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Neighborhood Effects in Wind Farm Performance: An Econometric Approach* 

Matthias Rittera+**, Simone Pierallia+, Martin Odeninga 

 

Abstract 

The optimization of turbine density in wind farms entails a trade-off between the usage of 
scarce, expensive land and power losses through turbine wake effects. A quantification and 
prediction of the wake effect, however, is challenging because of the complex aerodynamic 
nature of the interdependencies of turbines. In this paper, we propose a parsimonious data 
driven econometric wake model that can be used to predict production losses of existing and 
potential wind parks. Motivated by simple engineering wake models, the predicting variables 
are wind speed, turbine alignment angle, and distance. By utilizing data from two wind parks 
in Germany, a significantly better prediction of wake effect losses is attained compared to the 
standard Jensen model. A scenario analysis reveals that a distance between turbines can be 
reduced up to three times the rotor size without entailing substantial production losses. In 
contrast, a suboptimal configuration of turbines with respect to the main wind direction can 
result in production losses that are five times higher. 

Keywords: Wind energy; wake modeling; wind farm design. 

JEL codes: Q42; Q47. 

 

Introduction 

Turbine density is a crucial parameter in designing the layout of wind farms. Optimizing 
turbine density must consider the trade-off between two productivity indicators: the generated 
energy per turbine and the generated energy per area. In most industrialized countries, land 
that can be used for wind energy production is scarce and costly. This scarcity calls for a 
high turbine density per area. On the other hand, it is well-known that as turbine density 
increases, the productivity per turbine decreases due to wake effects of neighboring turbines, 
i.e., each turbine absorbs part of the incoming wind energy, reduces wind speed, and creates 
turbulences in the downstream direction. Quantification of this wake effect, however, is 
challenging because of the complex aerodynamic nature of the interdependencies of turbines 
within a wind farm.1 Many attempts have been made to estimate wind power losses by 
means of wake effect models. Crespo et al. (1999) and Barthelmie and Pryor (2013) provide 
an overview about the various modeling approaches. Kiranoudis and Maroulis (1997) 
distinguish between explicit (kinematic) wake models that provide closed-form expressions 
for the velocity deficit and implicit models (field models) that are based on approximations of 
Navier-Stokes or vorticity equations. Examples of the first model type are the Jensen model 
(Jensen 1983), the Frandsen model (Frandsen 1992), and the Larsen model (Larsen 1988). 
The second model class is comprised of the Eddy-viscosity by Ainslie (1985), the Fuga 
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model by Ott et al. (2011), and the large eddy simulation models (Witha et al. 2014). These 
models differ largely in their complexity and computational burden.  

Once a wake model has been chosen and specified, it can be used to optimize the layout of 
wind farms, which aims to optimally position turbines such that expected power production is 
maximized (Asta 2013). Several optimization procedures have been suggested to solve the 
layout problem, including mathematical programming (e.g., Turner et al. 2014), Monte Carlo 
Simulation (Marmidis et al. 2008; Brusca et al. 2014), or multi-objective programming (Kuziak 
and Song 2014). Most of the aforementioned approaches for optimizing wind farm layout 
resort to simple wake models, particularly the Jensen model (c.f. Bastankhah and Porté-Agel 
2014). The reason is that the Jensen model expresses the velocity deficit 𝑣𝑣𝑣𝑣 due to the wake 
of a (single) turbine as a simple function of the downstream rotor radius 𝑟𝑟𝑑𝑑, the downwind 
distance 𝑑𝑑, the axial induction factor 𝑎𝑎, and a measure of velocity of wake expansion 𝜂𝜂 
(Samorani 2013), given by: 

 𝑣𝑣𝑣𝑣 =
2𝑎𝑎

1 + 𝜂𝜂 � 𝑑𝑑
𝑟𝑟𝑑𝑑
�
2 (1) 

The wind deficit 𝑣𝑣𝑣𝑣 can then be directly incorporated into the objective function of 
optimization procedures. Eq. (1) constitutes a single wake model, but it is rather easy to 
extend it to a multi-wake model. The single wakes of turbines 𝑗𝑗 that affect turbine 𝑖𝑖, 𝑊𝑊(𝑖𝑖), can 
be aggregated, for example, through a Euclidean norm to obtain the total velocity deficit of a 
turbine in position 𝑖𝑖 as2: 

 
𝑉𝑉𝑉𝑉𝑖𝑖 = � � 𝑣𝑣𝑣𝑣𝑗𝑗2

𝑗𝑗∈𝑊𝑊(𝑖𝑖)

2  (2) 

The second reason for the widespread use of simple kinematic models is the fact that they 
are considered as fair approximations to statistically measured power losses despite their 
simplicity (Pena et al. 2015). This view, however, has been challenged. Bastankhan and 
Porté-Agel (2014) criticize the top hat distribution of the velocity deficit implied by the Jensen 
model and replace it by a Gaussian distribution to attain a better fit to experimental data. 
Gaumond et al. (2012) report that for two off-shore wind parks, the Jensen model 
underestimates production in the first few turbine rows of the wind parks, yet it overestimates 
production in the last few turbine rows. Wu et al. (2012) propose a generalization of the multi-
wake model (2) that considers a partial overlap of the wake area and the rotor swept area. 

