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Abstract

This paper first develops a new approach, which is based on the Nelson-Siegel term structure factor-
augmented model, to compute the VaR of bond portfolios. We then applied the model to examine
whether information contained on macroeconomic variables and financial shocks can help to
explain the variations of VaR. A principal component analysis is used to incorporate the information
contained in different variables. The empirical result shows that, including macroeconomic
variables and financial shocks in the Nelson-Siegel term structure factor model, we can observe an
obvious tendency towards better VaR forecasting performance. Moreover, the impact of
incorporating financial shocks seems to be stronger than that of incorporating macroeconomic
variables.
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Introduction

What are the main deriving factors of bond portfolio value-at-risks (VaRs)? Do investors care
about such factors when pricing the bond returns? These questions are of paramount importance
for both economists and regulators in the current situation which market-wide stress and liquidity
restrictions have significantly raised in bonds markets.

The contribution of this study is two-fold. On the first distribution, we develop a new factor-
based approach, which is based on the Nelson-Siegel term structure factor-augmented model, to
compute the VaR of bond portfolio. Although VaR has attracted a considerable amount of
theoretical and applied research, the vast majority of the existing studies on VaR modeling are based
on three basic methodologies: the variance-covariance approach, Monte Carlo simulation, and the
historical simulation approach.! Applying the above techniques to a bond portfolio with large
number of assets, however, suffers serious restriction. For instance, it is well known that the
implementation of multivariate GARCH models in more than a few dimension is extremely difficult,
because the model has many parameters, the likelihood function becomes very flat, and
consequently the optimization of the likelihood becomes practicably impossible. In other words,
there is no way that full multivariate GARCH models can be used to estimate directly the large
covariance matrices that are required to net all the risks in a large portfolio.

Over the last few decades, factor models have become more popular and are widely applied to
solve the above problem. Golub and Tilman (1997) and Singh (1997)) first computed VaR by using
the principal component analysis to extract the yield curve risk factors from a series of bond returns.
Alexander (2002) employs the principal component GARCH model for generating large GARCH
covariance matrices and finds that it has many practical advantages on the estimation of VaR models.
Fiori and lannotti (2007) also develop a principal component (PC) VaR methodology to assess
Italian bank’s interest rate risk exposure. By using five years of daily data, the risk is evaluated

through a VaR measure based on a PC Monte Carlo simulation of interest rate changes. They model

1 Jorion (2000) and McNeil et al. (2005) provide excellent introductions of these estimation techniques.
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interest rate changes as a function of three underlying risk factors: shift, tilt and twist, as derived
from the principal component decomposition of the EU yield curve. Semenov (2009) use the Fama-
French three-factor as systematic common factors of asset returns in a portfolio and propose a
factor-based approach to estimate the portfolio VaR. The backtesting results for six Fama-French
benchmark portfolios and the S&P 500 index show that the approach yields reasonable accurate
estimates of portfolio VaR. Recently, Aramonte et al. (2013) attempt to bring the dynamic factor
model into the VaR estimation. They propose a computationally efficient VaR methodology that
brings together the historical simulation (HS) framework and the recent development on dynamic
factor models. The results, based on three equity portfolios with different time-series characteristics,
show that the joint framework often performs better that HS and Filtered HS in terms of back-
testing breaches and average breach-size, and always offers very significant gains in terms of
computational efficiency.

Our factor approach significantly differ from the existing ones as it is built on a well-established
term structure factor model. We utilize the dynamic version of the Nelson-Siegel (hereafter NS)
three-factor (level, slope and curvature) model proposed by Diebold and Lee (2006) and Diebold
et al. (2006). The model has successfully explained the main variations of government bond yields
(Diebold and Rudebusch (2011), de Rezende and Ferreira (2013)), investment-grade and
speculative-grade corporate bond yields (Yu and Salyards (2009), Yu and Zivot (2011))2.

In addition, we take a step further with respect to the existing evidence and expand the NS three-
factor model to include macroeconomic and financial stress factors. Some recent findings motivate

us to include the additional factors. Yu and Zivot (YZ) (2011) find that introducing macroeconomic

2 For the bond portfolios, the NS factor-based approach we proposed, as mentioned in earlier papers, offers several
advantages. First, by choosing a particular term structure model (i.e. selecting the number of the factors and the
complexity of their dynamics), one can easily impose reasonable restriction on the bond price dynamics. Second, term
structure models consider that moments of bond returns are time varying and thus capture the effects of a decreasing
time to maturity. As a consequence, they are particularly suited for portfolio considerations. Third, since the term
structure models we used are based on factor specifications, our approach is parsimonious and suitable for high-
dimensional applications in which a large number of fixed income securities are involved. Finally, the proposed
approach is very flexible as it can accommodate a wide range of additional factors to model the yield curve and also
alternative specifications to model the conditional heteroskedasticity in bond returns.
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variables into the yield level in NS three-facor model improves the monthly forecasts of US yields
curves (Treasury, investment-grade and speculative-grade bonds). Dewachter and lania (DI) (2011)
extends the benchmark macro-finance model (Dewachter and Lyrio (2006)) by introducing, next to
the standard macroeconomic factors, additional financial shocks, such as liquidity-related (or
money market spread) and return-forecasting (or risk-premium) factors. They find that the
augmented-factor model significantly outperforms most macro-finance yield curve model in terms
of the cross-sectional fit to the yield curve. Both financial shocks (liquidity-related and return-
forecasting) have statistically and economically significant impacts on the yield curve, and accounts
for a substantial part of the variation in the yield curve.® Recently, Fricke and Menkhoff (2015)
also found that the expected part of bond excess returns is driven by macro factors, whereas the
innovation part seems to be mainly influenced by financial stress conditions. With respect to the
above findings, we, in this paper, expand the NS three-factor model to include three macroeconomic
variables: the annual inflation rate, S&P 500 index and the federal funds rate (following Diebold et
al. (2006) and Yu and Zivot (2011)), and four financial shocks: LIBOR spread, T-bill spread, the
default probability and the VIX (following Dewachter and lania (2011), Liu et al. (2006) and
Feldhatter and Lando (2006)).

Afterwards, we also use the bond portfolio VaR to illustrate the extra advantages of using the
factor-based VaR method. One advantage of using the factor-augmented model is that it allows us
to obtain closed-form expressions for the conditional expected yields, as well as for their
conditional covariance matrix (and will later be used as an input to compute the VaR), in which the
conditional information is revealed from three types of factors (NS, macro, and financial). To
understand the information role of various types of factors, we first employ nested and nonnested

encompassing tests to examine

3 Alarge literature investigates the determinants of corporate yield spreads and links them to credit risk, liquidity (see
for example, Elton et al. (2001); Collin-Dufresne et al. (2001); Ericsson and Renault (2006); Friewald et al. (2012);
Huang and Huang (2012); Helwege et al. (2014)) and macroeconomic risk (see for example, Jarrow and Turnbull
(2000); Duffi et al. (2007); Yu and Zivot (2011)).
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(1) whether the macroeconomic factors and financial shocks provide incremental information in
explaining the variations of bond portfolio yields?

(2) which type of factors (NS, macroeconomic, and financial) alone offer the greatest explanatory
power for the variations of bond portfolio?

Secondly, we use the dynamic versions of the factor-augmented NS models to derive the closed-
form formula for the vector of conditional expected bond returns and factor-DCC-GARCH
specification to model the conditional covariance of bond returns. As a consequence, the one-day-
ahead VaR estimates obtained from the first two conditional moments are based on the information
revealed from three types of factors (NS, macro and financial).

On the second contribution, we apply the techniques of VaR decomposition and VaR
performance ranking to examine the impacts of various factor components on the bond portfolio
VaRs. We first use the backtesting tests based on coverage/independence criteria proposed by
Kupiec (1995) and Christoffersen (1998) to test the accuracy of VaR estimates. Then, we compare
and rank the VaR predictive performance among factor and factor-combined models by applying
the conditional predictive ability (CPA) test proposed by Ciacomini and White (2006) to examine
(3) whether the additional macroeconomic variables or financial shocks can improve the forecasting
performance of VaR estimates?

To the best of the authors’ knowledge, this is the first study that seeks to identify which factors
drive the bond portfolio VaRs. This study provides empirical evidence of the applicability of the
proposed approach by considering three bond indices: Citi US Treasury 10Y-20Y Index, Citi US
Broad Investment-Grade Bond Index and Citi US High-Yield Market Index. They are, respectively,
composed of Treasury securities, investment-grade and speculative-grade (high-yield) bonds.
Although the NS three factors are enough to provide reasonable accurate VaR estimates, the
empirical results show that macroeconomic variables and financial shocks are also important
driving factors. Including macroeconomic variables and financial shocks in the NS term structure

model, the VaR forecasting performances are significantly enhanced. The result also suggest that
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the impact of financial shocks are greater than that of macroeconomic variables.

This article is organized as follows: Section 2 introduces the NS factor-augmented models used
for modeling the joint framework of term structure, macroeconomic variables and financial shocks.
In section 3, we describe the procedure of computing the VaRs, the econometric specification for
constructing and estimating the factor-augmented models, and provides closed-form expression for
the first two conditional moments of bond portfolio yields. Section 4 presents the results of VaR
estimates and information advantages of various factor combinations. In section 5, we perform the

evaluation tests of VaR estimates. Finally, section 6 brings concluding remarks.

