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Abstract

We study a college admissions problem in which colleges accept students by ranking stu-
dents’ efforts in entrance exams. Students’ ability levels affect the cost of their efforts. We
solve and compare the equilibria of “centralized college admissions” (CCA) where students ap-
ply to all colleges and “decentralized college admissions” (DCA) where students only apply to
one college. We show that lower ability students prefer DCA whereas higher ability students
prefer CCA. Many predictions of the theory are supported by a lab experiment designed to
test the theory, yet we find a number of differences that render DCA less attractive than CCA
compared to the equilibrium benchmark.
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1 Introduction

Throughout the world and every year, millions of prospective university students apply for admis-
sion to colleges or universities during their last year of high school. Admission mechanisms vary
from country to country, yet in most countries there are government agencies or independent orga-
nizations that offer standardized admission exams to aid the college admission process. Students
invest a lot of time and effort in doing well in these admission exams, and they are heterogeneous
in terms of their ability to do so.

In some countries, the application and admission process is centralized. For instance, in Turkey
university assignment is solely determined by a national examination called YGS/LYS. After learn-
ing their scores, students can then apply to a number of colleges. Applications are almost costless
as all students need only to submit their rank-order of colleges to the central authority.1 On the
other hand, Japan has a centralized “National Center test,” too, but all public universities, includ-
ing the most prestigious universities, require the candidate to take another, institution-specific
secondary exam which takes place on the same day. This effectively prevents the students from
applying to more than one public university.2 The admissions mechanism in Japan is decentralized,
in the sense that colleges decide on their admissions independent of each other. Institution-specific
exams that prevent students from applying to all colleges have also been used and debated in
the United Kingdom, notably between the University of Cambridge and the University of Oxford.
Currently, the students cannot apply to both the University of Cambridge and the University of
Oxford.3 Moreover, till 1994 the college admission exams in South Korea were only offered on
two dates each year, and students were allowed to apply for only one college per exam date (see
Avery, Lee, and Roth, 2014, for more details). In the Soviet Union, everyone had to submit the
original of the school certificate together with the application to a college, and colleges had an
institution-specific exam. Thus, college admissions were fully decentralized. Although most of
the former Soviet republics and Russia have lately introduced centralized exams and a centralized
college admissions process, some colleges, typically the best ones, still run their own entry exams
and thus opt out of the centralized system.

In the United States, students take both centralized exams like the Scholastic Aptitude Test
(SAT), and also complete college-specific requirements such as college admission essays. Students

1Greece, China, South Korea, and Taiwan have similar national exams that are the main criterion for the
centralized mechanism of college admissions. In Hungary, the centralized admission mechanism is based on a score
that combines grades from school with an entrance exam (Biro, 2012).

2There are actually two stages where the structure of each stage corresponds to our description and modeling
of the decentralized mechanism in section 4. The difference between the stages is that the capacities in the first
stage are much greater than those in the second stage. Those who do not get admitted to any college spend one
year preparing for the next year’s exam. Moreover, the Japanese high school admissions authorities have adopted
similar mechanisms in local districts. Although the mechanism adopted varies across prefectures and is changing
year by year, its basic structure is that each student chooses one among a specified set of public schools and then
takes an entrance exam at his or her chosen school. The exams are held on the same day.

3We thank Aytek Erdil and Ken Binmore for discussions on college admission systems in the UK.
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can apply to more than one college, but since the application process is costly, students typically
send only a few applications (the majority being between two to six applications, see Chade, Lewis,
and Smith, 2014). Hence, the United States college admissions mechanism falls inbetween the two
extreme cases.

In this paper, we compare the institutional effects of different college admission mechanisms
on the equilibrium efforts of students, student welfare, and sorting. To do this, we model college
admissions with admission exams as contests (or all-pay auctions) in which the cost of effort
represents the payment made by the students. We focus on two extreme cases: in the centralized
model (as in the Turkish mechanism) students can freely apply to all colleges, whereas in the
decentralized model (as in the Japanese mechanism for public colleges) students can only apply to
one college. For simplicity, in our main model we consider two colleges that differ in quality and
assume that students have homogeneous preferences for attending these colleges.4

More specifically, each of the n students gets a utility of v1 by attending college 1 (which can
accommodate q1 students) and gets a utility of v2 by attending college 2 (which can accommodate
q2 students). College 2 is the better and college 1 is the worse of the two colleges. The students’
utility from not being assigned to any college is normalized to 0. Hence, 0 < v1 < v2. Following
most of the literature on contests with incomplete information, we assume that an ability level in
the interval [0, 1], is drawn i.i.d. from the common distribution function, and the cost of exerting
an effort e for a student with ability level a is given by e

a
. Thus, given an effort level, the higher

the ability the lower the cost of exerting effort.
In the centralized college admissions problem (CCA), all students rank college 2 over college 1.

Hence, the students with the highest q2 efforts get into college 2, students with the next highest q1
efforts get into college 1, and students with the lowest n− q1 − q2 efforts are not assigned to any
college. In the decentralized college admissions problem (DCA), students need to simultaneously
choose which college to apply to and how much effort to exert. Then, for each college i ∈ {1, 2},
students with the highest qi efforts among the applicants to college i get into college i.

It turns out that the equilibrium of CCA can be solved by standard techniques, such as those
in Moldovanu, Sela, and Shi (2012). In this monotone equilibrium, higher ability students exert
higher efforts, and therefore the students with the highest q2 ability levels get admitted to the
good college 2, and students with ability rankings between q2 + 1 and q1 + q2 get admitted to the
bad college 1 (Proposition 1).

Finding the equilibrium of DCA is not straightforward. It turns out that in equilibrium, there
is a cutoff ability level that we denote by c. All higher ability students (with abilities in (c, 1]) apply
to the good college, whereas lower ability students (with ability levels in [0, c]) use a mixed strategy
when choosing between the good and the bad college. Students’ effort functions are continuous
and monotone in ability levels (Theorem 1). We also establish that the equilibrium we have found
is the unique symmetric and monotone equilibrium.

4In section 6, we discuss the case with three or more colleges.
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Our paper therefore contributes to the all-pay contests literature. To the best of our knowledge,
ours is the first paper to model and solve a game of competing contests with multiple prizes where
the players have private information regarding their abilities and sort themselves into different
contests.5

After solving for the equilibrium of CCA and DCA and proving their uniqueness, we compare
the equilibria in terms of students’ interim expected utilities. We show that students with lower
abilities prefer DCA to CCA when the number of seats is smaller than the number of students
(Proposition 2). The main intuition for this result is that students with very low abilities have
almost no chance of getting a seat in CCA, whereas their probability of getting a seat in DCA is
bounded away from zero due to the fewer number of applications than the capacity. Moreover, we
show that students with higher abilities prefer CCA to DCA (Proposition 3).6 The main intuition
for this result is that high-ability students (i) can only get a seat at the good college in DCA,
whereas they can get seats at both the good and the bad college in CCA, and (ii) their equilibrium
probability of getting a seat at the good college is the same across the two mechanisms.

We test the theory with the help of lab experiments. We implement five markets for the
college admissions game that are designed to capture different levels of competition (in terms of
the supply of seats, the demand ratio, and the quality difference between the two colleges). We
compare the two college admission mechanisms and find that in some markets the comparisons of
the students’ ex-ante expected utilities, their effort levels, and the students’ preferences regarding
the two mechanisms given their ability are well organized by the theory. However, the experimental
subjects exert a higher effort than predicted. The overexertion of effort is particularly pronounced
in DCA, which makes it relatively less attractive for the applicants compared to CCA. We also
find significant differences between the two mechanisms with respect to the sorting of students
that are in part due to out-of-equilibrium choices of the experimental subjects.

1.1 Related literature

College admissions have been studied extensively in the economics literature. Following the seminal
paper by Gale and Shapley (1962), the theory literature on two-sided matching mainly considers
centralized college admissions and investigates stability, incentives, and the efficiency properties of
various mechanisms, notably the deferred-acceptance and the top trading cycles algorithms. The
student placement and school choice literature is motivated by the centralized mechanisms of public
school admissions, rather than by the decentralized college admissions mechanism in the US. This
literature was pioneered by Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003).

5There is a large literature on competing auctions and competing mechanisms, and competing contests with unit
prizes and incomplete information are analyzed by DiPalantino and Vojnovic (2009). We discuss this literature in
the next subsection.

6More specifically, we obtain a single crossing condition: if a student who applies to college 2 in DCA prefers
CCA to DCA, then all higher ability students also have the same preference ranking.
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We refer the reader to Sönmez and Ünver (2011) for a recent comprehensive survey regarding
centralized college admission models in the two-sided matching literature. Recent work regarding
centralized college admissions with entrance exams include Abizada and Chen (2015) and Tung
(2009). Abizada and Chen (2015) model the entrance (eligibility) criterion in college admissions
problems and extend models of Perach, Polak, and Rothblum (2007) and Perach and Rothblum
(2010) by allowing the students to have the same scores from the central exam. On the other hand,
by allowing students to submit their preferences after they receive the test results, Tung (2009)
adjusts the multi-category serial dictatorship (MSD) analyzed by Balinski and Sönmez (1999) in
order to make students better off.

One crucial difference between the modeling in our paper and the literature should be em-
phasized: In our paper student preferences affect college rankings over students through contests
among students, while student preferences and college rankings are typically independent in the
two-sided matching models and school-choice models.

The analysis of decentralized college admissions in the literature is more recent. Chade, Lewis,
and Smith (2014) consider a model where two colleges receive noisy signals about the caliber of
applicants. Students need to decide which colleges to apply to and application is costly. The two
colleges choose admissions standards that act like market-clearing prices. The authors show that in
equilibrium, college-student sorting may fail, and they also analyze the effects of affirmative action
policies. In our model, the colleges are not strategic players as in Chade, Lewis, and Smith (2014).
Another important difference is that in our model the students do not only have to decide which
colleges to apply to, but also how much effort to exert in order to do well in the entrance exams.
Che and Koh (2015) study a model in which two colleges make admission decisions subject to
aggregate uncertainty about student preferences and linear costs for any enrollment exceeding the
capacity. They find that colleges’ admission decisions become a tool for strategic yield management,
and in equilibrium, colleges try to reduce their enrollment uncertainty by strategically targeting
students. In their model, as in Chade, Lewis, and Smith (2014), students’ exam scores are costlessly
obtained and given exogenously. Avery and Levin (2010), on the other hand, analyze a model of
early admission at selective colleges where early admission programs give students an opportunity
to signal their enthusiasm to the college they would like to attend. More recently, motivated by
the South Korean college admission system that went through a policy change in 1994, Avery, Lee,
and Roth (2014) compare the two (with and without early admissions) regimes and conclude that
lower-ranked colleges may gain in competition with higher-ranked colleges by limiting the number
of possible applications.

In another related paper, Hickman (2009) also models college admissions as a Bayesian game
where heterogeneous students compete for seats at colleges. He presents a model in which there is
a centralized allocation mechanism mapping each student’s score into a seat at a college. Hickman
(2009) is mostly interested in the effects of affirmative action policies and the solution concept
used is “approximate equilibrium” in which the number of students is assumed to be large so that
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students approximately know their rankings within the realized sample of private costs.7 Similarly,
Olszewski and Siegel (2014) consider contests with many players and prizes and show that the
equilibrium outcomes of such contests are approximated by the outcomes of an appropriately
defined set of mechanisms. In contrast to Hickman (2009) and Olszewski and Siegel (2014), our
results are also applicable when the number of agents is not large.

In another recent paper by Salgado-Torres (2013), students and colleges participate in a de-
centralized matching mechanism called Costly Signaling Mechanism (CSM) in which students first
choose a costly observable score to signal their abilities, then each college makes an offer to a
student, and finally each student chooses one of the available offers. Salgado-Torres (2013) char-
acterizes a symmetric equilibrium of CSM which is proven to be assertive and also performs some
comparative statics analysis. CSM is decentralized just like the decentralized college admissions
model developed in this paper. However, CSM cannot be used to model college admission mecha-
nisms (such as the ones used in Japan) that require students to apply to only one college.

Our paper is also related to the all-pay auction and contests literature. Notably, Baye,
Kovenock, and de Vries (1996) and Siegel (2009) solve for all-pay auctions and contests with
complete information. We refer the reader to the survey by Konrad (2009) about the vast lit-
erature on contests. Related to our decentralized mechanism, Amegashie and Wu (2006) and
Konrad and Kovenock (2012) both model “competing contests” in a complete information setting.
Amegashie and Wu (2006) study a model where one contest has a higher prize than the other.
They show that sorting may fail in the sense that the top contestant may choose to participate in
the contest with a lower prize. In contrast, Konrad and Kovenock (2012) study all-pay contests
that are run simultaneously with multiple identical prizes. They characterize a set of pure strategy
equilibria and a symmetric equilibrium that involves mixed strategies. In our decentralized college
admissions model, the corresponding contest model is also a model of competing contests. The
main difference in our model is that we consider incomplete information as students do not know
each others’ ability levels.

A series of papers by Moldovanu and Sela (and Shi) studies contests with incomplete infor-
mation, but they do not consider competing contests in which the participation in contests is
endogenously determined. In Moldovanu and Sela (2001), the contest designer’s objective is to
maximize expected effort. They show that when cost functions are linear or concave in effort, it is
optimal to allocate the entire prize sum to a single first prize. Moldovanu and Sela (2006) compare
the performance of dynamic sub-contests whose winners compete against each other with static
contests. They show that with linear costs of effort, the expected total effort is maximized with a
static contest, whereas the highest expected effort can be higher with contests with two divisions.
Moldovanu, Sela, and Shi (2012) study optimal contest design where both awards and punishments

7In a related paper, Morgan, Sisak, and Vardy (2012) study competition for promotion in a continuum economy.
They show that a more meritocratic profession always succeeds in attracting the highest ability types, whereas a
profession with superior promotion benefits attracts high types only under some assumptions.
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can be used. Under some conditions, they show that punishing the bottom is more effective than
rewarding the top.