In this paper, we propose an alternative method to estimate power losses from wake effects 
for a wind park. Instead of deriving a functional form for the velocity deficit from aerodynamic 
relations, we pursue an empirical, data-driven approach, which links the basic determinants 
of velocity losses, such as entering wind speed, turbine alignment angle, and distance 
between turbines, in a flexible way and applies econometric techniques to estimate the 
parameters of the model. The advantage of this proposed approach is that it relies on a few 
assumptions only and it can be adapted to any wind park design. In this paper, we 
demonstrate the specification and estimation of the regression model for two wind parks in 
Germany. We find that our model is a good fit with observed wind deficits and outperforms 
the Jensen model. Depending on the location of the turbine, average production losses per 
turbine due to wind wakes are between 0.9 and 14.6% of the turbine’s potential power 
production in one year. We also find that the positioning of the turbines within the wind park 
is more important than the turbine density.  
                                                           
2 Alternative wake adding methods are described in Göcmen et al. (2016), for example. 
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This is not the first time that turbine interaction effects in wind farms have been estimated 
with econometric methods. Alexiadis et al. (1999) were among the first to consider 
neighboring effects when predicting wind speed and power output of a wind farm. Xie et al 
(2011) propose a spatio-temporal wind forecast model that accounts for spatial wind power 
correlations. Recently, Croonenbroeck and Ambach (2015) estimate power production of a 
wind farm using a spatial lag model with panel data. Wake effects are implicitly captured by 
an interaction parameter. The contribution of our paper to the existing literature is that we 
focus on power losses within an existing wind park. Moreover, we aim to explain observed 
power losses by means of fundamental variables. In contrast to other econometric models, 
we explicitly take into account the relative position of individual turbines in a wind farm. 
Hence, our approach can be considered as a hybrid model that combines elements of 
engineering wake models and empirical models. 

 

Methods 

We proceed in several steps to estimate the power loss of a wind park due to wake effects. 
First, we estimate the wind velocity deficit of a single turbine, which is affected by one or 
more turbines in the wind park. To this end, we approximate aerodynamic engineering 
models with a simple econometric model, which allows for the inclusion of multiple turbine 
wake effects, but is parsimonious in its specification and is applicable to any wind park 
design. The resulting velocity deficit is then translated to a power loss via a given power 
curve. We do not directly explain power losses since they might be caused by factors other 
than wake effects. Finally, the power losses of all individual turbines in a wind park are 
aggregated. In what follows, we describe this procedure in detail. 

We model the velocity deficit of a turbine 𝑖𝑖 at time 𝑡𝑡, 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖, as a function of three variables that 
are suggested by engineering wake models. These three variables are: the entering 
(undisturbed) wind speed, 𝑤𝑤𝑡𝑡∞; the distance between a disturbing turbine 𝑗𝑗 and a disturbed 
turbine 𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖; and the turbine alignment angle between a disturbing turbine 𝑗𝑗 and a disturbed 
turbine 𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡. The turbine alignment angle describes the deviation from the situation that the 
straight line formed by the turbine row coincides with the wind direction (McKay et al. 2012). 
Hence, an angle of 0° means that the disturbing turbine stands directly in front and causes a 
maximum wake effect to the disturbed turbine. The higher the angle 𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡, the lower the 
disturbance of turbine 𝑖𝑖 by turbine 𝑗𝑗, keeping the distance 𝑑𝑑𝑖𝑖𝑖𝑖 fixed. Due to the dependence 
on the wind direction, turbine alignment angles depend on time and the position of the 
turbines. The undisturbed wind speed is the same for all turbines and only depends on time 
𝑡𝑡, whereas the distance between turbines 𝑖𝑖 and 𝑗𝑗 is determined by the position of the 
turbines. 

To measure the effect of relevant turbines in every moment and to allow for the observations 
to be comparable, we do not consider fixed neighbors. Instead, we sort neighboring turbines 
according to their impact on the disturbed turbine. Otherwise, with fixed neighbors we would 
only find the average effect of each turbine, which is specific to a particular wind park design 
and wind conditions and therefore cannot be generalized. To sort relevant neighbors, we first 
delimit the radius of potential influence of the disturbing turbines to 1 km. This distance 
represents approximately 10 to 12 times the rotor diameters of typical turbines and most 
kinematic models predict negligible losses for larger distances. Then, we sort the remaining 
turbines by their turbine alignment angle, i.e., the neighbor with the lowest angle is assumed 
to be the most disturbing one. Here, we do not distinguish if the turbine stands on the left or 
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right side compared to the wind direction.3 As an alternative to this sorting procedure, one 
could use a more sophisticated combination of the distance and angle to find the most 
disturbing turbine(s). However, for this purpose we would already have to use a specific 
wake model, which we want to derive at a later stage. 