1. Factor Models
1.1. Dynamic Nelson-Siegel (NS) three-factor model
Nelson and Siegel (1987) introduced a parsimonious and influential three-factor model for zero

coupon bond yields, which is given by

ye@ = L+ 5. (o) + 6 (S — e )re(r) where &~NID(0,3,,) ()

where y.(7) = [y:(11), v:(13) - y:(ty)]" denotes the Nx1 vector of yields at time t, and 7 is
the maturity of bond ranging from 7, to 7y , such as from 3 months to 30 years. &.(t) is the
Nx1 vector of residuals and Y., is an NxN conditional covariance matrix of the residuals. The
Nelson-Siegel specification in Eq. (1) can generate several shapes of yield curve including upward
sloping, downward sloping, and (inverse) hump shaped. The parameter n determines the rate of
exponential decay. The three factors are L;, S;, and C;. The factor loading on L, is 1, and loads
equally at all maturities. A change in L; changes all yields uniformly. Therefore, it is called the
level factor. As t becomes larger, L, plays a more important role in formulating yields compared
to the smaller factor loadings on S;, and C;. In the limit, y,(c) = L;, so L, is also called the
long-term factor. The factor loadingon S; is (1 — e~ ") /nt, which is a function decaying quickly

and monotonically to zero as 7 increases. It loads short rates more heavily than long rates;



consequently, it changes the slope of the yield curve. Thus, S; is a short-term factor, which is also
called the slope factor. The factor loading on C; is (1 —e~"%)/(nt — e~ "), which is a function
starting at zero (not short term) and decaying to zero (not long term) with a humped shape in the
middle. It loads medium rates more heavily. Accordingly, C; is the medium-term factor, and also
called the curvature factor because an increase in C; will increase the yield curve curvature.
2.2. The Nelson-Siegel factor-augmented model

Despite its importance, the Nelson-Siegel factor model has gone through several modifications
and extensions to include additional variables or factors. In this paper, the improvement was mainly
done by incorporating additional macroeconomic variables and financial shocks.
2.2.1 Macroeconomic variables

In the earlier papers, it is well known that macroeconomic variables are related to the dynamics
of yields curves, and their inclusion in yields-only models should improve the VaR forecasts. Ang
and Piazzesi (2003) find that the 1-month-ahead out-of-sample vector autoregressive forecast
performance of Treasury yields is improved when macroeconomic variables are incorporated.
Dewachter et al. (2006) present a methodology to estimate the term structure model of interest rates
that incorporates both observable and unobservable factors, which have macroeconomic
interpretations. As such, the model is well suited to tackle questions related to the interactions
between financial markets and the macroeconomy and is able to better describe the joint dynamics
for the macroeconomy and the yield curve. Ludvigson and Ng (2009) find that real and inflation
macroeconomic variables have predictive power of future government bond vyields.* With
corporate credit spreads, macroeconomic variables also tend to explain a large portion of their
variations over time. The past studies also found that macroeconomic variables tend to explain a

significant portion of their variations. Jarrow and Turnbull (2000) suggest that incorporating

4 QOther studies, examining the joint dynamics between the macroeconomy and the Treasury yield curve, include
Diebold et al. (2006), Piazzesi (2005), Rudebusch and Wu (2007, 2008), Wu (2006), Wu and Zhang (2008), among
others.
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macroeconomic variables may improve a reduced-form model of credit spreads. Duffie et al. (2007)
use macroeconomic variables to help better predict corporate defaults.> Recently, Yu and Zivot
(2011) examine comprehensive short- and long-term forecasting evaluation of the two-step and
one-step approaches of Diebold and Li (2006) and Diebold et al. (2006) using Treasury yields and
nine different ratings of corporate bonds. They find that forecasts from the NS factor model can be
improved by incorporating macroeconomic variables. Following Diebold et al. (2006) and Yu and
Zivot (2011), we consider three macroeconomic variables: the annual inflation rate (INFL),

S&P500 index return (SP), and the federal funds rate (FFR).

2.2.2. Financial shocks

Dewachter and lania (2011) extend the macro-finance yield-curve model by introducing, next
to the standard macroeconomic variables, additional liquidity-related and return-forecasting (risk
premium) shocks. Using the US data, they find that the extended model significantly outperforms
macro-finance yield curve models in terms of the cross-sectional fit of the yield curve. In other
words, financial shocks have a statistically and economically significant impact on the yield curve.
In their study, liquidity-related shocks are obtained from a decomposition of the money market TED
spread, while the return-forecasting (risk premium) shock is extracted by imposing a single-factor
structure on the one-period expected excess holding return.

The TED spread, which is defined as the difference between the 3-month T-bill and the
relevant unsecured money market rate (i.e. LIBOR), is often considered as a key indicator of
financial strain (market liquidity and credit risks) in money markets. Its increase is associated with
increased counterparty and/or funding liquidity risk. Following Dewachter and lania (2011) and
other studies (Liu et al. (2006), Feldhutter and Lando (2008)), we decompose this money market

spread into two distinct spread shocks (LIBOR spread and T-bill spread) as follows:

5 Other related papers include Davies (2008), Castagnetti and Rossi (2013), among others.
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where jLBOR {Thill and j7ePo denote, respectively, the 3-month LIBOR rate, 3-month T-bill
rate and the general collateral secured repo rate. Since the LIBOR spread (LIBORS) compares
unsecured money market rates to their secured counterpart, it thus provides an indicator of
counterparty or more general credit risks in the money market. A widening of the LIBOR spread
typically indicates increased credit risk exposure in money markets.

The T-bill spread (ThillS) measures the convenience yield of holding government bonds and
is generally considered as a proxy for flight-to-quality (or flight-to-liquidity).® Typically, a
widening of this spread is often associated with the frequent flight-to-quality.

A large amount of past studies have provided comprehensive empirical analysis on the effects
of liquidity and credit risk on corporate yield spreads (see, for example, Elton et al. (2001), Collin-
Dufresne et al. (2001), Ericsson and Renault (2006), Friewald et al. (2012), Dick-Nielsen et al.
(2012), Huang and Huang (2012), Helwege et al. (2014), among others). They all suggest that
liquidity and credit risk are two most important determinant of expected corporate bond returns. In
particular, Gefang et al. (2011), Dick-Nielson et al. (2012) and Friewald et al. (2012) suggest that
liquidity effects are more pronounced in periods of subprime crisis, especially for bonds with high
credit risk (or worse credit ratings). In other words, the spread contribution from illiquidity

increases dramatically with the onset of the subprime crisis.

¢ In fixed-income securities markets, we often observe that investors rebalance their portfolios toward less risky and
more liquid securities during the period of economic distress. This phenomenon is commonly referred to as a flight-to-
quality and flight-to-liquidity, respectively. Although the economic motives of these two phenomena are clearly
different from each other, empirically disentangling a flight-to-quality from a flight-to-liquidity is difficult. In the
context of the corporate bond market in the United States, these two attributes of a fixed-income security (credit quality
and liquidity) are usually positively correlated (Ericsson and Renault (2006)). Using data on the Euro-area government
bond markets, Beber et al. (2008) find that credit quality matters for bond valuation but that, in times of market stress,
investors chase liquidity, not credit quality.
9



Besides the two money-market-spread shocks, we further consider two additional financial
variables: the default probability (DP), and the VIX. Elton et al. (2001) found that expected default
accounts for a surprising small fraction of the spread between rates on corporate and government
bonds. Dionne et al. (2010) revisit the estimation of default risk proportions in corporate yield
spreads. They found that the estimated proportions of default in credit spread is sensitive to changes
in recovery rates, the data filtration approach used, and the sample period. To obtain an effective
measure of the default probability variable of speculative-grade corporate bonds, we take the
difference between the Moody’s BBB bond yield and the Moody’s AAA bond yield as the measure
of “default probability” variable. The following empirical results also show that the default
probability variable we employed indeed has more significant explanatory ability than the spread
in rates between corporate and government bonds.

The VIX, which is a ticker symbol for the Chicago Board Options Exchange Volatility Index,
measures the implied volatility of S&P500 index options over the next 30-day period. It has also
been nicknamed “the fear gauge” (Whaley (2000) and Low (2004)) or “the sentiment index” by the
Wall Street Journal. The VIX index is widely accepted as a measure of uncertainty and instability
in financial market (Hakkio and Keeton, 2009) and is regarded as a financial stress indicator. Fricke
and Menkhoff (2015) decompose bond excess return into expected excess returns (risk premium)
and the innovative part. They find that expected part of bond excess return is driven by
macroeconomic factors, whereas innovations seem to be mainly influenced by financial stress
conditions.

The above four financial shocks we employed are all highly related to market stress condition
or sentiment and, thus, can also be regarded as stress or sentiment factors. Because investor
sentiment is usually negatively correlated with the market-wide risk aversion and uncertainty about
future economic condition, the specification is consistent with the notion that credit spreads depend
on investors’ risk attitude and uncertainty about future economic prospects. Tang and Yan (2010)

have identified aggregate investor sentiment as the most important corporate credit spread
10



determinants among the market-level factors.

2. Model estimation
In this section we consider the use of dynamic NS factor model for the yield curve, the
macroeconomic variables and financial shocks, as discussed previously, to obtain closed form
expressions for the expected bond yields, as well as for their conditional covariance matrix. From
these two moments, we are able to derive the distribution of bond prices and returns, and then use
it to compute the VaR of a bond portfolio. We follow the following five steps to achieve our target.
2.1. Step one: estimate the Nelson-Siegel state-space model

We follow the dynamic framework of Diebold et al. (2006) by specifying first-order vector
autoregressive processes for the factors. They propose a linear Gaussian state-space approach which
uses a one-step Kalman filter, a recursive procedure for computing the optimal estimator of the state
vector at time t given the information available at time t, to simultaneously do parameter estimation
and signal extraction in the dynamic Nelson-Siegel factor model.’

The measurement (observation) equation of the state-space form for the dynamic NS three-

factor model is

/1 1-e”M"1  1-e7MT1 o1
T nt nt \ s (1
ytgrli 1 1zeT% 12eTMR L stg’rlg
yt . 2 = nty nty € St + t . 2 (1)
’ : : : C; )
ye(Tn) 1 1-¢7"N  1-¢TTN o & (ty)
niN nmN

which relates the observed yields to the latent NS three factors (state variables) and measurement
errors. The transition equation describes the evolution of the state variables as a first-order Markov

process and is given by?®

” Diebold and Li (2006) also proposed a two-step procedure to estimate the Nelson-Siegel factor yield curve. Diebold
et al. (2006) argue that the two-step procedure used by Diebold and Li (2006) suffers from the fact that the parameter
estimation and signal extraction uncertainty associated with the first step are not considered in the second step. Thus,
that the one-step approach is better than the two-step approach because the simultaneous estimation of all parameters
produces correct inference via standard theory.

8 To identify the model and simplify the computations, we, following Yu and Zivot (2011), assume that the coefficients
matrix in (4) to be diagonal for two reasons: First, Diebold et al. (2006) report that most off-diagonal elements of this

11
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where the decay parameter, 7, here is 0.0609 (Diebold et al., 2006).