There is a large literature on competing auctions and mechanisms; notable examples are Ellison,
Fudenberg, and Möbius (2004), Biais, Martimort, and Rochet (2000), McAfee (1993), and more
recently, Moldovanu, Sela, and Shi (2008), Virág (2010), and Ovadia (2014). Two papers that
are most related to our papers are DiPalantino and Vojnovic (2009) and Buyukboyaci (2012).
DiPalantino and Vojnovic (2009) consider multiple contests where each contest gives a single
prize and show the existence of a symmetric monotone equilibrium using the revenue equivalence
theorem. They are mostly interested in participation rates among different contests and establish
that in the large system limit (i.e., as the population gets large) the number of players that
participate in a given contest class is a Poisson random variable. Buyukboyaci (2012), on the
other hand, theoretically and experimentally compares the performance of one contest with a
single prize and two parallel contests each with a single prize. In her model agents can be either
a high ability or a low ability type. Her main finding is that the designer’s profit is higher in the
parallel tournaments when the contestants’ low and high ability levels are sufficiently differentiated.

This paper also contributes to the experimental literature on contests and all-pay auctions,
summarized in a recent survey article by Dechenaux, Kovenock, and Sheremeta (2014). Our setup
in the centralized mechanism with heterogeneous agents, two non-identical prizes, and incomplete
information is closely related to a number of existing studies by Barut, Kovenock, and Noussair
(2002), Noussair and Silver (2006), and Müller and Schotter (2010). These studies observe that
agents overbid on average compared to the Nash prediction. Moreover, they find an interesting
bifurcation, a term introduced by Müller and Schotter (2010), in that low types underbid and high
types overbid. Regarding the optimal prize structure, it turns out that if players are heteroge-
neous, multiple prizes can be optimal to avoid the discouragement of weak players (see Müller and
Schotter, 2010). Higher effort with multiple prizes than with a single prize was also found in a
setting with homogeneous players by Harbring and Irlenbusch (2003).

We are not aware of any previous experimental work related to our decentralized admissions
mechanism where agents simultaneously choose an effort level and decide whether to compete for
the high or the low prize.

The paper also belongs to the experimental literature on two-sided matching mechanisms and
school choice starting with Kagel and Roth (2000) and Chen and Sönmez (2006).8 These studies
as well as many follow-up papers in this strand of the literature focus on the rank-order lists
submitted by students in the preference-revelation games, but do not study effort choice. Thus,
the rankings of students by the schools are exogenously given in these studies unlike in our setup
where the colleges’ rankings are endogenous.

8A recent example of theory combined with experiments in the school choice literature is Chen and Kesten
(2015).
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2 The Model

The college admissions problem with entrance exams, or simply the problem, is denoted by
(S, C, (q1, q2), (v1, v2), F ). There are two colleges – college 1 and college 2. We denote colleges
by C. Each college C ∈ C := {1, 2} has a capacity qC which represents the maximum number of
students that can be admitted to college C, where qC ≥ 1.

There are n students. We denote the set of all students by S. Since we suppose homogeneous
preferences of students, we assume that each student has the cardinal utility vC from college
C ∈ {1, 2}, where v2 > v1 > 0. Thus, we sometimes call college 2 the good college and college 1
the bad college. Each student’s utility from not being assigned to any college is normalized to be
0. We assume that q1 + q2 ≤ n.9

Each student s ∈ S makes an effort es. Each student is assigned to one college or no seat
in any college by the mechanisms which take the efforts into account while deciding on their
admissions.10 The students are heterogeneous in terms of their abilities, and the abilities are their
private information. More specifically, for each s ∈ S, as ∈ [0, 1] denotes student s’s ability.
Abilities are drawn identically and independently from the interval [0, 1] according to a continuous
distribution function F that is common knowledge. We assume that F has a continuous density
f = dF > 0. For a student s with ability as, putting in an effort of es results in a disutility of
es
as
. Hence, the total utility of a student with ability a from making effort e is vC − e/a if she is

assigned to college C, and −e/a otherwise.
Before we move on to the analysis of the equilibrium of centralized and decentralized college

admission mechanisms, we introduce some necessary notation.

2.1 Preliminary notation

First, for any continuous distribution T with density t, for 1 ≤ k ≤ m, let Tk,m denote the
distribution of the kth−(lowest) order statistics out of m independent random variables that are
identically distributed according to T. That is,

Tk,m(a) :=
m∑
j=k

(
m

j

)
T (a)j(1− T (a))m−j. (1)

Moreover, let tk,m(·) denote Tk,m(·)’s density:

tk,m(a) :=
d

da
Tk,m(a) =

m!

(k − 1)! (m− k)!
T (a)k−1(1− T (a))m−kt(a). (2)

9Many college admissions, including ones in Turkey and Japan, are competitive in the sense that the total
number of seats in colleges is smaller than the number of students who take the exams.

10In reality the performance in the entrance exams is only a noisy function of efforts. For simplicity, we assume
that efforts completely determine the performance in the tests.
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For convenience, we let T0,m be a distribution with T0,m(a) = 1 for all a, and t0,m ≡ dT0,m/da =

0.
Next, define the function pj,k : [0, 1]→ [0, 1] as follows: for all j, k ∈ {0, 1, . . . , n} and x ∈ [0, 1],

pj,k(x) :=

(
j + k

j

)
xj(1− x)k. (3)

The function pj,k(x) is interpreted as the probability that when there are (j+k) students, j students
are selected for one event with probability x and k students are selected for another event with
probability (1−x). Suppose that p0,0(x) = 1 for all x. Note that with this definition, we can write

Tk,m(a) =
m∑
j=k

pj,m−j(T (a)). (4)

3 The Centralized College Admissions Mechanism (CCA)

In the centralized college admissions game, each student s ∈ S simultaneously makes an effort
es. Students with the top q2 efforts are assigned to college 2 and students with the efforts from
the top (q2 + 1) to (q1 + q2) are assigned to college 1. The rest of the students are not assigned
to any colleges.11 We now solve for the symmetric Bayesian Nash equilibrium of this game. The
following proposition is a special case of the all-pay auction equilibrium which has been studied
by Moldovanu and Sela (2001) and Moldovanu, Sela, and Shi (2012).

Proposition 1. In CCA, there is a unique symmetric equilibrium βC such that for each a ∈ [0, 1],
each student with ability a chooses an effort βC(a) according to

βC(a) =

ˆ a

0

x {fn−q2,n−1(x) v2 + (fn−q1−q2,n−1(x)− fn−q2,n−1(x)) v1} dx.

where fk,m(·) for k ≥ 1 is defined in Equation (2) and f0,m(x) is defined to be 0 for all x.

Proof. Suppose that βC is a symmetric equilibrium effort function that is strictly increasing. Con-
sider a student with ability a who chooses an effort as if her ability is a′. Her expected utility
is

v2 Fn−q2,n−1(a
′) + v1 (Fn−q1−q2,n−1(a

′)− Fn−q2,n−1(a′))−
βC(a′)

a
.

11In a setup with homogeneous student preferences, this game reflects how the Turkish college admission mecha-
nism works. In the centralized test that the students take, since all students would put college 2 as their top choice
and college 1 as their second top choice in their submitted preferences, the resulting assignment would be the same
as the assignment described above. In a school choice context, this can be described as the following two-stage
game. In the first stage, there is one contest where each student s simultaneously makes an effort es. The resulting
effort profile (es)s∈S is used to construct a single priority profile � such that a student with a higher effort has a
higher priority. In the second stage, students participate in the centralized deferred acceptance mechanism where
colleges use the common priority �.
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The first-order condition at a′ = a is

v2 fn−q2,n−1(a) + v1 (fn−q1−q2,n−1(a)− fn−q2,n−1(a))−
[βC(a)]′

a
= 0.

Thus, by integration and as the boundary condition is βC(0) = 0, we have

βC(a) =

ˆ a

0

x {fn−q2,n−1(x) v2 + (fn−q1−q2,n−1(x)− fn−q2,n−1(x)) v1} dx.

The above strategy is the unique symmetric equilibrium candidate obtained via the “first-order
approach” by requiring no benefit from local deviations. Standard arguments show that this is
indeed an equilibrium by making sure that global deviations are not profitable (for instance, see
section 2.3 of Krishna, 2002).

4 The Decentralized College Admissions Mechanism (DCA)

In the decentralized college admissions game, each student s chooses one college Cs and an effort
es simultaneously. Given the college choices of students (Cs)s∈S and efforts (es)s∈S, each college C
admits students with the top qC effort levels among its set of applicants ({s ∈ S |Cs = C}).12

For this game, we focus on “symmetric and monotone” Bayesian Nash equilibrium. More
specifically, we consider the case in which (i) the students’ strategies only depend on their ability
levels and not their names, and (ii) when we consider the effort levels of students who are applying
to a particular college, higher ability students choose higher efforts.

A natural equilibrium candidate is to have a cutoff c ∈ (0, 1), students with abilities in [0, c) to
apply to college 1, and students with abilities in [c, 1] to apply to college 2. It turns out that we
cannot have an equilibrium of this kind. In such an equilibrium, (i) type c has to be indifferent
between applying to college 1 or college 2, (ii) type c’s effort is strictly positive in case of applying
to college 1, and 0 when applying to college 2. Hence there is a discontinuity in the effort function.
These two conditions together imply that a type c+ ε student would benefit from mimicking type
c. We show this in Proposition 4 in Appendix B.1.

Therefore, some students have to use mixed strategies when choosing which college to apply
to. Next, as we formally show in Proposition 5 in Appendix B.1, we argue that when the students
use mixed strategies in a symmetric and monotone equilibrium, they choose the same effort level
when they apply to either of the colleges. This is surprising at first sight, yet it follows from a

12In a setup with homogeneous student preferences, this game reflects how the Japanese college admissions
mechanism works: all public colleges hold their own tests and accept the top performers among the students who
take their tests. In the school choice context, this can be described as the following two-stage game. In the first
stage, students simultaneously choose which college to apply to, and without knowing how many other students have
applied, they also choose their effort level. For each college C ∈ {1, 2}, the resulting effort profile (es){s∈S |Cs=C}
is used to construct one priority profile �C such that a student with a higher effort has a higher priority. In the
second stage, students participate in two separate deferred acceptance mechanisms where each college C uses the
priority �C .
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“revelation principle” argument: when students mix, they have to be indifferent between applying
to either colleges, but since both games are Bayesian incentive compatible, expected utilities being
the same implies expected payments or efforts being the same. In this equilibrium, lower ability
students choose the same effort level independent of whether they are applying to college 1 or 2.
Note that this is an equilibrium property, not a restriction on effort functions. In other words,
students are allowed to choose different effort levels when they are applying to different colleges,
yet they choose the same effort level in equilibrium.

In what follows, by considering a symmetric and monotone equilibrium we show that low-
ability students use mixed strategies while the high-ability students are certain to apply to the
better college. More specifically, (γ(·), βD(·); c) where c ∈ (0, 1) is a cutoff, γ : [0, c] → (0, 1) is
the mixed strategy that represents the probability of lower ability students applying to college 1,
and βD : [0, 1] → R is the continuous and strictly increasing effort function. Each student with
type a ∈ [0, c] chooses college 1 with probability γ(a) (hence chooses college 2 with probability
1 − γ(a)), and makes effort βD(a). Each student with type a ∈ (c, 1] chooses college 2 for sure,
and makes effort βD(a).

We now move on to the derivation of symmetric and monotone Bayesian Nash equilibrium. Let
a symmetric strategy profile (γ(·), β(·); c) be given. For this strategy profile, the ex-ante probability
that a student applies to college 1 is

´ c
0
γ(x)f(x)dx, while the probability that a student applies

to college 2 is 1 −
´ c
0
γ(x)f(x)dx. Let us define a function π : [0, c] → [0, 1] that represents the

ex-ante probability that a student has a type less than a and she applies to college 1:

π(a) :=

ˆ a

0

γ(x)f(x)dx. (5)

With this definition, the ex-ante probability that a student applies to college 1 is π(c), while the
probability that a student applies to college 2 is 1− π(c). Moreover, pm,k(π(c)) is the probability
that m students apply to college 1 and k students apply to college 2 where pm,k(·) is given in
Equation (3) and π(·) is given in Equation (5).

Next, we define G(·) : [0, c] → [0, 1], where G(a) is the probability that a type is less than or
equal to a, conditional on the event that she applies to college 1. That is,

G(a) :=
π(a)

π(c)
.

Moreover let g(·) denote G(·)’s density. Gk,m is the distribution of the kth−order statistics out of
m independent random variables that are identically distributed according to G as in equations
(1) and (4). Also, gk,m(·) denotes Gk,m(·)’s density.

Similarly, let us define H(·) : [0, 1] → [0, 1], where H(a) is the probability that a type is less
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than or equal to a, conditional on the event that she applies to college 2. That is, for a ∈ [0, 1],

H(a) =


F (a)−π(a)
1−π(c) if a ∈ [0, c],

F (a)−π(c)
1−π(c) if a ∈ [c, 1].

Moreover, let h(·) denote H(·)’s density. Note that h is continuous but is not differentiable at c.
Let Hk,m be the distribution of the kth−order statistics out of m independent random variables
distributed according to H as in equations (1) and (4). Also, hk,m(·) denotes Hk,m(·)’s density.

We are now ready to state the main result of this section, which characterizes the unique
symmetric and monotone Bayesian Nash equilibrium of the decentralized college admissions mech-
anism. The sketch of the proof follows the Theorem, whereas the more technical part of the proof
is relegated to Appendix B.2.

Theorem 1. In DCA, there is a unique symmetric and monotone equilibrium (γ, βD; c) where a
student with type a ∈ [0, c] chooses college 1 with probability γ(a) and makes effort βD(a); and a
student with type a ∈ [c, 1] chooses college 2 for sure and makes effort βD(a). Specifically,

βD(a) = v2

ˆ a

0

x
n−1∑
m=q2

pn−m−1,m(π(c))hm−q2+1,m(x)dx.