Fig. 1 depicts the case of one turbine disturbed by three neighbors within a 1 km radius given 
a certain wind direction. To simplify notation, from now on we will omit the index of the 
disturbed turbine 𝑖𝑖 and time 𝑡𝑡. Fig. 1 illustrates the angles 𝛼𝛼1 − 𝛼𝛼3 and distances 𝑑𝑑1 − 𝑑𝑑3 from 
the disturbing turbines T1–T3 to the disturbed turbine T0. In this moment 𝑡𝑡, the wind comes 
from the left (black arrows) and we consider the loss of turbine T0. In this example, turbine T1 
is assumed to be the most disturbing neighbor since the angle 𝛼𝛼1 is the smallest. Turbine T2 
depicts the second most disturbing turbine, whereas the third neighboring turbine T3 is too 
laterally situated to affect turbine T0 given the current wind direction, i.e., the turbine 
alignment angle 𝛼𝛼3 is too large compared to the other neighbors, no matter the size of 
distance 𝑑𝑑3.  

This sorting depends on the current wind direction, i.e., it is different for a different wind 
direction at another time 𝑡𝑡. This implies that the distances to the (relative) neighbors also 
become time dependent. Moreover, we calculate the wake effect loss separately for each 
turbine using the same sorting procedure. If we consider the loss of turbine T3 in Fig. 1, for 
example, T2, T1, and T0 are the first, second, and third most disturbing neighbors for this wind 
direction, respectively.  

 

 
Figure 1: Definition of distance and turbine alignment angle in the regression model 

 

We use a fully interacted linear regression model to relate the velocity deficit to the 
explanatory variables. In our models, we confine the analysis to one or two disturbing 
neighboring turbines. Samorani (2013) shows that the inclusion of more than the closest 
disturbing turbine does not have a significant effect on the velocity deficit, i.e., the marginal 
effect of more than one turbine is low. In case of a single disturbing turbine (i.e., a single 
wake model), the specification of the model for the losses of turbine 𝑇𝑇0 is as follows:  

 𝑉𝑉𝑉𝑉0 = 𝑓𝑓(𝛼𝛼1,𝑑𝑑1,𝑤𝑤∞)  
= 𝛽𝛽1𝛼𝛼1 + 𝛽𝛽2𝑑𝑑1 + 𝛽𝛽3𝛼𝛼1𝑑𝑑1 + 𝛽𝛽4 𝛼𝛼1𝑤𝑤∞ + 𝛽𝛽5 𝑑𝑑1𝑤𝑤∞ + 𝛽𝛽6𝛼𝛼1𝑑𝑑1𝑤𝑤∞ + 𝛽𝛽7𝑤𝑤∞ + 𝜖𝜖, (3) 

where 𝛽𝛽1 …𝛽𝛽7 are parameters to be estimated for the most disturbing neighboring turbine and 
𝜖𝜖 denotes the error term. In case of two disturbing neighbors, a two-wake model can be 
constructed by adding a similar expression as in Eq. (3) for the second turbine: 
                                                           
3 Formally, this means that we consider the absolute value of the angles.  
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𝑉𝑉𝑉𝑉0 = 𝑓𝑓(𝛼𝛼1,𝑑𝑑1,𝛼𝛼2,𝑑𝑑2,𝑤𝑤∞)
=  𝛽𝛽1𝛼𝛼1 + 𝛽𝛽2𝑑𝑑1 + 𝛽𝛽3𝛼𝛼1𝑑𝑑1 + 𝛽𝛽4 𝛼𝛼1𝑤𝑤∞ + 𝛽𝛽5 𝑑𝑑1𝑤𝑤∞ + 𝛽𝛽6𝛼𝛼1𝑑𝑑1𝑤𝑤∞ + 𝛽𝛽7𝑤𝑤∞  
+ 𝛽𝛽8𝛼𝛼2 + 𝛽𝛽9𝑑𝑑2 + 𝛽𝛽10𝛼𝛼2𝑑𝑑2 + 𝛽𝛽11 𝛼𝛼2𝑤𝑤∞ + 𝛽𝛽12 𝑑𝑑2𝑤𝑤∞ + 𝛽𝛽13𝛼𝛼2𝑑𝑑2𝑤𝑤∞ + 𝜖𝜖. (4) 

In the two-wake-model, the linear wind variable enters the model only once to avoid 
multicollinearity. The use of a simple linear regression model may appear restrictive at first 
glance in contrast with engineering wake models; however, the inclusion of interaction terms 
allows for the impact of the three explanatory variables to be nonlinear. Using interaction 
terms is also advisable because the three variables unfold their impact jointly. For example, a 
low distance and low angle are only relevant if there is wind. In the same manner, the wind 
speed passing through two different disturbing turbines has a different interacted effect on 
the wind deficit of the disturbed turbine. Once the model parameters have been estimated, 
standard statistical procedures can be applied to test the significance of the parameter 
estimates and the model’s goodness of fit. 