We assume that the measurement and transition disturbances are Gaussian white noise,
diagonal and orthogonal to each other, as is the standard treatment of the state space model (see

Durbin and Koopman (2001)):

()~ |- (G o) @)
where Y., is (3x3), the covariance matrix of innovations of the transition system and is assumed
to unrestricted, while the covariance matrix Y., of the innovations to the measurement system of
(NxN) dimension is assumed to be diagonal. The latter assumption means that the deviations of the
observed yields from those implied by the fitted yield curve are uncorrelated across maturities and
time. Given the large number of observed yields used, the diagonality assumption of the covariance
matrix of the measurement errors is necessary for computational tractability. Moreover, it is also a
quite standard assumption, as for example, i.i.d. errors are typically added to observed yields in
estimating no-arbitrage term structure models. The assumption of an unrestricted Y., matrix,
which is potentially non-diagonal, allows the shocks to the three term structure factors to be
correlated.

As the macroeconomic and financial factors are taken into consideration, the transition

equation is thus®

Le—my a; 0 0 a4 ass Ly —my €1t
St — U2 0 ap 0 ay axp St-1— H2 €2t
Cc—us |=] 0 0 az as ass Co-1—p3 | +| €3t 4.)
M — py 0 0 0 ay ays |\ Meg—py €4t
Fr—ps 0 0 0 0 ass Fro1— s €st

matrix are statistically insignificant and have small magnitudes. Second, the main objective of this approach is to
estimate yield curve factors rather than to find the best fitting model. Therefore, this restriction simplifies the estimation
of the model without affecting our results.
® The factor-augmented model has been widely applied in term structure literature (see, Diebold et al. (2006), Ullah et
al. (2013), Exterkate et al. (2013), Yu and Zivot (2011), among others).
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where M; denotes the common macroeconomic factor, which is the first principal component of
three macroeconomic variables (FFR, INFL, SP), which explains 80% of the total sample variance.
Similarly, Ft denotes the common financial stress factor, which is the first principal component of
four financial shock variables (LIBORS, Thills, DP, VIX). It dramatically explain 93% of the total
sample variance.!® The dynamic factors system including the DNS factors (L,, S, C;) , macro and
financial stress factor in measurement equation (Eg.(5)) can represented by the following stochastic
process

fi=Yfi_1 +e where €,~NID(0,3,,) (6.)
where f; = (Ly — 14, S; — Uz, Cr — g, My — g, Fr — us)' and Y is 5 X 5 transition matrix.
2.2. Step two: construct the NS factor-augmented regression model by including macroeconomic

and financial stress factors

A straight forward extension of the vyields-only factor models, adding the additional
macroeconomic and financial stress factors, lead to the following general specification of linear
dynamic factor model with transition process in Eq. (6) :

Ypt = Yo + AMfe + &pt where &,.~NID(0,%,,) (7)
where A = (A, s, Ac, Ay, Ap) are factor loadings or called factor sensitivities which correspond
to the identified latent factors, and y, . is the yield of bond portfolio, y, = E(y,,) denotes
expected yield of bond portfolio. ¢,, denotes error term with a zero mean that represents the
portion of the yields not explained by the factor model (e.g. firm-level characteristics).
2.3. Step three: calculating the expected bond portfolio yield and their corresponding conditional

covariance matrices

Under a multivariate setting in which a portfolio of bonds is concerned, the computation of VaR

requires two main ingredients, namely, the vector expected returns and their covariance matrix.

10 The primary purposes of applying the technique of principal component are (1) to reduce the number of risk factors
to a manageable dimension and (2) to solve the multicollinearity problem when all risk factors are used as explanatory
variables in a linear regression model. The result of principal component analysis is not reported here to save the space.
It can be provided upon request.
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Although the factor models for the term structure of interest rate discussed above are designed to
model only bond yields, it is possible to obtain the expressions for the expected bond portfolio
returns and their corresponding conditional covariance matrices based on the distribution of the
expected yields.

Following Caldeira et al. (2013), we take the expectation of the yield-only (or NS) factor model

in (1) to obtain

Hiypelt-1) = Afrje-1 (8)
where H(yy lt—1) denotes the expected bond portfolio yield at time t conditional on the available
information set at time t-1, and f; = (L; — iy, St — 2, C — 13)". One of our contributions is to
incorporate the macroeconomic and financial stress factors, so that we have f; = (L; — uy, S —
Uz, Cr — Uz, My — s, Fr — ug)'. In this case, A = (A, s, ¢, Ay, Ap) and the significance of Ay, Ag
indicates that the macroeconomic and financial stress factors are relevant and carrying incremental
information into the determinants of bond portfolio yield. The corresponding conditional

covariance matrices is therefore given by

Zypelt-1) = A Zree-1 Y + Tegje-1)A + Zp et 9)

where X¢ie-1, Deee-1 and 2p..—q are one-step-ahead forecasts of conditional covariance

matrix of f;, innovation term in Eq. (6) and Eq. (7), respectively.

In Egs. (8) to (9), the available information set Q,_; ondayt-1 can be divided into three parts:
aFs,, oM, and QF_,, which, respectively, represents the information subsets of NS three factors,
macroeconomic factors and financial shocks. Thus, the determination of yields and the computation
of VaR can be based on seven alternatives with different information (or conditional volatility
measures) combinations: {QPNS}  {QM .}, and {Qf_ .}, {QPNS.aM .}, {QPNS of .},
oM ,af 3, and {QPN5, oM ,QF .}, In this regards, the elements in £, rely much on various

possible combination of information set. In the preceding section 4.2.2., we employ encompassing
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tests, based on nested and nonnested models, to investigate two interesting concerns: (1) whether
the macroeconomic and financial stress factors provide incremental and valuable information to
explain the variations of bond portfolio (nested model)? (2) Which type of factors (NS,
macroeconomic or financial) play the most crucial role in explaining the variations of bond portfolio
(nonnested model)?
3.4. Step four: calculating the bond portfolio returns

In this subsection, we first derive the distribution of expected fixed-maturity bond prices. Let’s
consider the price of a bond at time t, Py(z), is the present value at time t of $1 receivable z periods

ahead, then the vector of expected bond price Pyt for all maturities can be obtained by

P11 = eXp(—T®3’t|t—1) (10)
where y, -1 denote the one-step ahead forecast of its continuously compounded zero-coupon
nominal yield to maturity, ® is the Hadamard multiplication and t is the vector of maturities.

Thus, the log-return of bond portfolio can be expressed by
ot = log(P;/P;—;) = logP; — logP;_; = _T®()’p,t - Yp,t—l) (11)
Through Eqg. (9), we may have an analytical expression for the vector of expected log-return

of bond portfolio as well as for its corresponding conditional covariance matrix. Following the

derivation of Caldeira et al. (2013), the vector of expected log-return of bond portfolio is'!

H(ry it-1) = “T®H(y, fe-1) T T®Vpe-1 (12)

Note that H(yy lt—1) and y,¢—1 can be referred to Egs. (8) and (7), respectively. Obviously, fm_l

may either only contains L., S;, C; or incorporates additional M, and F,, which relates to our
design for combinations of information set. Likewise, by applying Eqg. (9) into Eq. (11), the

conditional covariance matrices of the return of bond portfolio is

2 (ryelt-1) = T’TA(YZf,qt—lY’ + Ze,t|t—1)A, + Xy t1e-1 (13)

11 The derivations of (11) and (12) are similar to the proposition 2 in Caldeira et al. (2013). The conditional covariance
matrix has been proved to be positive definite.
15



As such, Eq. (13) is analogous to Eqg. (9) with an additional duration term, 7’z. Moreover, both Eq.
(9) and (13) produce singular as results, leading to a tractable computation on VaR estimates. The
above result shows that it is possible to obtain analytical expressions for the expected return of bond
portfolio and its corresponding covariance matrix based on the models by Nelson and Siegel (1987)
and their extensions.
To model the factors conditional covariance matrix X ;.-,, we consider the dynamic
conditional correlation (DCC-GARCH) model proposed by Engle (2002), which is given by*?
feie—1 = Dy WDy (14)
where D, is a (kxk) diagonal matrix with diagonal elements given by hg . (the conditional
variance of the k-th factor), and ¥, is a symmetric correlation matrix with elements p;; ;, where

I,j =1,....k. In the DCC model, the conditional correlation p;;, is given by

o= it 15
Pijt Jiitqjjt ( )

where q;j., 1,j = 1,....k, are the elements of the (kxk) matrix @, which follows a GARCH-type
dynamics

Q=0—-a—-B)Q+aZ;1Z{_1 +BQr1 (16)
where Z, is the (k x1) standardized vectors of returns of the factors, whose elements are Zg;, =
fkt/\/%, Q is the unconditional covariance matrix of Z,, a and B are non-negative scalar
parameters satisfying a + 8 < 1.

The estimation of the DCC model can be conveniently divided into two univariate parts:
conditional volatility and correlation. The univariate conditional volatilities of factors can be
modeled by using a GARCH-type specification and their parameters are estimated by quasi-
maximume-likelihood (QML) assuming Gaussian innovations. To estimate the parameters of the

correlation part of ((20) and (21)), we employ the composite likelihood (CL) method proposed by

12 Caldeira et al. (2013) find that the VaR estimates obtained from the NS yield curve models with conditional
covariance matrix giving by a dynamic conditional correlation (DCC-GARCH) model to be the most accurate among
all GARCH-type specifications they considered.
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Engle et al. (2008).13

3.5 Step five: Cornish-Fisher expansion

The empirical distribution of stock returns is characterized by two feathers, left-skewed and
excess kurtosis, implying that extremes come more often than the likelihood embedded in
conventional normal distribution. As discussed by Favre and Galeano (2002), in the case of non-
normality VaR based only on volatility underestimates downside risk. A modification of VaR via
the Cornish-Fisher (CF, 1937) expansion improves its precision by adjusting estimated quantiles
for non-normality. The CF expansion approximates the quantile of an arbitrary random variable by
incorporating higher moments, and offers an explicit polynomial expansions for standardized
percentiles of distribution. The fourth-order CF approximation provides the following expression
of standardized return variables at a%-quantile q,:

S K, s
Qat = Zg + (Zg.f - 1) Zt + (Zg - ?’Za) 2_i - (222 - Sza) i (17)

where z, is a-quantile value from standard normal distribution, S; and K, are skewness and
excess kurtosis at t, respectively. Clearly, this expansion indicates that q,. is a monotone
increasing function of excess kurtosis and negative skewness at &« = 1% quantile level.

