40 (0.58) 95.00 (1.62)
W 97.35 (1.99) 96.55 (2.17) 98.20 (0.66) 96.95 (1.88)
B 94.55 (1.83) 94.00 (1.90) 96.30 (0.61) 93.90 (1.73)

ϕ = 0.00
HDR 90.95 (1.15) 91.55 (2.04) 89.05 (0.55) 89.30 (1.53)
HDRs 96.50 (1.16) 90.70 (2.04) 98.15 (0.57) 89.85 (1.54)
HDRw 95.05 (1.18) 94.10 (2.25) 98.30 (0.61) 94.00 (1.70)
W 96.05 (1.31) 96.90 (2.48) 98.05 (0.73) 96.75 (2.01)
B 93.70 (1.18) 94.25 (2.21) 96.85 (0.69) 94.45 (1.85)

ϕ = 0.50
HDR 90.25 (1.98) 90.95 (3.05) 90.40 (0.97) 89.00 (2.00)
HDRs 92.10 (2.00) 90.90 (3.12) 97.55 (0.97) 92.60 (2.03)
HDRw 94.45 (2.18) 94.70 (3.47) 98.15 (1.08) 95.20 (2.24)
W 96.60 (2.41) 96.85 (3.76) 98.35 (1.34) 96.95 (2.53)
B 94.10 (2.23) 94.45 (3.43) 97.15 (1.28) 93.75 (2.35)

ϕ = 0.90
HDR 87.35 (4.74) 88.20 (5.05) 89.55 (2.43) 87.80 (3.17)
HDRs 89.65 (5.14) 90.70 (5.45) 93.75 (2.44) 90.25 (3.38)
HDRw 93.80 (5.83) 94.45 (6.18) 99.05 (3.08) 95.15 (3.92)
W 96.45 (6.55) 96.30 (6.77) 99.05 (3.67) 96.50 (4.24)
B 93.50 (6.10) 93.95 (6.18) 98.00 (3.47) 93.45 (3.96)

ϕ = 0.95
HDR 88.85 (5.12) 89.00 (5.17) 91.05 (2.84) 89.25 (3.47)
HDRs 90.05 (5.58) 91.35 (5.61) 93.55 (2.85) 90.40 (3.74)
HDRw 94.35 (6.47) 94.80 (6.49) 99.00 (3.69) 95.40 (4.36)
W 96.20 (7.39) 95.95 (7.18) 98.85 (4.37) 96.20 (4.70)
B 94.10 (6.80) 93.90 (6.48) 98.10 (4.11) 93.50 (4.38)

ϕ = 1.00
HDR 78.75 (4.70) 80.00 (4.66) 89.25 (3.10) 88.10 (3.61)
HDRs 82.35 (5.10) 84.10 (5.04) 90.95 (3.11) 88.55 (3.94)
HDRw 90.00 (6.18) 90.40 (6.02) 98.75 (4.22) 95.15 (4.69)
W 92.15 (7.32) 92.85 (6.85) 98.45 (4.88) 96.05 (4.97)
B 87.00 (6.61) 87.65 (6.09) 97.65 (4.57) 92.80 (4.62)
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Table 6: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 50, H = 20 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 81.65 (21.32) 88.95 (10.99) 95.20 (8.23) 82.40 (7.09)
HDRs 79.95 (23.62) 87.05 (11.59) 97.20 (8.82) 82.85 (7.37)
HDRw 86.00 (27.36) 89.65 (12.50) 98.60 (12.35) 84.65 (8.40)
W 89.25 (35.84) 93.00 (15.35) 98.00 (15.14) 87.05 (10.12)
B 85.60 (29.63) 90.45 (13.03) 97.00 (12.88) 83.00 (9.11)

ϕ = −0.90
HDR 80.65 (18.71) 88.15 (10.10) 96.50 (7.00) 82.60 (6.66)
HDRs 79.95 (20.60) 86.20 (10.58) 98.05 (7.44) 83.85 (6.92)
HDRw 86.95 (23.97) 89.10 (11.48) 99.05 (10.12) 84.50 (7.85)
W 89.60 (30.18) 92.70 (13.75) 98.00 (12.53) 87.15 (9.54)
B 86.45 (25.45) 89.60 (11.88) 97.10 (10.68) 83.85 (8.65)

ϕ = −0.50
HDR 86.25 (6.09) 91.25 (6.96) 94.35 (3.62) 82.60 (5.87)
HDRs 87.05 (6.33) 93.25 (7.17) 98.35 (3.68) 82.55 (6.15)
HDRw 88.40 (7.24) 92.80 (8.05) 98.35 (4.10) 86.35 (7.33)
W 90.90 (8.92) 95.15 (9.70) 97.55 (5.23) 88.95 (9.05)
B 87.65 (7.87) 92.85 (8.61) 95.70 (4.38) 84.05 (8.26)

ϕ = 0.00
HDR 88.35 (4.68) 90.00 (7.18) 95.25 (3.18) 81.65 (5.98)
HDRs 91.20 (4.73) 90.55 (7.42) 98.40 (3.19) 82.20 (6.22)
HDRw 89.70 (5.05) 92.10 (8.64) 98.25 (3.53) 84.90 (7.53)
W 91.65 (6.20) 94.95 (10.64) 98.00 (4.54) 87.80 (9.60)
B 88.40 (5.44) 92.80 (9.54) 96.20 (4.00) 84.00 (8.80)

ϕ = 0.50
HDR 82.75 (7.84) 87.85 (11.28) 96.30 (5.17) 80.75 (8.32)
HDRs 84.10 (8.23) 88.10 (12.00) 98.05 (5.27) 81.90 (8.81)
HDRw 85.60 (9.48) 91.25 (14.23) 98.10 (6.12) 83.30 (10.48)
W 88.05 (12.32) 94.00 (18.00) 97.55 (8.80) 86.05 (14.16)
B 83.40 (10.62) 91.50 (15.62) 95.70 (7.12) 81.15 (11.77)

ϕ = 0.90
HDR 73.10 (20.20) 77.55 (22.04) 96.20 (11.51) 84.20 (13.78)
HDRs 72.05 (22.24) 79.45 (24.31) 97.90 (12.23) 81.70 (15.37)
HDRw 80.70 (26.58) 86.75 (28.74) 98.50 (16.04) 84.00 (18.98)
W 84.75 (33.14) 89.90 (34.72) 97.90 (21.88) 86.80 (24.19)
B 79.95 (27.17) 86.75 (28.80) 96.25 (17.82) 81.55 (20.00)

ϕ = 0.95
HDR 71.65 (22.72) 73.50 (23.61) 96.70 (12.99) 84.35 (14.72)
HDRs 71.70 (25.03) 76.10 (26.15) 97.55 (13.90) 81.60 (16.57)
HDRw 82.60 (30.07) 85.30 (30.92) 98.75 (18.75) 83.90 (20.74)
W 86.05 (39.02) 89.20 (38.56) 98.65 (25.80) 86.45 (26.64)
B 81.20 (30.91) 85.75 (31.05) 97.10 (20.61) 81.30 (21.72)