Even though we are interested in economic losses caused by turbine interaction in a wind 
park, we first estimate wind velocity deficits rather than power losses. The reason is that 
power losses may be caused by reasons other than wakes of other turbines. Pieralli et al. 
(2015) show that empirically observed productivity losses are often rooted in various kinds of 
turbine errors, such as icing or maintenance. Since it is difficult to disentangle these effects 
without detailed information on the error status of turbines, we prefer to derive power losses 
by inserting observed (or estimated) wind velocity deficits into the turbine’s power curve.  

The aggregation of losses to the level of the wind park is carried out by summing the 
predicted losses for all turbines occurring in every moment in a wind park. The results of the 
regression model can be used to predict losses for hypothetical wind park designs. Based on 
historical wind speeds and absolute wind directions observed every 10 minutes, we calculate 
distances and turbine alignment angles for each turbine, considering its position within the 
wind park. For every turbine, we then decide on the number of disturbing neighbors. If there 
is no disturbing neighbor, we set the wind deficit and power loss to zero. For one or two 
disturbing turbines, plugging distances, angles, and wind speeds into the corresponding 
estimated wake regression model (a single-wake or two-wake model) yields the wind velocity 
deficit for the disturbed turbine in a particular moment. Undisturbed wind speeds and turbine-
specific disturbed wind speeds are then plugged into the power curve to obtain wake effect 
power losses. This calculation is repeated for all turbines in the wind park in every moment 
and then summed for the whole wind park. These losses can be further aggregated by 
turbine to study the losses of different turbines within the park. 

 

Empirical Application 

We apply the estimation procedure described above to two onshore wind farms located in 
Bavaria and Saxony-Anhalt in Germany. They are comprised of seven turbines of type 
Enercon E-82 with a capacity of 2.3 MW, a hub height of 138 m, and a diameter of 82 m 
(hereafter, wind park A) and of twelve turbines of type Fuhrländer FL2500 with a capacity of 
2.5 MW, a hub height of 100 m, and a diameter of 100 m (hereafter, wind park B). The 
positioning of turbines in the two parks are depicted in Fig. 2. Wind farm A is located along 
the southwest-northeast direction and turbines have an average distance of 713 meters 
(equivalent to 8.7 rotor diameters). Wind farm B is located in a rectangle with an average 
distance of 657 meters (equivalent to 6.6 rotor diameters). Due to these differences, it can be 
expected that both wind farms have different wake effects even under similar topographic 
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conditions. In particular, we conjecture that wind farm A is more sensitive to changes in the 
wind direction than wind farm B.  

 

   

Figure 2: Turbine configuration of wind park A (left) and B (right)  

 

Data 

Data for both wind parks are comprised of the exact coordinates for each turbine and their 
Supervisory Control and Data Acquisition (SCADA) data.4 SCADA data have the advantage 
of providing turbine-specific information on a low temporal scale. This is particularly useful for 
wake effect analyses (Barthelmie and Pryor 2013). Moreover, SCADA data are true 
observations, so the wake effect can be studied under realistic conditions. SCADA data 
contain average wind speeds over 10 minutes for each turbine for the time period 
2014.01.01–2014.03.31 (wind park A) and 2011.11.14–2013.12.31 (wind park B). For wind 
park A, we also have data on the nacelle position of each turbine, which we average for each 
moment to obtain a proxy for wind direction.5 For wind park B, no direction data are 
available, so we match the observed SCADA data with reanalysis wind direction data from 
Modern Era Retrospective-Analysis for Research and Applications (MERRA, cf. Rienecker et 
al. 2011). Turbine alignment angles and distances are then calculated dependent on the 
wind speed for every moment and every turbine. For the data on the undisturbed wind 
speed, we take the maximum mast wind speed among all turbines for every moment since 
there is no undisturbed meteorological mast available. This is a reasonable approximation 
because at least one turbine should always not be disturbed by a wake effect and is 
therefore supposed to have the highest mast wind speed in the wind park.  

To obtain a rather homogenous dataset and to measure the pure wake effect, we perform 
several data cleaning steps. First, we exclude all observations where the undisturbed mast 
wind speed is below 4 m/s or above 14 m/s, i.e., the rather constant parts in the power 
curves. For these observations, the wake effect is close to zero since wind deficits do not 
lead to production differences: The observed wind speeds lie either below the cut-in speed or 
above the rated wind speed where maximum production is reached. Second, only those 
observations are considered where wind speed data for all turbines are available. Third, 
since we want to study wind speed deficits caused by the wake effect, we exclude all 
observations where the turbine alignment angle with the first or second most disturbing 

                                                           
4 The authors cordially thank 4initia GmbH for providing the data. 
5 Gaumond et al. (2013) point out that the use of the nacelle position may cause wind direction 
uncertainty due to a yaw misalignment of the turbine. 
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neighbor is higher than ±30°.6 This is a rather large range (we do not consider the direction 
of the angle, so it is 30° to the left or 30° to the right) compared to other studies. 
Croonenbroeck and Ambach (2015), for example, restrict their analysis to observations 
within ±10°.  

