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Abstract

We investigate how stable individuals’ risk atti-
tudes are with respect to changes in cognitive
load. In a laboratory experiment using pairwise
lottery choice and a within-subject design, we
show that putting subjects under load via a con-
current working-memory task significantly in-
creases their risk aversion. Subjects made sig-
nificantly faster choices under load. Regardless
of load, they responded faster when choosing

the less risky option in safe–risky trials, but
not in risky–risky trials. We discuss how these
findings relate to both dual-system and unitary-
system theories of decisionmaking.Weobserve
that predictions of both recent dual-systemand
drift–diffusion models of the decision-making
process are confirmedby our data and argue for
a convergence of these to-date separate strands
of the literature.
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1 Introduction

Risk aversion is one of the key concepts in economics. Without risk aversion, many eco-
nomic phenomena—such as the existence of insurance, the risk premia that investors
receive on stocks vis-à-vis bonds, or consumption smoothing over the business cycle—
could not be explained. In this paper, we investigate how stable people’s risk attitudes
are with respect to a specific change in the decision-making environment. We show via
a laboratory experiment that putting subjects under cognitive load during pairwise lot-
tery choice significantly increases their risk aversion.

Empirical investigations suggest that risk attitudes are state-dependent (e.g., Cohn
et al., 2015), and several theoretical models have been developed to capture such state
dependence. The relevant states are often taken tobeprevious economic outcomes, for in-
stance,whenagents are assumed to exhibit habit formation (e.g., Campbell andCochrane,
1999) or when preference parameters are assumed to depend on realized gains and losses
(e.g., Barberis et al., 2001). It is possible, however, that risk attitudes arenot only influenced
bypast outcomesbut alsoby concurrent factors in the economic environment. Apotential
concurrent factor is the extent to which people can deliberate on the decisions that they
make. As an example, think of investors whomay have to process a lot of information and
make several decisions simultaneously in times of volatile markets, while they can delib-
erate more thoroughly in calmer periods.

Wemimicked such a situation in our experiment by varying theworking-memory load
of subjects while they made decisions under risk. We used a within-subject design and
let each of the 41 participants complete 2× 60 pairwise lottery choices—some safe–risky,
most risk–risky, all with strictly positive payoffs. During half of the trials, subjects per-
formed a cognitively demanding distractor task concurrent to the lottery choice.

Ourmain result is that cognitive load increases risk aversion: Subjects chose the riskier,
but on averagemore rewarding, lottery significantly less oftenwhen cognitive loadwas in-
creased. To complement this non-parametric measure, we estimated the cognitive-load–
induced change in subjects’ risk aversion via several structural regressions. We find that
subjects’ average degree of risk aversion was significantly higher under load. For the lot-
teries used in our study, the risk premia implied by the estimated preference parameters,
according to our baseline regression, were 6.9% in the “no load” condition and 7.7% in the
“load” condition, an increase of 12.3%.

Wealso find that lottery choicesweremade significantly faster in the “load” than in the
“no load” condition. In both conditions, subjects responded exceptionally fast when they
chose the safe alternative in safe–risky trials. We consider response times an important
measure in this type of study, since formal models of decision making often imply partic-
ular response time patterns. Thus, observed response times favor certain interpretations
of subjects’ behavior and oppose others. We address this when presenting (Section 4 and
discussing (Section 5) our results.

So far, only two studies have investigated a potential link between cognitive load and
risk aversion. The evidence is inconclusive. Both studies used a number memorization
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task to put subjects under cognitive load. Benjamin et al. (2013) let subjects choose repeat-
edly between a safe and a risky payoff or between two risky payoffs. Benjamin et al. find
that cognitive load increases small-stakes risk aversion; however, only in “the case of com-
parisons of risky gambles, the effect is statistically significant” (p. 1249). This ambiguous
findingmaybe the consequence of low statistical power, resulting fromabetween-subject
designwith only fewobservations per condition.Deck and Jahedi (2015) used a larger sam-
ple and a within-subject design. They combined a number memorization task with re-
peated pairwise choice between sure payoffs and lotteries. In contrast to Benjamin et al.,
Deck and Jahedi find a significant effect of cognitive load for safe–risky choices: an in-
crease in the frequency with which subjects chose the safe option under load.

Deck and Jahedi (2015) interpret their finding as an increase in risk aversion. How-
ever, the choice frequencies of the two options approach 50% under load in their exper-
iment, so that the effect that they observe may stem from a tendency toward random
choice under load. It is exactly this issue that was raised by Franco-Watkins et al. (2006)
and Franco-Watkins et al. (2010) regarding much earlier cognitive-load studies in the do-
main of intertemporal choice. This issue is absent in our study: The choice frequencies
under load move away from 50% instead of approaching random choice. Moreover, via
our structural regressions, we can estimate to which degree subjects made inconsistent
choices. We do not find any evidence for a cognitive-load–induced tendency toward ran-
dom choice. Apart from this, the results that we present in Section 4.2.2 indicate that safe–
risky choices are qualitatively different from risky–risky choices (see also Dickhaut et al.,
2003) so that analyzing both types of choices is important.

An approach that can explain our findings and that has been highly influential in psy-
chology and cognitive neuroscience is the dual-systemapproach, in particular the “risk as
feelings” hypothesis (Loewenstein et al., 2001). This hypothesis postulates that relatively
slow cognitive and faster emotional processes, executed by different systems in the hu-
man brain, interact in decision making under risk. Existing experimental evidence sug-
gests that the emotional system steers decisions in the direction of risk avoidance and the
cognitive system in thedirectionof riskneutrality—see, e.g., Shiv et al. (2005) andHsuet al.
(2005) for studies with patients who suffered from specific brain damage; Hsee and Rot-
tenstreich (2004) for a study that used emotional priming; and Rubinstein (2007, 2013) for
response time studies. Since cognitive processes areworking-memory–dependent (Evans,
2008, pp. 257/259), whereas emotional ones are not, the dual-system approach explains
why lowering the impact of the cognitive system by taxing working memory leads to in-
creased risk aversion.

A closely related approach has recently found its way into the economics literature in
the form of “dual-self”models. Using a dual-self framework, Fudenberg and Levine (2006,
2011) formally derive the prediction that cognitive load increases risk aversion. More-
over, they show that their model predicts risk aversion to be particularly pronounced for
choices between a safe and a risky alternative. We find evidence for both predictions.

While our findings are compatible with the dual-system/dual-self approach to deci-
sion making under risk, we also discuss how our findings relate to a different class of
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models, so-called “drift–diffusion” or “sequential sampling”models (e.g., Busemeyer and
Townsend, 1993). These are highly influential in cognitive psychology and cognitive neuro-
science and have recently received a lot of attention in the field of neuroeconomics (see,
e.g., Basten et al., 2010; Fehr and Rangel, 2011; Clithero and Rangel, 2013). In a broader
context, our findings suggest that people’s preferences interact with the complexity of
the environment in which they make a decision. This has potential implications for var-
ious fields of economics; for instance, investors’ risk aversion may differ systematically
between times of high and lowmarket volatility.

In the remainder of this paper, we first briefly review the theoretical approaches and
the empirical evidence that form the background of this study (Section 2). We then de-
scribe the design of our study (Section 3), followed by the statistical analysis and the re-
sults concerning choices and response times (Section 4). A discussion and interpretation
of our findings conclude (Section 5).

2 Related Literature

The existing evidence on the relation between cognitive load and decision making under
risk is inconclusive and relatively scarce.

Benjamin et al. (2013) provide evidence that risk attitudes can be influenced through
the use of “higher-order cognitive processes” and through cognitive load: In one of their
experimental conditions, subjects had to verbalize the reasons for their choices. This re-
sulted in fewer risk-averse choices than in the control condition. In a different condition,
Benjamin et al. subjected participants to a “‘cognitive load’ manipulation . . . designed to
inhibit working memory”: they asked participants to memorize a 7-digit number and in-
centivized correct recall. This increased participants’ small-stakes risk aversion, both for
choices between a sure payoff and a gamble as well as between two gambles. Only in the
latter case, however, is the effect statistically significant (p. 1249).

Deck and Jahedi (2015) report the results of an experiment that also employed a num-
ber memorization task and combined it with incentivized choices between a sure payoff
and a lottery. In contrast to Benjamin et al. (2013), Deck and Jahedi find a significant effect
for safe–risky choices: an increase in the frequency with which subjects chose the safe
option under cognitive load. Deck and Jahedi interpret this as an increase in risk aversion.
However, as arguedabove, themanipulationeffect that theyobservemay result froma ten-
dency toward random choice under load, since the choice frequencies of the two options
approach 50% in their load condition.

In summary, the existing evidence is only partially consistent across studies,1 and its
informativeness is limited by potential confounds.

A correlational between-subject finding analogous to increased risk aversion due to
cognitive load would be that higher working-memory capacity is associated with lower

1 It is actually even inconsistent within the study of Benjamin et al. (2013), who note in their online ap-
pendix (p. 5) that during a pilot study, none of the three different cognitive-load manipulations they tested
“reliably influenced the preferences we measured.”
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risk aversion. According to Evans (2008, p. 262), it is “well established that individual dif-
ferences in working memory capacity and general intelligence measures are very highly
correlated.”Consequently, higher intelligence should goalongwith lower risk aversion. In-
deed, this is what Dohmen et al. (2010) find in a representative sample of German adults.
Their results are confirmed for different subject pools by Burks et al. (2009) and Benjamin
et al. (2013).

The mentioned findings are often interpreted through a “dualistic” lens (e.g., Rubin-
stein, 2007: “instinctive” vs. “cognitive”; Benjamin et al., 2013, p. 1233). The dual-system
approach views decision making as an interaction of dissociable systems in the human
brain. It has a “long legacy of research within psychology, strongly supported by findings
from neuroscience” (Sanfey et al., 2006, p. 111). The most neutral labels for the postulated
systems are simply “System 1” and “System 2” (Stanovich andWest, 2000). Distinguishing
features ascribed to the two systems are speed, flexibility, and reliance on working mem-
ory. In contrast to the “high capacity” nature of System 1, System 2 seems to be more flex-
ible, but also (i) limited by access to working memory and (ii) comparatively slow (Evans,
2008, p. 261/262). This implies that if risk attitudes are shaped by the interaction of both
systems, (i) it should be possible to influence risk aversion by a task that taxes working
memory, and (ii) response times can serve as an indicator of the dominating system.

Concerning response times, Rubinstein (2007) provides correlational evidence from
an Internet-based experiment in which subjects were asked to choose between two hy-
pothetical gambles. Rubinstein observes that choices of the less risky gambles weremade
substantially faster than choices of the riskier one. He interprets this as reflecting different
modes of reasoning, “cognitive” and “instinctive.” Neither Benjamin et al. (2013) nor Deck
and Jahedi (2015) analyze response times.

A special type of System-1 processes are emotions (see Evans, 2008, p. 256/258). Emo-
tions can be defined as “low-level psychological processes engaged by events that elicit
strong valenced and stereotyped behavioral responses.” They are “rapid” and “highly au-
tomatic” (Sanfey et al., 2006, p. 111). According to the “risk-as-feelings” hypothesis, deci-
sion making under risk is shaped by an interplay between emotional and cognitive re-
sponses that are “often conflicting” (Loewenstein et al., 2001, p. 270). Specifically, Hsee
and Rottenstreich (2004) and Mukherjee (2010) posit that System-1 processing is strongly
risk-averse, while System-2 processing is less so—such that weakening the influence of
System 2 should increase risk aversion. The model by Fudenberg and Levine (2006, 2011)
rests, in a broad sense, on the same idea.

Compatible with these views, Shiv et al. (2005) find that subjects with brain lesions “in
specific components of a neural circuitry that has been shown to be critical for the pro-
cessing of emotions” (p. 436) made significantly fewer risk-averse choices than control
subjects. Similar evidence is reported by Hsu et al. (2005) who observe that patients with
specific brain lesions were significantly less risk-averse than control subjects. Mohr et al.
(2010) conducted a meta-analysis of related neuroimaging studies and find the evidence
from this literature to be “compatible with . . . the risk-as-feelings hypothesis” (p. 6618).
They ascribe the role of integrating the cognitive and the emotional information to the
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dorsolateral prefrontal cortex (dlPFC). The fact that brain stimulation studies have shown
that stimulating thedlPFC affects individuals’ risk attitudes (e.g., Fecteau et al., 2007) com-
pletes the picture.

Of course, thedual-systemapproach isnotuncontested.KerenandSchul (2009, p. 534)
criticize many descriptions of the presumed interplay of the two systems as being too
vague, which makes it difficult to pitch dual-system against unitary-systemmodels. Con-
sequently, we also consider a unitary-system explanation of our findings: so-called drift–
diffusionmodels (e.g., Busemeyer and Townsend, 1993) which have found a lot of empiri-
cal support in the field of neuroeconomics (see, e.g., the review by Fehr and Rangel, 2011).
For details, see Section 5.

3 Design of the Experiment

3.1 General Information

The experiment was performed in November/December 2010 at Freie Universität Berlin.
We tested N = 41 subjects (21 female; age: range, 19 to 47 yrs.; mean ± std. dev., 25.9 ±
5.95 yrs.). Subjects were recruited mainly among the students of the Berlin universities
and via mailing lists to which previous and prospective subjects had registered. No inclu-
sion or exclusion criteria applied. The majority of subjects (30 of 41) were students from
various disciplines; the occupational backgrounds of the remaining subjects ranged from
electricians to university employees to physicians.