The equilibrium cutoff c and the mixed strategies γ(·) are determined by the following four require-
ments:
(i) π(c) uniquely solves the following equation for x

v1

q1−1∑
m=0

pm,n−m−1(x) = v2

q2−1∑
m=0

pn−m−1,m(x).

(ii) Given π(c), c uniquely solves the following equation for x

v1 = v2

q2−1∑
m=0

pn−m−1,m(π(c)) + v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(
F (x)− π(c)
1− π(c)

)
.

(iii) Given π(c) and c, for each a ∈ [0, c), π(a) uniquely solves the following equation for x(a)

v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(F (a)− x(a)
1− π(c)

)
= v1

n−1∑
m=q1

pm,n−m−1(π(c))
m∑

j=m−q1+1

pj,m−j

(x(a)
π(c)

)
.

(iv) Finally, for each a ∈ [0, c], γ(a) is given by

γ(a) =
π(c)B(a)

(1− π(c))A(a) + π(c)B(a)
∈ (0, 1),

12



where

A(a) := v1

n−1∑
m=q1

pm,n−m−1(π(c))mpm−q1,q1−1

(π(a)
π(c)

)
,

B(a) := v2

n−1∑
m=q2

pn−m−1,m(π(c))mpm−q2,q2−1

(F (a)− π(a)
1− π(c)

)
.

Proof. Suppose that each student with type a ∈ [0, 1] follows a strictly increasing effort function
βD and a type a ∈ [0, c] chooses college 1 with probability γ(a) ∈ (0, 1), and a type in (c, 1] chooses
college 2 for sure.

We first show how to obtain the equilibrium cutoff c and the mixed strategy function γ. A
necessary condition for this to be an equilibrium is that each type a ∈ [0, c] has to be indifferent
between applying to college 1 or 2. Thus, for all a ∈ [0, c],

v1

(
q1−1∑
m=0

pm,n−m−1(π(c)) +
n−1∑
m=q1

pm,n−m−1(π(c))Gm−q1+1,m(a)

)

= v2

(
q2−1∑
m=0

pn−m−1,m(π(c)) +
n−1∑
m=q2

pn−m−1,m(π(c))Hm−q2+1,m(a)

)
. (6)

The left-hand side is the expected utility of applying to college 1, while the right-hand side
is the expected utility of applying to college 2. To see this, note that

∑q1−1
m=0 pm,n−m−1(π(c))

and
∑q2−1

m=0 pn−m−1,m(π(c)) are the probabilities that there are no more than (q1 − 1) and (q2 −
1) applicants in colleges 1 and 2, respectively. For m ≥ q1, pm,n−m−1(π(c))Gm−q1+1,m(a) is the
probability of getting a seat in college 1 with effort a when there are m other applicants in college
1. Similarly, for m ≥ q2, pn−m−1,m(π(c))Hm−q2+1,m(a) is the probability of getting a seat in college
2 with effort a, when there are m other applicants in college 2.

Note that we have

Gm−q1+1,m(a) =
m∑

j=m−q1+1

pj,m−j

(
π(a)

π(c)

)
and Hm−q2+1,m(a) =

m∑
j=m−q2+1

pj,m−j

(
F (a)− π(a)
1− π(c)

)

for all a ∈ [0, c]. The equation (6) at a = 0 and a = c can hence be written as

v1

q1−1∑
m=0

pm,n−m−1(π(c)) = v2

q2−1∑
m=0

pn−m−1,m(π(c)), and (7)

v1 = v2

q2−1∑
m=0

pn−m−1,m(π(c)) + v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(
F (c)− π(c)
1− π(c)

)
, (8)
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respectively.
We show in Appendix B.2 that there is a unique π(c) that satisfies Equation (7), and that

given π(c), the only unknown c via F (c) in Equation (8) is uniquely determined. Moreover, using
(7), we can rewrite Equation (6) as

v1

n−1∑
m=q1

pm,n−m−1(π(c))
m∑

j=m−q1+1

pj,m−j

(
π(a)

π(c)

)
= v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(
F (a)− π(a)
1− π(c)

)
,

(9)
for all a ∈ [0, c]. In Appendix B, we show that given π(c) and c, for each a ∈ [0, c], there is a
unique π(a) that satisfies Equation (9) and, moreover, we show that we can get the mixed strategy
function γ(a) by differentiating Equation (9).

Finally we derive the unique symmetric effort function βD by taking a “first-order approach” in
terms of G(·) and H(·) which are determined by the equilibrium cutoff c and the mixed strategy
function γ. Consider a student with type a ∈ [0, c]. A necessary condition for the strategy to be an
equilibrium is that she does not want to mimic any other type a′ in [0, c]. Her utility maximization
problem is given by

max
a′∈[0,c]

v2

(
q2−1∑
m=0

pn−m−1,m(π(c)) +
n−1∑
m=q2

pn−m−1,m(π(c))Hm−q2+1,m(a
′)

)
− βD(a′)

a
.

where the indifference condition (6) is used to calculate the expected utility.13 The first-order
necessary condition requires the derivative of the objective function to be 0 at a′ = a. Hence,

v2

n−1∑
m=q2

pn−m−1,m(π(c))hm−q2+1,m(a)−
(βD(a))′

a
= 0.

Solving the differential equation with the boundary condition (which is βD(0) = 0), we obtain

βD(a) = v2

ˆ a

0

x
n−1∑
m=q2

pn−m−1,m(π(c))hm−q2+1,m(x)dx

for all a ∈ [0, c]

13Equivalently, we can write the maximization problem as

max
a′∈[0,c]

v1

(
q1−1∑
m=0

pm,n−m−1(π(c)) +

n−1∑
m=q1

pm,n−m−1(π(c))Gm−q1+1,m(a)

)
− βD(a′)

a
,

With the same procedure, this gives the equivalent solution as

βD(a) = v1

ˆ a

0

x

n−1∑
m=q1

pm,n−m−1(π(c))gm−q1+1,m(x)dx

for each a ∈ [0, c].
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Next, consider a student with type a ∈ [c, 1]. A necessary condition is that she does not want
to mimic any other type a′ in [c, 1]. Her utility maximization problem is then

max
a′∈[c,1]

v2

(
q2−1∑
m=0

pn−m−1,m(π(c)) +
n−1∑
m=q2

pn−m−1,m(π(c))Hm−q2+1,m(a
′)

)
− βD(a′)

a
.

Note that although the objective function is the same for types in [0, c] and [c, 1], it is not
differentiable at the cutoff c. The first-order necessary condition requires the derivative of the
objective function to be 0 at a′ = a. Hence,

v2

n−1∑
m=q2

pn−m−1,m(π(c))hm−q2+1,m(a)−
(βD(a))′

a
= 0.

Solving the differential equation with the boundary condition of continuity (which is βD(c) =
v2
´ c
0
x
∑n−1

m=q2
pn−m−1,m(π(c))hm−q2+1,m(x)dx), we obtain

βD(a) = v2

ˆ a

0

x
n−1∑
m=q2

pn−m−1,m(π(c))hm−q2+1,m(x)dx

for each a ∈ [c, 1].

To complete the proof, we need to show that not only local deviations, but also global deviations
cannot be profitable. In Appendix B.3, we do that and hence show that the uniquely derived
symmetric strategy (γ, βD; c) is indeed an equilibrium.

5 Comparisons

As illustrated in sections 3 and 4, the two mechanisms result in different equilibria. It is therefore
natural to ask how the two equilibria compare in terms of interim student welfare. We denote
by EUC(a) and EUD(a) the expected utility of a student with ability a under CCA and DCA,
respectively.

Our first result concerns the preference of low-ability students.

Proposition 2. Low-ability students prefer DCA to CCA if and only if n > q1 + q2.

Proof. First, let us consider the case of n > q1 + q2. For this case it is not difficult to see that
EUC(0) = 0 (because the probability of being assigned to any college is zero), and EUD(0) > 0

(because with a positive probability, type 0 will be assigned to a college). Since the utility functions
are continuous, it follows that there exists an ε > 0 such that for all x ∈ [0, ε], we have EUD(x) >

EUC(x).
Next, let us consider the case of n = q1 + q2. For this case, we have EUC(0) = v1. This is

because with probability 1, type 0 will be assigned to college 1 by exerting 0 effort. Moreover, we
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Figure 1: Efforts (left) and expected utility (right) under CCA and DCA

Note: The figures were created with the help of simulations for the following parameters: n = 12, (q1, q2) = (5, 4),
and (v1, v2) = (5, 20). The equilibrium cutoff under DCA is calculated as c = 0.675.

have EUD(0) < v1. This is because type 0 should be indifferent between applying to college 1 and
college 2, and in the case of applying to college 1, the probability of getting assigned to college 1

is strictly smaller than 1. Since the utility functions are continuous, it follows that there exists an
ε > 0 such that for all x ∈ [0, ε], we have EUC(x) > EUD(x).

Intuitively, when the seats are over-demanded (i.e., when n > q1+q2), very low-ability students
have almost no chance of getting a seat in CCA, whereas their probability of getting a seat in DCA
is bounded away from zero. Hence they prefer DCA.

Although this result merely shows that only students in the neighborhood of type 0 need to
have these kinds of preferences, explicit equilibrium calculations for many examples (such as the
markets we study in our experiments) result in a significant proportion of low-ability students
preferring DCA. We provide a depiction of equilibrium effort levels and interim expected utilities
for a specific example in Figure 1.

Moreover, we establish the reverse ranking for the high-ability students. That is, the high-
ability students prefer CCA in the following single-crossing sense: if a student who applies to
college 2 in DCA prefers CCA to DCA, then all higher ability students have the same preference
ranking.

Proposition 3. Let c be the equilibrium cutoff in DCA. We have (i) if EUC (a) ≥ EUD (a) for
some a > c, then EUC (a′) > EUD (a′) for all a′ > a, and (ii) if EUC (a) < EUD (a) for some
a > c, then d

da
EUC (a) > d

da
EUD (a) .
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Proof. Let us define

K (a) ≡ v2Fn−q2,n−1 (a) ,

L (a) ≡ v1 (Fn−q1−q2,n−1 (a)− Fn−q2,n−1 (a)) ,

M (a) ≡ K (a) + L (a) ,

N (a) = v2

(∑q2−1

m=0
pn−m−1,m (π (c)) +

∑n−1

m=q2
pn−m−1,m (π (c))Hm−q2+1,m (a)

)
.

Then we have

EUC (a) =M (a)−
´ a
0
M ′ (x)xdx

a
.

By integration by parts, we obtain

EUC (a) =

´ a
0
M (x) dx

a
.

Similarly,

EUD (a) = N (a)−
´ a
0
N ′ (x)xdx

a
,

and by integration by parts, we obtain

EUD (a) =

´ a
0
N (x) dx

a
.

Note that, for a > c, we have
N (a) = K (a) .

This is because students whose ability levels are greater than c apply to college 2 in DCA, and
therefore a seat is granted to a student with ability level a > c if and only if the number of students
with ability levels greater than a is not greater than q2. This is the same condition in CCA, which
is given by the expression K (a). (Also note that we have N (a) 6= K (a) for a < c, in fact we have
N (a) > K (a) , but this is irrelevant for what follows.)

Now, for any a > c, we obtain

d

da

(
aEUC (a)

)
=M (a)

= K (a) + L (a)

and

d

da

(
aEUD (a)

)
= N (a)

= K (a) .
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Since L (a) > 0, for any a > c, we have

d

da

(
aEUC (a)

)
>

d

da

(
aEUD (a)

)
,

or
EUC (a) + a

d

da
EUC (a) > EUD (a) + a

d

da
EUD (a) .

This means that for any a > c, wheneverEUC (a) = EUD (a) , we have d
da
EUC (a) > d

da
EUD (a) .

Then we can conclude that once EUC (a) is higher than EUD (a), it cannot cut through EUD (a)

from above to below and EUC (a) always stays above EUD (a) . To see this suppose EUC (a) >

EUD (a) and EUC (a′) < EUD (a′) for some a′ > a > c, then (since both EUC (a) and EUD (a)

are continuously differentiable) there exists a′′ ∈ (a, a′) such that EUC (a′′) = EUD (a′′) and
d
da
EUC (a′′) < d

da
EUD (a′′) , a contradiction. Hence (i) is satisfied. Moreover, (ii) is obviously

satisfied since whenever EUC (a) < EUD (a), we have to have d
da
EUC (a) > d

da
EUD (a) .

Intuitively, since high-ability students (i) can only get a seat in the good college in DCA whereas
they can get a seat in both the good and the bad college in CCA, and (ii) their equilibrium
probability of getting a seat in the good college is the same across the two mechanisms, they prefer
CCA.

One may also wonder whether there is a general ex-ante utility ranking of DCA and CCA.
It turns out that examples where either DCA or CCA result in higher ex-ante utility (or social
welfare) can be found. Specifically, markets 1 and 2 in our experimental sessions result in higher
social welfare in CCA and DCA, respectively.

6 Extensions

In this section, we consider two extensions of the model. In the first, we allow for more than two
colleges, again ranked in terms of quality. The second extension looks at a larger market in the
following sense: as before, a setup is studied with two types of colleges resulting in utilities v1 and
v2 and with capacities q1 and q2, but there are k colleges of each type and there are k×n students.

6.1 The case of ` colleges

Let us consider ` colleges, 1, ..., `, where each college k has the capacity qk > 0 and each student
gets the utility of vk from attending college k (v` > v`−1 > ... > v2 > v1 > 0).

We conjecture that in the decentralized mechanism there will be a symmetric Bayesian Nash
equilibrium ((γk)

`
k=1, β

D, (ck)
`
k=0):14 (i) c0, . . . , c` are cutoffs such that 0 = c0 < c1 < . . . < c`−1 <

14As explained below, the strategies are not formally shown to be an equilibrium since we do not have a proof to
show that global deviations are not profitable.