We end up with a total of 11,670 (wind park A) and 418,746 (wind park B) turbine-specific 
observations. Table 1 presents summary statistics of the data used in the regression. The 
average undisturbed wind speeds are 8.5 (wind park A) and 8.8 m/s (wind park B). As a 
result of our data confinement, the reported averages are not representative for the wind 
parks’ average wind speeds. The average turbine alignment angle lies at 9.2° (wind park A) 
and 8.2° (wind park B) for the first neighbor and at 17.7° (wind park A) and 17.8° (wind park 
B) for the second neighbor. By construction, the angle of the second turbine is always larger 
than that of the first turbine. Moreover, the maximum angle is 30° and maximum distance is 
1 km according to our selection procedure. Differences in the distance between the first and 
second turbine are negligible: 0.713 km compared to 0.715 km for wind park A and 0.657 km 
compared to 0.647 km for wind park B. We see, however, that the average distance in wind 
park B is lower than that in wind park A, indicating a higher turbine density in wind park B.  

 

Table 1: Summary statistics of the wind farm data used in the regression 
  Mean Std. Dev. Min Max 
Wind Park A (11,670 observations) 

   Velocity Deficit (m/s) 1.153 0.939 0.000 9.700 
Angle 1st neighbor (º) 9.291 7.366 0.087 29.608 
Distance 1st neighbor (km) 0.713 0.219 0.326 0.963 
Angle 2nd neighbor (º) 17.694 8.190 0.392 29.813 
Distance 2nd neighbor (km) 0.715 0.207 0.326 0.963 
Undisturbed Wind speed (m/s) 8.518 2.151 4.400 14.000 
Wind Park B (418,746 observations)        
Velocity Deficit(m/s) 1.659 1.238 0.000 9.889 
Angle 1st neighbor (º) 8.226 5.968 0.000 29.926 
Distance 1st neighbor (km) 0.657 0.187 0.320 1.000 
Angle 2nd neighbor (º) 17.809 7.089 0.300 30.000 
Distance 2nd neighbor (km) 0.647 0.209 0.320 1.000 
Undisturbed Wind speed (m/s) 8.824 2.144 4.033 13.999 

 

 

In both wind parks, for most of the time the dominating absolute wind direction is south-west 
(between 210º and 270º). As a representative display of the wind, Fig. 3 depicts the wind 
rose distribution for wind park B in the calendar year 2011. Because of its representativeness 
of the wind conditions encountered in wind parks A and B, later we will apply this historical 
wind distribution to predict losses for hypothetical wind park designs. 

                                                           
6 One could use a larger dataset for the single-wake model by not excluding observations where the 
turbine alignment angle of the second neighbor is larger than 30°; however, this would lead to different 
datasets for the models and would not allow comparable results. 
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Figure 3: Histogram of wind direction in 2011 

 

Results 

Regression models (3) and (4) have been estimated separately for the two wind parks with 
Ordinary Least Squares (OLS) using STATA. For both wind farms, we specify a single-wake 
model and a two-wake model. These models are conservative in estimating the wind deficit 
between the undisturbed wind speed and the disturbed wind speed in the interior of wind 
park A or B since greater turbine alignment angles than we consider (30º) and higher 
numbers of neighbors might additionally cause wake effect wind deficits. The estimation 
results are presented in Table 2. Estimated coefficients of determination, R2, of about 0.7 
indicate that the overall fit of the models is fairly good for both wind farms.  

Note that the performance of the two-wake model is only slightly better than the single-wake 
model, i.e., the highest explanatory power comes from the most disturbing turbine. For the 
single-wake models, most of the coefficients are significant at the 1% level. This is also true 
for the two-wake model in the case of wind farm B. In contrast, 6 of the 13 coefficients are 
not significant for wind farm A. There are also differences between the four models regarding 
the size and sign of the estimated parameters. While the main effect of the distance of the 
first neighbor is negative for all model variants, the main effect of the angle of the first 
neighbor is negative only for wind farm B. Contrary to expectations, the main effect of this 
angle is positive for wind farm A. However, in view of the three-way interaction effects, it is 
difficult to assess the impact of the explanatory variables by inspection of the coefficients of 
the separate main effects.  

To attain a better understanding of the influence of the wind speed, the turbine alignment 
angle, and the distance of disturbing neighboring turbines on the velocity deficit, we calculate 
the marginal effects of these variables while holding the other variables at their sample 
means (see Table 3). In line with what can be conjectured from engineering models, we find 
that the average marginal effect of the entering undisturbed wind speed is positive, whereas 
the turbine alignment angle and the distance of the most disturbing turbine have a negative 
effect on the wind deficit. In other words, a higher turbine alignment angle results in a lower 
predicted wind deficit, whereas a greater distance from the disturbing neighbor lowers the 
predicted wind deficit. A somewhat surprising result is the positive marginal effect of the 
distance of the second turbine. This might be explained by the fact that we select the most 
disturbing turbines by considering their angle to the turbines they are disturbing, but we 
disregard the distance between them. 
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Table 2: Estimation results: regression coefficients 