ϕ = 1.00
HDR 58.20 (23.95) 60.05 (24.12) 94.65 (14.23) 84.10 (15.52)
HDRs 64.40 (26.46) 67.40 (26.80) 96.30 (15.31) 80.65 (17.62)
HDRw 75.65 (31.85) 79.15 (31.94) 98.30 (21.22) 84.35 (22.49)
W 79.90 (43.74) 84.10 (41.50) 97.85 (28.96) 86.85 (28.81)
B 74.10 (33.80) 78.75 (32.81) 96.35 (23.16) 82.05 (23.51)
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Table 7: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 100, H = 20 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 80.30 (14.26) 83.40 (6.60) 92.15 (3.75) 89.25 (3.41)
HDRs 87.10 (16.06) 88.85 (7.05) 97.20 (3.90) 91.50 (3.43)
HDRw 93.00 (18.04) 91.50 (7.41) 99.45 (5.48) 92.80 (3.78)
W 95.25 (21.36) 94.10 (8.42) 98.85 (6.10) 94.80 (4.20)
B 93.70 (20.18) 92.80 (7.90) 98.55 (6.10) 93.05 (4.18)

ϕ = −0.90
HDR 81.30 (12.07) 86.35 (5.87) 93.80 (2.88) 89.55 (3.09)
HDRs 85.60 (13.41) 87.75 (6.15) 97.60 (2.93) 93.20 (3.13)
HDRw 92.10 (15.22) 91.70 (6.54) 99.25 (3.94) 93.90 (3.37)
W 95.40 (17.61) 94.85 (7.31) 98.70 (4.56) 95.05 (3.81)
B 93.65 (16.99) 93.90 (6.95) 98.15 (4.62) 93.45 (3.81)

ϕ = −0.50
HDR 91.85 (2.51) 92.60 (2.99) 90.55 (0.98) 88.30 (2.32)
HDRs 92.55 (2.59) 93.85 (3.05) 99.15 (1.01) 89.80 (2.39)
HDRw 94.85 (2.89) 93.00 (3.24) 99.25 (1.06) 93.45 (2.78)
W 96.85 (3.31) 96.05 (3.65) 98.20 (1.24) 96.15 (3.21)
B 95.45 (3.30) 95.25 (3.50) 98.15 (1.25) 94.75 (3.24)

ϕ = 0.00
HDR 91.40 (1.98) 90.90 (3.39) 91.35 (1.09) 88.00 (2.63)
HDRs 97.45 (2.00) 91.75 (3.44) 99.15 (1.11) 88.55 (2.67)
HDRw 95.50 (2.04) 94.20 (3.84) 98.85 (1.18) 92.25 (3.07)
W 96.45 (2.29) 96.30 (4.31) 98.50 (1.41) 94.95 (3.60)
B 95.15 (2.22) 95.05 (4.16) 97.75 (1.43) 93.15 (3.64)

ϕ = 0.50
HDR 89.75 (3.50) 89.65 (5.42) 91.80 (1.90) 90.15 (3.59)
HDRs 93.70 (3.59) 91.30 (5.61) 99.05 (1.90) 94.25 (3.69)
HDRw 93.65 (3.97) 93.30 (6.37) 99.00 (2.13) 93.90 (4.21)
W 95.90 (4.53) 95.90 (7.09) 98.35 (2.68) 95.50 (4.86)
B 94.55 (4.54) 94.70 (7.06) 97.70 (2.76) 94.65 (4.94)

ϕ = 0.90
HDR 84.05 (14.08) 84.95 (15.25) 95.65 (6.45) 92.40 (7.85)
HDRs 84.50 (15.70) 85.70 (17.08) 97.80 (6.65) 93.00 (8.65)
HDRw 91.75 (17.96) 92.10 (19.28) 99.65 (8.52) 94.85 (10.44)
W 94.70 (19.70) 94.40 (20.73) 98.85 (10.32) 95.50 (11.59)
B 93.25 (19.12) 93.55 (20.02) 98.75 (10.28) 93.70 (11.52)

ϕ = 0.95
HDR 83.05 (16.47) 84.80 (17.00) 95.50 (7.83) 92.45 (9.01)
HDRs 83.90 (18.55) 85.95 (19.26) 97.50 (8.18) 92.40 (10.11)
HDRw 90.85 (21.01) 90.70 (21.64) 99.25 (10.80) 94.75 (12.41)
W 93.35 (23.29) 93.65 (23.40) 98.70 (12.87) 95.30 (13.65)
B 91.75 (22.13) 92.30 (22.23) 98.60 (12.58) 93.65 (13.35)

ϕ = 1.00
HDR 72.40 (17.11) 73.65 (16.97) 94.70 (8.88) 91.85 (9.76)
HDRs 79.55 (19.43) 80.05 (19.48) 96.80 (9.36) 91.15 (11.09)
HDRw 87.60 (22.04) 87.65 (21.90) 99.55 (12.82) 94.35 (13.94)
W 90.05 (25.76) 90.40 (24.75) 98.95 (15.02) 95.35 (15.16)
B 86.80 (24.01) 87.50 (23.14) 98.75 (14.52) 93.35 (14.68)
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Table 8: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 200, H = 20 and estimated lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 79.90 (10.22) 84.20 (4.57) 89.40 (2.24) 88.75 (2.16)
HDRs 85.95 (11.49) 89.00 (4.93) 95.55 (2.29) 91.30 (2.13)
HDRw 92.45 (12.83) 91.40 (5.17) 99.45 (3.10) 94.20 (2.29)
W 95.55 (15.17) 94.80 (5.85) 98.60 (3.52) 95.40 (2.55)
B 94.90 (14.90) 94.15 (5.65) 98.90 (3.62) 94.60 (2.56)

ϕ = −0.90
HDR 86.00 (8.15) 88.25 (3.97) 90.10 (1.71) 88.35 (1.94)
HDRs 87.55 (9.06) 87.90 (4.16) 96.95 (1.72) 93.25 (1.96)
HDRw 93.50 (10.05) 91.05 (4.37) 99.20 (2.26) 94.60 (2.06)
W 96.65 (11.69) 94.70 (4.82) 98.25 (2.58) 95.50 (2.30)
B 95.80 (11.83) 94.20 (4.75) 97.95 (2.66) 94.60 (2.31)

ϕ = −0.50
HDR 90.75 (1.62) 93.25 (1.93) 89.30 (0.55) 89.15 (1.48)
HDRs 93.90 (1.68) 95.05 (1.99) 99.00 (0.60) 91.35 (1.53)
HDRw 95.50 (1.84) 94.10 (2.04) 99.15 (0.62) 94.90 (1.72)
W 97.80 (2.10) 96.25 (2.26) 98.40 (0.70) 96.80 (1.98)
B 97.45 (2.09) 96.15 (2.16) 98.55 (0.71) 95.70 (1.98)