18



c` = 1; (ii) βD is an effort function where each student with ability a makes an effort level of βD(a);
(iii) γ1, . . . , γ` are mixed strategies such that for each k ∈ {1, . . . , `− 1}, each student with ability
a ∈ [ck−1, ck) applies to college k with probability γk(a) and college k+1 with probability 1−γk(a).
Moreover, each student with ability a ∈ [c`−1, 1] applies to college `, equivalently, γ`(a) = 1. The
equilibrium effort levels can be identified as follows.

Let k ∈ {1, . . . , `} be given. Let πk(a) denote the ex-ante probability that a student has a
type less than or equal to a and she applies to college k. Then, π1(a) =

´ a
0
γ1(x)dF (x). For

k ∈ {2, . . . , `} and a ∈ [ck−2, ck],

πk(a) =


´ a
ck−2

(1− γk−1(x))dF (x) if a ≤ ck−1,´ ck−1

ck−2
(1− γk−1(x))dF (x) +

´ a
ck−1

γk(x)dF (x) if a ≥ ck−1.

We define Hk to be the probability that a type is less than or equal to a, conditional on the
event that she applies to college k:

Hk(a) =
πk(a)

πk(ck)
.

In this equilibrium, each student with ability a ∈ [ck−1, ck] exerts an effort of

βD(a) = βD(ck−1) +

ˆ a

ck−1

x
n−1∑
m=qk

pm,n−m−1(π
k(ck))h

k
m−qk+1,m(x)dx

where βD(0) = 0 and hkm−qk+1,m is the density of Hk
m−qk+1,m. Similar to Theorem 1, it is possible

to determine the formulation for cutoffs c1, . . . , c`−1 and mixed strategies γ1, . . . , γ` using the indif-
ference conditions (see Appendix C). This set of strategies can be shown to satisfy immunity for
“local deviations,” but prohibitively tedious arguments to check for immunity to global deviations
(as we have done in Appendix B) prevent us from formally proving that it is indeed an equilibrium.

By supposing an equilibrium of this kind, we can actually show that propositions 2 and 3 hold
for ` colleges. Proposition 2 trivially holds, as students with the lowest ability levels get zero utility
from CCA and strictly positive utility from DCA. We can also argue that Proposition 3 holds since
the students with ability levels a ∈ [c`−1, 1] only apply to college `. This can be observed by noting
that a seat is granted to these students in college k if and only if the number of students with
ability levels greater than a is no greater than q`, which is the same condition in CCA. Hence,
even in this more general setup of ` colleges, we can argue that low-ability students prefer DCA
whereas high-ability students prefer CCA.
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6.2 The case of a k-replication

Consider an environment in which we have, (i) k type-1 colleges: C1
1 , ..., C

k
1 such that each of them

has q1 seats and gives a utility of v1 to students, (ii) k type-2 colleges: C1
2 , ..., C

k
2 such that each of

them has q2 seats and gives a utility of v1 to students, and (iii) k× n students. In other words, in
this extension we consider a “k-replication” of our model.

With this extension, in CCA it is easy to see that there is a monotone equilibrium very similar
to the original equilibrium. The students will list all type-2 colleges above all type-1 colleges (in
an arbitrary fashion), students with the top k × q2 effort levels will get one of the type-2 colleges’
seats, and students with the next top k × q1 effort levels will get one of the type-1 colleges’ seats.
In this equilibrium a student with type a will choose the effort

βC(k) (a) =

ˆ a

0

x{fkn−kq2,kn−1 (x) v2 − (fkn−kq2−kq1,kn−1 (x)− fkn−kq2,kn−1 (x)) v1}dx.

Moreover, we have that βC(k) (a) will be very close to βC (a) for all k = 2, ...,∞. In fact, when F
is uniform we have

βC(k) (a) = a

(
n− q2
n

v2 −
(
n− q1 − q2

n
− n− q2

n

)
v1

)
= a

(
v2 +

q1v1 − q2v2
n

)
for all k = 1, 2, ...,∞. Hence, for uniform distributions, any k-replica economy bidding function is
the same as in the no-replica economy.

In DCA, on the other hand, one can observe that the equilibrium of the k-replica economy
essentially remains the same as in the no-replica economy: the cutoff c and equilibrium effort
functions will be the same. The only differences would be that (i) each student of ability lower
than c will apply to each type-1 college with probability γ(a)

k
and each type-2 college with probability

1−γ(a)
k

, and (ii) each student of ability higher than c will apply to each type-2 college with probability
1
k
.

Hence, if there are many students and many colleges (belonging to one of the two types), our
predictions remain valid.

7 The Experiment

In this section, we present an experiment designed to test the results of the model and generate
further insights into the performance of the centralized (CCA) and the decentralized college ad-
missions mechanism (DCA). We compare the two mechanisms and study which of them leads to
higher (interim and ex-ante) student welfare, higher efforts of the students, and how they affect
the sorting of students by ability.
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Table 1: Overview of market characteristics

Number of seats at [value of] Predicted utility higher Predicted effort highercollege 2 college 1

Market 1 6 [2000] 6 [1000] CCA depends; DCA in expectation
Market 2 2 [2000] 2 [1000] DCA no diff. in expectation
Market 3 2 [2000] 8 [1000] depends; DCA in expectation CCA
Market 4 3 [2000] 9 [1800] CCA DCA
Market 5 9 [2000] 1 [1000] no diff. in expectation no diff. in expectation

Notes: In some markets, one of the two mechanisms dominates the other for all students. In other markets
the ranking of the mechanisms depends on the students’ ability in which case we compare the expected
values.

7.1 Design of the experiment

In the experiment, there are two colleges, college 1 (the bad college) and college 2 (the good
college). There are 12 students who apply for positions, and these students differ with respect
to their ability. Every student learns her ability as that is drawn from the uniform distribution
over the interval from 1 to 100. Students choose an effort level es that determines their success
in the application process. The cost of effort is determined by 100 es

as
. (Note that we use the

range of abilities from 1 to 100 instead of 0 to 1 in order to simplify the calculations for subjects.
Accordingly, we scaled up the cost function by a constant of 100.)

In the centralized college admissions mechanism (CCA), all students simultaneously choose
an effort level. Then the computer determines the matching by admitting the students with the
highest effort levels to college 2 up to its capacity q2 and the next best students, i.e., from rank
q1 + 1 to rank q1 + q2, to college 1. All other students are unassigned.

In the decentralized college admissions mechanism (DCA), the students simultaneously decide
not only on their effort level but also on which college to apply to. The computer determines
the matching by assigning the students with the highest effort among those who have applied to
college C, up to its capacity qC .

We implemented five different markets that differ with respect to the total number of open
slots (q1 + q2), the number of slots at each college (q1 and q2) as well as the value of the colleges
for the students (v1 and v2), see Table 1. This allows us to investigate behavior under very
different market conditions. The parameters in each market were chosen so as to generate clear-
cut predictions regarding the two main outcome variables, effort and the expected utility of each
student.

Figure 2 shows the interim expected utility of students for each market. CCA dominates DCA
with respect to the interim expected utility of students (market 1) and the reverse (market 2).
Figure 3 shows the equilibrium effort levels given abilities for each market. Effort is higher for all
types in CCA in market 3 while the reverse holds for market 4. The fifth market is designed to
make the two mechanisms as similar as possible.

In order to provide a valid comparison of the observed average effort and utility levels in the
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Figure 2: Equilibrium expected utility by ability
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Figure 3: Equilibrium efforts by ability
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markets where there is no dominance relationship, i.e., the cells in Table 1 for which the predicted
difference depends on the ability of the applicant, we compute the equilibrium effort and utility
levels for the realizations of abilities in our experimental markets. We then take expected values
given the realized abilities.

An important distinction for the theoretical predictions and for the intuition behind the pre-
dicted differences is whether the number of students is equal to the number of seats (markets 1
and 4) or whether there are more students than seats (markets 2, 3, and 5). As illustrated by
Figure 3, in markets 1 and 4 with an equal number of seats and applicants, a positive effort in
CCA is only exerted by those who can expect to get into the good college. In DCA, efforts are
overall higher in these two markets because of the risk of miscoordination. In markets 2 and 3 in
contrast, high-ability students tend to exert less effort in DCA than in CCA because the expected
return is higher in CCA: in CCA one can obtain v2, v1 and 0, while in DCA only v2 (or v1) and 0

are achievable.
Note that our design aims at comparing the two mechanisms. We do not study the comparative

statics of the equilibria of CCA and DCA by systematically varying one parameter. This would
require a completely different design that is beyond the scope of this study.

We employed a between-subjects design. Students were randomly assigned either to the treat-
ment with CCA or the treatment with DCA. In each treatment, subjects played 15 rounds with one
market per round. Each of the five different markets was played three times by every participant,
and abilities were drawn randomly for every round. These draws were independent, and each abil-
ity was equally likely. We employed the same randomly drawn ability profiles in both treatments
in order to make them as comparable as possible. Markets were played in blocks: first, all five
markets were played in a random order once, then all five markets were played in a random order
for a second time, and then again randomly ordered for the last time. We chose this sequence of
markets in order to ensure that the level of experience does not vary across markets. Participants
faced a new situation in every round as they never played the same market with the same ability
twice. They received feedback about their allocation and the points they earned after every round.

At the beginning of each round of the experiment, students received an endowment of 2,200
points. At the end of the experiment, one of the 15 rounds was randomly selected for payment.
The points earned in this round plus the 2,200 endowment points were paid out in Euro with an
exchange rate of 0.5 cents per point. The experiment lasted 90 minutes and the average earnings
per subject were EUR 14.10.

The experiment was run at the experimental economics lab at the Technical University Berlin.
We recruited student subjects from our pool with the help of ORSEE by Greiner (2004). The
experiments were programmed in z-Tree, see Fischbacher (2007). For each of the two treatments,
CCA and DCA, independent sessions were carried out. Each session consisted of 24 participants
that were split into two matching groups of 12 for the entire session. In total, six sessions were
conducted, that is, three sessions per treatment, with each session consisting of two independent

24



matching groups of 12 participants. Thus, we end up with six fully independent matching groups
and 72 participants per treatment.

At the beginning of the experiment, printed instructions were given to the participants (see
Appendix E). Participants were informed that the experiment was about the study of decision
making, and that their payoff depended on their own decisions and the decisions of the other
participants. The instructions were identical for all participants of a treatment, explaining in detail
the experimental setting. Questions were answered in private. After reading the instructions, all
individuals participated in a quiz to make sure that everybody understood the main features of
the experiment.

7.2 Experimental results

We first present the aggregate results in order to compare the two mechanisms. In a second step,
we study behavior in the two mechanisms separately to compare it to the point predictions and to
shed light on the reasons for the aggregate findings. The significance level of all our results is 5%,
unless otherwise stated.

7.2.1 Treatment comparisons: Aggregate results

We compare the two mechanisms with respect to three properties, summarized in results 1 to 3.
The first comparison concerns the utility of students in the two mechanisms which is equal to the
number of points earned, due to the assumption of risk neutrality. Second, we investigate whether
one of the mechanisms induces higher effort levels than the other mechanism. And the third aspect
is whether individuals of different abilities prefer different mechanisms.

Result 1 (Average utility): In markets 1 and 4 (where the number of seats equals the number of
students), the average utility of students in CCA is significantly higher than in DCA, as predicted
by the theory. In markets 2 and 3 (where there are less seats than applicants), the average utility of
students in DCA is not significantly higher than in CCA, in contrast to the theoretical predictions.
In market 5, there is no significant difference either in theory or in the data.

Support. Table 2 presents the average number of points or the average utility of the participants
in the two mechanisms in all five markets. The third column provides the equilibrium prediction
as to which mechanism, CCA or DCA, leads to a higher utility of the students. To generate
this prediction, we compute the equilibrium utilities given the realized draws of abilities in the
experiment for both mechanisms. And then we test for each market whether these equilibrium
utilities are significantly different between the two mechanisms. Thus, the third column also
displays the p-values for the two-sided Wilcoxon rank-sum test for the equality of distributions
of equilibrium utilities. In markets 1 to 4, we expect that the utility of students in the two
mechanisms is significantly different. The last column in the table provides the p-values for the
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two-sided Wilcoxon rank-sum test for the equality of distributions of the observed number of points
earned in the two mechanisms.

Table 2: Average utility

Market
Utility higher Average utility higher Average utility Average utility Observed utilities
for all students for realized types in CCA in DCA different in
(predicted) (predicted) (observed) (observed) CCA and DCA

1 CCA CCA, 0.00 1001 716 0.02
2 DCA DCA, 0.02 -122 -169 0.75
3 N/A DCA, 0.00 342 305 0.63
4 CCA CCA, 0.00 1507 1014 0.00
5 N/A N/A, 0.63 809 797 1.00

Notes: Columns 3 and 6 show the p-values of the Wilcoxon rank-sum test for equality of the distributions,
based on averages of the six matching groups per treatment.

In markets 1 and 4, the equilibrium predictions for the comparison of utilities of students are
consistent with the experimental data, as the average utility in CCA is significantly higher in both
markets. Thus, with an equal number of applicants and seats, CCA is preferable to DCA if the
goal is to maximize the utility of the students. This is due to the potential miscoordination of
applicants in DCA in these markets, inducing higher effort levels. However, we fail to observe
the superiority of DCA in both markets where this is predicted, namely markets 2 and 3. The
relationship is even reversed, with the average utility being higher in CCA than in DCA in both
markets. Note also that the average utility is negative in the competitive market 2 (with only four
seats for 12 students) such that, contrary to the prediction, the subjects earn less than the 2,200
points they are endowed with.

Result 2 (Average effort): In markets 1 and 4 (where the number of seats equals the number
of students), the average effort level of students in DCA is significantly higher than in CCA. This
is in line with the predictions. In market 3, the average effort levels of students in CCA are not
significantly higher than in DCA, in contrast to the theoretical prediction. In markets 2 and 5,
there is no significant difference in effort between the two mechanisms, as predicted.