 
Wind Park A Wind Park B 

 
Single-Wake Two-Wake Single-Wake Two-Wake 

  Coeff.   Coeff.   Coeff.   Coeff.   
Angle1 0.019 *** 0.001 

 
-0.031 *** -0.036 *** 

Distance1 -0.823 *** -0.794 *** -0.610 *** -0.557 *** 
Angle1 * Distance1 0.015 

 
0.019 

 
0.069 *** 0.063 *** 

Wind 0.225 *** 0.245 *** 0.222 *** 0.246 *** 
Angle1 * Wind -0.008 *** -0.006 *** -0.001 

 
0.002 *** 

Distance1 * Wind 0.036 *** 0.038 * 0.052 *** 0.051 *** 
Angle1 * Distance1 * Wind -0.0003 

 
-0.001 

 
-0.007 *** -0.007 *** 

Angle2 
  

0.019 ** 
  

0.012 *** 
Distance2 

  
-0.510 *** 

  
-0.493 *** 

Angle2 * Distance2 
  

0.010 
   

0.013 *** 
Angle2 * Wind 

  
-0.005 *** 

  
-0.005 *** 

Distance2 * Wind 
  

0.034 
   

0.044 *** 
Angle2 * Distance2 * Wind     0.001 

 
    -0.001 

 R² 0.723  0.727  0.702  0.704  
Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent level, respectively. 

 

Table 3: Estimation results: average marginal effects (changes due to 1% change in 
variables) 

 
Wind Park A Wind Park B 

 
Single-Wake Two-Wake Single-Wake Two-Wake 

  Coeff.   Coeff.   Coeff.   Coeff.   
Angle1 -0.403 *** -0.346 *** -0.200 *** -0.148 *** 
Distance1 -0.278 *** -0.246 *** -0.084 *** -0.067 *** 
Angle2  

 
-0.096 ***   -0.221 *** 

Distance2   0.108 ***   0.061 *** 
Wind 1.457 *** 1.483 *** 1.941 *** 1.939 *** 
Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent level, respectively. 

 

The results of the empirical wake models are graphically displayed in Figures 4 and 5. Fig. 4 
depicts the wake effect for both wind parks when two disturbing turbines are positioned next 
to each other (i.e., at an angle of 90 degrees) at a distance of 500 meters, whereas Fig. 5 
presents the simulated wake effects for two disturbing turbines allocated at a distance of 200 
meters in a line (i.e., at an angle of zero degrees). Both figures display the estimated wind 
deficit for a third, disturbed turbine at an entering wind speed of 7 m/s coming from the left. 
For positions where the turbine alignment angle to one disturbing turbine is lower than 30°, 
the results from the single-wake model are applied. For overlapping positions where angles 
to the first and second turbine are below 30°, the two-wake model is used with a sorting of 
neighbors by exact angles.  

The maximal wind deficit in Fig. 4 amounts to approximately 1.5 m/s, which is a reduction of 
about 20 percent. The maximal wind deficit occurs directly behind the disturbing turbines. 
The wake effect fades out quickly with increasing distance and turbine alignment angle (i.e., 
a vertical movement in the graph). Comparing the two wind parks in Fig. 4 reveals that the 
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general behavior of the wake effects is similar with slight differences. For example, in wind 
park B the wake effect is more intense directly behind the turbines for larger distances (until 
approximately 300 meters) and persists longer with increasing distance compared to wind 
park A. These differences can be explained by factors for which we do not control for in the 
regression approach, in particular, technical parameters such as rotor size (82 m versus 
100 m) and hub height (138 m versus 100 m) as well as differences in the wind park terrain. 
These differences manifest themselves in the specific regression coefficients that we 
estimate for each wind park separately. 

 
Figure 4: Simulation of wake effect with two lateral turbines for an undisturbed wind speed of 

7 m/s coming from the left, wind park A (left) and wind park B (right)  

Fig. 5 shows that the wake effect is aggravated by a second disturbing turbine, but that the 
impacts of the two disturbing turbines are not additive. As before, the wind deficit declines 
with increasing distance and turbine alignment angle. Similar to Fig. 4, the wake effects 
endure longer in wind park B when increasing the downstream distance. Moreover, Fig. 5 
reveals a flaw in our model: The estimated wind deficit shows a discontinuity when switching 
from the single to the two-wake model, while in reality the transition is expected to be 
smooth. This could be overcome by using a smoothening combination of the models in the 
transition areas.  

 

Figure 5: Simulation of wake effect with two consecutive turbines for an undisturbed wind 
speed of 7 m/s coming from the left, wind park A (left) and wind park B (right) 

To assess the performance of the proposed econometric approach, we compare the 
outcome of our models with the results from a benchmark model, i.e., the model from Jensen 
in Eq. (1). This requires the specification of the thrust coefficient, the hub height, and the 
surface roughness. The thrust coefficient for the Enercon E-82 turbine is around 0.8 for our 
most frequent wind speed. Referring to the guidelines of the World Meteorological 
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Organization (2010), we chose a surface roughness length of 0.03, which corresponds to 
open flat terrain, grass, and few isolated obstacles. 