We used a within-subject design, because we were rather interested in how variable
people’s preferences are over multiple decisions of the same kind in different situations,
than how much the attitudes of different people in different situations vary when they
make a single choice or only few choices. We consider a within-subject design externally
morevalid thanabetween-subject design, becausehumansmakedecisionsover relatively
small stakes, like the payoffs used in our experiment, repeatedly; in contrast, one-time de-
cisions are likely to involve large stakes.Moreover, awithin-subject designmakes isolating
the effect of amanipulation easier thanabetween-subject design, because the effect is not
conflated with between-subject variation.

For display of the stimuli as well as recording the responses and response times, the
software “Presentation” (Neurobehavioral Systems, Inc.) was used.

3.2 Conditions and Trials Types

There were two conditions within-subject: no cognitive load, i.e., the cognitive-load task
was absent, and cognitive load. In the “no load” condition, subjects’ only task was to
choose one out of two offered lotteries. In the “load” condition, subjects had to remem-
ber an arrangement of dots on topofmaking the lottery choice. Each condition comprised
60 trials. The trials were presented in pseudo-random order in blocks of 15 trials. All trials
within a block belonged to the same condition, to minimize carry-over effects between
the conditions. A “load” trial lasted 17.75 sec and a “no load” trial 12.25 sec (see Figure 1).
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Stage D1
Delay
(red fi xation cross)
750 ms

Stage C2
Mask
300 ms

Time

Stage C3
Delay
1 500 ms5 €

Stage L2
Delay
1 500 ms

Stage C4
Probe
2 700 ms

Stage D2
Delay
3 500 ms

5 €

Stage C1
Memorizing phase
(sample points)
1 000 ms

Stage L1
Lottery choice
6 500 ms

Figure 1. Trial setup in the “cognitive load” condition. In the “load” condition (60 trials), both lottery choice
(Stages L1 and L2) and working-memory task (C1–C3 and C4) were present. In the “no load” condition (60 trials),
Stages C1–C3 and C4 were omitted. In the 30 “working-memory task only” trials, Stages L1 and L2 were omitted.
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The literature reviewed in Section 2 suggests that risk attitudes might covary with the
individual difficulty of the working-memory task. Hence, it is useful to have an indepen-
dent measure of task difficulty. To obtain this measure, we added 30 trials in which sub-
jects performed only the working-memory task, without any lottery choice. Hence, there
was a total of three trial types: the main types “load” and “no load,” and the third type,
“working-memory task only.”

The experiment lasted around 45 min, including practice trials and breaks.

3.3 Remuneration

Subjects’ remuneration included a show-up fee of €5. Remuneration for the lottery choice
was based on one randomly selected trial (random-incentivemechanism). This was done
to prevent subjects from hedging their decisions across trials, since the statistical analy-
sis assumes choices to be independent across trials. The payoff was determined by ran-
domly drawing a realization from the lottery which the subject had chosen in that trial.
In addition, subjects received a reward of €5 upon answering correctly in the working-
memory task. Again, one trial was selected randomly per subject to be the payoff-relevant
trial. Thus, the reward for theworking-memory task and the payoff from the lottery choice
were independent of each other.

3.4 Pairwise Lottery Choice

We used a variant of the Random Lottery Pairs procedure (Hey and Orme, 1994): In each
trial t , subjects were shown a lottery pair {At ,B t } out of a set of 60 lottery pairs. The pairs
were presented in pseudo-random order. The advantage of the Random Lottery Pairs pro-
cedure over other procedures, such as the Price List design (Holt and Laury, 2002), for our
purposes is that the formermakes it difficult to remember previous choices. Moreover, re-
sponse times in pairwise lottery choice are easier to interpret than response times in Price
List designs.

Each lottery L consisted of two possible, strictly positive payoffs (xL
1 , xL

2 ) and was visu-
alized by a pie chart of the associated probabilities (pL

1 , pL
2 ) = (pL

1 ,1−pL
1 ) (see Figure 1), as

is commonly done in experiments (see Harrison and Rutström, 2008). The payoffs ranged
from €2 to €20, and the probabilities pL

1 were 10%, 25%, 50%, 75%, 90%, or 100%.
Subjects were asked to choose one of the two offered lotteries within a time frame of

6.5 sec. As soon as subjects had pressed a button to indicate their lottery choice, the se-
lected lottery wasmarked by a red frame.2 Subjects were allowed to change their selection
within the mentioned time frame.

2 To enable this visual feedback, a loopwith an intended duration of 50ms per iterationwas executed dur-
ing presentation of the lotteries. However, due to timing inaccuracies in the software, each iteration lasted
16ms longer than programmed. This resulted in a somewhat longer time frame during which responses were
possible than announced. Subjects do not seem to have noted the discrepancy in the course of the experi-
ment—in fact, their lottery choices became significantly faster over time, see Section 4.2.1.
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The lotteries differed from each other in their riskiness. According to the definition of
“increased risk” by Rothschild and Stiglitz (1970), a lottery can be considered riskier than
another lottery if it can be expressed as a mean-preserving spread (MPS) of the other lot-
tery. Since risk averters dislike the wider spread, making them choose the riskier lottery
requires adding somecompensation for thewider spread to the riskier lottery—a“riskpre-
mium.” We denote this risk premium by m. Within a lottery pair {At ,B t }, we thus call the
lottery At the riskier lottery if it has a wider spread than B t , such that At = MPS(B t )+mt ,
with mt being a sure payoff. This criterion applies to 42 of the 60 lottery pairs we used.3

The 60 lottery pairs presented to subjects were designed such that for degrees of risk
aversion in the range found in previous studies (see Harrison and Rutström, 2008), sub-
jects would sometimes choose the riskier and sometimes the less risky lottery. To assess
subjects’ rationality and alertness, eight lottery pairs were generated such that one lottery
first-order stochastically dominated the other one (“catch trials”), and in four lottery pairs,
one lottery would be preferred for any degree of risk aversion. The complete set of lottery
pairs is listed in Table A.1.

The location of the lotteries’ visualization on screen was counterbalanced within-
subject: In some trials, the riskier lotterywaspresented in theupperpart of the screen, and
in some in the lower part. Moreover, we counterbalanced the position of the larger payoff
on screen between subjects: For half of the subjects, the larger payoff was illustrated by
the left side of the pie chart, and for the other half, by the right side.

3.5 Cognitive-Load Manipulation

As the cognitive-loadmanipulation,wechose an incentivizedversionof a spatial-working-
memory–delayed-matching task that had been used previously (e.g., in Nagel et al., 2009).
Subjects were briefly (1 sec) shown an arrangement of points, called “sample points.” Sub-
jects knew that they would have to indicate after a short delay whether a single point pre-
sented to them, called “probe,” matched any of the sample points (see Figure 1)—hence
the name “delayed-matching task.”

The arrangement of the sample points varied across trials. The locations of the dif-
ferent points were determined by placing them on virtual radii around the fixation cross
shown at the center of the screen (as in Nagel et al., 2009).

During the delay between the memorizing and the probe phase—i.e., while keeping
the arrangement of points in mind—subjects made a lottery choice.

In the probe phase, subjects indicated via a button press whether the probe corre-
sponded to any of the sample points or not. To avoid ambiguity in the categorization, the
probe was placed such that it occupied either the exact same spot as a sample point or

3 An alternative—which is theoretically less well founded—is to consider a lottery’s variance as an indica-
tor of its riskiness. If a mean–variance trade-off is present in a lottery pair, one calls the lottery that features
the higher variance, but also the higher average payoff, “riskier.” This criterion applies to 51 of our 60 lottery
pairs. A wider spread implies larger variance, but not vice versa. Hence, the two measures coincide in many
but not all of our trials.
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a non-overlapping position (as in Nagel et al., 2009). Except in the initial practice trials,
subjects did not receive feedback during the experiment.

We chose this task instead of a number memorization task as it was used, e.g., by Ben-
jamin et al. (2013), since we desired a large number of observations per subject. Our load
task makes this possible by keeping both the memorizing and the probe phase, which re-
quires a single button press for “yes”/“no,” short.

3.6 Practice Trials

Subjects could familiarize themselves with the experimental design over the course of
30 practice trials. The first 10 practice trials consisted of the working-memory task alone,
and the next 10 of the lottery choice task alone. Both tasks were combined in the last
10 practice trials.

3.7 Measures of Individual Differences

After the experiment, subjects performed the Cognitive Reflection Test (Frederick, 2005)
and filled in a questionnaire on sociodemographic data.

4 Results

We first check whether the tasks in the experiment were adequately chosen. In only 6 out
of 4,920 (41×120) lottery choices (0.12%) did subjects not respond on time. There was not
a single missed answer in the working-memory task (41×90 = 3690 trials). The average
hit rate in theworking-memory task was 91.30% in the “working-memory task only” trials,
and it decreased to 78.94%when the lottery choice taskwaspresent. Suchadecrease could
be observed on the individual level for all but two subjects. Hence, subjects do not seem
to have focused exclusively on the working-memory task but also paid attention to the
lottery choice task.

At the same time, the hit rates in the working-memory task were above chance level
(50%) for all subjects even in the presence of the lottery choice. This is significant for all
subjects but one on the 5% level and for all subjects on the 10% level. Hence, the incentive
to perform well in the working-memory task seems to have been adequate: Subjects did
not focus exclusively on the lottery choice.

Taken together with the response times (Section 4.2), these observations indicate that
the tasks, including the permitted response times and the incentives for both tasks, were
adequately chosen.

4.1 How Often Did Subjects Choose the Riskier Lottery?

4.1.1 All Trials (Risky–Risky and Safe–Risky) Pooled

Since each lottery pair was offered to each subject twice—once in the “no load” and once
in the “load” condition—weare able to testwhether the experimentalmanipulation led to
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Figure 2. Choice of the riskier lottery under working-memory load and in the absence of working-memory load.
Each point indicates one subject. The relative frequency for each subject is based on 42 pairwise choices

for each condition between a riskier and a less risky lottery (41 choices in three cases, because three subjects
failed to respond within the time limit in one trial each, two in the “no load” and one in the “load” condition).

choice reversals. As stated in Section 3, we expected choice reversals to be predominantly
of the kind that if the riskier lottery is chosen from a given pair in the absence of cognitive
load, the less risky option is chosen under load.

Consistent with this hypothesis, the frequency with which the riskier lottery was cho-
sen is lower in the “cognitive load” condition: 53.8% vs. 56.9%. The fact that the majority
of points lies below the 45° line in Figure 2 reveals that the aggregate reduction in the fre-
quency of riskier choices is not the result of a small number of subjects exhibiting a rather
strong effect, but of a robust small effect across subjects. A Wilcoxon signed-rank test of
the differences in subjects’ choice frequencies between the two conditions yields that the
observed effect is statistically significant (p = 0.012; N = 41).4, 5

Result 1. Subjects choose the less risky lottery significantly more often in the presence than
in the absence of cognitive load, indicating higher risk aversion under cognitive load.

4 p = 0.026 if the variance criterion is used. Given that the MPS and the variance criterion for calling a lot-
tery “riskier” often coincide, we obtain qualitatively identical results in most cases.

5 A complementary approach is to perform a probit regression of the choices on a constant and on
a dummy for the “load” condition. Using a two-stage regression—to be able to include random individual
effects in both the constant and the “load” dummy—wefind a significant effect of cognitive load (p = 0.0161).
The coefficient of correlation between the choice frequencies depicted in Figure 2 and the estimated individ-
ual random effects amounts to 0.999 in the “no load” and to 0.962 in the “load” condition, indicating that the
random-effects specification performed well.
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Importantly, we find evidence that the observed less frequent choice of the riskier lot-
tery under cognitive load does not stem from a tendency towards random choice. One
could mistake a change of the choice frequencies due to random choice for a systematic
change if the relative choice frequencies under load approached 50%.6 In our data, the op-
posite holds: The less risky lottery is chosen in themajority of cases (53.8%) in the absence
of load, and it is chosen even more frequently (56.9%) under load. Thus, the observed in-
fluence of cognitive load on subjects’ choices is probably not due to a load-induced ten-
dency towards random choice. We will return to the topic of noise in subjects’ choices in
the context of our structural regressions.

4.1.2 Risky–Risky vs. Safe–Risky Trials

Fudenberg and Levine (2011, p. 66) mention as a testable prediction of their model that
completely safe alternatives are particularly “tempting,” such that “introducing cognitive
load when the alternative is safe induces many subjects to switch to the safe alternative,
while there is no such reversal when the ‘safe’ alternative is” less risky but nevertheless
probabilistic. At the same time, the model by Fudenberg and Levine (2011) predicts a par-
ticular attractiveness of safe payoffs also in the absence of cognitive load (see p. 35). The
described phenomenon of increased risk aversion in the presence of a safe alternative is
known as the “certainty effect” (Kahneman andTversky, 1979; seeDickhaut et al., 2003, for
relevant neuroimaging evidence).7

The behavior of subjects in our experiment is in line with the predictions of the
Fudenberg–Levine model to the extent that in the absence of load, subjects chose the
lottery in the safe–risky trials in only 27.87% of cases, vis-à-vis 49.9% in the risky–risky
trials. This value goes down to 20.56% for the safe–risky trials and to 47.6% for the risky–
risky trials in the presence of cognitive load. Out of the 41 subjects, 10 subjects exclusively
chose the safe payoff in the absence of load—under load, 18 subject exhibited this behav-
ior, among themall ten subjectswho always chose the safe alternative even in the absence
of load.