Support. Table 3 presents the average effort levels of the participants by different mechanisms and
markets. Analogously to Table 2, the third column displays the equilibrium prediction regarding
which mechanism leads to significantly higher effort levels. For this prediction, we compute the
equilibrium effort levels given the realization of abilities in the five markets. To generate this
prediction, we compute the equilibrium utilities given the realized draws of abilities in our markets
in the experiment. The column also indicates the p-values of the Wilcoxon rank-sum test regarding
the difference between equilibrium efforts in CCA and DCA. We expect effort to differ significantly
between the two mechanisms only in markets 3 and 4 (with a marginally significant difference in
market 1). The last column provides the p-values for the two-sided Wilcoxon rank-sum test for
the equality of distributions of the observed effort levels in the two mechanisms. The equilibrium
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predictions regarding the comparison of efforts in markets 1 and 4 are confirmed by the data
because observed average effort is significantly higher in DCA. In market 3 average efforts are
higher in CCA than in DCA as predicted, but the difference is not significant.

Table 3: Average effort

Effort higher Average effort higher Average effort Average effort Observed efforts
for all students for realized types in CCA in DCA different in

Market (predicted) (predicted) (observed) (observed) CCA and DCA

1 N/A DCA, 0.06 276 362 0.04
2 N/A N/A, 0.15 389 410 0.75
3 CCA CCA, 0.00 397 354 0.42
4 DCA DCA, 0.00 191 340 0.02
5 N/A N/A, 0.75 400 395 1.00

Notes: Columns 3 and 6 show the p-values of the Wilcoxon rank-sum test for equality of the distri-
butions, based on averages of the six matching groups per treatment.

Taking results 1 and 2 together, we observe that in markets without a shortage of seats (market
1 and market 4) students are on average better off in CCA where they exert less effort. In market 5
the results are also in line with the theoretical predictions with almost identical effort and expected
utility levels in both mechanisms. In the two remaining markets with a surplus of students over
seats, markets 2 and 3, the results are not in line with the theory. Markets 2 and 3 should lead
to a higher average utility of the students in DCA than in CCA, which is not observed in the lab.
Therefore, the overall results suggest that with respect to the utility of students, CCA performs
better than predicted relative to DCA.

Next we turn to the question of whether students of different abilities prefer different mech-
anisms by providing an experimental test of propositions 2 and 3. According to Proposition 2,
low-ability students prefer DCA over CCA if there are more applicants than seats in the market,
as in our markets 2, 3, and 5. Proposition 3 implies that if any student who is above the cutoff
in DCA prefers CCA over DCA, then all students with a higher ability must also prefer CCA.
(Remember that in markets 1 and 4, all students prefer CCA, and we therefore do not consider
these markets here.)

Result 3 (Expected utility of low- and high-ability students): In markets 2 and 3 (with
fewer seats than applicants), the average utilities of students with low abilities are higher in DCA,
and the average utilities of students with high abilities are higher in CCA. However, significantly
fewer students than predicted prefer DCA to CCA. There is no significant difference between the
average utilities of students in DCA and CCA in market 5.

Support: In three of our markets - namely 2, 3, and 5 - low-ability students prefer DCA in
equilibrium. We refer to the predicted switching point as the maximum ability at which students
prefer DCA in equilibrium. The predicted switching points by markets are represented in Figure
4 by the intersection of the broken lines. For market 2, the switching point is 100, for market 3
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Figure 4: Predicted expected utilities and kernel regression of observed utilities by abilities.

it equals 81, and for market 5 it equals 26. Figure 4 also shows the observed switching points as
the intersection of the solid lines in markets 2, 3, and 5. The figure reveals that in markets 2 and
3, the observed switching points are substantially lower than the predicted switching points. This
suggests that fewer students than predicted prefer DCA to CCA in these markets.

To assess the statistical significance of these differences in switching points, we use bootstrap-
ping. That is, we sample from the dataset with replacement to generate new samples and calculate
the bootstrap confidence intervals of the observed switching points in markets 2 and 3.15 Before

15Bootstrap confidence intervals are calculated by the percentile method (Efron, 1982). We perform block re-
sampling to account for the dependence of observations within matching groups (see Davison and Hinkley, 1997).
For each set of 50,000 bootstrap samples, we draw six random matching groups with replacement and calculate
the bootstrap switching point for each market based on the polynomial smoothing of the observed utilities (we use
lpoly in STATA with bandwidth 15 both for the bootstrap and for producing Figure 4) in the online appendix. We
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turning to the bootstrap confidence intervals, we first use the bootstrap samples to assess the
theoretical prediction of a unique switching point with ability types above the switching point pre-
ferring CCA in all markets. The vast majority of the bootstrap samples indeed produce a unique
switching point in the predicted direction, i.e., lower-ability students prefer DCA while students
with abilities above the switching point prefer CCA. In market 2, 77.5% of the bootstrap samples
yield a unique bootstrapped switching point in the predicted direction.16 In market 3, 80.1% of
the bootstrap samples provide a bootstrapped switching point that is unique and in the predicted
direction. Overall, the bootstrap samples confirm the single-crossing property of Proposition 3.17

Finally, we study the bootstrap distribution of the observed switching points where we restrict
attention to bootstrap samples with a unique switching point in the predicted direction. The
average switching point in market 2 is 48.4 with a 95% confidence interval of [30.5, 68.4], clearly
indicating that the observed switching point is below the theoretical prediction of 100. In market
3, the average switching point is 37.6 with a 95% confidence interval of [9.2, 69.3], also indicating
that the observed switching point is below the theoretical prediction of 81. Thus, we conclude
that the observed switching points are significantly lower than the predicted switching points in
markets 2 and 3, implying that students from a smaller range of abilities prefer DCA than the
theory suggests.18

7.2.2 Point predictions for effort choices and utility

Next we test the point predictions regarding the utility and effort levels in CCA and DCA. This will
help to gain a better understanding of the deviations from the predicted outcomes, in particular
the relatively poor performance of DCA with respect to student utility.

Result 4 (Average utility and effort by markets): (i) The average utility is significantly lower
than predicted across all markets and mechanisms. (ii) Average effort levels in the experiments
are higher than the equilibrium efforts in all 10 markets. This overexertion of effort is significant
in all five markets in DCA and in three out of five markets in CCA.

Support: Table 4 displays the equilibrium and observed averages for utility and effort levels
by markets. Note that the average utility of subjects is significantly lower than predicted in all
five markets and under both mechanisms. In addition, Figure 4 shows that average utility levels
are always below the predicted level for all abilities. This is consistent with the fact that in all
markets and mechanisms, average effort levels are higher than predicted, as can be taken from a

did not calculate bootstrap confidence intervals for market 5, because Figure 4 shows that there is no significant
difference in the expected utility for high- and low-ability students in the two systems, as predicted.

16In this market, a number of draws resulted in two switching points. This can be explained by the fact that in
DCA two students with very low abilities of 2 and 6, respectively, took dominated effort choices by spending all
their endowment, which resulted in a utility of -2200 points. In some bootstrap samples, these two observations
shift the smoothed line of the expected utility in DCA below the line for CCA for the lowest ability types.

17See Table 7 in the online appendix for detailed results of bootstrapping and the number of switching points.
18See Figure 7 in the online appendix for a histogram of the bootstrapped switching points.
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Table 4: Average utility and effort by markets

Average Average Average Average
equilibrium observed p-value equilibrium observed p-value
utility utility obs.=pred. efforts efforts obs.=pred.
(1) (2) (3) (4) (5) (6)

CCA
Market 1 1173 1001 0.04 230 276 0.19
Market 2 107 -122 0.01 364 389 0.54
Market 3 609 342 0.01 280 397 0.02
Market 4 1809 1507 0.01 35 191 0.01
Market 5 1011 809 0.02 305 400 0.05

DCA
Market 1 975 715 0.01 262 362 0.02
Market 2 152 -169 0.00 309 410 0.00
Market 3 699 305 0.00 195 354 0.00
Market 4 1430 1014 0.00 125 340 0.00
Market 5 1019 797 0.00 307 395 0.00

Notes: Column (3) [(6)] shows the p-values for the significance of the constant when
regressing the difference between (1) and (2) [(4) and (5)] on a constant, with standard
errors clustered at the level of matching groups.

comparison of columns (4) and (5) in Table 4.19 In CCA the difference is significant for three out
of five markets (market 3, 4, and 5) while in DCA it is significant for all five markets. Thus, DCA
leads to significant overexertion in more markets than CCA.

We also find that in spite of the negative results regarding the point predictions, the equilibrium
effort levels have significant predictive power. This emerges from an OLS estimation of observed
efforts based on clustered robust standard errors at the level of matching groups.20 Furthermore,
there is no significant difference with respect to the predictive power of the equilibrium efforts in
the two mechanisms, as the interaction of the predicted effort and the dummy for CCA is not
significant. Moreover, the regression confirms that there is on average less overexertion in CCA
than in DCA, since the dummy for CCA is significant when controlling for equilibrium efforts.

7.2.3 Sorting of students

In a next step, we study how students sort across colleges with respect to their ability. In particular
we ask whether the best students end up at the good college 2, the lower-ability students receive a
seat at the bad college 1, and the students with the lowest ability are unassigned. In equilibrium,
sorting by ability is always perfect in CCA while it is likely to be imperfect in DCA. Equilibrium
miscoordination in DCA is due to the mixed strategy of low-ability students and the possibility

19Figure 6 in the online appendix depicts the observed efforts of individuals, the kernel regression estimation of
efforts, and the equilibrium predictions for each of the markets and mechanisms. All 10 panels for the 10 markets
show that the kernel of effort increases in ability, as predicted. Moreover, the observed effort levels typically lie
above the predicted values, except for high-ability students in a few markets.

20See Table 8 in the online appendix.
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that the number of students with realized abilities below and above the cutoff does not correspond
to the number of seats in the two colleges. As a consequence, miscoordination in DCA can lead
to more unassigned students and less sorting by ability than in CCA.

Before investigating the average ability levels at the colleges, we study the choice of participants
to apply to college 1 or college 2 in DCA. Recall that the symmetric Bayesian Nash equilibrium
characterized in Theorem 1 has the property that students with an ability above the cutoff should
always apply to the better college (college 2) whereas students with an ability below the cutoff
should mix between the two colleges.

Result 5 (Choice of college in DCA): In DCA, students above the equilibrium ability cutoff
choose the good college 2 more often than students below the cutoff. However, high-ability students
apply to the good college significantly less often than predicted in all markets while low-ability
students apply to the good college more often than predicted (significant in three markets).

Support: Table 5 displays the equilibrium cutoff ability for each market in column (1). In column
(2) it provides the average equilibrium probability of choosing the good college 2 for students with
abilities below the cutoff in the respective markets. This average is calculated given the actual
realization of abilities in the experiment. It can be compared to the observed frequency of choosing
the good college by these students in column (3) and the 95% confidence intervals with standard
errors clustered at the level of matching groups in column (4). It emerges that subjects below the
cutoff choose the good college 2 more often than predicted in all five markets. The difference is
significant for markets 1, 3, and 5. Column (5) displays the proportion of subjects above the cutoff
applying to college 2, followed by the 95% confidence interval with standard errors clustered at the
level of matching groups in column (6). Note that in equilibrium these high-ability students should
apply to college 2 with certainty, but we can reject this hypothesis in all five markets.21 Finally,
the last column of Table 5 presents the p-values for the Wilcoxon rank-sum test of equality of
the distributions of the choice of college 2 below and above the market-specific equilibrium cutoff
based on averages of six matching groups. In all markets except market 4, the differences are
significant at the 1% significance level, and the difference is marginally significant for market 4.
Further evidence of the predictive power of the model is provided by a probit regression of the
observed choices of college 2. The coefficient for the equilibrium probability of choosing the good
college is significant.22 Thus we conclude that the choices of the subjects reflect the predicted
equilibrium pattern, but that the point predictions fail.

In order to better understand why the point predictions fail, we investigate the application
decision of students by ability. Figure 5 presents the choices of subjects in DCA by markets

21In markets 1, 2, and 5 the observed proportions are close to the equilibrium. In market 3 fewer high-ability
students choose the good college, which may be due to the large bad college (eight seats) relative to the good college
(two seats). In market 4, the relatively low proportion of high-ability students applying to the good college may be
driven by the similarity of payoffs for both colleges (1,800 points versus 2,000 points).

22See Table 9 in the online appendix. The same table shows that there is no gender difference in the choice of
the good college.
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Table 5: Proportion of choices of good college 2

Equ. prop. p-values for
of choices Obs. prop. of choices Obs. prop. of choices equality of

Equilibrium of college of college 2 below of college 2 above proportions
ability 2 below the cutoff the cutoff above and
cutoff the cutoff mean 95% conf. int mean 95% conf. int below the cutoff

(1) (2) (3) (4) (5) (6) (7)

Market 1 50 13% 33% [25%-44%] 85% [75%-92%] 0.00
Market 2 85.5 43% 51% [41%-61%] 92% [77%-98%] 0.00
Market 3 85.5 15% 27% [20%-36%] 68% [49%-82%] 0.00
Market 4 89.5 16% 17% [11%-27%] 42% [21%-67%] 0.07
Market 5 23.5 51% 64% [54%-72%] 91% [84%-95%] 0.00

Notes: Column (7) displays the p-values of the Wilcoxon rank-sum test for equality of the distributions,
based on averages of the six matching groups. Confidence intervals are estimated with standard errors
clustered at the level of matching groups.

and ability quantiles, together with the equilibrium predictions. Students above the equilibrium
cutoff in markets 1, 2, and 5 choose the good college 2 almost certainly, in line with the theory.
The proportions of choices of students with low ability are also close to the equilibrium mixing
probabilities. The biggest difference between the observed and the equilibrium proportions is due
to students who are slightly above or below the cutoff. This finding is particularly evident in
markets 1, 2, and 4. Remember that the equilibrium is characterized by a discontinuity regarding
the probability of the choice of college 2: students with abilities just above the cutoff have a pure
strategy of choosing college 2, while students just below the cutoff choose college 1 with almost
100% probability. Not surprisingly, the choices of universities by our subjects are smooth around
the cutoff. In line with this, we also do not observe the predicted kink in the effort choices shown
in Figure 2. These findings can be due to the fact that students with an ability level around the
cutoff under- or overestimate the cutoff, which would result in the observed smoothing.