3.6 Step six: compute the value-at-risk

The one-day ahead Value-at-Risk forecast of bond portfolio return at 1 — a confidence level at

time t-1 is defined as VaR, (1 —a) = qg W /z(rptlt—l) where g, .-, is the quantile value

from Eq. (17), W is initial portfolio value and Z(rp,t|t—1) is conditional covariance matrices of the
return of bond portfolio in Eq. (13).*

We then compare one-day-ahead VaR;_,(1 — «) forecast based on information set at t-1
with the actual bond portfolio return on day t, r,.. If r,, <VaR,_,(1 - a), indicating an

exception (or violation). For backtesting purpose, we define the violation indicator variable as

I {1 if Tp't < Va,Rt_l(l - a)
t =

0 lf Tp,t = VaRt_l(l - (l). (18)

3. Data and empirical results

13 In comparison to the two-step procedure proposed by Engle and Sheppard (2001) and Sheppard (2003), the CL
estimator, as indicated by Engle et al. (2008), provide more accurate parameter estimates, particularly in large-
dimensional problems.

4" As mentioned before, Z(rpelt-1) is a singular so that it can be taken a square root.
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4.1 Data

The data we use are US spot rates for Treasury zero-coupon and coupon-bearing AA-rated and
BBB-rated corporate bonds from Jan. 2011 to Dec. 2014 with 924 daily observations, which are
obtained from Bloomberg. Table 1 provide summary statistics for the yield data across maturities
for Treasury zero-coupon (zero), AA-rated and BBB-rated bonds. For each maturity, we report
mean, standard deviation, minimum, maximum, skewness, kurtosis, and autocorrelation
coefficients at various displacements for Treasury zero, AA-rated, and BBB-rated yield data. Figure
1 also plots cross-section of three types of yields over time. The summary statistics and figures
reveal that the average yield curves for three types of yields are all upward sloping. It also seems
that the skewness has a downward trend with maturity and kurtosis of the short rates higher than
those of the long rates.

We also select three bond indices: Citi US Treasury 10Y-20Y Index, Citi US Broad
Investment-Grade Bond Index and Citi US High-Yield Market Index. They are, respectively,
composed of Treasury, investment-grade and high-yield bonds. The main characteristics of the three
selected bond indices are given in Table 2.

Concerning the three macroeconomic variables and four financial shocks, we use daily data
for the same sample period used in above yield analysis for inflation rates, S&P 500 index returns
and the federal funds rates, as well as LIBOR spreads, T-bill spreads, the default probabilities and
the VIXs. For the three macroeconomic variables: Federal funds rates, inflation rates, and S&P 500

returns are, respectively, obtained from http://research.stlouisfed.org/fred2/series/DFF, Federal

Reserve Bank of St. Louis, and Datastream.'® For the financial variables, LIBOR, repo rates and
T-bill rates are collected from the Datastream. The Moody’s AAA and BBB bond yields can be

found in Federal Reserve Website: http://www.federalreserve.gov/releases/h15/data.htm. The VIX

15 The daily inflation rates we used is the five-year breakeven inflation rates from the Federal Reserve Bank of St.
Louis. The breakeven inflation rate represents a measure of expected inflation derived from 5-year Treasury Constant
Maturity Securities. It implies what market participants expected inflation to be in the next 5-years on average.
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index comes from the CBOE website. The descriptive statistics of the macroeconomic and financial
variables are depicted in Table 3.

4.2. Empirical results

4.2.1. The basic characteristics of factors

In step one, we use the observed yields data of Treasury zero-coupon, AA-rated and BBB-
rated coupon bonds and apply the one-step Kalman filter to the state-space representation (equation
(6)) to estimate the NS three factors (L,, S, and C;) for Treasury zero, AA-reted, and BBB-rated
yield curves. We summarize their statistics (mean, standard deviation, maximum, minimum,
skewness, kurtosis, and autocorrelation coefficients) in Table 3. The result of augmented Dickey-
Fuller (ADF) unit root test indicates that three estimated NS factors (level, slope and curvature) and
two additional factors (macro and financial) all exhibit stationary time series. Further, the time
series of estimated NS three factors as well as two additional macro and financial stress factors are
also plotted in Figure 2.

4.2.2. The explanatory power of factor-augmented models

In Table 4, we present the regression results of various factor and factor-combined models on
variations of yields (equation (8)) on three selected bond indices. In panel A, we run the yield
variations of three bond indices on the nested models of NS three factors (based on Treasury zeroes,
AA-rated and BBB-rated yield curves), NS+M;, NS+F; and NS+M¢+F¢. Our concern is to understand
how much yield variations the NS three factors can explain and whether the macro and financial
stress factors can add additional explanatory power.

The results show that the NS three factors based on Treasury zero, AA-rated and BBB-rated
can, respectively, provide quite high explanatory abilities on the yield variations of Treasury 10Y-
20Y index, Broad Investment Grade Bond Index and High Yield Market Index. The adjusted R-
squares are, respectively, 0.906, 0.486, and 0.382. The inclusion of macro or/and financial factors
all improve the explanatory power of regression models, resulting in the increases of adjusted R-

squares.
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In panel B, we re-run the yield variations of three bond indices on three types of factors alone
(nonnested model). The results show that the NS three factors and financial stress factors (but not

macro factor) alone all exhibit significant explanatory powers.

4.2.3. Encompassing tests for out-of-sample forecasting ability

When a forecast carries no additional information compared to a competing one, it is said that
the forecast to be “encompassed” by the competing one. In this subsection, we use the forecast
encompassing approach to first investigate whether the inclusion of additional factors
(macroeconomic and financial) contains incremental information to improve the performance of
out-of-sample forecasts in equation (8)? The result of encompassing test is shown in Table 5. For
the nested model, we use the F test to test the null hypothesis Hy: Ay, = 0 (Hy: Ap = 0). If the null
hypothesis is rejected, we may conclude that the inclusion of macroeconomic factor (financial stress
factor) provide incremental information on the variations of bond index yields. The result in panel
A of Table 5 seems to indicate that the information contained in macroeconomic factor is useful
only for Treasury 10Y-20Y index. On the contrary, the financial stress factor can provides the
incremental information for all three indices.

Secondly, we compare competing forecast encompassing abilities among three factors (NS,
Macroeconomic and Financial) alone. The NS factors are redefined as the combination of NS three
factors as follows:

NS = A, L, + A¢S; + A.C,

For the nonnested model, we employ the multiple forecast encompassing method proposed by
Harvey and Newbold (2000), whose detail is described in the appendix. This method generalizes
the forecast encompassing approach (such as Harvey et al. (1998)) to situations that a forecast can
be compared with more than one competitor. At 5% significance level, the result of multiple forecast
encompassing test are presented in panel B of Table 5. The “NS”, “M¢” and “F¢” columns,

respectively, show the test statistics of the null hypothesis that “NS encompasses Macro and
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Financial”, “Macro encompasses NS and Financial” and “Financial encompasses NS and Macro”.
For three indices, the test results all indicate that both NS and financial stress factors encompass
other competitors.
4.3. VaR estimation

Table 6 summarizes the statistics of the estimated VaRs across various factor models during the
sample period. They include the mean, standard deviation, 25% and 75% quantiles, and the
expected shortfall. We focus on the estimation of the 99% coverage rate and one-day-ahead VaR,
which is the relevant risk level for financial institutions which must report this level to measure
their market risk exposure in accordance with the Basel Accords.

As described in section 4.1, there are 924 daily observations available on our sample period.

To estimate the one-day-ahead VaRs for three bond indices, we consider a rolling-estimation
strategy in which VaR parameters are re-estimated using a rolling horizons of 500 daily
observations. Starting from the first 500 observations, we estimate the VaR parameters and obtain
a one-step-ahead forecast. We repeat this process by discarding the oldest observation and including
a new observation until the end of the sample is reached. In this end, we have a series of 424 one-

day-ahead VaR forecasts.

4. VaR evaluation tests

This section proposes two methods to evaluate the accuracy of VaR estimates: the backtesting
by the unconditional and conditional coverage tests and the ranking comparison by the conditional
loss function.
5.1 Unconditional and conditional coverage tests

Assuming that a set of VaR estimates and their underlying model are accurate, violations can

be modeled as independent draws from a binomial distribution with a probability of occurrence
equal to a%. Accurate VaR estimates should exhibit the property that their unconditional coverage

a = x/T equals a, where x is the number of violations and T the number of observations.
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Kupiec (1995) shows that the likelihood ratio statistic for testing the hypothesis of @ = « is
LRy = 2[log(@*(1 — &)™) —log(a*(1 — a)"™)], (19)
which has an asymptotic y2(1) distribution.

The LR, testisan unconditional test of the coverage of VaR estimates, since it simply counts
violations over the entire period without reference to the information available at each point in time.
However, if the underlying portfolio returns exhibit time-dependent heteroskedasticity, the
conditional accuracy of VaR estimates is probably a more important issue. In such cases, VaR
models that ignore such variance dynamics will generate VaR estimates that may have correct
unconditional coverage, but at any given time, will have incorrect conditional coverage.

To address this issue, Christoffersen (1998) proposed conditional tests of VaR estimates based
on interval forecasts. The LR.. test used here is a test of correct conditional coverage. Since
accurate VaR estimates have correct conditional coverage, the violation indicator variable l+1 must
exhibit both correct unconditional coverage and serial independence. The LR.. test is a joint test
of these properties, and the relevant test statistic is LR.. = LR, + LR;,4, Which is asymptotically
distributed y2(2). The LR, statistic is the likelihood ratio statistic for the null hypothesis of
serial independence against the alternative of first-order Markov dependence.®
5.2 Conditional loss function

The independence, unconditional and conditional coverage tests, though appropriate to
evaluate the accuracy of a single model, may not appropriate for ranking alternative estimates of
the VaR and can provide an ambiguous decision about which candidate model is better. Thus, it is
important to enhance the backtesting analysis by using statistical tests designed to evaluate the
comparative performance among candidate models. Following Santos et al. (2013), we employ the

equal conditional predictive ability (CPA) test of Giacomini and White (2006).%

16 For the purpose of this paper, only first-order Markov dependence is used. The likelihood ratio statistics for LR

and LRinq are standard, which are same as those in Christoffersen (1998).