When analyzing the risky–risky and the safe–risky trials separately, the load-induced
effect turns out to be marginally significant according to a Wilcoxon signed-rank test for
the risky–risky trials (p = 0.098), while it is is highly significant for the safe–risky trials
(p = 0.004). We test whether the potential interaction of the effect of cognitive load with
the presence of a sure payoff is statistically significant. AWilcoxon signed-rank test reveals
the interaction to be marginally significant (p = 0.079).8 Hence, we find some support for
the prediction of the Fudenberg–Levine (2011)model that cognitive load has a particularly
strong influence in safe–risky choices, but the evidence is not particularly strong.

6 The debate between Franco-Watkins et al. (2010) and Hinson et al. (2003) about whether cognitive load
aggravates temporal discounting concerns a possible misinterpretation of this kind.

7 “[P]eople overweight outcomes that are considered certain, relative to outcomeswhich aremerely prob-
able—a phenomenon which we label the certainty effect” (Kahneman and Tversky, 1979, p. 265).

8 So does modeling the interaction in the probit regression (p = 0.073).

13



−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Log response time, deviation from individual avg.

K
e

rn
e

l 
d

e
n

s
it
y
 e

s
ti
m

a
te

 o
f 
c
u

m
u

la
ti
v
e

 r
e

la
ti
v
e

 f
re

q
u

e
n

c
y

 

 

“No load” condition

“Load” condition

Figure 3. Cumulative distributions of the log response times for the lottery choice
in the presence and absence of the working-memory task.

Result 2. Subjects show a pronounced tendency to avoid the riskier option in safe–risky
trials, in both the “load” and the “no load” condition. This is in line with the “cer-
tainty effect” and the model by Fudenberg and Levine (2011). The marked disinclina-
tion to choose the risky option in safe–risky trials is even strengthened by concurrent
cognitive load, as predicted by the Fudenberg–Levine model; this effect is, however, only
marginally significant (p < 0.10).

The reason behind the interaction not being more pronounced might be a ceiling ef-
fect: Given that the disinclination to choose the risky alternative in the safe–risky trials is
already quite extreme in the absence of cognitive load, there was not much room for the
working-memory task to increase risk aversion even further.

4.2 Response Times

To gain a deeper understanding of the causal influence of cognitive load on decisionmak-
ing, we now take a look at subjects’ response times. Analyzing response times serves two
functions: First, they provide data that can be used to test predictions of models of deci-
sion making. Second, they indicate, according to several prominent theoretical accounts,
how difficult a decision was (see Clithero and Rangel, 2013, and the references therein).
Hence, response times should be included as a regressor when performing structural re-
gressions to explain behavior, because theymaybe related to the noise in people’s choices,
i.e., to the likelihood that people make errors.

4.2.1 Influence of Cognitive Load on Response Times in the Lottery Choice Task

It turns our that the vastmajority of subjects respondedmore quickly in the lottery choice
task when performing the working-memory task simultaneously. This is evident from Fig-
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ure 3 which depicts pure within-subject variation in response times: It plots the cumula-
tive distributions—estimated via kernel density estimation—of the deviation of subjects’
log response times from their respective individual averages.9 It turns out that the curve
for the “load” condition lies strictly to the left of the curve for the “no load” condition, in-
dicating that the entire distribution of the response times is shifted towards lower values
under load.

The average response time across all subjects in the “no load” condition is 3,835 ms,
while it is 3,449 ms in the “load” condition, a reduction by 10.1%. A regression of the log
response times on individual fixed effects—to account for the substantial heterogeneity
in subjects’ average response times—and on a condition dummy reveals that this effect
is significant (p < 0.001).

Result 3. Subjects’ lottery choices are 10% faster (p < 0.001) in thepresence of cognitive load
than in its absence.

One might have expected the reverse effect: that the multi-tasking demands of the
“cognitive load” condition led to an increase in the time needed tomake a decision in the
lottery choice task. Our finding is in line, though, with previous evidence: a decrease was
also observed by Whitney et al. (2008, p. 1182). They conjecture “that participants were
speeding up their decision-making processes . . . in order to maintain high accuracy on
the WM load task.” Notably, in their design, just like in ours, faster choice between the
lotteries did not lead to an earlier display of the probe phase of the working-memory task.

The question whether faster lottery choices improve performance in the working-
memory task is important because one might suspect that the channel through which
concurrent cognitive load influences risk attitudes is by generating time pressure during
the lottery choice—or at least a feeling thereof. Unfortunately, this hypothesis is difficult
to test, since the counterfactual is missing: how well would subjects have performed in
the working-memory task, had they takenmore time in the lottery choice?10 To be on the

9 Thedistributionof the response times in the lottery choice task inour experiment is—asusual—strongly
right-skewed. Therefore, we apply the log transformation that is typically used in the analysis of response
times when response times are the dependent variable (but not when it is an explanatory variable). Ulrich
and Miller (1994, p. 40) write that the lognormal distribution and other skewed distributions “all have been
found to give particularly good fits to empirical RT distributions.” Hence, by using log response times as the
dependent variable, we effectively analyze changes in the mean of the Gaussian component of the response
time distribution. The transformation has the consequence that the coefficient associated with a particular
explanatory variable indicates a percentage change in the average response time for a one-unit change in
that explanatory variable. The transformation also has the effect that the assumptions of the statistical tests
concerning the distribution of the residuals are not violated (as we checked by examining normal Q–Q plots
of the residuals of our regressions with the log-tranformed response times as the dependent variable).
10 To proxy for the counterfactual “what if subjects had taken more time in the lottery choice,” we con-

ducted a split-sample analysis: did subjects performworse in the working-memory task in those trials where
their response time in the lottery choicewas above themean response time in the lottery choicewithout load?
This was not the case: the difference was a mere 0.3% improvement in the hit rate, and it was not significant
(Wilcoxon signed-rank test, p = 0.7167). Between subjects, we find that the average hit rate in the working-
memory task is indeed the higher, the lower the average log response time for the lottery choice (coefficient of
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safe side, we include response times as a potential determinant of expressed risk attitudes
in our structural regressions below (Section 4.3.4).

The combination of stronger risk aversion and speedier decisions under cognitive
load is consistent with the observation by Rubinstein (2007, 2013) that his subjects made
choices of the less risky of two optionsmore quickly than choices of the riskier option. Ru-
binstein interprets the response times that he observed as evidence for the use of either
a “cognitive” or an “instinctive” decision-making process. However, Rubinstein’s studies
are purely correlational—they were based on a between-subject design without any ex-
ogenous manipulation of the decision-making environment.

4.2.2 Influence of the Presence of a Sure Payoff on Response Times

Since we collected multiple choices per condition per subject, we can improve on Rubin-
stein’s (2007; 2013) analyses by within-subject estimation of differences in response times
that arise from choice of the riskier or the less risky lottery. Figure 4 plots the cumulative
frequencies of the log response times in analogue to Rubinstein’s analyses. That is, it de-
picts four curves: two for safe–risky and two for risky–risky trials, depending on the choice
of the less risky (safe) or riskier lottery. For simplicity, we abstract from the effect of cogni-
tive load in this plot, since it turns out that concurrent load shifts all four curves to the left
by approximately the same amount11 (see Figure A.1 for comparison).

The crucial finding illustrated by Figure 4 is that one type of decision stands out: Se-
lecting the safe option in the safe–risky trials takes subjects much less time than all other
types of decisions. When regressing the log response times on individual fixed effects and
dummy regressors for choice of the less risky option in the safe–risky and risky–risky tri-
als, respectively, we find that choices of the safe option were, on average, made 44% faster
than choices of the risky option in the safe–risky trials (47% in the absence of load and
40% under load; all p-values< 0.001).

Corroborating this evidence, when we analyze those trials in which one of the payoffs
was associated with a probability of 90%—i.e., the less risky lottery was close to safe—we
find the samepattern: choices of the less risky alternativeweremadeonaverage 12% faster
than choices of the riskier lottery (p < 0.001).

One can interpret this observation as further evidence that a safe option is particularly
attractive to subjects—as the “certainty” effect posits. Corroborating such an interpreta-

correlation, r =−0.261, p = 0.099). This measure, however, may be confounded by ability. Indeed, Figure A.2
illustrates that the respectivewithin-subject effect is less pronounced than this between-subject effect. In the
associated logit regression that models success in the working-memory as a function of the response time in
the lottery choice, the coefficient has the anticipated sign, but the marginal effect is not significant and neg-
ligible: a mere 1.3% improvement of the hit rate in the working-memory task if subjects responded an entire
second faster in the lottery choice.
11 Whenwe regress the log response timeson individualfixedeffects andappropriatedummyregressors for

choice of the riskier/less risky option in the safe–risky or risky–risky trials, respectively, as well as on a dummy
for thepresenceof concurrent cognitive loadplus appropriate interaction terms,wefindall interactioneffects
not to be significant (all p-values > 0.206).
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Figure 4. Distributions of the log response times in the lottery choice task
(within-subject variation, i.e., deviation from the individual average log response time):

presence/absence of sure payoff × risky/less risky alternative chosen.

tion, we find between-subjects that the more often subjects chose the safe option, the
more quickly they did so (r = 0.571, p < 0.001).

Result 4. Subjects respond particularly fast when they choose the safe option in safe–risky
trials, both in the absence and in the presence of load.

Mean response times for the three remaining types of choices (risky lottery in safe–
risky trials, less risky lottery in risky–risky trials, and riskier lottery in risky–risky trials) do
not differ significantly from each other (all p-values > 0.135).

According to the model by Fudenberg and Levine (2011), lottery choice is determined
by the interaction of a myopic, risk-averse short-run self and a patient long-run self. The
long-run self is able to “control” the short-run self at a cost. The authors draw heavily on
constructs from the psychological multiple-process literature such as “self-control”/“im-
pulse control” and use these terms repeatedly. Even though the Fudenberg–Levinemodel
is not a processmodel and thereforemakes nopredictions on response times, one can still
consider our response timefindings as evidence for theirmodel: an interaction of twomo-
tivations as formalized in their model could explain why risk-avoiding choices are made
very quickly, while choosing the risky option takes substantially longer—because deliber-
ative thinking needed to override the impulse of choosing the safe alternative is effortful,
i.e., time-consuming.

To sum up, we find that it took subjects longer to decide in the “no load” than in the
“load” condition. At the same time, we find that risk aversion expressed in subjects’ lottery
choices was increased under cognitive load. We also find that choices of the safe option
in the safe–risky trials weremade exceptionally quick—which onemight interpret as sup-
port for the model proposed by Fudenberg and Levine (2011). A question that arises from
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our analysis is to which extent cognitive load affects risk attitudes directly and to which
degree it does so indirectly, by putting subjects under—perceived—time pressure. This
question, among others, is addressed in the following subsections.

4.3 Structural Regressions: Influence of Cognitive Load on Preference Parameters

Our previous analysis via checking for choice reversals uses a rather limited information
set: it does not take into account how similar in terms of subjective valuation the lotteries
were for which the reversals occurred. This drawback can be overcome by using struc-
tural regression models, which inherently rely on assuming a subjective valuation of the
available alternatives. In this framework, checking for an effect of cognitive load on risk
attitudes amounts to testing whether estimated preference parameters change between
the two conditions.

The use of additional information compared with counting choice reversals comes
at the cost of stronger assumptions. These are: (i) Subjects approximately maximize a la-
tent value function, e.g., expected utility (EU) or rank-dependent utility (RDU). (ii) Their
choices can be well explained by a particular functional form of the subjective valuation.
(iii) Subjects bracket choices narrowly, i.e., only the payoffs from the experiment enter
their valuation, and they consider each trial in isolation. The latter is rational in our exper-
iment, since we used a random-incentive mechanism. For empirical evidence on narrow
bracketing, see Rabin andWeizsäcker (2009).

A benefit of these stronger assumptions is that the modeling of noise (errors) in sub-
jects’ decisions becomes possible—of course, conditionally on the above assumptions.
A second benefit is that one can compare our estimates of subjects’ preference param-
eters to those from related studies—whereas the number of choice reversals is hard to
compare across studies, since all studies use different sets of lottery pairs.

4.3.1 Estimation

We use several structural regressions in the form of a latent-variable logit model to esti-
mate the effect of the cognitive-loadmanipulation on preference parameters. Let the vec-
tor θ collect all preference parameters to be estimated. A lottery L is a list of payoffs xL

i

[in €] and associated probabilities pL
i , i ∈ {1,2}: L ≡ (xL

1 , pL
1 ; xL

2 , pL
2 ) = (xL

1 , pL
1 ; xL

2 ,1−pL
1 ).

For each lottery pair {A,B }, given the preference parameters θ, a subjective value differ-
ence is determined—the latent variable, which we call “V-difference” (borrowing from
Wilcox, 2011):

∆V (A,B ;θ) = V (A;θ)−V (B ;θ).

A decision maker whose preferences can be represented by the subjective value func-
tion V (L;θ) chooses A from {A,B } if ∆V (A,B ;θ) > 0 and B if ∆V (A,B ;θ) < 0. Of course,
subjects generally do not make choices that are perfectly consistent with each other
or with the assumed model. Binary-choice regressions account for this by mapping the
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V-difference to choice probabilities via a strictly increasing, symmetric link function,
F : (−∞,+∞) → (0,1). That is, F [−v] = 1−F [v], thus F [0] =½, so that

Pr[A | {A,B };θ,σ] = F

[
∆V (A,B ;θ)

σ

]
= 1−Pr[B | {A,B };θ,σ].