ϕ = 0.00
HDR 92.40 (1.18) 92.20 (2.12) 88.95 (0.57) 89.50 (1.59)
HDRs 98.15 (1.22) 91.85 (2.15) 99.10 (0.60) 90.35 (1.61)
HDRw 96.75 (1.20) 95.15 (2.34) 99.05 (0.62) 93.80 (1.78)
W 97.20 (1.33) 97.40 (2.58) 98.40 (0.75) 97.25 (2.11)
B 97.15 (1.31) 96.95 (2.51) 98.30 (0.78) 96.45 (2.13)

ϕ = 0.50
HDR 90.90 (2.13) 90.35 (3.39) 90.20 (1.05) 89.25 (2.17)
HDRs 95.25 (2.18) 91.60 (3.50) 98.85 (1.07) 94.70 (2.22)
HDRw 94.90 (2.35) 94.25 (3.85) 98.35 (1.15) 95.15 (2.44)
W 97.05 (2.61) 96.50 (4.19) 98.10 (1.45) 96.40 (2.78)
B 96.30 (2.64) 96.25 (4.19) 98.35 (1.53) 96.00 (2.83)

ϕ = 0.90
HDR 87.35 (9.51) 87.85 (10.42) 92.90 (3.98) 92.15 (5.04)
HDRs 88.55 (10.62) 90.45 (11.73) 97.80 (4.06) 94.20 (5.47)
HDRw 94.00 (11.77) 94.60 (12.86) 99.20 (5.05) 96.45 (6.42)
W 96.20 (13.03) 96.20 (13.83) 98.55 (6.02) 97.00 (6.97)
B 95.00 (13.32) 95.75 (14.04) 98.35 (6.30) 95.50 (7.20)

ϕ = 0.95
HDR 87.15 (12.04) 87.85 (12.30) 92.05 (5.24) 91.05 (6.11)
HDRs 88.80 (13.65) 89.15 (14.14) 96.25 (5.41) 92.20 (6.81)
HDRw 93.75 (15.13) 93.40 (15.50) 99.30 (6.95) 96.25 (8.14)
W 95.30 (16.79) 95.20 (16.78) 98.60 (8.18) 96.40 (8.76)
B 95.05 (16.85) 94.50 (16.73) 98.80 (8.42) 95.25 (8.96)

ϕ = 1.00
HDR 79.05 (11.82) 79.80 (11.60) 91.50 (6.34) 89.90 (6.98)
HDRs 84.15 (13.48) 85.00 (13.47) 94.40 (6.55) 92.35 (7.94)
HDRw 90.05 (15.26) 90.15 (15.12) 99.45 (8.91) 97.45 (9.80)
W 91.95 (18.12) 92.20 (17.29) 99.20 (10.20) 97.30 (10.31)
B 89.95 (17.87) 90.10 (17.00) 99.20 (10.37) 96.65 (10.44)
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C Results for DGP1 with Known Lag Order
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Table 9: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 50, H = 10 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 88.20 (8.08) 91.20 (4.76) 94.65 (2.45) 87.45 (3.19)
HDRs 88.05 (8.86) 89.45 (4.89) 97.75 (2.46) 86.85 (3.23)
HDRw 92.80 (10.13) 91.65 (5.23) 99.85 (3.42) 90.55 (3.63)
W 95.30 (12.41) 94.85 (6.18) 99.40 (3.95) 94.20 (4.40)
B 91.55 (10.88) 91.65 (5.33) 98.80 (3.70) 88.80 (4.08)

ϕ = −0.90
HDR 81.35 (8.00) 89.60 (4.82) 95.80 (2.23) 88.55 (3.20)
HDRs 86.70 (8.75) 87.45 (4.90) 98.90 (2.24) 88.40 (3.24)
HDRw 93.05 (9.91) 90.55 (5.28) 99.80 (3.00) 91.80 (3.66)
W 95.25 (11.67) 94.50 (6.14) 99.50 (3.57) 94.35 (4.46)
B 92.10 (10.35) 91.30 (5.32) 99.25 (3.31) 90.20 (4.13)

ϕ = −0.50
HDR 91.80 (3.29) 93.60 (3.85) 94.30 (1.14) 88.25 (2.90)
HDRs 91.50 (3.36) 94.10 (3.89) 99.60 (1.10) 87.80 (2.95)
HDRw 94.20 (3.84) 94.65 (4.29) 99.60 (1.20) 93.10 (3.56)
W 96.30 (4.47) 97.50 (5.01) 98.95 (1.53) 95.95 (4.28)
B 92.95 (4.11) 95.40 (4.40) 98.55 (1.44) 91.25 (4.00)

ϕ = 0.00
HDR 93.15 (2.46) 92.90 (4.31) 94.65 (1.23) 88.65 (3.23)
HDRs 96.90 (2.44) 92.15 (4.37) 99.50 (1.20) 88.10 (3.28)
HDRw 96.05 (2.56) 95.15 (4.99) 99.35 (1.36) 92.40 (3.88)
W 97.40 (3.05) 97.05 (5.82) 99.05 (1.77) 95.00 (4.74)
B 94.20 (2.71) 95.60 (5.15) 98.40 (1.64) 91.30 (4.39)

ϕ = 0.50
HDR 90.10 (4.41) 90.40 (6.57) 96.05 (2.30) 89.95 (4.34)
HDRs 91.40 (4.55) 90.25 (6.84) 99.40 (2.27) 90.45 (4.49)
HDRw 93.45 (5.10) 94.40 (7.78) 99.50 (2.64) 93.60 (5.20)
W 95.55 (6.05) 97.05 (8.95) 99.40 (3.51) 95.50 (6.21)
B 92.25 (5.42) 94.60 (7.96) 99.10 (3.20) 90.55 (5.64)

ϕ = 0.90
HDR 83.15 (9.27) 84.50 (9.85) 95.55 (4.98) 90.35 (6.21)
HDRs 83.40 (10.12) 85.30 (10.66) 97.80 (5.05) 88.05 (6.69)
HDRw 90.45 (11.79) 91.10 (12.40) 99.80 (6.45) 91.75 (7.99)
W 93.90 (13.14) 94.05 (13.51) 99.50 (8.23) 94.65 (9.23)
B 90.15 (11.61) 91.40 (11.86) 99.20 (7.21) 89.20 (8.11)

ϕ = 0.95
HDR 80.30 (9.59) 81.25 (9.88) 95.60 (5.28) 91.40 (6.35)
HDRs 81.55 (10.50) 83.25 (10.74) 97.30 (5.36) 88.80 (6.85)
HDRw 89.25 (12.30) 89.80 (12.56) 99.50 (6.99) 92.80 (8.26)
W 92.80 (13.87) 93.35 (13.79) 99.35 (8.88) 95.40 (9.50)
B 88.65 (12.15) 89.70 (12.02) 99.00 (7.72) 90.40 (8.30)