17 The test of Giacomini and White (2006) mainly improves Diebold and Mariano (1995) and Sarma et al. (2003) that

have been in widespread use in predictive evaluation by several aspects. First, their test can exist in an environment

where the sample is finite. Second, more importantly, their model accommodates conditional predictive evaluation, in
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Specifically, for a given asymmetric loss function at (1-q)% quantile defined as

L‘g+T(Rpt+T’ ft) =(q—1 ((ft - Rpt+‘r) < 0))(ft - Rpt+‘r) (20)
The null hypothesis of equal conditional predictive ability of forecast function f and g for the target
date t + ¢ can be written as follows:

Ho: E[L{ :(Rptre ft) = Lise(Rperes Ge)lle] = E[ALgic|l]] = 0 (21)
where R, isthe actual bond portfolio returns on day t + 7. f, and g, can be anyone of VaR
estimates. For a given chosen test function H, = (1,AL,,,) that is gx1 vector, a Wald-type test
statistic corresponding to the null hypothesis is:

CPAT = n(n™' X2 HALe )7 (™ XEZ] HeALyyy) = nZ'Q5'Z (22)
where Z=n"'Y1"17,,1, Z4s1 = HALiyq,and O, =n 1 Y1-1 7, ., X Z{,, isqxqmatrix that
consistently estimates the variance of Z;,;. n is the number of out-of-sample forecasts. A level
of a test can be conducted by rejecting the null hypothesis of equal conditional predictive ability
whenever CPA? > xZ,_,, where xz,_, isthe 1 —a quantile ofa yZ distribution.
5.3. The evaluation results
5.3.1. Unconditional and conditional coverage tests

Table 7 presents the result of unconditional, independence and conditional coverage test,
violation ratios and average size of violations for three bond indices. Violation ratio is defined as
“the violation number divided by the number of VaR estimates”. We compare the VaR performance
of various factor models along two dimensions: the number of VaR backtesting violations and the
average size of the violations. The number of backtesting violations is the primary indicators of
VaR performance. If the VaR model works well, we would expect the VaR estimates pass the
conditional coverage tests. The result in Table 7 shows that NS three factors (but not macro or

financial stress factors) based VaR estimates all pass the conditional coverage tests except the Broad

the way that we can predict which forecast was more accurate at a specific future day. In other words, it nests the
unconditional predictive evaluation that only predicts which forecast was more accurate on average. Third, it captures
the effect of estimation uncertainty on relative forecast performance.
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Investment Grade Bond Index. In terms of the second indicator of VaR performance, the VaR
models including the additional macroeconomic and financial stress factors all exhibit lower
average size of violations. This implies that the macro and financial factors provide valuable
information and improve the VaR performance of NS three-factor model.

In order to further illustrate the results presented in Table 6 and Table 7, we pot in Figure 3 the
daily returns on Treasury 10Y-20Y Bond Index, Broad Investment Grade Bond Index and High
Yield Bond Index, respectively, over sample period and the VaR estimates delivered by the NS, M,
F, NS+M, NS+F, NS+M+F models. In the figures, a violation occurs if the negative return (loss)

drops below the solid line.

5.3.2. Conditional predictive ability (CPA) test

Table 8 reports the Wald-type test statistics for pairwise comparisons among factor models,
using the CPA test proposed by Giacomini and White (2006), for each of the three bond indices
considered. The null hypothesis is that the models in the “line” have the equal conditional predictive
ability as the models in the “column”. If the value of the Wald-type test statistic is greater then
X§,1—a, which is the 1-a quantile of a Chi-square distribution with g degree of freedom, then the
null hypothesis of equal conditional predictive ability is rejected. Since the a=95% significance
level of a yZ,_, distribution with =2 degree of freedom is 5.99, the result show that all models
in the “line” outperform the models in the “column”. We observed that the results in Table 8
corroborate the backtesting results discussed in Table 7. For the both sample periods, the NS+M+Ft
specification outperform, at 5% significance level, all other specifications in all three bond indices.
The result emphasizes the important role of macro and financial stress factors on the improvements
of VaR performance. In addition, we also found that F; (NS+F¢) model performs better than M
(NS+My) one in all cases, implying that financial stress factor has stronger impact than that of the

macroeconomic one.
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5. Conclusion
This study is motivated by the recent finding that the variations of bond returns can be, besides

spot-rate term structure model, explained by macroeconomic variables and financial stress
conditions. We go beyond earlier studies by first developing a new factor-based approach, which is
based on the Nelson-Siegel term structure factor-augmented model, to compute the VaR of bond
portfolios. We then use the model to investigate whether the information contained on
macroeconomic variables and financial shocks can help to explain the variations of VaR.

Regarding the extension of variables which affect the yield variations, we consider several
traditional macroeconomic variables (Federal fund rates, inflation and S&P returns) and financial
shocks (TED spread, default probability and VIX). Our finding shows that VaR forecasting
performance are significantly improved as the macroeconomic variables and financial shocks are
added on the NS factor model. Thus, the empirical evidence suggests that, besides the NS term
structure factors, macroeconomic variables and financial shocks could be acting as driving factors
on VaRs of bond portfolios. Further, the impact of incorporating financial shocks is found to be
greater than that of incorporating macroeconomic variables. These results might have important
implications for risk management and policy decision oriented toward a framework of financial
stability.
Appendix: nonnested encompassing tests for out-of-sample forecasting ability

Harvey and Newbold (2000) developed a multiple forecast encompassing method to
generalize the forecast encompassing approach to situations when comparisons of a forecast with
more than one competitor are required. The model assumes one-step-ahead prediction so that
forecasts are based on information available at time t-1. It further assumes that the individual
forecast errors have zero mean and are not autocorrelated. Consider testing the null hypothesis that
one forecast, NS, encompasses its competitors Macro and Fin. The joint testing procedure begins
with a composite predictor

(1 —w; —wy)NS + w;Macro + wyFin 0<w; <1 (Al)
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Which can alternatively be rewritten as

e1:=w;(e1r — e3¢)+wy (e — e3¢)+; 0<w; <1 (A2)
where e;s =y, — NS, ey =y, —Macro, e3 =y, —Fin and v, is the error of the
combined forecast. The null hypothesis that “NS encompasses Macro and Fin” is

Hy:w; =w; =0 (A3)
When the null hypothesis is true, Granger and Newbold (1986) also defined “NS to be conditionally
efficient with respect to Macro and Fin”. The hypotheses that Macro or Fin encompasses its
competitors are defined similarly.

The regression (A2) can be expressed in general form as

Ve = X{B + & (A4)
where y; = ey, B =[wq, w,]" and X, = [(e1; — e2:), (e1r — e3)]’.

Harvey and Newbold (2000) suggested a modified Diebold-Mariano-type test to the null
hypothesis (A3), in terms of the regression (A4), is Hy: f§ =0 or

Ho: [E(X: XD E(Xry) = 0 (AS5)
Clearly, equation (A5) is true if and only if

Ho:E(Ap) = 0; A= [dyedae]’ die = erc(e1r — €i41e)  1=1,2 (A6)
The problem is now reduced to testing for the zero-mean of a vector of random variables, so the
multivariate analogue of the Diebold-Marino statistic takes the form of Hotelling’s (1931)

generalized T2-statistic
MS* ==(n—1)"Y(n—2)d'?"d (A7)

where d = [&1&2]', d; =n"1Yd;,n is sample size, and V is the sample covariance matrix,
which has (i,j)th element

Vij=n"'[n+1-2h+n"th(h - D]

X [Btei(die — di)(dje = df) + Xty Bteman(die — di) (djeom — dj) +

St Eiemsa(die-m — di) (dje — d;)] (A8)
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In the limit, Hotelling’s T2-statistic has, as a result of the multivariate central limit theorem, a
%X,Z(_l distribution. Although the finite sample distributional result is not exact, we maintain the

use of F,,_, as critical values for statistic (A7) in our application.
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Fig. 1. Time series plot of Treasury zero, AA- and BBB-rated yield curves
The sample consists of daily Treasury zero, AA- and BBB-rated yield data across various maturities from Jan. 2011 to Dec. 2014.
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Figure 2. Time series plot of estimated NS three factors, macro and financial factors
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This figure depicts the time variation of estimated NS three factors (L, S, €) together with macro factor
(M) and financial factor (F) derived from Treasury zero, AA- and BBB-rated yield curve, respectively.
Note that the estimation of NS three factors are driven by M and F as designed in a factor-augmented
model (equation (6) and (7)).
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Figure 3. Skewness, Kurtosis and Cornish-Fisher quantile values
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By using a rolling horizons of 500 daily observations, one can depict the time variation of skewness,
excess kurtosis, and 1st and 5th percent of quantile value derived from a fourth-order Cornish-Fisher
approximation in Eq. (17). The excess kurtosis of the high yield bond portfolio entails a domain with
relatively extreme values, so that we scale it on the right-hand side.
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Figure 4. Time series plot of 95%VaR estimates
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By using a rolling horizons of 500 daily observations, we depict the daily returns and the time variation
of 95% VaR estimates of Treasury 10Y-20Y Bond Index, Broad Investment Grade Bond Index and High
Yield Market Index over the sample period, delivered by the Dynamic NS three-factor (NS), Macro factor
(M), Financial stress factor (F), NS with Macro factor (NS+M), NS with Financial stress factor (NS+F),
NS with Macro and Financial stress factors (NS+M+F). As shown in the figure, a violation occurs if the
negative return (loss) drops below the solid line.
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Figure 5. Time series plot of 99%VaR estimates
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By using a rolling horizons of 500 daily observations, we depict the daily returns and the time variation
of 99% VaR estimates of Treasury 10Y-20Y Bond Index, Broad Investment Grade Bond Index and High
Yield Market Index over the sample period, delivered by the Dynamic NS three-factor (NS), Macro factor
(M), Financial stress factor (F), NS with Macro factor (NS+M), NS with Financial stress factor (NS+F),
NS with Macro and Financial stress factors (NS+M+F). As shown in the figure, a violation occurs if the
negative return (loss) drops below the solid line.
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Table 1 Descriptive statistics of yield data across maturities (months)