The parameter σ governs the dispersion (flatness) of the link function and is called
the Fechner noise parameter (see Harrison and Rutström, 2008, p. 76). The larger σ
(i.e., the more noise), the smaller the fraction gets, such that F→½ (random choice)
for σ→∞. Conversely, σ→0 indicates complete absence of noise: subjects’ choices are
fully consistent with the assumed model. The link function F is the logistic function,
F [v] ≡ 1/[1+e−v ], in the case of the logit specification.

LetC t denote the lottery that was chosen in trial t , and let 1 be the indicator function:
1At(C t ) ≡ 1 if At was chosen and 0 ifB t was chosen. (The few trials inwhich subjects failed
to respond are omitted from our analysis.) Let DCL,t be a dummy regressor that equals 1

in trials t belonging to the “cognitive load” condition and 0 otherwise. Denote additional
regressors by zt = zt ,1, . . . , zt ,J , and let T be the total number of trials in the experiment.

Maximum likelihood estimation maximizes the log-likelihood

`(θ,δθ,σ,δσ,Γθ,γσ) ≡
T∑

t=1

{
1At(C t ) lnF

[
∆V (At ,B t ;θ+δθDCL,t +Γθ z′t )

σ+δσDCL,t +γσ z′t

]
+

[1−1At(C t )] ln

{
1−F

[
∆V (At ,B t ;θ+δθDCL,t +Γθ z′t )

σ+δσDCL,t +γσ z′t

]}}
. (1)

That is, the estimates are (θ̂, δ̂θ, σ̂, δ̂σ, Γ̂θ, γ̂σ) ≡ argmax`(θ,δθ,σ,δσ,Γθ,γσ). θ denotes the
baseline values of the preference parameters, i.e., in the absence of cognitive load. δθ cap-
tures the changes in the preference parameters and δσ the change in the Fechner noise
parameter that result from the presence of cognitive load.

The controls zt may be specific for trial t (e.g., the difficulty of the load task in t ) or
subject-specific (say, gender or age; alternatively, individual fixed or random effects). The
coefficient γθ,i , j , i.e., the entry at position (i , j ) in Γθ, indicates by how much the prefer-
ence parameter θi changes in response to a one-unit change of regressor zt , j .

In this type of analysis, the subjective value V (L;θ) is frequently set equal to the ex-
pected utility of the respective lottery or—when taking probability weighting into ac-
count—to rank-dependent utility. However, Wilcox (2011) shows that this disconnects
being “stochastically more risk-averse” from being “more risk-averse” in the theoretical
sense (Pratt, 1964).12Wakker (2010, p. 85) as well as vonGaudecker et al. (2011, p. 676) solve

12 As an illustration, consider choice between a lottery A and a sure payoff B , with E[A] = B , and assume
power utility, u(x;ρ) ≡ (x1−ρ −1)/(1−ρ). With∆V =∆EU, it can happen that an increase in risk aversion, i.e.,
a more pronounced curvature of the utility function (ρ ↑), leads to ∆EU → 0. Thus, the predicted probability
that the sure payoff B is chosen from the pair {A,B} would approach ½ for high ρ—which is nonsensical,
since it should approach 1 when risk aversion rises.
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the issue by using as theV-difference the difference between the lotteries’ certainty equiv-
alents. Formally,

∆V (A,B ;θ) ≡ ∆CE(A,B ;θ) = CE(A;θ)−CE(B ;θ), (2)

where CE(L;θ) ≡ u−1
[
U (L;θ);θ

]
is the certainty equivalent of lottery L. U (L;θ) denotes

lottery L’s utility. We assume that it is given by expected utility,

U (L;θ) ≡ EU(L;θ) = pL
1 u(xL

1 ;θ)+ (1−pL
1 )u(xL

2 ;θ).

We assume that subjects displayed either constant relative risk aversion (CRRA,
“power utility”) or constant absolute risk aversion (CARA, “exponential utility”) with re-
spect to the experimental payoffs:

upow(x;ρ) ≡


x1−ρ−1

1−ρ if ρ 6= 1

ln x if ρ = 1

and uexp(x;µ) ≡


1−e−µx

µ
if µ 6= 0

x if µ= 0

.

In both cases, an increase in the parameter (ρ orµ, respectively) indicates higher risk aver-
sion. Both specifications are frequently used in the analysis of experimental data (see, e.g.,
Harrison and Rutström, 2008, and Andreoni and Sprenger, 2012).

4.3.2 Baseline Structural Regressions

In the baseline regressions, the influence of cognitive load is the only covariate. Since peo-
ple differ in their attitudes toward risk—as is evident from the dispersion of the choice
frequencies depicted in Figure 2—it is necessary to allow for individual heterogeneity in
the statistical analysis, which we do by including individual random effects in ρ and µ,
respectively.

The results of our baseline regressions are provided in Table 1. According to both the
baseline “CRRA” and the baseline “CARA” regression, the cognitive-load manipulation
significantly increased subjects’ degree of risk aversion: The estimated coefficients δ̂ρ and
δ̂µ, respectively, are significantly positive.13

If we count all choices C t for which Pr[C t | {At ,B t }; θ̂, σ̂] > 0.5 according to the model,
as correctly predicted, then the fraction of correctly predicted choices is up to 73.03% (Re-
gression CARA in the “load” condition). This is a satisfactory value given the results of
studies that investigated the consistency of subjects’ choices in pairwise lottery choice
tasks (see Rieskamp et al., 2006, p. 634).

13 We checked that the results are robust w.r.t. different starting values. In particular, we tried negative
starting values for δρ and δµ, respectively; the algorithm still converges to the reported significantly positive
values. A different robustness check was using probit instead of logit estimation. Both yielded virtually iden-
tical fits, without a consistent ordering: For some specifications, the probit model performed slightly better,
and for others, the logit model. Our result that cognitive load increases risk aversion does not depend on the
choice of the link function.
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Table 1. Results of the structural regressions.

CRRA CARA

Coefficient Estimate p-value Estimate p-value

ρ̂ or µ̂ 0.6958 0.000 0.0968 0.000
δ̂ρ or δ̂µ 0.0949 0.002 0.0129 0.002

σ̂ 0.7847 0.000 0.7691 0.000
δ̂σ 0.0087 0.893 −0.0189 0.755

BIC 5,477.1 5,420.1

Notes:Estimates based onT = 4,914 choices by N = 41 subjects. Logitmodel, non-linearmaximum likelihood
estimation, all subjects pooled, allowing for between-subject heterogeneity in ρ or µ via individual random
effects The estimation was performedwith MATLAB R2013a, using the nlmefit function. “CRRA”: constant
relative risk aversion (power utility). “CARA”: constant absolute risk aversion (exponential utility). “BIC”:
Bayesian Information Criterion, calculated as −2`(ρ̂, δ̂ρ , σ̂, δ̂σ)+k ln N , where N is the number of subjects,
and k is the number of fitting parameters; here, k = 6.

Result 5. Also according to our structural regressions, cognitive load significantly increases
risk aversion.

The Bayesian Information Criterion (BIC) of the exponential utility (“CARA”) specifi-
cation turns out to be lower than that of the power utility (“CRRA”) specification.14 That
is, judged by the BIC, the CARA specification fits the data best, which is why we make it
the basis of our subsequent analyses.15

To assess themagnitude of the observed effects, it is useful to translate the changes in
preference parameters into changes in monetary units. Averaged over all subjects (taking
the individual random effects into account) and over all lotteries used in our study, the
estimated preference parameters according to the CARA specification imply risk premia
of €0.65 (or 6.9%) in the “no load” condition and €0.73 (or 7.7%) in the “load” condition,
an increase of 12.3%. We consider this a sizable effect, given that people make decisions
of this small-stakes kind multiple times every day.

14 For completeness, we checked that allowing for an influence of cognitive load on preferences signifi-
cantly improves themodel’s fit. This is the case: Amodel (with CARA utility function) in which δµ and δσ are
restricted to zero has a significantly worse fit (likelihood ratio test, p = 0.021).
15 To check whether allowing for between-subject variation also in the Fechner noise parameter and in the

between-condition changes has an effect on the estimation results, we performed a two-stage regression: On
the first stage, only the “no load” trials were analyzed and only the two coefficients µ and σ were estimated,
with random effects included in both of them andwith the covariance between the random effects not being
restricted to zero. On the second stage, the “load” trials were analyzed, with δµ being estimated as the term
hat has to be added to µ̂—including the respective individual random effects—estimated on the first stage
to explain behavior in the “load” trials. The same applies to δσ. Again, the covariance between the random
effects was not restricted to zero. Accounting for simultaneous between-subject variability in all parameters
in this way does not change the finding of significantly increased risk aversion under load, but it worsens the
BIC. We, therefore, proceed on the basis of Regression CARA that included random effects only in µ.
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Table 2. Results of the extended structural regressions.

CARA Ext. 1 CARA Ext. 2 CARA Ext. 3 CARA Ext. 4

Coefficient Estimate p-value Estimate p-value Estimate p-value Estimate p-value

µ̂ 0.0925 0.000 0.0911 0.000 0.0945 0.000 0.0932 0.000
δ̂µ 0.0106 0.007 0.0095 0.017 0.0110 0.005 0.0136 0.001
γ̂SP,µ 0.0493 0.000 0.0480 0.000 0.0524 0.000 0.0536 0.000
γ̂CL×SP,µ −0.0030 0.752 −0.0024 0.799 0.0019 0.843 0.0116 0.240
γ̂RT,µ — −0.0028 0.027 −0.0002 0.903 −0.0005 0.723
γ̂WM,µ — — — −0.0008 0.000

σ̂ 0.7330 0.000 0.7263 0.000 0.7263 0.000 0.7264 0.000
δ̂σ −0.0368 0.524 −0.0356 0.535 0.0924 0.081 0.0803 0.122
γ̂SP,σ 0.0540 0.683 0.0557 0.670 0.1253 0.271 0.1578 0.000
γ̂CL×SP,σ −0.2217 0.184 −0.2240 0.174 −0.1423 0.334 −0.1032 0.323
γ̂RT,σ — — 0.2068 0.000 0.2121 0.000
γ̂WM,σ — — — −0.0039 0.116

BIC 5,357.2 5,359.0 5,245.7 5,244.4

Notes: Estimates based on T = 4,914 choices by N = 41 subjects. Non-linear maximum likelihood estimation,
all subjects pooled, allowing for between-subject heterogeneity in µ via individual random effects. The es-
timation was performed with MATLAB R2013a, using the nlmefit function. “BIC”: Bayesian Information
Criterion, calculated as −2`(ρ̂, δ̂ρ , σ̂, δ̂σ)+k ln N , where N is the number of subjects (N = 41), and k is the
number of fitting parameters; here k = 9, 10, 11, and 13, respectively.

4.3.3 Extended Structural Regression 1: Influence of the Presence of a Sure Payoff

The purpose of extending the structural regressions by including additional explanatory
variables is twofold: (i) to test the theoretical prediction that sure payoffs are particularly
attractive and (ii) to address the variation in subjects’ response times reported above. That
is, we included additional trial-specific regressors such as the presence of a sure payoff,
response times, and the difficulty of the working-memory task. All additional regressors
weremean-centered, such that µ̂ continues to indicate the average degree of absolute risk
aversion in the “no load” condition and δ̂µ its change due to cognitive load.

Tomention the central result upfront: δ̂µ is significantly positive alsowhen controlling
for these additional factors; see Table 2, which reports the results of the extended struc-
tural regressions.

As the first additional regressor, we included in regression CARA Ext. 1 a dummy re-
gressor that equals 1 if a sure payoffwas present in trial t . We find that the associated coef-
ficient γ̂SP,µ is positive and substantial. That is, the presence of a sure payoff led to a sub-
stantially larger expressed degree of risk aversion. In other words, a sure payoff seems to
have been especially attractive to subjects. This is in line with the finding reported above
that subjects avoided the riskier option particularly often in safe–risky trials, and it is con-
sistent with the model by Fudenberg and Levine (2011).

To check whether a sure payoff is even more attractive under cognitive load, we inter-
acted the “load” dummy regressor with the dummy regressor for the presence of a sure
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payoff. As in our earlier analysis of the frequency with which subjects chose the risky or
the safe option, we do not find this interaction effect to be significant; the point estimate
of the interaction effect, γ̂CL×SP,µ, is virtually zero. In other words, the increase in risk aver-
sion in the safe–risky trials is almost identical in size to the increase in risk aversion in the
risky–risky trials. As amatter of fact, the load-induced increase of risk aversion in the safe–
risky trials actually fails to reach significance according to our structural regressions—in
contrast to what we found when analyzing the count data, i.e., the frequency with which
subjects chose the safe or risky option.16

Result 6. According to our structural regressions, safe payoffs are particularly attractive
to subjects. However, cognitive load does not seem to increase this “certainty effect,” in
contrast to the prediction of the Fudenberg–Levine model.