For a direct comparison of our econometric model with the Jensen model, we calculate the 
root mean squared error (RMSE), i.e., the average deviation of the predictions of both 
models from the true values. The RMSE of our model amounts to 0.78 m/s for wind park A 
and to 1.13 m/s for wind park B. The errors for the Jensen model are 1.04 m/s for wind park 
A and 1.30 m/s for wind park B, which are 34% and 16% higher, respectively, than the 
RMSEs from our model. From these differences, it becomes clear that the econometric 
approach with a rather simple function (i.e., linear with interactions) outperforms the 
frequently used Jensen model, at least in this simple version. 

The wind deficits, however, are not the best measure to describe the economic losses 
caused by wake effects since the same wind loss has a different effect on the power 
production for different intervals of the power curve, depending on its slope. Hence, we also 
calculate the resulting power losses by plugging the disturbed and undisturbed wind speeds 
into the power curve. The RMSE for the power losses from the econometric model are 
217.39 kW for wind park A and 394.12 kW for wind park B, whereas those for the Jensen 
model are 300.92 kW (wind park A) and 470.02 kW (wind park B). Thus, the errors for the 
Jensen model are 38% and 19% higher.  

To analyze the above differences in detail, Fig. 6 depicts the observed and predicted power 
losses against wind speed for an (average) single turbine in wind park B. For isolating the 
change in losses due to wind speed, we fix the other model variables at their mean values. 
For every observation, i.e., for every moment and every turbine, we verify whether no, one or 
two disturbing turbines are relevant, apply the appropriate regression model to calculate the 
predicted losses, and average the results for a given value of the undisturbed wind speed. 
Fig. 6 shows that the regression model fits the observed losses fairly well, particularly for 
wind speeds below 13 m/s. Below 11 m/s, the regression model slightly overestimates the 
actual losses, whereas it slightly underestimates them between 11 m/s and 13 m/s. Above 
13 m/s, the regression model underestimates the observed losses with a gap that increases 
with higher undisturbed wind speed. However, the regression model outperforms the Jensen 
model at each level of wind speed. In fact, the Jensen model underestimates the actual 
power losses significantly, at least for the chosen specification of the parameter in the 
Jensen model. Fig. 6 also illustrates that the regression model is able to reproduce the 
decrease in power losses above a wind speed of 11 m/s, which comes from the fact that the 
power curve flattens when approaching the rated wind speed.  
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Figure 6: Wake losses as a function of wind speed, wind park B 

 

Scenario Analysis 

In this section, we use the regression model to simulate power losses for hypothetical wind 
park designs with three turbines, given the wind speed and direction from 2011 (see Fig. 3). 
In the first two scenarios, we investigate the predicted change in wind deficits if the turbine 
density of a wind park is increased, i.e., the distance between the turbines is reduced (see 
Fig. 7). Scenario 1 depicts three wind turbines that are 500 m apart and located on the 
vertices of an equilateral triangle. Scenario 2 reduces the distance between the turbines from 
500 m to 250 m. The other two scenarios analyze the impact of the alignment of wind 
turbines along a specific wind direction. We consider two extreme cases: Scenario 3 
presents a row of three turbines aligned in a southwest-northeast direction (245°), which is 
the main wind direction according to the 2011 data (see Fig. 3). Scenario 4 aligns the three 
turbines orthogonal to the main wind direction. To evaluate the losses corresponding to these 
four hypothetical wind park designs, we use the estimated regression coefficients of wind 
park A and simulate wind deficits for the historical wind data from 2011. We choose wind 
park A because its coefficient of determination is higher than that in wind park B and hence 
the model has a better fit to the empirical data. 

The results of the hypothetical scenario analyses are presented in Fig. 8 for each turbine 
separately. When passing from scenario 1 to scenario 2, i.e., when increasing the density of 
turbines, we see an increase in turbine-specific losses. As one would expect given our 
regression model and the equidistant position of the turbines in these two scenarios, the 
increase in losses is similar for all turbines.  

What appears more relevant from our analysis is the appropriate choice of the alignment 
direction. When changing the alignment of the turbines from being in line with the main wind 
direction to orthogonal to the main wind direction (i.e., passing from scenario 3 to scenario 
4), the losses are dramatically reduced. However, there are differences between the 
turbines: Turbine 1 has an excellent position regarding the main wind direction in both 
scenarios, so that the losses are almost equal, yet the losses for the other two turbines 
strongly decrease under optimal alignment. It is also worth noting that the loss of the middle 
turbine is always the greatest. This means that in scenario 3, it is worse for a turbine to be 
disturbed from two neighbors at two opposite sides (turbine 2) than it is for a turbine to stand 
behind two turbines towards the main wind direction (turbine 3).  
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Figure 8: Scenario analysis 
 

      
Figure 7: Layout of the hypothetical wind park 
designs 

Table 4 depicts the losses estimated for the four wind park designs. The first part shows the 
average 10 min losses per observation as in Fig. 8. The average losses per observation over 
all turbines are 43 kW (scenario 1), 47 kW (scenario 2), 57 kW (scenario 3), and 11 kW 
(scenario 4). This stresses again that in our scenarios, the alignment with respect to the wind 
direction distribution is more important than the density of the turbines.  