ϕ = 1.00
HDR 67.10 (9.41) 68.95 (9.46) 94.75 (5.53) 89.95 (6.43)
HDRs 73.70 (10.32) 75.00 (10.30) 96.75 (5.61) 87.90 (6.95)
HDRw 84.80 (12.18) 83.90 (12.11) 99.60 (7.48) 92.70 (8.45)
W 88.75 (14.07) 88.40 (13.52) 99.35 (9.44) 95.15 (9.69)
B 81.15 (12.22) 81.65 (11.72) 98.90 (8.17) 90.35 (8.43)
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Table 10: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 100, H = 10 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 81.90 (5.83) 90.55 (3.34) 92.35 (1.58) 90.75 (2.17)
HDRs 88.65 (6.35) 90.60 (3.40) 96.45 (1.58) 90.60 (2.19)
HDRw 94.60 (7.29) 92.30 (3.61) 99.80 (2.14) 93.15 (2.34)
W 96.85 (8.98) 95.80 (4.23) 99.25 (2.46) 95.45 (2.78)
B 94.10 (8.08) 92.60 (3.70) 99.20 (2.37) 92.55 (2.60)

ϕ = −0.90
HDR 82.10 (5.81) 89.50 (3.37) 92.60 (1.38) 89.55 (2.11)
HDRs 86.80 (6.34) 89.20 (3.40) 97.65 (1.37) 90.45 (2.14)
HDRw 93.90 (7.13) 92.30 (3.61) 99.90 (1.79) 93.10 (2.30)
W 96.85 (8.47) 95.75 (4.13) 99.55 (2.12) 95.35 (2.73)
B 94.85 (7.71) 93.15 (3.64) 99.30 (2.02) 93.05 (2.55)

ϕ = −0.50
HDR 92.50 (2.08) 94.25 (2.49) 91.25 (0.62) 90.25 (1.86)
HDRs 91.45 (2.12) 94.40 (2.51) 99.60 (0.63) 88.40 (1.89)
HDRw 95.30 (2.36) 94.90 (2.67) 99.70 (0.66) 94.00 (2.18)
W 97.90 (2.73) 97.55 (3.01) 98.95 (0.80) 96.80 (2.56)
B 95.30 (2.54) 95.50 (2.67) 98.85 (0.77) 94.00 (2.42)

ϕ = 0.00
HDR 92.90 (1.54) 92.90 (2.80) 91.70 (0.70) 90.95 (2.06)
HDRs 98.10 (1.54) 91.25 (2.81) 99.20 (0.71) 90.40 (2.08)
HDRw 97.00 (1.57) 95.10 (3.12) 99.40 (0.78) 95.30 (2.34)
W 97.55 (1.79) 97.45 (3.50) 99.15 (0.97) 98.05 (2.80)
B 95.40 (1.63) 95.60 (3.14) 99.00 (0.93) 95.70 (2.64)

ϕ = 0.50
HDR 91.40 (2.78) 91.05 (4.27) 92.20 (1.34) 91.20 (2.75)
HDRs 92.75 (2.83) 90.65 (4.40) 99.05 (1.33) 93.30 (2.80)
HDRw 94.95 (3.09) 95.20 (4.90) 99.20 (1.48) 95.30 (3.12)
W 97.00 (3.49) 97.50 (5.37) 99.15 (1.91) 97.00 (3.59)
B 94.25 (3.24) 95.75 (4.94) 98.90 (1.85) 94.35 (3.39)

ϕ = 0.90
HDR 86.70 (6.80) 88.40 (7.19) 93.10 (3.44) 91.40 (4.41)
HDRs 88.20 (7.43) 89.50 (7.82) 96.70 (3.46) 92.45 (4.72)
HDRw 93.45 (8.46) 94.05 (8.88) 99.40 (4.33) 96.00 (5.50)
W 95.85 (9.42) 95.75 (9.66) 99.25 (5.33) 97.10 (6.09)
B 93.55 (8.73) 93.45 (8.82) 99.15 (4.99) 94.60 (5.64)

ϕ = 0.95
HDR 86.95 (7.07) 87.25 (7.18) 91.90 (3.79) 89.70 (4.62)
HDRs 87.55 (7.75) 88.85 (7.85) 95.25 (3.81) 89.35 (4.98)
HDRw 92.20 (8.94) 92.65 (9.01) 99.45 (4.90) 94.65 (5.86)
W 94.20 (10.09) 94.60 (9.92) 98.90 (5.97) 95.60 (6.44)
B 91.45 (9.31) 93.15 (9.00) 98.75 (5.55) 92.70 (5.94)

ϕ = 1.00
HDR 75.80 (6.77) 77.00 (6.70) 92.55 (4.07) 90.75 (4.76)
HDRs 80.25 (7.40) 80.95 (7.30) 94.75 (4.07) 88.85 (5.16)
HDRw 88.45 (8.73) 88.45 (8.56) 99.50 (5.45) 94.65 (6.18)
W 92.00 (10.24) 92.35 (9.67) 99.15 (6.54) 96.60 (6.71)
B 85.70 (9.32) 86.50 (8.68) 99.05 (6.05) 93.15 (6.17)
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Table 11: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 200, H = 10 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 85.00 (4.21) 91.55 (2.36) 90.45 (1.05) 91.70 (1.49)
HDRs 89.35 (4.57) 91.05 (2.39) 94.50 (1.04) 91.95 (1.50)
HDRw 95.15 (5.21) 93.90 (2.53) 99.80 (1.39) 95.00 (1.56)
W 97.50 (6.49) 97.00 (2.96) 99.30 (1.63) 97.10 (1.86)
B 95.70 (5.84) 94.40 (2.59) 99.00 (1.57) 94.80 (1.73)

ϕ = −0.90
HDR 86.45 (4.06) 89.90 (2.36) 90.60 (0.89) 89.75 (1.42)
HDRs 89.25 (4.42) 89.75 (2.37) 95.70 (0.88) 90.95 (1.45)
HDRw 94.25 (4.93) 92.60 (2.50) 99.70 (1.14) 93.75 (1.51)
W 97.20 (5.89) 95.70 (2.84) 98.85 (1.33) 95.40 (1.79)
B 95.30 (5.45) 92.75 (2.54) 98.80 (1.29) 93.35 (1.67)

ϕ = −0.50
HDR 92.20 (1.41) 94.60 (1.69) 91.30 (0.36) 92.00 (1.26)
HDRs 92.65 (1.43) 94.30 (1.70) 99.70 (0.39) 89.95 (1.27)
HDRw 95.55 (1.57) 94.60 (1.78) 99.80 (0.41) 96.10 (1.43)
W 97.40 (1.83) 97.45 (2.00) 99.20 (0.48) 98.35 (1.71)
B 96.50 (1.72) 95.80 (1.77) 99.05 (0.47) 96.55 (1.60)

ϕ = 0.00
HDR 93.80 (1.03) 93.60 (1.90) 89.85 (0.44) 91.45 (1.38)
HDRs 98.15 (1.03) 91.55 (1.89) 99.10 (0.45) 90.20 (1.39)
HDRw 96.75 (1.04) 95.55 (2.08) 99.40 (0.49) 94.85 (1.51)
W 97.55 (1.17) 97.60 (2.31) 99.05 (0.60) 98.00 (1.83)
B 96.00 (1.07) 96.15 (2.08) 98.95 (0.59) 95.60 (1.72)