4.3.4 Extended Structural Regressions 2 and 3: Influence of Response Times

Basedonourprevious analysis of the relationbetween response times in the lottery choice
task andperformance in theworking-memory task, we cannot rule out that cognitive load
generates time pressure in the lottery choice task and influences risk attitudes via this
channel. In order to assess towhich extent the influence of cognitive load on risk attitudes
operates through potential time pressure, we included subjects’ deviation from their indi-
vidual mean response time as a regressor.17

At first glance, response times and risk aversion seem to be related, with risk aversion
being lowerwhensubjects tookmore time todeliberateon their choice: Theestimate γ̂RT,µ
is significantly negative in regression CARA Ext. 2. This is accompanied by a reduction of
the direct effect of cognitive load measured by δ̂µ.

It is crucial, however, to include response times also in the Fechner noise term. This
is because response times have long been recognized in psychology as an indicator of
task difficulty. It has been found for comparative judgments across various perceptual
domains that response times are “a negative linear function of the logarithm of the dif-
ference” of the magnitudes to be compared—e.g., the size of objects, their luminance,
and even abstract numbers (see Chabris et al., 2009, p. 629, and the references therein;
Milosavljevic et al., 2011). Hence, comparative judgments seem to be the more difficult,
in the sense of more time-consuming, the more similar the values to be compared are.

16 In contrast, whenwe exclude the safe–risky trials from the analysis—i.e., we analyze only the risky–risky
trials—we still obtain a significant load-induced increase in risk aversion (p = 0.0043). This regression cor-
rectly predicts 72.65% of choices in the “no load” and 73.00% in the “load” condition. Just like in the respec-
tive regressions including both the safe–risky and the risky–risky trials, there is no cognitive-load–induced
change in the Fechner noise term (p = 0.8744).
17 Since between-subject variation in risk attitudes is captured by individual random effects, between-

subject variation in response times can add no explanatory power even if a between-subject correlation be-
tween risk aversion and average response times actually exists. However, we are more interested in within-
subject variation than in between-subject variation, because the latter is less informative with respect to
causality: It might be that some third factor—e.g., age—causally influences both subjects’ risk attitudes and
their response times, so that causal statements based on between-subject statements are difficult.
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A theoretical model that predits this very pattern of response times is the so-called
drift–diffusionmodel (DDM) of the decision process (e.g., Ratcliff, 1978). A particular vari-
ant has entered the literature on decision making under risk in the form of decision field
theory (Busemeyer and Townsend, 1993). The DDMhas become increasingly popular due
to the support it has found in neuroimaging studies (expositions for an economics audi-
ence can be found in Fehr and Rangel, 2011; Clithero and Rangel, 2013). We discuss the
drift–diffusion model in greater detail in Section 5.

The idea captured by the DDM that a longer response time is a sign of amore difficult
decision also serves as the basis of the analyses in Dohmen and Falk (2011, p. 580) and in
Chabris et al. (2008, p. 7/8). These two studies as well as the study by Clithero and Rangel
(2013) rest on the logic of reversely inferring that the available options are the closer in sub-
jective valuation, the longer response times are. In our context, theV-difference should be
the smaller, the longer it takes subjects to decide. Decreasing the V-difference that enters
equation (1) can be achieved by increasing the denominator, i.e., the Fechner noise term.

Investigating a potential effect of this kindmeans to include response times as a regres-
sor in the Fechner noise term (see regression CARA Ext. 3), with the prediction that the as-
sociated coefficientγRT,σ is positive.Whenwedo so, γ̂RT,σ turns out tobe significantly pos-
itive (p < 0.001), while no systematic relation between response times and risk aversion
can be found anymore: The coefficient γ̂RT,µ shrinks drastically vis-à-vis CARA Ext. 2 and
becomes insignificant (p > 0.7).18 Importantly, the coefficient on the “load” dummy re-
mains significant evenwhen adding response times as a regressor for the Fechner noise.19

Result 7. Cognitive load seems to affect risk attitudes directly and not only via (perceived)
time pressure.

In related research, Krajbich et al. (2015) showed that controlling for the relative val-
uation of the available options eliminates previously observed correlations between re-
sponse times and particular types of decisions also in other domains of decision making.
The absence of a relation between response times and risk attitudes that we find is in line
with the results obtained by Kocher et al. (2013) who found no evidence for a systematic
influence of time pressure on risk attitudes in the gain domain.

Our results indicate that the effects of cognitive load on risk attitudes may be partially
due to a (perceived) time pressure that cognitive load generates, but that they are not re-
stricted to this channel. It rather seems that the working-memory demands of the load
task have an effect on risk attitudes on their own.

18 We obtain qualitatively the same result when including response times in the form of a factor
MRTs /RTs,t by which ∆CEs,t is multiplied. Here, s indexes subjects, t indexes trials, and MRTs is the mean
response time of subject s; note that this factor varies trial-by-trial around unity. Hence, it does not matter
much whether the influence of response times enters the error term additively or multiplicatively.
19 Conversely, when omitting the “load” dummy in the regression—i.e., when explaining the between-con-

ditionvariation in risk attitudes via the response timesalone—we found the following:As longas the response
times are not included in the denominator, shorter response times go along with significantly increased risk
aversion. When the response times are, however, also added as an explanatory variable to the Fechner noise,
this relation becomes insignificant.
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Table 3. Influence of the decision type and the V-difference on log response times in the lottery choice task.

Dependent variable: Log response time (lnRTs,t ) Regression RT Ext. 1 Regression RT Ext. 2

Regressor Coefficient p-value Coefficient p-value

Constant 1.1662 0.000 1.3141 0.000
DRLC,s,t ×DSP,t — −0.4254 0.000
D¬RLC,s,t ×D¬SP,s,t — −0.0276 0.647
D¬RLC,s,t ×D¬SP,s,t — −0.0692 0.348
DCL,t — −0.1509 0.003
DRLC,s,t ×DSP,s,t ×DCL,t — 0.1057 0.141
D¬RLC,s,t ×D¬SP,s,t ×DCL,t — 0.0290 0.514
D¬RLC,s,t ×D¬SP,s,t ×DCL,t — 0.0467 0.396
|∆Vs,t | −0.1078 0.000 −0.0818 0.000

Dummy per subject s Yes Yes

BIC 4,101.1 3,823.8

Notes: Estimates are based on choices in T = 3,441 trials (indexed t ) by N = 41 subjects (indexed s). DRLC,s,t

equals 1 if the riskier lottery was chosen by subject s in trial t and 0 otherwise; D¬RLC,s,t vice versa. DSP,s,t

equals 1 if a sure payoff was present in trial t of subject s and 0 otherwise; D¬SP,s,t vice versa. DCL,t equals 1
if a sure payoff was present in trial t and 0 otherwise; D¬CL,t vice versa. |∆Vs,t | ≡ |∆CEs,t | as estimated by Re-
gression CARA Ext. 2. Ordinary least-squares estimation, all subjects pooled. The estimation was performed
with Stata/MP 13.1. Standard errors, and thus p-values, were adjusted for 41 clusters on the subject level.
“BIC”: Bayesian Information Criterion, calculated as −2`+k ln N , where ` ist the log-likelihood, and k is the
number of fitting parameters; here, k = 42 and 49, respectively.

4.3.5 Response Times: Control Regression Including the V-Difference as a Covariate

We are now in a position to augment the response time analysis reported in Section 4.2.1
to test whether response times are influenced by subjective valuation of the available op-
tions as predicted by the drift–diffusionmodel. Given the significantly negative estimates
γ̂RT,σ in Regression CARA Ext. 3 (and in CARA Ext. 4, see below), one would expect re-
sponse times to be the longer, themore similar the two lotteries presented in a trial are in
subjective valuation—in line with the predictions of the DDM.

To test this hypothesis, we augmented the regressions from Section 4.2.1 by includ-
ing as an additional regressor the absolute value of the V-difference in trial t , |∆Vs,t |, as
estimated by Regression CARA Ext. 2. Note that CARA Ext. 2 included response times as
a determinant of the degree of risk aversion,µ, so that any correlation between |∆Vs,t | and
RTs,t resulting from a potential influence of RTs,t on |∆Vs,t | through risk aversion has al-
ready been accounted for. Hence, any remaining correlation should be due to variation
in the difficulty of the lottery choice. Note that ∆Vs,t varies between subjects based on
the random effects included in the estimation of µ as well as trial-by-trial because of the
changing lottery pairs.

The coefficient on |∆Vs,t | is estimated to be negative and highly significant, see Ta-
ble 3. This indicates that subjects responded the faster, the more the subjective valua-
tion of the two lotteries presented in a trial differed from each other. More specifically,
subjects responsed more than 300 ms faster when the difference between the certainty
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equivalents of the lotteries presented in a given trial increased by €1. This relation is as
predicted by the DDM. Importantly, it is consistent with the negative estimate of the co-
efficient γRT,σ when including response times as a determinant of the Fechner noise in
Regressions CARA Ext. 3 and 4 (below).

Result 8. The relation between the difference in subjective values of the lotteries included
in a pair, |∆Vs,t |, and the response time in the respective trial is as predicted by the drift–
diffusion model: The smaller |∆Vs,t |, the longer the response time.

4.3.6 Extended Structural Regression 4: Cognitive Load—“On/Off” or Gradual Effect on Risk
Aversion?

Finally, we included as a regressor the across-subject average hit rate for each arrange-
ment of dots encountered in the cognitive-load task. This way, we proxy for trial-by-trial
variation in the difficulty of the load task, i.e., the difficulty of remembering the specific
arrangement of dots shown in trial t . This is possible because all subjects faced the same
set of arrangements in the course of the experiment. Easier-to-remember arrangements
are a proxy for lower cognitive load: Risk aversion should be the lower, the easier a trial’s
working-memory task—which would be expressed by a negative coefficient γWM,µ. This
is indeedwhatwefind in regression CARA Ext. 4. Thus, cognitive load affects risk attitudes
not in a mere “on/off” fashion but gradually, which further strengthens the evidence that
cognitive load influences risk aversion.

Result 9. Cognitive load affects risk attitudes in a gradual, andnot amere “on/off,” fashion.

5 Discussion

Using a standard repeated pairwise lottery choice task in combination with the presence
or absence of a cognitively demanding distractor task in a within-subject design, we ob-
tained the following results:

We find that additional cognitive load increases subjects’ risk aversion. This finding is
compatible with the dual-system approach, given that previous findings suggest that the
emotional system steers decisions in the direction of increased risk aversion.

This interpretation is corroborated by the finding that response times in the lottery
choice task were faster in the “cognitive load” condition than in the “no load” condition.
It is alsopartially corroboratedby theobservation that evenwhencontrolling for the effect
of the cognitive-loadmanipulation, subjects responded faster on average when choosing
the safe than when choosing the risky alternative in safe–risky trials.

A similar response time pattern was already observed between subjects by Rubinstein
(2007, 2013). Our within-subject findings can be seen as strengthening his interpretation
that risk aversion is partially the consequence of “instinctive reasoning” by ruling out
potential between-subject confounds. Moreover, our observation of particularly fast re-
sponses when the safe payoff is chosen is in line with the results of Koop and Johnson
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(2013) who used a method called “mouse tracking” to investigate the choice process in
pairwise lottery choice. In their study, each pair of two-outcome lotteries included a “safe
alternative,” by which the authors refer to a lottery whose larger payoff had a probability
of 90%. Koop and Johnson (Fig. 7, p. 164) observed for the gain domain that when subjects
chose the “risky” lottery, the average trajectoryof theirmousemovements initially pointed
in the direction of the “safe” alternative before reverting in the direction of the “risky” al-
ternative. In contrast, it was a unidirectional movement when the “safe” alternative was
chosen. This provides additional evidence that safe gains exert a particular attraction, es-
pecially at the initial stages of the choice process.

Our results confirm and extend the results reported by Benjamin et al. (2013) who
found a significant increase of risk aversion under cognitive load only for a subset of the
choices that their subjects had made: for risky–risky trials, but not for safe–risky trials—
with the point estimate for the safe–risky trials nevertheless being of the same sign. An ex-
planation for the lack of a significant finding for the safe–risky trials in their studymay be
the combination of a rather low number of trials with a ceiling effect: just like in our study,
their subjects showed pronounced risk aversion in safe–risky trials even in the absence
of load, so that there is not much room for cognitive load to increase risk aversion even
further. In contrast to Benjamin et al., we actually find stronger evidence that cognitive
load increases risk aversion in the safe–risky trials than in the risky–risky trials when we
use the countmeasure of how often subjects chose the less risky option (Section 4.1). This
is also in line with the theoretical predictions of Fudenberg and Levine (2011).20 However,
in the complementary analysis via structural regressions, we observe a significant load-
induced increase in risk aversion only when pooling the risky–risky and the safe–risky tri-
als or when analyzing the risky–risky trials alone (4.3.2). Even though the point estimates
for the load-induced increases in risk aversion are virtually identical in the safe–risky and
the risky–risky trials, the effect does not reach significance in the safe–risky trials—similar
to the results of Benjamin et al.

Of course, alternative explanations might be brought forward. We now address two of
them, before outlining our preferred interpretation—which is that drift–diffusionmodels
should be combined with the dual-system approach.

5.1 Is It Possible That the Cognitive-Load Manipulation Changed the Perceived
Riskiness of the Presented Lotteries Rather Than Risk Preferences?