As a final step, we compare CCA and DCA with respect to the resulting average abilities of
the students in each college. Panels A, B, and C of Table 6 present the equilibrium and observed
average abilities of students assigned to the good and bad college and of unassigned students,
respectively.23 Panel D presents the equilibrium and the observed percentage of unfilled seats by
markets.

Result 6 (Composition of colleges): (i) (Good college) There is no significant difference in the
average ability of students in CCA and DCA. This is in line with the theory except for markets
3 and 4 where a significantly higher ability of students in CCA is predicted. (ii) (Bad college)
Ability levels are not significantly different in markets 1 and 5, as predicted. The average ability

23The equilibrium assignment in CCA is straightforward to calculate given the ability draws. For DCA the choice
of the college is random for students below the ability cutoff. We generate one realization of the choice of the
college for all abilities below the cutoff, given the equilibrium probabilities. The resulting equilibrium allocation is
determined and used for the calculation in this table.
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Figure 5: Choice of college in DCA
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Table 6: Average abilities of students and unfilled seats by colleges
Market

1 2 3 4 5

Panel A

Assigned to good college, equil.
CCA (1) 74.4 91.4 91.9 86.9 62.0
DCA (2) 73.8 89.6 82.7 54.5 61.2
CCA=DCA, equil., p-value (3) 0.69 0.69 0.05 0.00 0.93
Assigned to good college, observed
CCA (4) 66.2 80.2 84.5 65.6 58.2
DCA (5) 67.2 82.7 80.9 66.1 59.1
CCA=DCA, observed, p-value (6) 0.81 0.87 0.52 0.87 0.63
CCA observed=CCA equil., p-value (7) 0.07 0.02 0.02 0.00 0.04
DCA observed=DCA equil., p-value (8) 0.04 0.02 0.63 0.06 0.13

Panel B

Assigned to bad college, equil.
CCA (1) 25.3 77.2 52.4 38.1 24.0
DCA (2) 27.2 72.3 50.8 51.5 42.0
CCA=DCA, equil., p-value (3) 0.63 0.08 0.26 0.00 0.34
Assigned to bad college, observed
CCA (4) 33.5 75.3 52.4 45.2 40.9
DCA (5) 31.0 43.7 45.5 49.6 34.5
CCA=DCA, observed, p-value (6) 0.42 0.01 0.04 0.15 0.52
CCA observed=CCA equil., p-value (7) 0.00 0.70 1.0 0.00 0.05
DCA observed=DCA equil., p-value (8) 0.40 0.00 0.05 0.29 0.04

Panel C

Not assigned, equil.
CCA (1) 35.3 10.6 10.9
DCA (2) 25.4 37.2 29.7 12.2 16.9
CCA=DCA, equil., p-value (3) N/A 0.47 0.01 N/A 0.01
Not assigned, observed
CCA (4) - 38.5 18.0 - 18.5
DCA (5) 39.8 45.8 49.1 25.6 20.5
CCA=DCA, observed, p-value (6) N/A 0.04 0.01 N/A 0.52
CCA observed=CCA equil., p-value (7) N/A 0.26 0.09 N/A 0.09
DCA observed=DCA equil., p-value (8) 0.32 0.02 0.01 0.14 0.14

Panel D

Percentage of unfilled seats, equil.
CCA (1) 0% 0% 0% 0% 0%
DCA (2) 12.0% 1.4% 3.3% 5.1% 2.2%
Percentage of unfilled seats, observed
CCA (3) 0% 0% 0% 0% 0%
DCA (4) 10.2% 1.4% 7.8% 9.3% 2.8%

Notes: Rows (3) and (6) of panels A, B, and C display the p-values of the Wilcoxon rank-sum test for
equality of the distributions, based on averages of the six matching groups. Rows (7) and (8) of panels
A , B, and C display the p-values of t-test of equality of the averages of the six matching groups and the
predicted constant value.
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of students in DCA is significantly lower than predicted and than in CCA in markets 2 and 3.

Support: We consider each market separately and mainly refer to rows (3) and (6) in panels
A and B of Table 6. In markets 1 and 5, both the theory and the experimental data show no
significant difference between ability levels in the good and bad college when comparing CCA with
DCA.

In market 4 where the two colleges have almost the same value for the students, the average
ability of students in the good college is predicted to be significantly lower in DCA, and conversely,
the average ability is predicted to be higher in the bad college in DCA. We fail to observe this
significant difference for both colleges because the average ability levels at both colleges are more
similar than predicted under both mechanisms. Thus, there is no sorting advantage of CCA in
market 4, other than predicted.

In markets 2 and 3, the observed abilities of students assigned to the bad college are significantly
higher in CCA than in DCA (see row (6) of Panel B). In equilibrium the difference has the same
sign but is much smaller and is not significant. Thus, in DCA low-ability students have a better
chance than predicted of being admitted to the bad college in markets 2 and 3, at the cost of some
high-ability students who remain unassigned (cf. rows (2) and (5) for markets 2 and 3 in Panel C).
The reason for abilities being higher at the bad college in CCA than in DCA in these markets is
due to a purely mechanical effect: in both mechanisms, students with abilities lower than predicted
are able to get a seat in the bad college, due to imperfect sorting. But CCA allows high-ability
students who are unable to get into the good college to obtain a seat in the bad college. This raises
the average ability in the bad college compared to DCA where the students who are unsuccessful
at the good college remain unassigned.

Table 6 also reports on the point predictions for each market separately, with test results in
rows (7) and (8) of Panels A, B, and C. The point predictions are rejected in more than half of the
cases, but we refrain from discussing them here in detail since our main focus is on the comparison
of the two mechanisms.

7.3 Discussion

In this section we discuss possible explanations of the observed deviations from equilibrium be-
havior. Overbidding is a common finding in all-pay auction experiments (see Barut et al., 2002,
and Noussair and Silver, 2006) and our results confirm this in the well-known context of a sin-
gle contest with multiple prizes (CCA), but we also show it to hold in parallel contests (DCA).
Our experiments allow us to compare the two mechanisms, and our main result is the relative
unattractiveness of DCA relative to CCA, even in markets where it should be preferred by all
students.

One candidate to explain the difference between predicted and observed utility levels in the two
mechanisms is the number of unfilled seats in DCA. If students coordinate worse than predicted
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in equilibrium, the attractiveness of DCA is reduced relative to CCA. Table 6, Panel D presents
the equilibrium and observed shares of unassigned seats by markets. The share of unfilled seats in
DCA is somewhat higher than in equilibrium only in markets 3 and 4, and the difference is small.
Thus, unfilled seats can at best partially explain the unattractiveness of DCA in our experiment
relative to the equilibrium predictions.

Apart from welfare losses due to seats remaining unfilled, the aggregate welfare of students
is affected by their choice of effort levels. Thus, overexertion of effort in DCA relative to CCA
is a potential explanation. Inspecting the observed and predicted average effort levels in the two
markets where DCA should be preferable for students (markets 2 and 3, see Table 4), it emerges
that overbidding is more pronounced in DCA.24 Moreover, it can be taken from Table 4 that efforts
fail to be significantly higher in CCA than in DCA in market 3, in contrast to the prediction. Thus,
the fact that DCA leads to more overbidding in markets 2 and 3 destroys its relative advantage
for the students in these two markets.

To understand the structure of overbidding in DCA, we investigate whether the students con-
dition their effort choice on the choice of the college in DCA.25 Note that in equilibrium, students
with abilities below the cutoff choose to apply to the good and the bad college with a certain
probability, while they exert the same effort irrespective of the college choice. However, we observe
that participants tend to exert higher effort when applying to the good as compared to the bad
college.26 We even observe differences in effort of high-ability students, depending on their choice
of college although they should apply to the good college in equilibrium. Some of these students
underbid, especially when applying to the bad college, but these are relatively rare instances. To
sum up, relative overbidding in DCA goes along with students conditioning their effort choice on
the choice of the college.

The level-k model and limited depth of reasoning provides a parsimonious explanation for
overexertion of effort in DCA relative to CCA. Moreover, it can organize our other main findings.
To see this, fix level-0 students as students who randomly choose the college to apply to in DCA.
Thus, level-0 students do not sort according to ability. However, level-0 students apply to colleges
in proportion to the number of seats at the college, i.e., they take into account the relative size of
the two colleges. Furthermore, assume that level-0 students choose effort levels randomly from the

24In market 2, average observed efforts and equilibrium efforts differ by (389-364)=25 points in CCA while the
difference is 101 in DCA; similarly for market 3 with average overbidding of 117 in CCA and 159 in DCA.

25Table 10 in the online appendix presents the average overbidding in terms of cost of effort by markets for
students above and below the equilibrium ability cutoff. One unit of cost of effort corresponds to 50 cents, thus
the maximum effort is 11 units. We use the costs of effort instead of effort in order to control for the scale of the
overbidding that depends on ability. Presenting this data in units of effort would not be informative as the same
deviation of, say, 100 units of effort means a small deviation for a high-ability student but a very large deviation
for a low-ability student.

26The difference is significant in two markets for low-ability students. Column 4 of Table 10 in the online appendix
presents the p-values for the significance of the dummy variable for applying to the good college when regressing
overbidding in money terms on the dummy and a constant for abilities below the theoretical cutoff in DCA (with
standard errors clustered at the level of matching groups).
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interval of possible effort choices that is determined by their ability. This results in effort choices
being proportional to ability.

Now consider level-1 students who play a best response to the belief that all other students
are level-0, as described above. First, if the distribution of abilities is the same at the good and
at the bad college and if the number of applicants is proportional to the number of seats, the
good college is more attractive. This explains our observation that low-ability students apply to
the good college more often than predicted. Regarding the effort level chosen by level-1 students,
they will choose a different effort level at both colleges, namely a higher effort at the good college
than at the bad college, because the competition is the same but the reward is higher at the good
college. Again, this is reflected in our data.

Moreover, the level of effort is higher than in equilibrium if the randomization (or proportional
rule) that level-1 players believe level-0 players to adopt yields higher than equilibrium efforts. This
is due to the strategic complementarity of effort. The level-k model also predicts that the effort
level of the highest-ability types may be lower than in equilibrium. This is the case if equilibrium
efforts are higher than average random efforts, which is caused by competition for the good college
being weaker than in equilibrium due to worse sorting. We observe this for markets with a strong
competition for seats at the good college, namely markets 2 and 3.27

Finally, note that in the case of CCA, level-1 players overexert or underexert effort depending
on whether the average random effort is smaller or greater than the equilibrium effort. For low
enough abilities (i.e., not the very high types), the average random effort is always higher than
the equilibrium effort, thus level-1 players overexert. In DCA overexertion is higher than in CCA
for these types, as they exert similar efforts, but the predictions of efforts in DCA are much lower
than in CCA for middle types around the cutoff. This also explains why we observe the biggest
violations of equilibrium efforts for these middle types.

Another candidate explanation for the overexertion of effort especially in DCA is risk-aversion.
Although we cannot provide a full analysis of this case due to technical difficulties, we would like
to elaborate on the possible effects of risk aversion in our setup. Fibich, Gavious, and Sela (2006)
have shown that in a single contest, players with high values bid higher than they would have
bid in the risk-neutral case (as compared to low-value bidders who bid less). The intuitive reason
for this is that bidders who bid more have more to lose in case of not winning the prize, due to
concave utility functions. Let us use this intuition to compare the overexertion of effort in CCA
versus DCA. In CCA, a high-ability student can get a high prize (v2), a low prize (v1), or no prize
(0), whereas in DCA she would get either a high prize (v2) or no prize (0). Therefore, in CCA just
failing to win a high prize would still give this bidder a low prize, whereas this would result in no
prize in DCA. In other words, this bidder has more to lose in a decentralized mechanism. Hence,
we could expect that an overexertion of effort would be more pronounced in DCA than in CCA.

27To illustrate these points, the graphs of the random, predicted, and observed efforts (all smoothed) in market
2 can be found in the online appendix, Figure 8.

37



8 Conclusion

In this paper, we study college admissions exams which concern millions of students every year
throughout the world. Our model abstracts from many aspects of real-world college admission
games and focuses on the following two important aspects: (i) colleges accept students by consid-
ering student exam scores, (ii) students have differing abilities which are their private information,
and the costs of getting ready for the exams are inversely related to ability levels. We focus on two
extreme policies that capture practices in a number of countries. In the centralized model students
can freely and without cost apply to all colleges, whereas in the decentralized mechanism students
can only apply to one college. We consider a model that is as simple as possible by assuming two
colleges and homogeneous student preferences over colleges in order to derive analytical results as
Bayesian Nash solutions to the two mechanisms.28

The solution of the centralized admissions mechanism follows from standard techniques in the
contest literature. The solution to the decentralized model, on the other hand, has interesting
properties such as lower ability students using a mixed strategy when deciding which college to
apply to. Our main theoretical result is that low- and high-ability students differ in terms of
their preferences between the two mechanisms where high-ability students prefer the centralized
mechanism and low-ability students the decentralized mechanism.