ϕ = 0.50
HDR 90.95 (1.86) 91.45 (2.91) 92.10 (0.84) 91.20 (1.84)
HDRs 92.55 (1.87) 91.75 (2.98) 98.35 (0.84) 93.75 (1.87)
HDRw 95.05 (2.03) 95.00 (3.30) 98.55 (0.91) 95.50 (2.04)
W 97.00 (2.26) 97.55 (3.57) 99.25 (1.19) 97.35 (2.34)
B 95.55 (2.13) 95.55 (3.31) 99.10 (1.17) 95.45 (2.22)

ϕ = 0.90
HDR 88.60 (4.66) 88.40 (4.97) 91.50 (2.27) 89.80 (3.02)
HDRs 90.00 (5.05) 90.60 (5.36) 95.05 (2.26) 92.75 (3.21)
HDRw 94.80 (5.67) 95.15 (6.02) 99.45 (2.83) 96.60 (3.69)
W 97.20 (6.40) 96.40 (6.61) 99.20 (3.43) 96.95 (4.00)
B 95.60 (6.05) 95.05 (6.12) 98.90 (3.32) 95.70 (3.81)

ϕ = 0.95
HDR 88.15 (4.99) 89.70 (5.04) 91.35 (2.65) 91.10 (3.29)
HDRs 89.75 (5.43) 91.05 (5.47) 94.55 (2.63) 92.65 (3.54)
HDRw 94.45 (6.23) 94.40 (6.25) 99.70 (3.38) 97.50 (4.10)
W 95.90 (7.17) 95.75 (6.98) 99.55 (4.08) 98.00 (4.43)
B 94.45 (6.69) 93.80 (6.38) 99.40 (3.93) 95.55 (4.20)

ϕ = 1.00
HDR 81.00 (4.53) 81.50 (4.48) 90.20 (2.92) 89.60 (3.44)
HDRs 85.10 (4.89) 85.60 (4.83) 91.90 (2.89) 91.80 (3.74)
HDRw 91.70 (5.84) 91.50 (5.71) 99.60 (3.92) 96.75 (4.42)
W 93.45 (7.04) 94.40 (6.58) 99.25 (4.59) 97.30 (4.69)
B 89.45 (6.44) 88.90 (5.91) 99.35 (4.40) 95.45 (4.45)
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Table 12: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 50, H = 20 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 88.15 (19.17) 90.10 (8.84) 96.50 (4.63) 88.20 (4.35)
HDRs 86.95 (21.32) 87.65 (9.31) 99.10 (4.77) 89.35 (4.37)
HDRw 93.00 (23.71) 91.20 (9.83) 99.85 (6.74) 91.85 (5.09)
W 95.70 (31.70) 95.05 (12.30) 99.25 (7.94) 94.50 (6.11)
B 93.75 (27.41) 93.65 (10.98) 99.35 (8.08) 91.45 (6.33)

ϕ = −0.90
HDR 84.85 (16.64) 89.45 (8.07) 97.20 (3.84) 88.45 (4.18)
HDRs 84.65 (18.38) 86.25 (8.41) 99.15 (3.92) 90.15 (4.22)
HDRw 91.75 (20.80) 90.35 (9.02) 99.85 (5.43) 91.00 (4.88)
W 94.60 (26.22) 94.00 (10.89) 99.30 (6.53) 93.30 (5.94)
B 92.65 (23.27) 93.20 (9.96) 99.40 (6.69) 90.75 (6.19)

ϕ = −0.50
HDR 92.30 (3.66) 94.30 (4.32) 95.15 (1.34) 89.90 (3.26)
HDRs 92.65 (3.71) 95.70 (4.33) 99.70 (1.25) 90.40 (3.32)
HDRw 93.80 (4.40) 94.45 (4.88) 99.75 (1.36) 93.75 (4.22)
W 96.30 (5.33) 97.40 (5.97) 99.30 (1.82) 95.90 (5.34)
B 94.75 (5.50) 96.85 (5.94) 99.50 (1.98) 93.80 (5.72)

ϕ = 0.00
HDR 93.70 (2.67) 91.75 (4.80) 96.55 (1.38) 89.00 (3.60)
HDRs 97.65 (2.60) 91.90 (4.84) 99.90 (1.32) 88.70 (3.65)
HDRw 96.50 (2.76) 93.75 (5.77) 99.85 (1.52) 92.00 (4.62)
W 97.70 (3.43) 96.50 (7.22) 99.60 (2.14) 94.85 (6.13)
B 96.50 (3.43) 95.85 (7.20) 99.65 (2.27) 92.90 (6.49)

ϕ = 0.50
HDR 91.15 (5.50) 90.50 (8.62) 97.05 (2.92) 90.35 (5.52)
HDRs 93.00 (5.68) 91.75 (9.07) 99.60 (2.83) 92.15 (5.69)
HDRw 93.35 (6.70) 94.50 (10.95) 99.60 (3.42) 92.40 (7.04)
W 95.60 (8.66) 96.50 (13.65) 99.25 (4.98) 95.20 (9.10)
B 94.10 (8.59) 96.50 (13.45) 99.20 (5.08) 92.30 (9.28)

ϕ = 0.90
HDR 82.65 (18.61) 83.90 (20.25) 97.50 (9.01) 92.60 (10.92)
HDRs 83.40 (20.50) 84.90 (22.32) 98.90 (9.33) 91.35 (12.19)
HDRw 90.35 (24.05) 91.25 (25.91) 99.65 (12.32) 92.90 (15.08)
W 93.75 (28.84) 94.15 (30.21) 99.30 (16.58) 94.45 (18.37)
B 92.20 (25.39) 93.55 (26.82) 99.50 (15.29) 92.05 (17.07)

ϕ = 0.95
HDR 78.80 (20.51) 78.30 (21.28) 98.25 (10.26) 92.70 (11.73)
HDRs 80.50 (22.56) 81.35 (23.49) 99.15 (10.72) 90.30 (13.19)
HDRw 89.95 (26.31) 89.00 (27.11) 99.80 (14.41) 92.55 (16.48)
W 93.40 (33.06) 93.85 (32.74) 99.45 (19.31) 94.20 (20.09)
B 91.35 (28.08) 91.90 (28.24) 99.55 (17.52) 91.75 (18.41)

ϕ = 1.00
HDR 61.25 (20.83) 61.65 (21.02) 97.30 (10.89) 92.20 (12.09)
HDRs 71.65 (22.97) 71.50 (23.27) 98.60 (11.44) 90.25 (13.65)
HDRw 84.55 (26.57) 83.55 (26.71) 99.80 (15.62) 92.65 (17.29)
W 87.75 (35.25) 88.85 (33.76) 99.40 (20.92) 94.65 (21.06)
B 82.00 (29.22) 83.80 (28.46) 99.65 (18.79) 92.00 (19.10)
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Table 13: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 100, H = 20 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 80.50 (13.76) 82.95 (6.21) 95.30 (2.87) 90.70 (2.85)
HDRs 88.15 (15.48) 88.25 (6.65) 98.20 (2.91) 92.25 (2.82)
HDRw 93.40 (17.12) 91.65 (6.90) 99.55 (4.02) 94.15 (3.08)
W 95.65 (20.71) 94.35 (7.97) 98.90 (4.55) 95.55 (3.45)
B 94.80 (19.70) 93.90 (7.56) 99.15 (4.84) 94.75 (3.59)