Treasury zero yield data
Maturity  Mean SD Max Min  Skewness Kurtosis  p(1) p6) pQ2)
3 1168 1.799 5676 0.020 1.446 3.491 0.997 0.986 0.973
6 1241 1802 5646 0.028 1.432 3.461 0.998 0.987 0.973
12 1.327 1.690 5483 0.125 1.383 3.383 0.998 0.986 0.972
24 1596 1543 5428 0.271 1.209 3.083 0.997 0.985 0.971
36 1932 1482 5544  0.410 0.968 2.653 0.997 0.986 0.972
48 2276 1403 5577 0.605 0.756 2.379 0.997 0.985 0.972
60 2508 1317 5.633 0.838 0.551 2.190 0.997 0.985 0.970
72 2.884 1252 5671 1.102 0.389 2.049 0.997 0.984 0.970
84 3.178 1194 5711  1.348 0.204 1.919 0.997 0.983 0.968
96 3.403 1127 5748 1614 0.149 1.861 0.997 0.981 0.965
108 3.508 1.043 5782 1.855 0.094 1.890 0.996 0.979 0.960
240 3.790 0959 5810 2.146 0.062 1.946 0996 0.976 0.954
360 4482 0.790 5.936 2.863 -0.323 1.934 0.994 0.968 0.942
AA-rated yield data
Maturity  Mean SD Max Min  Skewness Kurtosis  p(1) p6) pQ2)
12 2074 2163 6.452  0.047 0.904 2.151 0.998 0.990 0.979
24 2257 2.044 6337 0.111 0.789 1.948 0.998 0.991 0.981
36 2558 2.083 6.543 0.242 0.734 1.844 0.999 0.992 0.982
48 2970 1988 6.881 0.495 0.578 1.703 0.999 0.992 0.984
60 3329 1994 7597 0.735 0.520 1.726 0.999 0.992 0.984
72 3.748 1900 7.985 1.053 0.387 1.745 0.998 0.992 0.984
84 4173 1829 8454 1375 0.262 1.783 0.998 0.991 0.983
96 4451 1776 8.654  1.699 0.223 1.820 0.998 0.992 0.983
108 4719 1698 8.727 2013 0.178 1.808 0.998 0.991 0.983
120 5059 1.845 9472 2287 0.319 1.790 0.999 0.992 0.983
180 5367 1700 9.862  2.787 0.375 1.969 0.998 0.991 0.981
240 5472 1529 9.568  3.088 0.372 2.057 0.998 0.990 0.978
360 5998 1390 9.349 3.579 0.154 1.926 0.998 0.989 0.977
BBB-rated yield data
Maturity  Mean SD Max Min  Skewness Kurtosis  p(1) p6) pQ2)
12 3.113 2.094 6.889 0.682 0.569 1.577 0.999 0.991 0.982
24 3253 1976 6.989  0.986 0.555 1.540 0.999 0.992 0.984
36 3.620 1960 7.548 1.230 0.536 1.568 0.999 0.993 0.985
48 4048 1916 8412 1570 0.461 1.617 0.999 0.994 0.987
60 4445 1918 9.042 1871 0.402 1.648 0.999 0.994 0.987
72 4848 1851 9.241 2176 0.333 1.731 0.999 0.994 0.987
84 5250 1799 9.385 2501 0.300 1.830 0.999 0.993 0.986
96 5537 1769 9.971 2825 0.324 1.935 0.999 0.993 0.986
108 5797 1748 10.231 3.086 0.323 2.012 0.999 0.993 0.986
120 6.145 1862 10.719 3.366 0.329 1.804 0.999 0.993 0.986
180 6.486 1.752 11.270  3.907 0.399 1.963 0.999 0.992 0.984
240 6.504 1.633 10.660 4.016 0.340 1.945 0.998 0.991 0.982
360 7.009 1509 10.706 4.557 0.395 2.213 0.998 0.991 0.982
This table presents the basic statistics of yield data on Treasury zero and bonds with AA- and BBB-rated
across different maturities (months). The sample period ranges from Jan. 2011 to Dec. 2014 with 924
daily observations. p(-) denotes the sample autocorrelation at lag 1, 6, and 12 days.
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Table 2: Characteristics of three bond indices used in the sample

Name of the Citi US Treasury 10Y- Citi US Broad Investment  Citi US High Yield

bond index 20Y Bond Index Grade Bond Index Market Index

Basic The US Broad Investment-  The US High-Yield

description Grade Bond Index Market Index is a US
(USBIG) tracks the Dollar-denominated index
performance of US Dollar-  which measures the
denominated bonds issued  performance of high—-
in the US investment- yield debt issued by
grade bond market. corporations domiciled in

the US or Canada.

Coupon fixed-rate fixed-rate fixed rate

Currency usD usD usD

Minimum between 10 and 20 years at least one year at least one year

maturity

Credit quality

Composition

Weighting

Minimum quality: BBB-
by S&P or Baa3 by
Moody's

US Treasuries (excluding
Federal Reserve
purchases, inflation-
indexed securities and
STRIPS); US agencies
(excluding callable zeros
and bonds callable less
than one year from issue
date); supranationals;
mortgage pass-throughs;
asset-backed; credit
(excluding bonds callable
less than one year from
issue date); Yankees,
globals, and corporate
securities issued under
Rule 144A with
registration rights

Market capitalization

Maximum Quality: BB+
by S&P and Bal by
Moody's; Minimum
Quality: C by S&P and Ca
by Moody's (excludes
defaulted bonds)

Cash-pay, Zero-to-Full
(ZTF), Pay-in-Kind
(PIK), step-coupon bonds,
and Rule 144A bonds
issued by corporations
domiciled in the United
States or Canada only

Market capitalization
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Table 3 Descriptive statistics of NS three factors, macroeconomic and financial
variables

Treasury zero yield curve

. Skewn  Kurtos ADF
Mean SD Max Min ess i (1) p6) pQ2) p-
values
L, 2493 0673 4822 0485 -0.083 3.093 0486 0432 0456  0.000
S, 2183 0651 -0.719 -4329 -0417 2866 0518 0481 0499  0.000
C, -6.262 1.419 -1550 -9545 1.087 3712 0.890  0.838  0.792  0.090
M, -0.040 0403  1.339 -1109 0554 3.877 -0.052 -0.036  0.020  0.000
F, 1.913 0324 2621 0552 0065 2625 0839 0796 0740  0.095
AA-rated yield curve
ADF
Mean  SD  Max  Min SR KUIOS 50y 56 pan pe
values
L, 3222 0746 4919 0524 -0.189 2787  0.459  0.396  0.439  0.000
S, -1.346 0.886 0373 3732 -0.105 1.862 0.672  0.648  0.659  0.000
C, 7540 2173  -1.788 -11.265 0.368 2.030 0936  0.887  0.844  0.090
M, -0.044 0455 1474 -1293 0557 4183  -0.051 -0.053 0.036  0.000
F, 2091 0329 2746 0590 -0529 2688 0803 0763 0709  0.095
BBB-rated yield curve
ADF
Mean SD  Max  Min S';i‘;”” WS pa) a6 D) p-
values
L, 3839  0.860 6.022 0585  -0.157 3.047  0.429  0.363  0.411  0.000
S, -1.723  1.217 0825 -4928 -0242 2100 0760 0734  0.750  0.000
C, 5715 2696  1.032 -10749 0370 1974 0940 0912 0.885  0.090
M, -0.053 0536 1.753 -1.649 0542 4095 -0.050 -0.058 0.038  0.000
F, 2491 0361 3193 0661 -0583 3353 0779 0738 0681  0.091
Macroeconomic variables
ADF
Mean SD  Max  Min S';i‘;”” WS pa) a6 D) p-
values
FFR 1.084 1.762 5.410 0.040 1588 3.863 0.997 0985 0.972 0.008
INFL 1.769 0.644 2720 -2.240 -2.459 11329 0.994 0954 0918 0.294
SP 0.002 0.635 4450 -4.113 -0.437 9.940 -0.122 0.076 0.020 0.000
Financial variables
ADF
Mean SD  Max  Min Sk;‘;"” K”irstos pA)  p6)  pU2)  p-
values
LIBORS 0.337 0439 3400 -0.018 2828 14.331 0.990 0.934 0.857 0.027
Thills -0.045 0291 0.630 -2.017 -2.691 11516 0943 0.846 0.798 0.000
DP 1280 0586 3500 0.720 2185 7.226 0999 0.987 0.965 0.506
VIX 0.230 0.106 0.809 0.099 2064 8349 0978 0.921 0.867 0.080

This table presents the basic statistics of estimated NS three factors (level (L), slope (S,) and curvature
(C,) and two additional factors (macro (M) and financial (F)). The sample period ranges from Jan. 2011
to Dec. 2014 with 924 daily observations. 5(-) denotes the sample autocorrelation at lag 1, 6, and 12
days. The last column reports the p-value of augmented Dickey-Fuller (ADF) unit root test. The VIX
index of CBOE has been multiplied by 0.01. Federal fund rate (FFR), annual inflation rate (INFL), S&P
500 return (SP), LIBOR spread (LIBORS), T-bill spread (ThillS), default probability (DP) are all
presented as percentage.
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Table 4: The explanatory power of the NS three factors, macro factor and financial stress factor regressed on three selected bond indices

Panel A: nested model

Treasury zero-coupon yield curve

Broad Investment Grade Bond

High Yield Market Index

AA-rated yield curve

Broad Investment Grade Bond

BBB-rated yield curve

High Yield Market Index

Treasury 10Y-20Y Index Index Index

0.009 0.129* -1.032* -0.728* 1.951* 1.988* 2.610* 2.854* 6.896* 6.935* 9.639* 10.204*  0.991* 0.987* 1.601* 1.655* 6.781* 6.623* 11.442* 10.783*