We employ experiments to test the theory and to develop insights into the functioning of
centralized and decentralized mechanisms that take into account behavioral aspects. Overall,
many predictions of the theory are supported by the data, despite a few important differences. We
find that in our markets with an equal number of seats and applicants, the centralized mechanism
is better for all applicants, as predicted by the theory. Again in line with the theory we observe
that in the markets with an overdemand for seats, low-ability students prefer a decentralized
admissions mechanism whereas high-ability students prefer a centralized mechanism. However, in
these markets the predicted superiority of the decentralized mechanism for the students is weaker
than predicted. Thus, only a smaller group of (low-ability) students than predicted profits from the
decentralized system. This can be ascribed to one robust and stark difference between theory and
observed behavior, namely overexertion of effort, which is more pronounced in the decentralized
mechanism. Moreover, the decentralized mechanism leads to less sorting by ability and to more
high-ability students being unassigned, both compared to the centralized mechanism and compared
to the equilibrium prediction. Overall, our findings resonate with a number of countries having
moved from a decentralized to a more centralized procedure in the past years, e.g., Russia and
other former Soviet states as well as South Korea.

For the evaluation of the two mechanisms from a welfare perspective, it matters whether the
effort spent preparing for the exam has no benefits beyond improving the performance in the exam
or whether this effort is useful. If effort is purely a cost, then welfare can be measured by the mean

28We also discuss the extension to more colleges in section 6.

38



utility of the students. In all our markets, the centralized mechanism outperforms the decentralized
mechanism with respect to this criterion. However, if the effort exerted by the students increases
their productivity, then the decentralized mechanism becomes relatively more attractive, where
efforts are weakly higher than in the centralized mechanism across markets.
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A Appendix

A.1 Preliminaries

The following lemmata are useful for the results given in the rest of the Appendix.

Lemma 1. Let l,m be given integers. Then,

d

dx

( l∑
j=0

pj,m−j(x)
)

= −mpl,m−l−1(x) when 0 ≤ l < m,

d

dx

( m∑
j=l

pj,m−j(x)
)

= mpl−1,m−l(x) when 0 < l ≤ m,

d

dx

( l∑
j=0

pm−j,j(x)
)

= mpm−l−1,l(x) when 0 ≤ l < m,

d

dx

( m∑
j=l

pm−j,j(x)
)

= −mpm−l,l−1(x) when 0 < l ≤ m.

Proof. We use the following equation:

(
m

j − 1

)
(m− j + 1) =

m!

(j − 1)!(m− j + 1)!
(m− j + 1) =

m!

(j − 1)!(m− j)!
=

(
m

j

)
j. (10)

The first formula: Suppose 0 = l. Then,
∑l

j=0 pj,m−j(x) = p0,m(x) = (1 − x)m. Its derivative is
−m(1−x)m−1 = −mp0,m−1(x). Thus the formula holds. Consider another case where 0 < l. Then
we have
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d

dx

( l∑
j=0

pj,m−j(x)
)

=
d

dx

( l∑
j=0

(
m

j

)
xj(1− x)m−j

)
=

l∑
j=1

(
m

j

)
j xj−1(1− x)m−j −

l∑
j=0

(
m

j

)
(m− j)xj(1− x)m−j−1

=
l∑

j=1

(
m

j

)
j xj−1(1− x)m−j −

l+1∑
j=1

(
m

j − 1

)
(m− j + 1)xj−1(1− x)m−j

=
l∑

j=1

(
m

j

)
j xj−1(1− x)m−j −

l+1∑
j=1

(
m

j

)
j xj−1(1− x)m−j (by (10))

Thus,

d

dx

( l∑
j=0

pj,m−j(x)
)

= −
(

m

l + 1

)
(l + 1)xl(1− x)m−l−1 = − m!

l!(m− l − 1)!
xl(1− x)m−l−1

= − m
(m− 1)!

l!(m− l − 1)!
xl(1− x)m−l−1 = −mpl,m−l−1(x).

The second formula: Suppose l = m. Then,
∑m

j=l pj,m−j(x) = pm,0(x) = xm. Its derivative is
mxm−1 = mpm−1,0(x). Thus the formula holds. Consider another case where l < m. Then we have

d

dx

( m∑
j=l

pj,m−j(x)
)

=
d

dx

( m∑
j=l

(
m

j

)
xj(1− x)m−j

)
=

m∑
j=l

(
m

j

)
j xj−1(1− x)m−j −

m−1∑
j=l

(
m

j

)
(m− j)xj(1− x)m−j−1

=
m∑
j=l

(
m

j

)
j xj−1(1− x)m−j −

m∑
j=l+1

(
m

j − 1

)
(m− j + 1)xj−1(1− x)m−j

=
m∑
j=l

(
m

j

)
j xj−1(1− x)m−j −

m∑
j=l+1

(
m

j

)
j xj−1(1− x)m−j (by (10))

Thus,

d

dx

( l∑
j=0

pj,m−j(x)
)

=

(
m

l

)
l xl−1(1− x)m−l = m!

(l − 1)!(m− l)!
xl−1(1− x)m−l

= m
(m− 1)!

(l − 1)!(m− l)!
xl−1(1− x)m−l = mpl−1,m−l(x).

The third formula: By the second formula, we have
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d

dx

( l∑
j=0

pm−j,j(x)
)
=

d

dx

( m∑
j=m−l

pj,m−j(x)
)
= mpm−l−1,l(x).

The fourth formula: By the first formula, we have

d

dx

( m∑
j=l

pm−j,j(x)
)
=

d

dx

( m−l∑
j=0

pj,m−j(x)
)
= mpm−l,l−1(x).

B On Equilibria of Decentralized College Admissions

B.1 On properties of monotone and symmetric equilibrium of decen-
tralized college admissions

We focus on symmetric and monotone equilibrium. More specifically, each student will use the
same probability mixing function γ (a) , and the same effort function βi (a) while applying to college
i ∈ {1, 2}. Moreover, for all values βi is defined (i.e., for all types a which apply to college i with
positive probability) βi (a) is increasing in a and γ (a) is integrable (continuous except for a zero
measure set). We define

π (a) =

ˆ a

0

γ (x) f (x) dx.

We then define the conditional distributions

H1 (a) =
π (a)

π (1)
and H2 (a) =

F (a)− π (a)
1− π (1)

We then define the probability of being in the top qi among applicants to college i by Ki (a)

and its corresponding density by ki (a) . That is, we have

K1(a) =

q1−1∑
m=0

pm,n−m−1(π(1)) +
n−1∑
m=q1

pm,n−m−1(π(1))H
1
m−q1+1,m(a),

K2(a) =

q2−1∑
m=0

pn−m−1,m(π(1)) +
n−1∑
m=q2

pn−m−1,m(π(1))H
2
m−q2+1,m(a).

We first prove that there cannot be a pure strategy equilibrium (i.e., γ (a) ∈ {0, 1} for all
a ∈ [0, 1]).

Proposition 4. There cannot be a pure-strategy symmetric and monotone equilibrium.

Proof. By method of contradiction, suppose that there is one. It is easy to see that the measure of
both {a ∈ [0, 1] : γ (a) = 0} and {a ∈ [0, 1] : γ (a) = 1} are strictly positive. Then there exist c, d
with 0 < c < d ≤ 1 such that all a ∈ [0, c] applies to college i and all a ∈ (c, d] applies to college j.
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Then it is easy to see that (i) βi (c) > 0 and lima↓c βj (a) = 0, and (ii) viKi (c)− βi(c)
c

= vjKj (c) .
Now, we argue that any a ∈

(
c, β−1j (βi (c))

)
would be strictly better off by “mimicking” type c. To

see this, consider

f (a) ≡ viKi (c)−
βi (c)

a
−
(
vjKj (a)−

βj (a)

a

)
which represents the gain from mimicking type c. We obtain f (a) > 0 for all a ∈

(
c, β−1j (βi (c))

)
by noting that f (c) = 0 and

f ′ (a) =
βi (c)

a2
− βj (a)

a2
> 0

by the envelope theorem.

We then show that in any mixed strategy equilibrium, γ (a) ∈ (0, 1) implies that β1 (a) = β2 (a) .

Proposition 5. If γ (a) ∈ (0, 1) , then β1 (a) = β2 (a).

Proof. Let a ∈ [0, 1] such that γ(a) ∈ (0, 1). There is an interval I = [a, a] such that a ∈ I and for
all b ∈ I, γ (b) ∈ (0, 1) . Then, for all b ∈ I, since type b is indifferent applying to colleges 1 and 2,
we have

EU1 (b) ≡ v1K1 (b)−
β1 (b)

b
= v2K2 (b)−

β2 (b)

b
≡ EU2 (b) .

Since the first-order conditions imply

βi (b) = vi

ˆ b

a

xki (x) dx+Di = vi

(
Ki (b) b−Ki(a)a−

ˆ b

a

Ki (x) dx

)
+Di,

where Di is a constant. Thus

EUi(b) = viKi(b)− viKi(b) + viKi(a)
a

b
+ vi

´ b
a
Ki(x)dx

b
− Di

b

= viKi(a)
a

b
+ vi

´ b
a
Ki(x)dx

b
− Di

b
.

Then, as EU1(a) = EU2(a), we have

v1K1(a)−
D1

a
= v2K2(a)−

D2

a
. (11)

Moreover, for all b ∈ I, as EU1(b) = EU2(b),
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v1K1(a)
a

b
+ v1

´ b
a
K1(x)dx

b
− D1

b
= v2K2(a)

a

b
+ v2

´ b
a
K2(x)dx

b
− D2

b

⇒ v1K1(a) + v1

´ b
a
K1(x)dx

a
− D1

a
= v2K2(a) + v2

´ b
a
K2(x)dx

a
− D2

a

⇒ v1

´ b
a
K1(x)dx

a
= v2

´ b
a
K2(x)dx

a
(∵ (11))

⇒ v1

ˆ b

a

K1(x)dx = v2

ˆ b

a

K2(x)dx. (12)

Thus, we have

for all b ∈ I, v1K1(b) = v2K2(b). (13)

Therefore, using the equalities (11), (12), and (13), we can conclude that for all b ∈ I, β1(b) =
β2(b). Hence,

β1(a) = β2(a).

Hence, it is without loss of generality that we focus on the equilibria in the main body: when
students mix between applying to colleges, they choose the same effort level while applying to
either college.

B.2 Derivation of the symmetric equilibrium

We show how to obtain the function γ : [0, c]→ (0, 1) and the cutoff c from Equation (6).

Step 1: We show that there is a unique value π(c) that satisfies Equation (7). Define a function
ϕ1 : [0, 1]→ R: for each x ∈ [0, 1],

ϕ1(x) = v2

q2−1∑
m=0

pn−m−1,m(x)− v1
q1−1∑
m=0

pm,n−m−1(x).

Differentiate ϕ1 at each x ∈ (0, 1): using Lemma 1, we have

ϕ′1(x) = v2(n− 1) p(n−1)−(q2−1)−1,q2−1(x) + v1(n− 1) pq1−1,(n−1)−(q1−1)−1(x) > 0.

Thus, ϕ1 is strictly increasing. Moreover, ϕ1(0) = −v1 < 0 and ϕ2(1) = v2 > 0. Thus, since ϕ1

is a continuous function on [0, 1], there is a unique x∗ ∈ (0, 1) such that ϕ1(x
∗) = 0. Thus, since

ϕ1(π(c)) = 0 by (7), there is a unique π(c) ∈ (0, 1) that satisfies Equation (7).
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Step 2: Given a unique π(c), we now show that there is a unique cutoff c ∈ (0, 1). In Equation
(8), since π(c) is known by Step 1, the the only unknown is c via F (c). Define a function ϕ2 :

[π(c), 1]→ R as follows: for each x ∈ [π(c), 1],

ϕ2(x) = v2

q2−1∑
m=0

pn−m−1,m(π(c)) + v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(x− π(c)
1− π(c)

)
− v1.

Differentiate ϕ2 at each point x ∈ (π(c), 1): using Lemma 1, we have

ϕ′2(x) = v2

n−1∑
m=q2

pn−m−1,m(π(c))
( 1

1− π(c)

)
mpm−q2,q2−1

(x− π(c)
1− π(c)

)
> 0.

Thus, ϕ is strictly increasing. Moreover, ϕ2(1) = v2 − v1 > 0 and

ϕ2(π(c)) = v2

q2−1∑
m=0

pn−m−1,m(π(c)) + v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j(0)− v1

= v2

q2−1∑
m=0

pn−m−1,m(π(c))− v1 (∵ pj,m−j(0) = 0 for j ≥ m− q2 + 1 ≥ 1)

= v1

q1−1∑
m=0

pm,n−m−1(π(c))− v1 (∵ (7))

< 0.

Therefore, there is a unique x∗ ∈ (π(c), 1) such that ϕ2(x
∗) = 0. Since ϕ2(F (c)) = 0, x∗ =

F (c). Thus, since F is strictly increasing, there is a unique cutoff c ∈ (F−1(π(c)), 1) such that
c = F−1(x∗).

Step 3: From steps 1 and 2, π(c) and c are uniquely determined. We now show that for each
a ∈ [0, c), there is a unique π(a) ∈ (0, 1) that satisfies (9). Fix a ∈ [0, c). Define a function
ϕ3 : [0, F (a)]→ R:

ϕ3(x) = v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

(F (a)− x
1− π(c)

)
− v1

n−1∑
m=q1

pm,n−m−1(π(c))
m∑

j=m−q1+1

pj,m−j

( x

π(c)

)
.

Let us differentiate ϕ3 at each x ∈ (0, F (a)) by using Lemma 1:
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ϕ′3(x) = v2

n−1∑
m=q2

pn−m−1,m(π(c))
(
− 1

1− π(c)

)
mpm−q2,q2−1

(F (a)− x
1− π(c)

)
−v1

n−1∑
m=q1

pm,n−m−1(π(c))
( 1

π(c)

)
mpm−q1,q1−1

( x

π(c)

)
< 0.