ϕ = −0.90
HDR 83.10 (11.87) 87.40 (5.58) 94.65 (2.25) 89.60 (2.65)
HDRs 86.70 (13.19) 88.75 (5.86) 98.80 (2.25) 93.35 (2.66)
HDRw 93.70 (14.78) 91.95 (6.19) 99.85 (2.96) 94.45 (2.82)
W 97.05 (17.25) 95.50 (6.96) 99.00 (3.50) 95.25 (3.24)
B 95.95 (16.89) 94.50 (6.71) 99.40 (3.76) 94.90 (3.35)

ϕ = −0.50
HDR 92.05 (2.19) 93.25 (2.61) 91.90 (0.66) 90.95 (1.91)
HDRs 93.05 (2.26) 94.20 (2.66) 99.75 (0.68) 90.75 (1.96)
HDRw 95.20 (2.53) 93.85 (2.77) 99.85 (0.68) 95.00 (2.28)
W 97.35 (2.93) 96.70 (3.15) 99.35 (0.83) 97.05 (2.68)
B 96.70 (3.02) 96.70 (3.10) 99.35 (0.92) 96.25 (2.82)

ϕ = 0.00
HDR 93.25 (1.61) 93.50 (2.95) 93.10 (0.74) 91.30 (2.15)
HDRs 97.95 (1.62) 91.95 (2.97) 99.70 (0.75) 90.70 (2.17)
HDRw 96.85 (1.62) 95.60 (3.29) 99.70 (0.80) 94.55 (2.48)
W 97.75 (1.85) 97.65 (3.72) 99.35 (1.01) 97.00 (3.00)
B 96.75 (1.85) 97.40 (3.71) 99.60 (1.11) 96.10 (3.17)

ϕ = 0.50
HDR 91.85 (3.11) 91.45 (4.93) 93.30 (1.51) 92.25 (3.09)
HDRs 94.50 (3.16) 92.05 (5.09) 99.50 (1.49) 95.30 (3.13)
HDRw 94.70 (3.47) 94.25 (5.73) 98.90 (1.64) 94.85 (3.55)
W 96.55 (3.99) 96.40 (6.39) 98.75 (2.18) 96.15 (4.16)
B 96.30 (4.15) 96.35 (6.59) 99.10 (2.39) 95.55 (4.43)

ϕ = 0.90
HDR 86.75 (13.84) 87.45 (15.02) 96.35 (5.97) 94.50 (7.34)
HDRs 87.65 (15.46) 88.55 (16.85) 98.00 (6.08) 94.40 (8.05)
HDRw 93.35 (17.45) 93.95 (18.77) 99.40 (7.64) 95.95 (9.61)
W 95.30 (19.24) 95.65 (20.27) 98.80 (9.49) 96.60 (10.74)
B 94.95 (18.98) 95.65 (19.88) 99.25 (9.78) 95.50 (10.98)

ϕ = 0.95
HDR 84.75 (15.99) 85.45 (16.52) 95.90 (7.21) 93.40 (8.37)
HDRs 85.25 (17.99) 87.25 (18.72) 97.95 (7.44) 93.50 (9.36)
HDRw 92.40 (20.12) 92.45 (20.74) 99.40 (9.68) 95.35 (11.38)
W 94.70 (22.40) 94.30 (22.54) 99.05 (11.76) 96.15 (12.56)
B 94.30 (21.63) 94.45 (21.74) 99.20 (11.88) 94.65 (12.63)

ϕ = 1.00
HDR 72.15 (16.36) 73.65 (16.23) 95.40 (8.20) 93.15 (9.05)
HDRs 80.05 (18.56) 80.15 (18.60) 97.45 (8.51) 92.40 (10.24)
HDRw 88.75 (20.64) 87.70 (20.52) 99.75 (11.47) 95.50 (12.73)
W 91.15 (24.53) 91.15 (23.57) 99.25 (13.72) 96.60 (13.89)
B 88.10 (23.12) 87.90 (22.26) 99.65 (13.63) 94.95 (13.78)
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Table 14: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP1, T = 200, H = 20 and known lag order

first shock second shock
band y1 y2 y1 y2

cov. width cov. width cov. width cov. width
ϕ = −0.95

HDR 82.30 (10.08) 85.50 (4.44) 91.85 (1.83) 90.40 (1.93)
HDRs 87.70 (11.31) 90.20 (4.79) 96.75 (1.84) 93.05 (1.88)
HDRw 93.80 (12.49) 92.70 (4.98) 99.80 (2.43) 95.30 (1.99)
W 96.65 (14.93) 95.60 (5.70) 98.85 (2.81) 96.45 (2.26)
B 96.65 (14.79) 95.45 (5.55) 99.05 (3.02) 96.50 (2.31)

ϕ = −0.90
HDR 86.75 (8.00) 89.75 (3.82) 92.55 (1.35) 90.65 (1.71)
HDRs 88.15 (8.89) 91.05 (4.01) 98.50 (1.34) 94.45 (1.72)
HDRw 94.05 (9.76) 93.40 (4.18) 99.80 (1.72) 95.90 (1.79)
W 97.50 (11.45) 96.15 (4.65) 99.15 (2.00) 96.00 (2.03)
B 96.90 (11.74) 95.95 (4.64) 99.55 (2.19) 96.25 (2.09)

ϕ = −0.50
HDR 92.30 (1.44) 92.65 (1.73) 90.70 (0.37) 90.85 (1.27)
HDRs 93.50 (1.49) 94.45 (1.78) 99.70 (0.42) 91.20 (1.32)
HDRw 95.45 (1.63) 93.80 (1.81) 99.80 (0.41) 94.85 (1.48)
W 97.90 (1.88) 96.65 (2.03) 99.25 (0.48) 97.50 (1.74)
B 97.40 (1.92) 96.50 (1.97) 99.55 (0.53) 96.75 (1.78)

ϕ = 0.00
HDR 93.35 (1.04) 93.75 (1.95) 90.60 (0.44) 91.20 (1.41)
HDRs 97.80 (1.08) 91.15 (1.97) 99.20 (0.48) 90.05 (1.43)
HDRw 96.50 (1.06) 94.85 (2.14) 99.35 (0.49) 94.75 (1.56)
W 97.00 (1.17) 97.15 (2.37) 99.05 (0.61) 98.10 (1.89)
B 97.25 (1.18) 97.35 (2.33) 99.45 (0.67) 97.40 (1.95)

ϕ = 0.50
HDR 92.25 (1.99) 92.50 (3.21) 91.30 (0.89) 91.40 (1.96)
HDRs 95.85 (2.04) 93.45 (3.32) 99.60 (0.91) 96.00 (2.00)
HDRw 95.60 (2.18) 95.45 (3.63) 99.15 (0.96) 95.85 (2.17)
W 97.60 (2.43) 97.30 (3.94) 99.60 (1.26) 97.65 (2.50)
B 97.90 (2.51) 97.70 (4.02) 99.55 (1.38) 96.90 (2.62)