Intercept (0.24)  (4.22) (-22.67) (19.06) (29.25) (29.62) (25.10) (26.41) (37.34) (37.09) (35.12) (35.58) (12.31) (12.23) (14.09) (13.98) (33.26) (35.86) (47.75) (43.87)
- 0.471* 0.307* 0.541* 0.407* 0.203* 0.152* 0.159* 0.052* -0.078* -0.130* -0.262* -0.511* 0.332* 0.341* 0.303* 0.284* 0.092* 0.335*  -0.110* 0.035

Ly (57.21) (33.55) (84.91) (53.50) (1458) (7.73)  (10.94) (2.41)  (-2.03) (-2.34)  (6.84)  (-8.93) (24.95) (20.20) (22.37) (15.77) (2.95) (10.12) (-4.38)  (1.15)

~ -0.641* -0.809* -0.619* -0.746* -0.249* -0.301* -0.263* -0.364* 0.230* 0.176*  0.174* -0.061  -0.230* -0.022* -0.244* -0.263* 0.299* 0.563* 0.184* 0.329*

St (-73.06) (-84.33) (-97.91) (-101.2) (-16.78) (-14.41) (-18.18) (-17.47)  (559)  (3.02)  (457) (-1.10) (-20.85) (-14.03) (-22.42) (-16.17) (12.36) (19.61) (9.71)  (12.76)

~ 0.008*  0.005* 0.061*  0.048* 0.000 0.001 -0.034* -0.044* -0.138* -0.139* -0.278* -0.302* -0.096* -0.094* -0.125* -0.131* -0.071* -0.006 -0.218* -0.168*

Ce (1.99)  (1.78) (17.84) (1751) (-0.06) (-0.17) (-4.34) (-5.67) (-7.24)  (-7.28) (-13.42) (-1454) (-18.44) (-16.95) (-19.49) (-18.03) (-5.61) (-0.51) (-19.44) (-13.37)
0.442* 0.322* 0.137* 0.259* 0.142 0.599* -0.030 0.056 -1.077* -0.534*

M, (24.70) (23.34) (3.52) (6.62) (1.30) (5.77) (-0.83) (1.55) (-14.19) (-7.99)
0668* 0.529* -0.423*  -0.534* -1.759*  -2.017* -0.417*  -0.446* -2.704*  -2.367*

Ft (29.15) (27.82) (-8.07)  (-9.92) (-12.73) (-14.11) (-741)  (-7.52) (-25.53) (-21.39)
R-square 0906  0.944 0952 0970 0358 0367 0402 0430 0077 0079 0218  0.247 0486 0486 0516 0517 0382 0495  0.642 0.666

Panel B: nonnested model

Treasury 10Y-20Y Index

Broad Investment Grade

High Yield Market Index

Bond Index
Intercept 0.009 2.743* 2.278* 0.991* 3.097* 3.641* 6.781* 7.032* 8.072*
(0.24)  (152) (1587) (12.31) (266) (39.76) (33.26)  (262)  (37.94)
[’,\t 0.471* 0.332* 0.092*
(57.21) (24.95) (2.95)
§t -0.641* -0.230* 0.299*
(-73.06) (-20.85) (12.36)
C\t 0.008* -0.096* -0.071*
(1.99) (-18.44) (-5.61)
Mt 0.000 0.005 0.053
(0.00) (0.21) (0.85)
F; 0.255* -0.299* -0.573*
(3.26) (-5.98) (-4.94)
R-square 0.906 0.008 0.011 0.486 0.011 0.038 0.382 0.010 0.026

This table reports the nested and nonnested regression results of NS three factors (L, S, f), macro factor (M), and financial stress factor (F) on yields of three selected bond indices used
in the study. The numbers in parentheses are t statistics. * indicates that the coefficient is significantly different from zero at the 5% level.
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Table 5: Encompassing tests of out-of-sample forecasts
Panel A: nested model

Restricted Model NS NS NS+M;
NO”,;;I%SJQICted NS+M NS+ Fy NS+M+F,
57.962* 80.728* 72.745%
Treasury 10Y-20Y Index (0.00) (0.00) (0.00)
Broad Investment Grade 1.708 65.255* 98.478*
Bond Index (0.19) (0.00) (0.00)
. . 2.414 162.095* 199.274*
High Yield Market Index (0.12) (0.00) (0.00)

Panel B: nonnested model

NS M Ft
10.173* 2.035 12.834*
Treasury 10Y-20Y Index
(0.000) (0.153) (0.000)
Broad Investment Grade 10.693* 2.455 7.736%
Bond Index (0.001) (0.117) (0.005)
o 10.670* 2.616 3.890*
High Yield Market Index
(0.001) (0.105) (0.048)

This table presents the results of encompassing test of out-of-sample forecasts among factor models. For
the nested model, panel A reports the F statistics and the corresponding p-values in parentheses for the joint
significance by comparing restricted model with non-restricted model. The null hypotheses are Hy: Ay =
0 and Hy: Az = 0 in equation (8). For the nonnested model, we use a multiple forecast encompassing
method developed by Harvey and Newbold (2000). In panel B, we report the test statistics (corrected for
forecast error bias) and the associated p-values in parentheses. * indicates the significance at the 10% level.
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Table 6 A. The 95%VaR estimates based on the NS factor-augmented model

Mean S(ta?/?g;:)i 75% quantile 25% quantile gﬁgi&gf
Treasury 10Y-20Y Index

NS 26.705 14.610 38.281 10.867 6.793
(1.19%) (0.65%) (1.71%) (0.48%) (0.30%)

M 24.689 3.144 26.935 22.248 7.157
t (1.10%) (0.14%) (1.20%) (0.99%) (0.32%)

F 25.342 4.857 27.668 22.359 8.424
t (1.13%) (0.22%) (1.23%) (1.00%) (0.37%)

NS + M, 26.432 13.247 36.806 11.777 6.859
(1.18%) (0.59%) (1.65%) (0.53%) (0.31%)

NS + F, 26.367 12.602 36.603 13.991 6.345
(1.18%) (0.56%) (1.64%) (0.63%) (0.28%)

NS + M, + F, 26.161 11.904 35.323 14,570 5.425
(1.17%) (0.53%) (1.58%) (0.65%) (0.24%)

Broad Investment Grade Bond Index

NS (Treasury zero) 12.776 4994 16.677 7471 2.636
(0.69%) (0.27%) (0.90%) (0.41%) (0.14%)

NS (AA-rated) 12.366 4.312 15.451 9.130 2.573
(0.67%) (0.23%) (0.84%) (0.49%) (0.14%)

M 14.763 2.903 18.023 11.928 1.959
t (0.80%) (0.16%) (0.98%) (0.65%) (0.10%)

. 14.082 3.605 16.735 10.914 1.935
t (0.76%) (0.19%) (0.91%) (0.59%) (0.10%)

NS + M, 15.241 5.906 19.607 9.289 2.069
(0.83%) (0.32%) (1.06%) (0.50%) (0.11%)

NS + F, 11.784 6.895 15.433 5.676 1.770
(0.64%) (0.37%) (0.84%) (0.31%) (0.09%)

NS + M, + F, 12.269 7.190 16.618 5.950 1.566
(0.67%) (0.39%) (0.91%) (0.32%) (0.08%)

High Yield Market Index

NS (Treasury zero) 5.482 1.413 6.833 4.242 1.564
(0.70%) (0.18%) (0.88%) (0.54%) (0.08%)

NS (BBB-rated) 4.836 0.739 5.420 4,154 1.368
(0.62%) (0.09%) (0.69%) (0.53%) (0.15%)

M 3.949 1.044 5.029 3.390 1.926
t (0.51%) (0.13%) (0.64%) (0.43%) (0.23%)

F 3.638 0.749 4.234 3.390 2.056
t (0.47%) (0.09%) (0.54%) (0.43%) (0.30%)

NS + M, 5.201 0.862 5.995 4.497 2.039
(0.67%) (0.11%) (0.77%) (0.58%) (0.17%)

NS+ F; 4.367 1.131 5.041 3.617 1.978
(0.56%) (0.14%) (0.65%) (0.46%) (0.17%)

NS + M, + F, 4.410 1.050 5.182 3.652 1.408
(0.57%) (0.13%) (0.67%) (0.46%) (0.10%)

This table summarizes the mean, standard deviation, 25% and 75% quantiles and expected shortfall of the
VaR estimates across sample period. The value in parenthesis is the ratio of VaR estimate to the initial value
of bond portfolio. The initial values of Treasury 10Y-20Y Index, Broad Investment Grade Bond Index and
High Yield Market Index are 2232, 1845 and 778, respectively. Using data between t-500 and t-1, the 95%

VaR at time t is estimated. In total, we produce 424 VaR estimates from Apr. 2013 to Dec. 2014.
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Table 6 B. The 99%VaR estimates based on the NS factor-augmented model

Mean S(ta?/?g;:)i 75% quantile 25% quantile gﬁgi&gf
Treasury 10Y-20Y Index

NS 30.812 16.650 44.221 12.753 6.151
(1.38%) (0.74%) (1.98%) (0.57%) (0.28%)

M 28.644 3.718 32.018 26.135 8.291
t (1.28%) (0.17%) (1.43%) (1.17%) (0.37%)

F 29.411 5.762 31.827 25.700 5.465
t (1.32%) (0.26%) (1.43%) (1.15%) (0.25%)

NS + M, 30.573 15.050 42.208 13.833 6.252
(1.37%) (0.67%) (1.89%) (0.62%) (0.28%)

NS + F, 30.512 14.295 42.621 16.512 8.702
(1.37%) (0.64%) (1.91%) (0.74%) (0.39%)

NS + M, + F, 30.294 13.512 41.425 17.272 8.419
(1.36%) (0.61%) (1.86%) (0.77%) (0.38%)

Broad Investment Grade Bond Index

NS (Treasury zero) 16.123 5.856 20.338 11.626 2.248
(0.87%) (0.31%) (1.10%) (0.63%) (0.12%)

NS (AA-rated) 16.669 6.765 21.758 9.454 1.733
(0.90%) (0.36%) (1.17%) (0.51%) (0.09%)

M 19.210 4.182 23.897 15.165 2.086
t (1.04%) (0.22%) (1.29%) (0.82%) (0.11%)

F 18.273 4,734 21.944 14.081 0.562
t (0.99%) (0.25%) (1.19%) (0.76%) (0.03%)

NS + M, 19.885 8.006 25.414 11.780 1.496
(1.08%) (0.43%) (1.37%) (0.64%) (0.08%)