To be compatible with our findings, such a change in the perceived riskiness would have
to put the riskier lottery at a disadvantage under cognitive load. Thismight happen if sub-
jects focussed less on the lotteries’ overall characteristics (say, their expected values) but
more on their components (e.g., theirminimumpayoffs), and if they chose the lottery that

20 One might argue that since our experiment used rather small stakes, it is not really capable of testing
the Fudenberg and Levine (2011) model. From this point of view, our findings show that there has to exist
an additional channel through which cognitive load influences risk attitudes, because we observe cognitive
load to increase risk aversion even for payoffs so small that the Fudenberg–Levine model would predict no
effect.
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maximized the minimum possible outcome (a maxmin strategy like Gilboa and Schmei-
dler, 1989, suggest for decision making under ambiguity).

If the latter was true, one would expect the cognitive-load manipulation to cause
a rather dramatic increase in the measured degree of risk aversion, because the lottery
with the largerminimumpayoffwould be chosen regardless of its further properties. This
is not what we observe.

The perceived relative riskiness of the presented lotteries could also be changed under
cognitive load due to added noise in the processing of the lotteries’ characteristics. If the
perceived relative riskiness was influenced by cognitive load to the disadvantage of the
riskier option, we would expect this effect to be especially pronounced in those trials in
which a sure payoff was present.

A similar hypothesis would be that subjects have a “preference for simplicity” that gets
strengthened by cognitive load. While we cannot completely rule out that such a factor is
atwork, they cannot be thewhole story, sincewefinda significant increase in risk aversion
also in the risky–risky trials. Increased (perceived) noise in subjects’ processing should
probably also be reflected in the consistency of subjects’ choices, i.e., the Fechner noise
term should increase under cognitive load. However, our structural regressions yield no
evidence for such an effect. Let us, hence, turn to our preferred interpretation.

5.2 Could Decision Field Theory or Similar Drift–Diffusion Models Explain Our
Results Regarding Choices and Response Times?

Drift–diffusion models are models of the decision making process (for a review targeted
at an economics audience, see Fehr and Rangel, 2011). The central assumption is that
a decision between the available alternatives is made by noisy accumulation of evidence,
through sequential sampling, in favor of each of the alternatives. The average rate of accu-
mulation is called the “drift rate” for the respective decision. A decision in favor of a par-
ticular alternative ismade once a threshold associated with that alternative, the “decision
boundary,” is reached. For a graphical illustration of a two-alternative drift–diffusion pro-
cess, see Figure 5. According to the particular realization in the illustration, the less risky
lottery would have been chosen as the result of 17 sequential-sampling steps.

Drift–diffusionmodels have originally been used to describe perceptual decisionmak-
ing and have been found to simultaneously account well for decisions, response times,
and brain activity—the latter consistently so across different measures of neural activity
(Heekeren et al., 2004). Importantly, recent studies found that also choices and brain ac-
tivation during reward-based decision making are described well by this class of models
(e.g., Basten et al., 2010; Heekeren et al., 2008).

An application of the drift–diffusion framework to decision making under risk is deci-
sionfield theory (Busemeyer andTownsend, 1993).21 Indecisionfield theory, for a given set

21 Decision field theory has been found to be successful, in the sense that it is able to “explainmost effects
[violations of expected utility theory], except violations of weak stochastic transitivity” (Rieskamp et al., 2006,
p. 649) while being relatively parsimonious, i.e., requiring relatively few parameters.
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Figure 5. Illustration of a drift–diffusion process, adapted from Busemeyer and Townsend (1993, Figure 6).

of lottery pairs, the across-trial average drift rate towards the less risky alternative may be
higher than that towards the riskier alternative. This is because the drift rates depend on
agents’ risk attitudes (see “Stage 3” and Formulas 2a and 2b of Busemeyer and Townsend,
1993). This would predict choices of the less risky alternative to be faster on average than
choices of the riskier alternative—without reliance on dual decision processes. There ex-
ists a second possibility of generating asymmetric response times in the framework of
decision field theory: It could be that the starting point of the evaluation is biased, i.e., it
is closer to one decision boundary than to the other. (Figure 5 depicts the unbiased situa-
tion.)

The influence of cognitive load on subjects’ behavior thatwe observe canbe explained
as follows: The decision boundaries are more liberal (closer to each other) under cogni-
tive load, leading to faster responses for both types of choices in the “load” condition—
probably, to free up resources in order to perform well in the working-memory task, see
Section 4.2.1. With a bias in favor of the less risky lottery, more liberal decision bound-
aries under load lead to more risk-avoiding choices, since a narrower corridor effectively
strengthens the bias. In this way, the drift–diffusion model can explain our findings with-
out resorting to a dual-process account. It can, moreover, explain the observation that
the estimated coefficient on the V-difference is negative in the response time regression
(Section 4.3.4), since a low |∆V | implies weak drift.

It is important to note, however, that none of the above effects can be derived purely
within decision field theory and similar drift–diffusion models. These models make no
predictions on changes due to cognitive load. Changes to themodels’ parametersmust be
introduced exogenously—sowe are essentially back at a dual-process explanation.More-
over, it is unclear how the results from lesion studies (Hsu et al., 2005; Shiv et al., 2005)
could be explained in a drift–diffusion framework without modification. Those results in-
dicate that the inputs to the accumulation of evidence in favor of the one or the other
gamble are, at least partially, of an emotional kind.
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Hence, there is room for a dual-process interpretation in combination with drift–
diffusion models. The strength of drift–diffusion models lies in the detailed description
of the decision-making process; but they do not necessarily make predictions concern-
ing the circumstances under which a change in the process should occur. By contrast,
dual-process theories make predictions concerning the factors that should influence de-
cisionmaking, but often remain silent on how exactly the decision-making process works.
We therefore consider the two rather as complementary than as competing approaches.
In this spirit, a formalization of the interplay of cognition and emotion in the form of two
interacting information-accumulatingprocesses has recently beenproposedbyAchtziger
and Alós-Ferrer (2014).

Alternatively, it might be that attention in the attention-augmented drift–diffusion
model (Krajbich et al., 2010; Hare et al., 2011) evolves in a systematicway. Thiswouldmean
that evidence in favor of picking either alternative is not accumulated in randomorder; in-
stead, in early sequential-sampling steps, evidence in favor of avoiding the riskier option
is attended to preferentially and receives higher weight—especially sowhen a completely
(or close to) safe alternative is present.While accumulation in randomorder predicts fluc-
tuations in the preference state with a monotonic drift, the latter variant predicts accu-
mulation that is initially biased in the direction of avoiding risk, before at times reverting
such that the riskier alternative is chosen (as reflected in themouse trajectories presented
by Koop and Johnson, 2013, Fig. 7, p. 164). This early focus on avoiding risk may be the
outcome of quick, upstream affective processing that feeds into the sequential sampling
process and thereby influences in particular the early steps of the choice process.

5.3 Conclusion

Ourwithin-subject findings strengthen the evidence that cognitive load induces a change
in risk attitudes. They confirm the between-subject results reported by Benjamin et al.
(2013) and strengthen them in an important way. Furthermore, our within-subject find-
ings on response times provide a basis for Rubinstein’s (2007) claim that risk aversion is,
in part, generated by “instinctive reasoning.” By also supporting the dual-self model pro-
posed by Fudenberg and Levine (2006, 2011), our findings endorse the common underly-
ing idea: to explore decisionmaking under riskwith the help of the dual-systemapproach.

Concerning the relevance of our findings, however, the exact mechanism is not cru-
cial. Our findings suggest a systematic variation in how peoplemake economic decisions:
their preferences seem to interact with the complexity of the decision environment. As an
example, price volatility on stock and foreign-exchange markets is known to change sub-
stantially over time. Our results suggest that investors’ decisions might differ systemati-
cally between the different volatility regimes. Specifically, if during times of high volatility,
investors process more information and make more decisions than during times of low
volatility, their risk aversion may be greater in volatile times. Following the same logic,
we would expect systematic differences between decisions that people make at the work-
place, depending on the number and complexity of the projects that they work on simul-
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taneously. More generally, the more complex the available options or the choice menu,
the more frequently seemingly low-risk options should be chosen (although there exists
contradictory evidence concerning the so-called “choice overload” hypothesis).

These hypotheses are, admittedly, speculative. We look forward to testing them in fu-
ture research.
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Appendix A Supplementary Tables and Figures

Table A.1. The 60 lottery pairs presented in the two conditions.

Lottery A Lottery B A Â B A Â B

No. x A,1 x A,2 p A,1 xB ,1 xB ,2 pB ,1 for µ< for ρ <

1 3 15 0.50 5 10 0.25 0.0160 0.1307
2 3 15 0.50 6 9 0.10 0.0171 0.1383
3 7 12 0.75 8 10 0.90 0.0236 0.2112
4 5 10 0.25 6 9 0.10 0.0253 0.1946
5 3 15 0.50 7 9 0.25 0.0285 0.2275
6 2 20 0.50 4 12 0.25 0.0296 0.2662
7 2 20 0.75 3 15 0.75 0.0341 0.2619
8 6 15 0.75 8 8 1.00 0.0348 0.3212
9 6 15 0.75 7 9 0.50 0.0375 0.3509
10 2 20 0.75 5 10 0.90 0.0389 0.2828
11 2 20 0.50 5 10 0.10 0.0389 0.3387
12 8 15 0.75 6 10 0.10 0.0415 0.4698
13 3 15 0.50 6 9 0.25 0.0443 0.3478
14 3 15 0.75 5 10 0.90 0.0446 0.3071
15 3 15 0.50 8 10 0.90 0.0454 0.3556
16 6 12 0.50 7 9 0.10 0.0465 0.4067
17 3 15 0.50 7 12 0.75 0.0484 0.3715
18 6 15 0.75 6 10 0.50 0.0498 0.4936
19 3 15 0.50 8 8 1.00 0.0566 0.4379
20 3 15 0.50 7 9 0.50 0.0583 0.4499
21 4 12 0.10 11 11 1.00 0.0610 0.5159
22 2 20 0.10 17 17 1.00 0.0615 0.6493
23 3 15 0.25 11 11 1.00 0.0661 0.5699
24 4 12 0.50 7 9 0.75 0.0663 0.4881
25 3 15 0.25 4 12 0.10 0.0676 0.5853
26 4 12 0.25 6 10 0.10 0.0696 0.5552
27 3 15 0.50 6 15 0.75 0.0700 0.4903
28 2 20 0.25 13 13 1.00 0.0702 0.6648
29 6 9 0.25 8 10 0.90 0.0714 0.5326
30 4 12 0.50 7 12 0.90 0.0728 0.5250
31 4 12 0.50 6 9 0.50 0.0739 0.5427
32 6 12 0.50 6 9 0.10 0.0744 0.6525
33 3 15 0.50 7 9 0.75 0.0891 0.6642
34 3 15 0.10 13 13 1.00 0.0923 0.8358
35 4 12 0.25 5 10 0.10 0.0925 0.7355
36 3 15 0.50 7 12 0.90 0.0929 0.6854
37 3 15 0.50 6 9 0.50 0.0937 0.6962
38 4 12 0.25 8 15 0.75 0.0953 0.6022
39 2 20 0.50 7 9 0.75 0.0978 0.7463
40 4 12 0.25 9 13 0.90 0.0988 0.7673
41 2 20 0.50 7 12 0.90 0.1000 0.7575
42 2 20 0.50 6 9 0.50 0.1005 0.7634
43 2 20 0.50 3 15 0.50 0.1081 0.8245
44 2 20 0.50 4 12 0.50 0.1089 0.8204
45 3 15 0.50 4 12 0.50 0.1103 0.8123
46 5 10 0.25 7 9 0.25 0.1154 0.8675
47 5 10 0.10 9 13 0.90 0.1374 0.9526
48 3 15 0.75 4 15 0.90 0.1497 0.8958
49 6 11 0.25 4 7 0.10 A ÂSSD B
50 6 12 0.75 4 7 0.50 A ÂSSD B
51 6 11 0.50 3 8 0.25 A ÂSSD B
52 6 11 0.75 3 8 0.50 A ÂSSD B
53 6 8 0.50 3 5 0.50 A ÂFSD B
54 6 9 0.75 4 9 0.75 A ÂFSD B
55 5 9 0.50 4 8 0.75 A ÂFSD B
56 5 5 1.00 3 5 0.75 A ÂFSD B
57 5 7 0.50 4 6 0.50 A ÂFSD B
58 4 6 0.25 3 5 0.25 A ÂFSD B
59 5 8 0.10 5 8 0.90 A ÂFSD B
60 5 7 0.50 4 6 0.75 A ÂFSD B

Notes: A ÂFSD B indicates first-order stochastic dominance and A ÂSSD B second-order stochastic dominance of A over
B . The column “A Â B for µ<” refers to exponential (CARA) utility uexp(x;µ) ≡ (1−e−µx )/µ, while “A Â B for ρ <” refers
to power (CRRA) utility upow(x;ρ) ≡ (x1−ρ −1)/(1−ρ).
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Figure A.1. Cumulative distributions of the log response times in the lottery choice task
(within-subject variation, i.e., deviation from the individual average log response time):
load/no load × presence/absence of sure payoff × risky/less risky alternative chosen.
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Figure A.2. Cumulative distribution of the centered log response times in the lottery choice task,
depending on a correct or incorrect response in the working-memory task.
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Appendix B Translation of the Instructions
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Anleitung 

Einleitung 

Wir treffen fortwährend Entscheidungen, deren Konsequenzen wir nicht genau vorher-
sehen können. Dies betrifft finanzielle Entscheidungen, aber auch Entscheidungen in allen 
anderen Lebensbereichen. Ein Beispiel aus dem finanziellen Bereich ist, welche Art Alters-
vorsorge man betreiben möchte: Man kann nie exakt vorhersagen, welche Rendite die Ein-
zahlungen, die man tätigt, über die nächsten 30 Jahre abwerfen werden. Aber auch der 
Kauf eines neuen Computers oder das Bestellen eines Gerichts in einem Restaurant, das 
man bisher nicht probiert hat, gehören dazu: Man hat selbstverständlich einen Eindruck, 
ob einem der Computer gefallen oder das Gericht schmecken wird, kann es aber erst wirk-
lich wissen, nachdem man das Produkt genutzt bzw. das Gericht gegessen hat. 