ϕ = 0.90
HDR 88.70 (9.32) 89.10 (10.21) 93.50 (3.71) 92.95 (4.74)
HDRs 90.40 (10.39) 91.80 (11.51) 98.60 (3.75) 95.40 (5.12)
HDRw 95.20 (11.42) 95.40 (12.49) 99.60 (4.60) 97.15 (5.96)
W 97.25 (12.68) 97.30 (13.47) 99.35 (5.57) 97.50 (6.48)
B 97.00 (13.17) 97.15 (13.86) 99.60 (5.99) 96.90 (6.86)

ϕ = 0.95
HDR 87.25 (11.84) 88.30 (12.11) 93.50 (4.97) 92.80 (5.84)
HDRs 89.75 (13.41) 90.85 (13.91) 97.55 (5.07) 94.55 (6.47)
HDRw 94.30 (14.68) 95.00 (15.07) 99.25 (6.43) 97.00 (7.65)
W 96.10 (16.40) 96.30 (16.39) 98.90 (7.65) 97.60 (8.24)
B 96.00 (16.66) 96.15 (16.55) 99.20 (8.09) 96.75 (8.63)

ϕ = 1.00
HDR 78.00 (11.38) 79.05 (11.16) 91.90 (5.95) 90.85 (6.60)
HDRs 83.15 (12.93) 84.20 (12.95) 94.75 (6.06) 92.55 (7.47)
HDRw 89.35 (14.40) 89.45 (14.28) 99.70 (8.17) 96.60 (9.12)
W 91.95 (17.37) 91.65 (16.58) 98.95 (9.47) 97.10 (9.61)
B 89.95 (17.35) 90.00 (16.49) 99.50 (9.81) 96.85 (9.90)
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Table 15: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 400, H = 12 and estimated lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 85.85 (1.19) 88.25 (1.26) 96.20 (1.65) 98.35 (1.87) 94.50 (1.46)
shock 2 97.55 (265.80) 96.70 (257.39) 98.10 (276.27) 98.90 (303.80) 94.10 (237.24)
shock 3 91.60 (0.58) 93.65 (0.60) 98.40 (0.75) 98.80 (0.82) 95.25 (0.64)
shock 4 89.70 (0.81) 91.15 (0.84) 97.50 (1.11) 98.50 (1.23) 95.30 (0.96)
shock 5 83.95 (60.15) 80.80 (62.93) 89.75 (78.68) 94.00 (87.09) 83.10 (68.61)
shock 6 88.75 (193.67) 87.30 (191.23) 94.55 (240.94) 96.75 (267.31) 90.10 (210.57)

responses of bbb
shock 1 90.85 (1.05) 93.60 (1.12) 98.55 (1.47) 99.50 (1.66) 96.70 (1.30)
shock 2 97.40 (236.79) 97.55 (231.03) 98.55 (245.74) 99.05 (270.74) 95.00 (211.25)
shock 3 92.10 (0.53) 93.40 (0.54) 98.35 (0.68) 99.00 (0.75) 95.50 (0.58)
shock 4 89.60 (0.73) 92.20 (0.77) 98.10 (1.02) 99.10 (1.13) 95.55 (0.88)
shock 5 92.65 (49.98) 92.90 (51.56) 98.55 (67.40) 99.20 (75.00) 96.05 (58.47)
shock 6 89.35 (167.70) 84.20 (169.41) 91.55 (212.22) 95.90 (235.22) 85.60 (185.87)

Table 16: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 200, H = 24 and estimated lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 77.90 (5.14) 81.20 (5.79) 91.70 (7.52) 93.90 (8.37) 89.90 (7.04)
shock 2 97.90 (623.73) 97.60 (598.71) 98.90 (665.53) 99.00 (709.99) 96.80 (593.41)
shock 3 93.05 (1.75) 94.80 (1.88) 98.45 (2.38) 98.60 (2.57) 96.10 (2.13)
shock 4 84.40 (2.91) 86.75 (3.18) 94.80 (4.17) 96.55 (4.59) 92.70 (3.81)
shock 5 76.15 (202.92) 70.70 (202.75) 79.85 (250.52) 85.50 (273.06) 73.35 (229.13)
shock 6 83.70 (732.82) 79.95 (686.35) 89.30 (854.08) 92.45 (932.65) 85.05 (783.84)

responses of bbb
shock 1 93.95 (4.21) 96.10 (4.72) 99.10 (6.23) 99.30 (7.03) 98.20 (5.85)
shock 2 99.00 (524.78) 99.10 (510.99) 99.50 (564.90) 99.45 (606.50) 97.60 (505.63)
shock 3 94.15 (1.45) 95.35 (1.55) 98.55 (1.99) 98.70 (2.15) 96.30 (1.78)
shock 4 92.65 (2.41) 94.15 (2.62) 97.60 (3.49) 98.35 (3.87) 96.30 (3.20)
shock 5 96.60 (157.79) 96.10 (157.75) 98.55 (205.34) 98.85 (227.88) 97.05 (187.98)
shock 6 84.70 (604.83) 76.50 (568.34) 82.40 (714.25) 88.05 (794.24) 76.75 (661.94)
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Table 17: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 400, H = 24 and estimated lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 85.00 (3.46) 87.15 (3.86) 94.40 (4.95) 96.30 (5.50) 92.90 (4.66)
shock 2 97.20 (396.46) 96.15 (384.95) 98.30 (422.64) 98.75 (450.51) 95.60 (381.13)
shock 3 91.60 (1.16) 94.00 (1.23) 98.40 (1.53) 98.85 (1.65) 96.60 (1.39)
shock 4 89.00 (1.96) 91.45 (2.12) 96.45 (2.73) 97.65 (2.98) 95.05 (2.52)
shock 5 87.65 (133.13) 84.95 (137.91) 91.60 (168.74) 94.85 (182.94) 87.65 (155.77)
shock 6 91.35 (494.30) 89.10 (470.06) 95.05 (577.36) 96.60 (628.21) 92.40 (534.99)

responses of bbb
shock 1 91.20 (2.91) 93.60 (3.23) 98.70 (4.21) 99.25 (4.69) 97.60 (3.96)
shock 2 97.95 (331.54) 97.80 (322.82) 98.70 (353.66) 98.95 (378.94) 96.65 (319.11)
shock 3 92.95 (0.96) 95.30 (1.01) 98.40 (1.29) 99.00 (1.39) 96.85 (1.17)
shock 4 92.30 (1.64) 94.55 (1.77) 98.50 (2.32) 99.15 (2.54) 97.25 (2.14)
shock 5 95.40 (103.71) 95.95 (106.70) 99.05 (137.72) 99.35 (151.58) 98.05 (127.55)
shock 6 92.00 (403.19) 86.95 (390.01) 92.25 (484.89) 95.05 (533.59) 88.90 (451.94)