The middle section of Table 4 shows the total annual loss for the same scenarios, which 
means that the values per 10 min observation in kW are aggregated for the entire year and 
converted into MWh. These values are then compared to the maximum attainable yearly 
production of 5,219 MWh per turbine or 15,658 MWh for all three, i.e., the hypothetical case 
that all three turbines are not disturbed through wake effects. Increasing turbine density from 
scenario 1 to scenario 2 leads to changes in losses of less than 50 MWh per turbine, i.e., 
less than one percentage point. The worst alignment (scenario 3) leads to a loss of almost 
10% for the whole wind park. This can be reduced to 1.7% with optimal alignment 
(scenario 4).  

The last part of Table 4 then translates these numbers into monetary amounts by assuming 
an average price of 32.78 €/MWh, which corresponds to the average European Energy 
Exchange (EEX) spot market electricity price in 2014. In the worst case, a bad position of a 
turbine can lead to an extra loss of almost 20,000€ per year for one turbine (turbine 2 from 
scenario 3 to 4) and a poor wind park design can result in an extra loss of almost 40,000€ 
per year for the entire wind park (from scenario 3 to 4).  

In summary, our analysis shows that the most important decision for wind park design is 
turbine alignment. The choice of turbine alignment seems to be a more crucial decision than 
their density, at least for reasonable intra-turbine distances (approximately 2.5 to 3 times the 
turbine rotor diameter).  
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Table 4: Estimated losses for hypothetical wind parks in different scenarios 
Average 10 min Loss (in 
kW) Turbine   
Scenario 1 2 3 All 
1 15.4 70.1 44.2 43.2 
2 17.0 75.4 48.0 46.8 
3 10.6 88.1 71.2 56.6 
4 9.5 16.7 5.4 10.5 

     Total Annual Loss (in MWh) Turbine Wind Park 
Scenario 1 2 3   
1 132.7 606.0 382.1 1120.9 

 
(2.5%) (11.6%) (7.3%) (7.2%) 

2 147.1 652.1 415.3 1214.5 

 
(2.8%) (12.5%) (8.0%) (7.8%) 

3 91.8 762.0 615.4 1469.3 

 
(1.8%) (14.6%) (11.8%) (9.4%) 

4 82.4 144.0 46.5 273.0 
  (1.6%) (2.8%) (0.9%) (1.7%) 
Attainable total prod. (100%) 5,219.3 5,219.3 5,219.3 15,657.9 

     Total Yearly Loss  
(in EUR, 32.78€ per MWh) Turbine Wind Park 
Scenario 1 2 3   
1 4,351.5 19,864.8 12,526.3 36,742.6 
2 4,821.4 21,376.9 13,612.9 39,811.2 
3 3,010.6 24,978.7 20,174.1 48,163.3 
4 2,702.2 4,721.8 1,524.2 8,948.2 

 

Discussion and Conclusions 

In this paper, we propose a parsimonious econometric wake model that can be used to 
predict production losses of existing and potential wind parks. Motivated by simple 
engineering wake models, we use wind speed, turbine alignment angle, and distance as 
explanatory variables. Unlike existing wake models, our approach is mainly data driven and 
utilizes real world data instead of experimental data. The model is estimated for two wind 
parks in Germany. We find that the regression model is a good fit with observed wind deficits 
for both wind parks. The gain in estimation accuracy when switching from a single wake 
model to a two-wake model is moderate. Compared to the standard Jensen model, a 
significant reduction of the root mean square error can be attained in the empirical wake 
model. A scenario analysis revealed that the distance between turbines can be reduced up to 
three times the rotor size without entailing substantial production losses. In contrast, a 
suboptimal configuration of turbines with respect to the main wind direction can lead to five 
times higher production losses. 

Our empirical wake model is characterized by several useful features. First, the approach is 
rather flexible and can be easily estimated for any wind park design. Second, due to its data 
driven nature, the model is able to capture specific effects that occur in existing wind parks. 
In contrast to the Jensen model, which only shows two adjustable parameters (thrust 
coefficient and surface roughness), the regression model has much more parameters that 
can be tailored to specific wind parks. This advantage, however, comes at the cost of a 
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reduced generalizability of the results: an estimated set of regression parameters cannot be 
used to assess wake effects in a different environment, e.g. for different turbine types or at a 
completely new location. The model is rather useful to predict the effects of extending 
existing wind parks or changing wind conditions. Other limitations of our model come from 
the fact that it produces meaningful results for only a limited range of turbine alignment 
angles and that discontinuities occur when mixing single and two-wake models. 

There are several starting points for extending and refining the proposed empirical wake 
model. First of all, it would be relevant to test the model’s performance for other wind parks 
under a variety of external conditions using other data sources, particularly meteorological 
mast data. From a methodological viewpoint, alternative definitions of relevant turbines, the 
inclusion of nonlinear terms in the explanatory variables, or the application of a Tobit 
regression that incorporates non-disturbing turbines into the model could further improve the 
model results. 
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