Ökonomen nennen diese Art von Entscheidung „Entscheidungen unter Unsicherheit“. 
Man kann sich vorstellen, dass Menschen dieser Unsicherheit unterschiedlich gegenüber 
stehen. Nehmen wir mal an, dass man sich zwischen einem Gesangsstudium und einem 
Psychologiestudium entscheiden muss. Bei beiden Studiengängen weiß man nicht genau, 
wie viel Spaß sie einem machen werden und wie einfach man anschließend Arbeit finden 
wird. Mit einem Gesangsstudium kann es einem gelingen, dass man zum Star aufsteigt 
und extrem viel Geld und Anerkennung erfährt – aber es kann auch sein, dass man es nie 
zum/zur Solokünstler/in schafft und über das Singen im Opernchor nicht hinauskommt. 
Beim Psychologiestudium wird man es einerseits vielleicht nie zum hochbezahlten Star 
schaffen, aber andererseits aller Voraussicht nach mehr verdienen als ein/e Sänger/in im 
Opernchor. Manche Menschen wird dies veranlassen, sich für das Gesangsstudium zu ent-
scheiden, andere aber werden das Psychologiestudium wählen. 

Wofür entscheiden Sie sich? 

Aufgabenstellung: Lotteriewahl 

Uns interessieren die Grundlagen dessen, wie Menschen in solchen unsicheren Situatio-
nen, mit denen wir alltäglich konfrontiert sind, entscheiden. Deswegen werden wir Sie 
bitten, ganz analog zu den obigen Beispielen eine Entscheidung zwischen zwei Alternati-
ven zu treffen, die Konsequenzen für Sie haben werden, die Sie aber nicht perfekt vorher-
sagen können. Die Konsequenzen werden unterschiedliche Geldauszahlungen sein. Öko-
nomen nennen die Art von Alternativen, die wir Ihnen vorlegen, „Lotterien“. Konkret 
werden Sie nacheinander insgesamt 120 Paare von Lotterien vorgelegt bekommen, und wir 
bitten Sie, sich zu entscheiden, welche der beiden Lotterien Sie bevorzugen. Die Lotterie-
paare variieren dabei von Durchgang zu Durchgang. Jede Lotterie wird Ihnen der Anschau-
lichkeit wegen als Kreisdiagram präsentiert. Hier ist ein Beispiel: 

Introduction

We continuously make decisions the
consequences of which we cannot
foretell exactly. This concerns finan-
cial decisions but also decisions in all
other areas of our lives. An example
from the financial domain is the kind
of provision for one’s old age that one
desires: one cannever forecast exactly
the return that one’s retirement sav-
ings will bear over the next 30 years.
Also buying a new computer or order-
ing a meal in a restaurant that one
has not tried yet are decisions of this
kind: of course, onehas an impression
whether the computer will suit one’s
needs or whether the meal will be to
one’s liking, but one can only know for
sure after one has used the product or
eaten the meal, respectively.

Economists call this type of de-
cision “decisions under uncertainty.”
It is conceivable that humans con-
front the described uncertainty in dif-
ferent ways. Imagine that you had to
decide between studying voice and
opera performance and studying psy-
chology. For both courses of stud-
ies, one does not know in advance
how much one will enjoy them and
whether one will find a job subsequently. When studying voice, one might make it and
become a star, earn extreme amounts of money, and receive a lot of approval—it might,
however, also happen that one will never succeed to become a soloist and one will not
advance beyond being a member of the opera choir. When studying psychology, one will,
on the one hand, probably never succeed to become a highly paid star, but, on the other
hand, one will by all chances have a better income than a singer in the opera choir. These
prospects will induce some people to study voice, while others will choose to study psy-
chology.

What is your decision?

Your Task: Lottery Choice

We are interested in the foundations of how people decide in such uncertain situations
as we face them day in, day out. For this reason, we ask you, in analogue to the above
examples, to make a decision between two alternatives. The alternatives will have conse-
quences for you, but you are unable to predict them perfectly. The consequences will be
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monetary payoffs of varying sizes. Economists call the type of alternatives that you will
be presented “lotteries.” Specifically, we will present you, sequentially, a total of 120 pairs
of lotteries, and we will ask you to decide each time which of the two lotteries you pre-
fer. The lottery pairs vary from round to round. For your convenience, each lottery will be
illustrated by a pie chart. Here is an example:

– 2 – 

 

Abbildung 1: Bildschirm zur Lotteriewahl 

In der unteren Lotterie können Sie also eine relativ hohe Auszahlung, 15 €, mit relativ 
hoher Wahrscheinlichkeit, nämlich 50 %, gewinnen. Allerdings kann es auch sein, dass sie 
lediglich 3 € ausgezahlt bekommen – was ebenfalls eine Wahrscheinlichkeit von 50 % hat. 

Die obere Lotterie unterscheidet sich von der unteren darin, dass Sie hier mindestens 
7 € erhalten, und dies mit der hohen Wahrscheinlichkeit von 75 %. Dafür können Sie bei 
der oberen Lotterie allerdings auch nicht mehr als 9 € gewinnen. Die Wahrscheinlichkeit 
der 9-€-Auszahlung ist 25 %. 

Tatsächlich haben Sie in diesem Experiment sogar mehr Informationen, als Sie für ge-
wöhnlich in realen Situationen haben: In der Realität weiß man in der Regel nicht, mit 
welchen Wahrscheinlichkeiten die möglichen Auszahlungen eintreten (mit Ausnahme des 
Roulettespiels, bei dem man genau weiß, mit welcher Wahrscheinlichkeit man gewinnt, 
wenn man auf schwarz/rot oder eine bestimmte Zahl tippt …). 

Wir bieten Ihnen in jedem Durchgang zwei Lotterien wie die oben dargestellten an. Sie 
entscheiden, welche der angebotenen Lotterien Sie bevorzugen, und zeigen dies durch Tas-
tendruck an. Sobald Sie eine Taste gedrückt haben, wird die von Ihnen gewählte Lotterie 
durch einen roten Rahmen gekennzeichnet. Nehmen wir an, Sie nähmen die untere Lotte-
rie, dann sähe Ihr Bildschirm wie folgt aus: 

 

Abbildung 2: Bildschirm zur Lotteriewahl nach Tastendruck 

[Figure 1. Decision screen for the lottery
choice]

With the lottery at the bottom, you
can gain a comparatively large payoff,
€15, with a relatively high likelihood,
50%. However, it can also happen that
your payoff will be only €3—which
also has 50% probability.

The lottery at the top differs from
the lower one in that it pays at least €7,
and that this has a high likelihood of
75%. In exchange for this, you cannot
win more than €9 with the lottery at
the top. The probability of the €9 pay-
off is 25%.

As a matter of fact, in this exper-
iment you are given more informa-
tion than you commonly have in real-
life situations: In reality, one typically
does not know the probabilities at
which particular payoffs will realize
themselves (an exemption is playing
roulette, where the probability of win-
ning is completely fixed when betting
on red/black oder a particular num-
ber . . .).

In every round, we offer you two
lotteries like the ones depicted above.
You decide which of the offered lot-
teries you prefer and indicate this by

pressing a key. As soon as you have pressed a key, the lottery selected by you is highlighted
by a red frame. Let us assume that you chose the bottom lottery; then your decision screen
would look like this:

[Figure 2. Decision screen for the lottery choice after key press]

In each round, you are given 6½ seconds to make your choice. If you do not make
a decision within this time frame, you cannot earn anymoney in that round—hence, you
should select a lottery in every single trial!Within the 6½-second time frame, you have the
opportunity to correct the choice that you have made.

Importantly, there isno right orwrong in suchdecisions!Whichever lottery youchoose,
is only up to you.
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There is no way for you to lose anymoney in this experiment! That is, you do not have
to pay anything (apart from your time of being here) to participate in a lottery. Rather, we
give you the lottery as a “present,” and in each round you are supposed to indicate which
of the two offered presents you like better.
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Sie haben in jedem Durchgang 6½ Sekunden Zeit, Ihre Wahl zu treffen. Treffen Sie in 
dieser Zeit keine Entscheidung, können Sie in dem jeweiligen Durchgang kein Geld ver-
dienen – Sie sollten also immer eine Lotterie markieren! Innerhalb der 6½ Sekunden ha-
ben Sie die Möglichkeit, eine getroffene Wahl zu korrigieren. 

Wichtig: Bei dieser Entscheidung gibt es kein Richtig oder Falsch! Welche Lotterie Sie 
wählen, ist ganz allein Ihre Sache. 

Sie können bei diesem Experiment kein Geld verlieren! Das heißt, sie müssen (abge-
sehen von Ihrer Anwesenheitszeit) nichts zahlen, um an einer Lotterie teilzunehmen. 
Vielmehr »schenken« wir Ihnen die Lotterien, und Sie sollen in jedem Durchgang ange-
ben, welches der beiden angebotenen Geschenke Sie lieber möchten. 

Punkte-Erinnerungsaufgabe 

Einprägungsphase 

Nun ist es realistisch, dass man, während man solche Entscheidungen fällt, dieser Ent-
scheidung nicht seine volle Aufmerksamkeit widmen kann, sondern dass man abgelenkt 
ist. Daher werden wir auch dies in unserem Versuch berücksichtigen: In einem Teil der 
Durchgänge, die Sie absolvieren, werden wir Ihnen noch eine zweite Aufgabe geben, auf 
die Sie sich parallel konzentrieren müssen. Diese zweite Aufgabe besteht darin, dass Sie 
sich etwas merken müssen, und zwar die Anordnung von Punkten. Daher bekommen Sie 
vor der Lotteriewahl ein Arrangement von Punkten angezeigt. Dieses Arrangement besteht 
aus genau drei Punkten. Hier ein Beispiel: 

 

Abbildung 3: Bildschirm mit zu erinnerndem Punktearrangement 

Das  Punktearrangement wird Ihnen genau eine Sekunde lang angezeigt. Ihre Aufgabe 
ist nun, das Punktearrangement im Gedächtnis zu behalten, während Sie die Lotteriewahl 
treffen. (Auf die Anzeige des Punktearrangements folgt eine sogenannte „Maske“, die aus 
einem Raster von 99 dicht gedrängten Punkten besteht. Die Maske hat für Sie keinerlei 
Bedeutung; ihr einziger Zweck ist, ein Nachbild des Punktearrangements auf Ihrer Retina 
zu verhindern.) 

Während der Einprägungsphase ist das Fixationskreuz in der Mitte des Bildschirms rot 
gefärbt. Dies soll Ihnen als Signal dienen, dass Sie sich in der Einprägungsphase befinden. 

Dot Memorization Task

Memorizing Phase

Realistically, we cannot always devote
our undivided attention to a deci-
sion that we are currently making; it
might happen that we are being dis-
tracted. We will therefore take this
into account in our study. In some
of the rounds that you complete, we
will add a second task that you will
have to concentrate upon simultane-
ously. This second task requires you to
memorize and remember something:
the arrangement of several dots.More
specifically, you will be shown an ar-
rangement of dots before making the
lottery choice. Each arrangement is
composed of exactly three dots. Here
is an example:

[Figure 3. Screen with the arrangement of
dots to remember]

The arrangement of dots will be
presented for exactly one second.
Your task is to keep this arrangement
in mind while making the lottery
choice. (The display of the arrange-
ment of dots is followed by a so-called
“mask” that consists of 99 narrowly
spaced dots. This mask is of no further relevance for you; its sole purpose is to prevent an
afterimage of the arrangement of dots on your retina.)

During the memorizing phase, the fixation cross in the middle of the screen is shown
in red. This is supposed to serve as a signal to you that you are currently in thememorizing
phase.

Probe Phase

After the time frame for the lottery choice, you are shown exactly one dot on the screen.
As soon as this single dot appears, you are granted 2.7 seconds to indicate whether the dot
that is currently presented was part of the previously shown arrangement of dots or not.
Again, an example:
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Erinnerungsphase 

Nach erfolgter Lotteriewahl bekommen Sie dann noch einmal genau einen Punkt auf dem 
Bildschirm angezeigt. Sobald dieser einzelne Punkt erscheint, haben Sie 2,7 Sekunden Zeit, 
anzugeben, ob der Ihnen aktuell angezeigte Punkt zu dem vorher angezeigten Punkte-
arrangement gehört oder nicht. Auch hier ein Beispiel: 

 

Abbildung 4: Bildschirm zur Abfrage der Erinnerung: 
Gehört der Punkt zum vorher angezeigten Arrangement oder nicht? 