NS + F, 15.399 9.283 20.320 7.300 2.436
(0.83%) (0.50%) (1.10%) (0.39%) (0.13%)

NS + M, + F, 16.031 9.684 21.915 7.579 2.907
(0.87%) (0.52%) (1.18%) (0.41%) (0.16%)

High Yield Market Index

NS (Treasury zero) 10.597 2.457 12.684 8.066 0.657
(1.36%) (0.31%) (1.63%) (1.03%) (0.08%)

NS (BBB-rated) 9.364 1.213 10.275 8.486 1.198
(1.20%) (0.15%) (1.32%) (1.09%) (0.15%)

M 7.639 1.844 9.289 6.685 1.788
t (0.98%) (0.23%) (1.19%) (0.86%) (0.23%)

. 7.067 1.424 8.189 6.555 2.338
t (0.91%) (0.18%) (1.05%) (0.84%) (0.30%)

NS + M, 10.089 1.529 11.231 8.852 1.344
(1.29%) (0.20%) (1.44%) (1.14%) (0.17%)

NS + F, 8.486 2.147 9.780 6.895 1.368
(1.09%) (0.27%) (1.25%) (0.88%) (0.17%)

NS + M, + F, 8.589 2.110 10.217 6.953 0.758
(1.10%) (0.27%) (1.31%) (0.89%) (0.10%)

This table summarizes the mean, standard deviation, 25% and 75% quantiles and expected shortfall of the
VaR estimates across sample period. The value in parenthesis is the ratio of VaR estimate to the initial value
of bond portfolio. The initial values of Treasury 10Y-20Y Index, Broad Investment Grade Bond Index and
High Yield Market Index are 2232, 1845 and 778, respectively. Using data between t-500 and t-1, the 99%

VaR at time t is estimated. In total, we produce 424 VaR estimates from Apr. 2013 to Dec. 2014,
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Table 7 A. Backtest results for 95%VaR

Unconditional | Conditional S Average
Coverage ndependence Coverage V|ola'glon size of
g (LRing) g Ratio SIZ€ (
(LRy) ind (LR<) violation
Panel A: Treasury 10Y-20Y Index
NS 0.204 4.792* 4.996 0.055 6.793
(0.65) (0.03) (0.08)
M 9.714* 0.000 9.714* 0.020 7.157
t (0.00) (1.00) (0.00)
F 11.742* 0.000 11.742* 0.017 8.424
t (0.00) (1.00) (0.00)
NS + M, 0.218 3.089 3.307 0.050 6.859
(0.64) (0.08) (0.19)
NS + F, 0.498 3.364 3.862 0.042 6.345
(0.48) (0.07) (0.14)
NS+ M, + F, 0.053 2.838 2.891 0.047 5.425
(0.81) (0.09) (0.23)
Panel B: Broad Investment Grade Bond Index
NS (Treasury zero) 3.907* 3.262 7.170* 0.030 2.436
(0.05) (0.07) (0.03)
NS (AA-rated) 1.435 2.501 3.936 0.037 1.925
(0.23) (0.12) (0.14)
M 23.367* 0.000 23.367* 0.008 1.763
t (0.00) (1.00) (0.00)
. 23.367* 0.000 23.367* 0.008 2.439
t (0.00) (1.00) (0.00)
NS + M, 14.062* 0.000 14.062* 0.015 1.979
(0.00) (1.00) (0.00)
NS + F, 0.794 3.563 4.356 0.059 1.837
(0.37) (0.06) (0.11)
NS+ M, + F; 0.453 1.246 1.699 0.057 1.715
(0.50) (0.26) (0.43)
Panel C: High Yield Market Index
NS (Treasury zero) 6.398* 5.495* 11.893* 0.025 1.564
(0.02) (0.02) (0.00)
NS (BBB-rated) 2.928 9.432* 12.360* 0.032 1.368
(0.08) (0.00) (0.00)
M 0.000 17.791* 17.791* 0.050 1.926
t (1.00) (0.00) (0.00)
F 0.052 17.258* 17.310* 0.052 2.056
t (0.82) (0.00) (0.00)
NS + M, 7.942* 5.927* 13.870* 0.022 2.039
(0.01) (0.02) (0.00)
NS + F, 6.398* 1.393 7.790* 0.025 1.978
(0.01) (0.23) (0.02)
NS+ M, + F; 2.107 0.877 2.984 0.040 1.408
(0.87) (0.35) (0.22)

This table presents the results of the 95%VaR evaluation using the unconditional, independence and
conditional coverage tests, violation ratio and average sizes of violation. Violation ratio is defined as “the
violation number divided by the number of VaR estimates”. The conditional coverage test (LRcc) is a joint
test of the unconditional coverage (LRyc) and serial independence (LRing), that is LRcc= LRy + LRing,
which is asymptotical distributed as y2(2). The numbers in parentheses are p-values. * indicates that the

coefficient is significantly different from zero at the 5% level.
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Table 7 B. Backtest results for 99%\VaR

Unconditional | Conditional S Average
Coverage ndependence Coverage V|ola'glon size of
g (LRing) g Ratio SIZ€ (
(LRy) ind (LR<) violation
Panel A: Treasury 10Y-20Y Index
NS 23.627* 4.670* 28.297* 0.042 6.151
(0.00) (0.03) (0.00)
M 0.276 0.000 0.276 0.007 8.291
t (0.60) (1.00) (0.87)
F 0.234 0.000 0.234 0.013 5.465
t (0.63) (1.00) (0.89)
NS + M, 10.529* 0.403 10.933* 0.029 6.252
(0.00) (0.52) (0.00)
NS + F, 3.131 0.924 4.055 0.020 8.702
(0.08) (0.33) (0.13)
NS+ M, + F, 3.131 0.000 3.131 0.020 8.419
(0.08) (1.00) (0.21)
Panel B: Broad Investment Grade Bond Index
NS (Treasury zero) 0.234 0.000 0.234 0.012 2.248
(0.63) (1.00) (0.89)
NS (AA-rated) 0.000 0.000 0.000 0.010 1.733
(1.00) (1.00) (1.00)
M 3.250 0.000 3.250 0.003 2.087
t (0.07) (1.00) (0.20)
. 3.250 0.000 3.250 0.003 0.562
t (0.07) (1.00) (0.20)
NS + M, 1.237 0.000 1.237 0.005 1.496
(0.27) (1.00) (0.54)
NS + F, 1.857 0.000 1.857 0.017 2.436
(0.17) (1.00) (0.40)
NS+ M, + F; 0.234 0.000 0.234 0.012 2.907
(0.63) (1.00) (0.89)
Panel C: High Yield Market Index
NS (Treasury zero) 3.250 0.000 3.250 0.003 0.657
(0.07) (1.00) (0.19)
NS (BBB-rated) 0.276 0.000 0.276 0.008 1.198
(0.60) (1.00) (0.87)
M 3.131 0.000 3.131 0.020 1.788
t (0.08) (1.00) (0.21)
F 1.857 0.000 1.857 0.017 2.338
t (0.17) (1.00) (0.40)
NS + M, 1.237 0.000 1.237 0.005 1.344
(0.26) (1.00) (0.54)
NS + F, 0.234 0.000 0.234 0.012 1.368
(0.63) (1.00) (0.89)
NS+ M, + F; 0.234 0.000 0.234 0.012 0.758
(0.63) (1.00) (0.89)

This table presents the results of the 99%VaR evaluation using the unconditional, independence and
conditional coverage tests, violation ratio and average sizes of violation. Violation ratio is defined as “the
violation number divided by the number of VaR estimates”. The conditional coverage test (LRcc) is a joint
test of the unconditional coverage (LRyc) and serial independence (LRing), that is LRcc= LRy + LRing,
which is asymptotical distributed as y2(2). The numbers in parentheses are p-values. * indicates that the

coefficient is significantly different from zero at the 5% level.
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Table 8. Conditional predictive ability test

NS NS NS
NS NS NS NS NS NS
95%VaR NS +M NS +M NS +M
M, F, +M, +F, +Ftt M, F, +M, +F, +Ftt M, F +M, +F; +Ftt
NS 0 246.21 23046 159.92 116.85 165.72 0 196.40 19049 9529 17546  153.30 0 330.21 11173 165.09 300.24 131.96
(0.00)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
M, 0 99.44  226.35 205.86 20241 0 18390 22324 147.16  142.33 0 362.54 35599 7151  124.08
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
F, 0 22146  206.82 204.31 0 218.74 17350  211.06 0 102.44 36153 27591
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NS+M, 0 116.25  124.75 0 206.86  184.50 0 355.01 307.18
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NS+F, 0 107.48 0 141.25 0 107.85
(0.00) (0.00) (0.00)
NS+M,+F, 0 0 0
NS NS NS
NS NS NS NS NS NS
%VaR + + +
99%Va NS M, F, +M, +F, +¥[tt NS M, F, +M, +F, +ll:/[: NS M, F, +M, +F, +ll:/[:
NS 0 25840 236.94 166.61 118.02 164.91 0 206.74 12434 36645 179.18 187.09 0 27430 310.38 249.12 184.07 233.27
(0.00)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
M, 0 101.69 23821 216.38  212.58 0 224.05 176.98 220.27 215.49 0 10592  382.63 139.78 194.70
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
F, 0 229.86 213.23  210.53 0 208.95 186.41 185.49 0 38125 13850 170.65
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NS+M, 0 120.74  128.40 0 147.98  157.02 0 201.64 188.40
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
NS+F, 0 115.03 0 127.83 0 110.34
(0.00) (0.00) (0.00)
NS+M+F, 0 0 0

This table reports the Wald-type test statistics for pairwise comparisons among factor models, using the conditional predictive ability (CPA) test of Giacomini and White (2006). The null
hypothesis is that the models in the “line” have the equal conditional predictive ability as the models in the “column”. If the value of the Wald-type test statistic is greater than 7 ,_,, which
isthe 1 — a quantile of a Chi-square distribution with q degree of freedom, then the null hypothesis is rejected. The test function h, is chosen as h, = (1, AL, )". The 5% significance
level of a X§,1—a distribution with q = 2 degree of freedom is 5.99 and the numbers in parentheses are p values.
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