Table 18: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 200, H = 12 and known lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 81.50 (1.74) 85.25 (1.85) 95.35 (2.46) 97.65 (2.79) 91.55 (2.17)
shock 2 97.40 (398.76) 97.45 (386.16) 98.35 (412.76) 98.90 (455.99) 93.70 (353.85)
shock 3 91.60 (0.85) 93.60 (0.88) 98.30 (1.11) 98.80 (1.22) 94.65 (0.94)
shock 4 84.45 (1.17) 87.15 (1.23) 96.40 (1.63) 97.80 (1.81) 91.50 (1.40)
shock 5 72.25 (88.30) 66.45 (90.74) 78.70 (114.56) 86.35 (126.20) 68.65 (98.99)
shock 6 83.20 (291.04) 79.40 (275.56) 90.10 (351.08) 94.05 (387.16) 84.50 (304.01)

responses of bbb
shock 1 91.20 (1.50) 93.10 (1.61) 98.80 (2.14) 99.65 (2.42) 96.60 (1.88)
shock 2 98.45 (357.91) 98.95 (349.06) 99.15 (369.58) 99.65 (410.72) 95.85 (317.68)
shock 3 92.25 (0.77) 93.50 (0.79) 98.40 (0.99) 99.25 (1.10) 94.60 (0.84)
shock 4 90.65 (1.04) 92.00 (1.10) 97.80 (1.48) 98.80 (1.64) 94.45 (1.27)
shock 5 94.05 (72.55) 93.40 (73.58) 98.60 (96.98) 98.95 (107.68) 95.80 (83.12)
shock 6 81.35 (249.52) 70.15 (241.22) 79.90 (304.38) 86.75 (338.49) 70.30 (264.89)
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Table 19: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 400, H = 12 and known lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 85.90 (1.19) 88.50 (1.26) 96.30 (1.65) 98.40 (1.87) 93.65 (1.46)
shock 2 97.30 (266.24) 96.65 (257.92) 98.25 (276.60) 98.65 (304.24) 93.50 (237.49)
shock 3 91.45 (0.58) 93.10 (0.60) 98.20 (0.75) 99.00 (0.82) 95.05 (0.64)
shock 4 87.75 (0.81) 89.70 (0.84) 96.45 (1.11) 98.00 (1.23) 93.45 (0.96)
shock 5 85.20 (60.37) 82.00 (63.18) 89.90 (79.01) 93.60 (87.44) 83.25 (68.91)
shock 6 89.45 (193.98) 87.85 (191.43) 95.55 (241.45) 97.40 (267.38) 90.65 (210.94)

responses of bbb
shock 1 91.10 (1.05) 93.00 (1.12) 98.70 (1.47) 99.35 (1.66) 96.40 (1.30)
shock 2 98.10 (236.04) 98.00 (230.57) 99.15 (245.30) 99.55 (270.33) 94.55 (210.86)
shock 3 92.45 (0.52) 94.60 (0.54) 98.65 (0.68) 99.10 (0.75) 96.00 (0.58)
shock 4 90.65 (0.73) 93.10 (0.77) 98.25 (1.02) 98.80 (1.13) 95.85 (0.88)
shock 5 92.10 (50.08) 92.90 (51.67) 98.50 (67.55) 98.85 (75.23) 96.45 (58.64)
shock 6 89.65 (167.40) 84.10 (169.16) 92.30 (212.43) 95.95 (235.58) 85.55 (185.97)

Table 20: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 200, H = 24 and known lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 79.35 (5.17) 83.60 (5.82) 93.05 (7.58) 95.10 (8.45) 91.60 (7.08)
shock 2 97.55 (624.94) 97.35 (600.01) 98.65 (666.80) 98.65 (710.17) 96.60 (594.30)
shock 3 92.45 (1.75) 94.50 (1.88) 98.60 (2.38) 98.55 (2.57) 96.15 (2.13)
shock 4 85.10 (2.91) 87.20 (3.18) 95.35 (4.17) 96.70 (4.59) 92.60 (3.81)
shock 5 77.60 (203.33) 71.35 (203.20) 81.15 (251.49) 85.65 (272.90) 74.25 (229.54)
shock 6 85.10 (734.01) 80.95 (688.93) 90.50 (858.68) 93.30 (934.36) 86.95 (786.50)

responses of bbb
shock 1 94.15 (4.24) 95.95 (4.75) 99.30 (6.28) 99.45 (7.08) 98.10 (5.89)
shock 2 98.60 (525.73) 98.85 (511.92) 99.50 (565.47) 99.50 (607.51) 97.85 (506.44)
shock 3 93.60 (1.45) 95.30 (1.55) 98.30 (1.99) 98.35 (2.16) 96.80 (1.79)
shock 4 93.00 (2.41) 94.60 (2.62) 98.45 (3.49) 99.05 (3.87) 97.20 (3.20)
shock 5 96.70 (158.24) 96.35 (158.27) 98.60 (206.27) 98.85 (228.42) 97.20 (188.94)
shock 6 83.30 (606.74) 74.90 (571.19) 81.80 (719.09) 86.45 (798.30) 75.50 (665.91)
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Table 21: Estimated coverage probabilities and mean widths (in parentheses)
of 90% confidence bands for DGP2, T = 400, H = 24 and known lag order

impulse HDR HDRs HDRw W B
cov. width cov. width cov. width cov. width cov. width

responses of aaa
shock 1 87.75 (3.48) 88.75 (3.88) 95.00 (4.98) 97.00 (5.54) 93.70 (4.69)
shock 2 97.10 (396.90) 96.55 (385.36) 98.40 (423.23) 98.75 (451.16) 96.45 (381.71)
shock 3 92.45 (1.16) 95.25 (1.23) 98.40 (1.53) 98.70 (1.64) 96.65 (1.39)
shock 4 88.80 (1.96) 91.60 (2.12) 96.75 (2.72) 98.00 (2.98) 95.40 (2.51)
shock 5 87.50 (133.44) 86.35 (138.26) 91.00 (168.88) 93.90 (183.23) 88.05 (156.04)
shock 6 91.40 (495.60) 89.50 (471.67) 95.20 (579.59) 96.95 (631.52) 92.95 (537.62)

responses of bbb
shock 1 91.70 (2.92) 94.70 (3.25) 98.80 (4.22) 99.05 (4.69) 97.40 (3.98)
shock 2 98.05 (331.42) 98.10 (322.96) 98.85 (353.63) 99.05 (378.41) 96.90 (319.08)
shock 3 91.90 (0.96) 94.80 (1.01) 98.90 (1.28) 98.95 (1.38) 96.80 (1.16)
shock 4 92.25 (1.63) 94.35 (1.76) 98.95 (2.30) 99.20 (2.53) 97.55 (2.13)
shock 5 94.85 (103.58) 95.10 (106.52) 98.60 (137.52) 98.95 (151.61) 97.50 (127.33)
shock 6 91.15 (404.03) 86.85 (390.63) 91.95 (484.80) 94.35 (534.41) 88.55 (452.40)
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