In diesem Beispiel müssten Sie also „Nein“ wählen, denn der angezeigte Punkt stimmt 
mit keinem der drei Punkte in der vorherigen Abbildung überein, wie Sie durch Ver-
gleichen der beiden Bilder leicht feststellen können. Sie zeigen Ihre Wahl wiederum durch 
Tastendruck an. Auch hier wird die von Ihnen gewählte Antwort durch einen roten Rah-
men gekennzeichnet, sobald Sie eine Taste gedrückt haben: 

 

Abbildung 5: Bildschirm zur Abfrage der Erinnerung 
nach Drücken der »Nein«-Taste 

 Und auch hier haben Sie die Möglichkeit, innerhalb der zulässigen Antwortzeit (2,7 Se-
kunden) Ihre Antwort noch zu korrigieren. 

Wichtig für Sie zu wissen ist, dass der abgefragte Punkt entweder genau dieselbe Posi-
tion wie einer der Punkte aus dem vorher gezeigten Arrangement einnimmt oder eine voll-

[Figure 4: Decision screen for the probe
phase: Does the dot belong to the previ-
ously shown arrangement or not?]

In this example you would have
to choose “No,” since the presented
dot does not coincide with any of the
three dots in the previous figure, as
you can easily confirm by comparing
the two images. You again indicate
your choice by pressing a key. Also in
this stage, the answer that you have
given is highlighted by a red frame as
soon as you have pressed the key:

[Figure 5: Decision screen for the probe
phase after pressing the “No” key]

Here, again, you have the opportu-
nity to correct your answer within the
granted time frame (of 2.7 seconds).

It is important for you to know that
the dot in the probe phase either oc-
cupies exactly the same location as
the respective dot from the arrange-
ment of dots in thememorizing phase
or a completely non-overlapping loca-
tion. That is, there is no ambiguity as
to whether the probe belonged to the
arrangement or not.

In contrast to the memorizing
phase, the fixation cross is shown in black, instead of red, during the probe phase.

Number of Rounds

Payoff-Relevant Rounds

Youwill complete a total of 150 rounds (+30 practice rounds). All rounds are grouped into
blocks of 15 rounds. In-between blocks, you have the possibility to take a break for as long
as you like. There are three types of rounds:

• In 60 out of 120 rounds youwill not have to do any other task besides the lottery choice.
• In another 60 rounds, you will be given the task to remember the arrangement of dots,
as described above, in addition to the lottery choice.

• In the remaining 30 rounds, you will be given only the task to remember the arrange-
ment of dots, without making any lottery choice.

Within a block, all rounds are of the same type: they either all include the memoriza-
tion task or they don’t, and they either all include the lottery choice or don’t.
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ständig nicht überlappende Position. Das heißt, es gibt keinerlei Unklarheit bei der Kate-
gorisierung, ob der Punkt zu dem Arrangement gehörte oder nicht. 

Anders als in der Einprägungsphase ist das Fixationskreuz in der Erinnerungsphase 
schwarz, und nicht rot, eingefärbt. 

Anzahl der Durchgänge 

Auszahlungsrelevante Durchgänge 

Sie absolvieren insgesamt 150 Durchgänge (+ 30 Probedurchgänge). Die Durchgänge sind 
in kurze Blöcke von jeweils 15 Durchgängen gegliedert. Zwischen den Blöcken haben Sie 
stets die Möglichkeit, sich – so lange sie möchten – auszuruhen. Es gibt drei Typen von 
Durchgängen: 

• In 60 von 120 Durchgängen werden Sie neben der Lotteriewahl keine weitere Aufgaben 
bearbeiten müssen. 

• In 60 anderen Durchgängen werden Sie zusätzlich zu der Lotteriewahl die oben be-
schriebene Punkte-Erinnerungs-Aufgabe gestellt bekommen. 

• In den übrigen 30 Durchgängen werden Sie nur die Punkte-Erinnerungsaufgabe ohne 
Lotteriewahl gestellt bekommen. 

Alle Durchgänge innerhalb eines Blocks sind vom gleichen Typ: entweder sämtliche mit 
oder ohne Erinnerungsaufgabe bzw. sämtliche mit oder ohne Lotteriewahl. 

Probedurchgänge 

Um sich an die Aufgabe zu gewöhnen, absolvieren Sie zu Beginn des Experiments 30 Pro-
bedurchgänge; von jedem der drei oben genannten Typen gibt es 10 Probedurchgänge. 

Die Probedurchgänge unterscheiden sich von den „richtigen“ Durchgängen in zwei 
Punkten: (1.) Die Probedurchgänge gehen nicht in die Ermittlung Ihrer Auszahlung ein! 
(2.) Während der Probedurchgänge erhalten Sie Feedback, ob Sie die Erinnerungsaufgabe 
korrekt gelöst haben – in den „echten“ Durchgängen gibt es kein Feedback. Außerdem be-
kommen Sie in den Probedurchgängen angezeigt, was das Ausspielen der von Ihnen ge-
wählten Lotterie ergeben hat (der Betrag, den Sie ausgezahlt bekämen, wird auf dem Bild-
schirm dick rot unterstrichen). In den „echten“ Durchgängen erfahren Sie dies hingegen 
erst ganz am Ende des Experiments – wie im folgenden Abschnitt beschrieben. 

Auszahlungen 

Für Ihre Teilnahme 

Für Ihre Teilnahme erhalten Sie einen festen Betrag i. H. v. 5 €. 

Für die Lotteriewahl 

Von den insgesamt 150 auszahlungsrelevanten Durchgängen wird vom Computer völlig 
zufällig genau ein Durchgang ausgelost. Anschließend wird genau die Lotterie, die Sie 
in ebenjenem Durchgang gewählt haben, ausgespielt. Dies bedeutet, dass sie in jedem 

Practice Rounds
To provide you with the opportunity
to get acquainted with the tasks, the
experiment will start with 30 prac-
tice rounds; there will be 10 practice
rounds for each of the three types de-
scribed above.

These practice rounds differ from
the “real” rounds in two aspects:
(1) The practice rounds are not in-
cluded in determining your payoffs.
(2) During the practice rounds, you
will receive feedback as to whether
you answered correctly in the mem-
orization task—while you will not
receive any feedback in the “real”
rounds.Moreover, during the practice
rounds, you will be informed of the
randomly determined payoff drawn
from the lottery that you have se-
lected (i.e., the monetary payoff that
you would have received will be high-
lighted by a redmarker on the screen).
In contrast, for the “real” rounds you
will be informed of your payoff only
at the very end of the experiment—as
described in the following section.

Payments

For Your Participation

For participating in this experiment you receive a fixed base payment of €5.
[Figure 6: Decision Screen for the Lottery Choice after Key Press]

For the Lottery Choice
Out of the 150 payoff-relevant rounds in total, the computer will select a single round ran-
domly. Afterwards, exactly the lottery that you have chosen in that particular round will
be used to determine your payoff. This implies that you should, in every single round, se-
lect the one lottery that you like better. Since we use a single lottery in order to determine
your payoff, it ought tomake no difference for your current choice how you have decided
in previous rounds.

Let us assume that you had chosen the bottom lottery in the above example and that
exactly this round was selected by the computer out of all 120 rounds:

The computer will now draw a randomnumber from the range 1–100. Since the proba-
bility of the €3 payoff is exactly 50%, the following rule is applied: If the number randomly
drawn by the computer is less than or equal to 50, you will be paid €3. If the number ran-
domly drawn by the computer is greater than or equal to 51, you will receive €15.
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Durchgang wirklich diejenige Lotterie auswählen sollten, die Ihnen besser gefällt. Da wir 
nur eine einzige Lotterie ausspielen, sollte es für Ihre Wahl in einem Durchgang keine 
Rolle spielen, welche Wahl Sie in vorangegangenen Durchgängen getroffen haben. 

Angenommen, Sie hätten in dem obigen Beispiel die untere Lotterie gewählt, und ge-
nau dieser Durchgang wurde vom Computer aus den 120 Durchgängen ausgelost: 

 

Abbildung 6: Bildschirm zur Lotteriewahl nach Tastendruck 

Der Computer wird nun eine Zufallszahl von 1 bis 100 ziehen. Da die Wahrscheinlichkeit 
der Auszahlung von 3 € laut Lotterie genau 50 % beträgt, wird folgende Regel angewandt: 
Ist die vom Computer gezogene Zufallszahl kleiner als oder gleich 50, erhalten Sie 3 € aus-
gezahlt. Ist die vom Computer gezogene Zahl gleich oder größer als 51, erhalten Sie 15 €. 

Die möglichen Auszahlungen der Lotterien variieren über die Durchgänge zwischen 2 € 
und 20 €. Seien Sie versichert, dass Sie auch die hohen Beträge wirklich ausgezahlt bekom-
men, wenn diese zufällig gezogen werden! Die Wahrscheinlichkeiten, die Sie auf dem Bild-
schirm angezeigt bekommen, sind dabei exakt die Wahrscheinlichkeiten, die der Computer 
bei seinem zufälligen Ausspielen der Lotterie nutzt – wie soeben anhand des Beispiels er-
klärt. 

Für die Erinnerungsaufgabe 

Außerdem wir vom Computer ebenfalls völlig zufällig genau einer der Durchgänge, in 
denen Sie die Punkte-Erinnerungs-Aufgabe gestellt bekamen, ausgewählt. Der Computer 
berücksichtig bei seiner Ziehung nicht, ob Sie in dem jeweiligen Durchgang richtig oder 
falsch lagen; auch Ihre Lotteriewahl in dem jeweiligen Durchgang hat keinerlei Einfluss 
auf die Zufallsziehung des Computers! 

Falls Sie in dem zufällig gezogenen Durchgang die Erinnerungsaufgabe korrekt be-
antwortet haben, erhalten Sie weitere 5 €. 

Insgesamt 

Das heißt, Sie haben die Möglichkeit, zusätzlich zu den sicheren 5 € Aufwandsentschädi-
gung bis zu 20 € + 5 € = 25 € zu gewinnen. Alles in allem können Sie in diesem Experiment 
also bis zu 30 € verdienen. 

The payoffs included in the lot-
teries range between-rounds from €2
to €20. We assure you that the high
payoffs will indeed be paid in the
case that they are selected! The prob-
abilities displayed on the screen are
the exact probabilities that the com-
puter will use in determining the se-
lected lottery’s payoff—as it was just
explained in the example.

For the Dots Memorization Task
Moreover, the computer will select,
again completely randomly, exactly
one of the rounds in which you faced
the dots memorization task. In its se-
lection, the computer does not take
into account whether you have an-
swered correctly or incorrectly in the
respective round; moreover, your lot-
tery choices have no influence what-
soever on the computer’s random de-
termination of the round that will
count for the dots memorization task!

In the case that you answered cor-
rectly in the randomly drawn round
for thememorization task, youwill be
paid an additional €5.

Total Payoff
This means that you have the oppor-

tunity to win up to an additional €20+€5= €25 on top of the fixed base payment. In other
words, you can earn up to €30 in total during this experiment.
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ID:  ____________ 

Quiz 

1. Wie viele Durchgänge werden vom Computer zufällig gezogen, um Ihre Auszahlung 
aus der Lotteriewahl festzulegen?  
 ______________ 

2. Berücksichtigt der Computer bei der Ziehung dieser Runde/n, welche der beiden Lotte-
rien Sie gewählt haben?  � Ja     � Nein 

3. Wie viele Durchgänge werden vom Computer zufällig gezogen, um Ihre Auszahlung 
aus der Punkte-Erinnerungs-Aufgabe festzulegen?  
 ______________ 

4. Welchen Betrag erhalten Sie, wenn Sie in der/den vom Computer gezogenen Runde/n 
die Punkte-Erinnerungs-Aufgabe richtig beantwortet haben?  
 ____________ € 

5. Angenommen, Sie hätten im Durchgang, in dem dieses Lotteriepaar 

 

gezeigt wurde, keine der beiden Lotterien ausgewählt.  

a) Wie viel erhielten Sie, wenn der Computer zufällig diesen Durchgang zur Bestim-
mung Ihrer Auszahlung aus der Lotteriewahl gezogen hätte?  
  ____________ € 

b) Wie viel Euro könnten Sie mindestens gewinnen, wenn Sie eine Lotterie gewählt 
hätten, und wie viel höchstens?  
  ____________ € 

6. Wie lange haben Sie Zeit, sich zwischen den Lotterien zu entscheiden? Wie lange haben 
Sie Zeit, in der Punkte-Erinnerungs-Aufgabe zwischen „Ja“ und „Nein“ zu wählen?  
 
 ____________ bzw. ____________ Sek.  

Quiz

1. How many rounds are randomly
selected by the computer in order
to determine your payoff from the
lottery choice? __________

2. When selecting this round, does
the computer take into account
which of the two lotteries youhave
chosen? � Yes � No

3. How many rounds does the com-
puter select randomly in order to
determine your payoff from the
dots memorization task?

__________

4. What is themonetary amount that
you will receive in the case that
you have answered correctly in
the computer-drawn round of the
dots memorization task?

€__________
5. Suppose that you did not select

any lottery in the round in which
the following lottery pair was
displayed: [lottery at the top:
(€7,75%; €9,25%); lottery at the
bottom: (€3,50%; €15,50%)].

a) Howmuchmoney would you be paid if the computer randomly selected this very
round as the one that counts for your payoff from the lottery choice? €__________

b) How much money would you be paid at least if you had selected one of the two
lotteries, and howmuch at most? €__________

6. How much time are you granted to decide between the lotteries in a given round?
Andhowmuch timeare yougranted to choosebetween “Yes” and “No” in thedotmem-
orization task? __________ sec. and __________ sec., respectively
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