Thus, ϕ is strictly decreasing. Moreover,

ϕ3(0) = v2

n−1∑
m=q2

pn−m−1,m(π(c))
m∑

j=m−q2+1

pj,m−j

( F (a)

1− π(c)

)
− v1

n−1∑
m=q1

pm,n−m−1(π(c))
m∑

j=m−q1+1

pj,m−j(0)

= v2

n−1∑
m=q2

pn−m−1,m(π(c))

m∑
j=m−q2+1

pj,m−j

( F (a)

1− π(c)

)
(∵ pj,m−j(0) = 0)

> 0.

and

ϕ3(F (a)) = v2

n−1∑
m=q2

pn−m−1,m(π(c))

m∑
j=m−q2+1

pj,m−j(0)− v1
n−1∑
m=q1

pm,n−m−1(π(c))

m∑
j=m−q1+1

pj,m−j

(F (a)
π(c)

)

= −v1
n−1∑
m=q1

pm,n−m−1(π(c))
m∑

j=m−q1+1

pj,m−j

(F (a)
π(c)

)
(∵ pj,m−j(0) = 0)

< 0.

Thus, there is a unique x∗ ∈ (0, F (a)) such that ϕ3(x
∗) = 0. Since ϕ3(π(a)) = 0, x∗ = π(a).

Hence, there is a unique π(a) ∈ (0, 1) that satisfies Equation (9).

Step 4: Finally, we derive γ(a) for each a ∈ (0, c). Recall that in (9), π(a) =
´ a
0
γ(x)f(x)dx and

π(c) and π(a) are known by previous steps. Differentiate (9) with respect to a by using Lemma 1:

v1

n−1∑
m=q1

pm,n−m−1(π(c))
(γ(a)f(a)

π(c)

)
mpm−q1,q1−1

(π(a)
π(c)

)
= v2

n−1∑
m=q2

pn−m−1,m(π(c))
(f(a)− γ(a)f(a)

1− π(c)

)
mpm−q2,q2−1

(F (a)− π(a)
1− π(c)

)
. (14)

Let us define the following functions:

A(a) := v1

n−1∑
m=q1

pm,n−m−1(π(c))mpm−q1,q1−1

(π(a)
π(c)

)
> 0,

B(a) := v2

n−1∑
m=q2

pn−m−1,m(π(c))mpm−q2,q2−1

(F (a)− π(a)
1− π(c)

)
> 0.
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Then, we can write (14) as

γ(a)f(a)

π(c)
A(a) =

f(a)(1− γ(a))
1− π(c)

B(a). (15)

Solving for γ(a) in (15), we obtain

γ(a) =
π(c)B(a)

(1− π(c))A(a) + π(c)B(a)
∈ (0, 1).

By construction, function γ we have derived satisfies Equation (9).

B.3 Verification: the candidate is an equilibrium

In this appendix, we check for global deviations and confirm that the unique symmetric equilibrium
candidate we have derived in Theorem 1 is indeed an equilibrium. As a preliminary notation and
analysis, let us calculate the probability, denoted by P [1, b|c, γ, βD], that a student who makes
effort e = βD(b) and applies to college 1 ends up getting a seat in college 1:

P [1, b|γ, βD] =


∑q1−1

m=0 p̂m,n−m−1(c) +
∑n−1

m=q1
p̂m,n−m−1(c)Gm−q1+1,m(b) if b ∈ [0, c]

1 if b ≥ c.

Obviously, if the student chooses an effort more than β(c), he will definitely get a seat in college
1. Otherwise, the first line represents the sums of the probability of events in which e is one of the
highest q1 efforts among the students who apply to college 1.

Similarly, let us calculate the probability, denoted by P [2, b|β, γ], that a student who makes
effort e = β(b) and applies to college 2 ends up getting a seat in college 2.

P [2, b|γ, βD] =


∑q2−1

m=0 p̂n−m−1,m(c) +
∑n−1

m=q2
p̂n−m−1,m(c)Hm−q2+1,m(b) if b ∈ [0, 1]

1 if b ≥ 1.

Obviously, if the student chooses an effort greater than β(1), he will definitely get a seat in college
2.29 Otherwise, the first line represents the sums of probability of events in which e is one of the
highest q2 efforts among the students who apply to college 2.

Next, denote by U(r, b|γ, βD, a) (or U(r, b|a) for short) the expected utility of type a who
chooses college 1 with probability r and makes effort e = βD(b) when all of the other students
follow the strategy (γ, βD). We have,

U(r, b|a) := rP [1, b|γ, βD]v1 + (1− r)P [2, b|γ, βD]v2 −
e

a
.

We need to show that for each a ∈ [0, 1], each r ∈ [0, 1] and each b ≥ 0, Û(a) ≡ U(γ(a), a|a) ≥
29Of course, there is no type b with b > 1, if a student chooses an effort e strictly greater than βD(1), we represent

him as mimicking a type b > 1.
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U(r, b|a). Fix a ∈ [0, 1]. It is sufficient to show that Û(a) ≥ U(0, b|a) and Û(a) ≥ U(1, b|a), as
these two conditions together implies required “no global deviation” condition. Below, we show
that for any a ∈ [0, 1], and for b ≥ 0, both Û(a) ≥ U(0, b|a) and Û(a) ≥ U(1, b|a) hold. We consider
two cases, one for lower-ability students (a ∈ [0, c]), one for higher-ability students (a ∈ [c, 1]).
As sub-cases, we analyze b to be in the same region (b is low for a low, and b is high for a high),
different region (a high, b low; and a low, b high), and b being over 1. The no-deviation results for
the same region is standard, whereas deviations across regions need to be carefully analyzed.

Case 1: Type a ∈ [0, c]

Case 1-1: b ∈ [0, c]. Then, by our derivation, we have U(0, b|a) = U(1, b|a) and also Û(a) ≥
U(1, b|a) can be shown via standard arguments (for instance, see section 3.2.1 and Proposition 2.2
in Krishna, 2002). Hence, we can conclude that Û(a) ≥ U(1, e|a) = U(0, e|a).
Case 1-2: b ∈ (c, 1]. We first show Û(a) ≥ U(1, b|a).

Û(a) ≥ U(1, c|a) = v1 −
βD(c)

a

≥ v1 −
βD(b)

a
(∵ βD(c) ≤ βD(b)).

= U(1, b|a).

Next, we show Û(a) ≥ U(0, b|a).

Û(a) ≥ U(γ(c), c|a) = P [2, c|γ, βD]v2 −
βD(c)

a

=

(
P [2, βD(c)|γ, βD]v2 −

βD(c)

c

)
+
βD(c)

c
− βD(c)

a
= U(0, c|c) + βD(c)

c
− βD(c)

a

≥ U(0, b|c) + βD(c)

c
− βD(c)

a
= P [2, b|γ, βD]v2 −

βD(b)

c
+
βD(c)

c
− βD(c)

a

=

(
P [2, b|γ, βD]− βD(b)

a

)
+
βD(b)

a
− βD(b)

c
+
βD(c)

c
− βD(c)

a

= U(0, b|a) +
(
βD(b)− βD(c)

)(1

a
− 1

c

)
≥ U(0, b|a) (∵ βD(b) ≥ βD(c), a < c).

Case 1-3: b > 1 (or e > βD(1)).
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Û(a) ≥ U(γ(c), c|a) = v1 −
βD(c)

a

> v1 −
e

a
(∵ βD(c) ≤ βD(1) < e)

= U(1, b|a).

Moreover,

Û(a) ≥ U(0, 1|a) (by Case 1-2)

= v2 −
βD(1)

a

> v2 −
e

a
(∵ e > βD(1))

= U(0, b|a).

Case 2: Type a ∈ [c, 1]

Case 2-1: b ∈ [0, c]. We first show Û(a) ≥ U(1, b|a).

Û(a) ≥ U(0, c|a) = v2P [2, c|γ, βD]−
βD(c)

a

= U(γ(c), c|c) + βD(c)

c
− βD(c)

a

≥ U(γ(b), b|c) + βD(c)

c
− βD(c)

a

= U(γ(b), b|a) + βD(b)

a
− βD(b)

c
+
βD(c)

c
− βD(c)

a

= U(1, b|a) + (βD(c)− βD(b))
(
1

c
− 1

a

)
(∵ U(γ(b), b|a) = U(1, b|a))

≥ U(1, b|a) (∵ βD(c)− βD(b) ≥ 0, c < a).

To obtain Û(a) ≥ U(0, b|a), note that in the above inequalities, if we use U(γ(b), b|a) = U(0, b|a)
in the fourth line, we obtained the desired inequality.
Case 2-2: b ∈ (c, 1]. First, by our derivation, Û(a) ≥ U(0, e|γ, βD, a) can be shown via standard
arguments (for instance, see section 3.2.1 and Proposition 2.2 in Krishna, 2002). Next, we show
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Û(a) ≥ U(1, b|a).

Û(a) ≥ U(0, c|a) = v2P [2, c|γ, βD]−
βD(c)

a

= v1 −
βD(c)

a
(∵ v2P [2, c|γ, βD] = v1)

≥ v1 −
βD(b)

a
= U(1, b|a) (∵ βD(c) ≤ βD(b)).

Case 2-3: b > 1 (or e > βD(1))

Û(a) ≥ U(γ(c), c|a) = U(1, c|a) = v1 −
βD(c)

a

≥ v1 −
e

a
(∵ e > βD(1) > βD(c))

≥ U(1, b|a).

and

Û(a) ≥ U(0, 1|a) = v2 −
βD(1)

a

≥ v2 −
e

a
(∵ e > βD(1))

= U(0, b|a).
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C Additional tables and figures (for online publication)

Figure 6: Individual efforts by ability53



Figure 7: Distribution of observed switching points

Table 7: Number of switching points in the 50,000 bootstrapped samples, by markets
Market
2 3

Unique switching point in the predicted direction 77.5% 80.1%
Two switching points 17.3% 4.5%
Three or more switching points 0.8% 4.6%
No switching points 4.2% 6.9%
Unique switching point in the opposite direction 0.2% 3.9%
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Table 8: Observed effort choices and equilibrium predictions

(1) (2)
Efforts Efforts

Equilibrium effort .739*** .326***
(.047) (.083)

Dummy for CCA -48.099 -61.923*
(30.206) (28.710)

Equilibrium effort in CCA .0162 .0790
(.084) (.085)

Ability 5.210***
(.627)

Constant 195.187*** 29.430
(17.909) (20.487)

Observations 2160 2160
No. of individuals
Overall-R2

R2 .307 .379
F-test 140.829 186.695

Notes: OLS estimation of effort levels based on clustered robust standard errors at the level of matching
groups. Equilibrium effort in CCA is an interaction of the CCA dummy and equilibrium effort. ***
denotes statistical significance at the 1%-level, ** at the 5%-level, and * at the 10%-level. Standard
errors in parentheses.

Table 9: Choice of the good college 2 in DCA
(1) (2) (3)

Equilibrium probability of choosing the good college 1.684*** 1.464*** 1.465***
(.106) (.118) (.113)

Ability .009*** .009***
(.002) (.002)

Female dummy -.016
(.114)

Constant -.793*** -1.144*** -1.139***
(.079) (.110) (.115)

Observations 1080 1080 1080
log(likelihood) -615.461 -596.561 -596.543

Notes: Probit estimation of dummy for the choice of the good college based on clustered
robust standard errors at the subject level. *** denotes statistical significance at the
1%-level, ** at the 5%-level, and * at the 10%-level. Standard errors in parentheses
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Table 10: Average overbidding in money terms, given the choice of the college in DCA.
Ability below cutoff Ability above cutoff
CCA DCA DCA P-value CCA DCA DCA P-value

Bad Good Good= Bad Good Good=
college college Bad college college Bad

(1) (2) (3) (4) (5) (6) (7) (8)

Market 1 N 106 70 36 110 16 92
Overbidding 3.2 3.4 7.7 0.02 0.4 -0.9 1.8 0.10

Market 2 N 177 86 91 39 3 36
Overbidding 3.2 2.5 4.9 0.10 -4.1 -8.6 -0.8 0.02

Market 3 N 179 130 49 37 12 25
Overbidding 2.5 3.5 5.8 0.24 0.7 -1.3 0.3 0.26

Market 4 N 190 157 33 26 15 11
Overbidding 3.1 4.0 5.8 0.06 2.2 1.4 6.8 0.10

Market 5 N 44 16 28 172 15 157
Overbidding 2.3 -0.5 5.4 0.02 1.6 0.4 1.8 0.35

Notes: Columns (4) and (8) show the p-values for the significance of the dummy variable for applying to
the good college when regressing overbidding in money terms on the dummy and a constant for abilities
below and above the theoretical cutoff in DCA, respectively, with standard errors clustered at the level
of matching groups.

Figure 8: Equilibrium, average random and average observed efforts in market 2
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D Equilibrium derivation for ` colleges (for online publica-
tion)

We show how to derive cutoffs, mixed strategies, and cost functions provided there exists an
equilibrium as specified in section 6.1. The basic procedure follows the one in Theorem 1.

We first show how to obtain the equilibrium cutoffs c1, . . . , c`−1 and the mixed strategy function
γ1, . . . , γ`−1. Let k ∈ {1, . . . , ` − 1}. A necessary condition for this to be an equilibrium is that
each type a ∈ [ck−1, ck] has to be indifferent between applying to college 1 and college 2. Thus, for
all a ∈ [ck−1, ck],

vk

( qk−1∑
m=0

pm,n−m−1(π
k(ck)) +

n−1∑
m=qk

pm,n−m−1(π
k(ck))H

k
m−qk+1,m(a)

)

= vk+1

( qk+1−1∑
m=0

pm,n−m−1(π
k+1(ck+1)) +

n−1∑
m=qk+1

pm,n−m−1(π
k+1(ck+1))H

k+1
m−qk+1+1,m(a)

)
. (16)

Step 1: Find π1(c1), . . . , π
l(c`). Equation (16) can be written as

v1

q1−1∑
m=0

pm,n−m−1(π
1(c1)) = v2

q2−1∑
m=0

pm,n−m−1(π
2(c2)),

vk−2 = vk

qk−1∑
m=0

pm,n−m−1(π
k(ck)) for k ∈ {3, ..., `}, (17)

where the first equation is Equation (16) at a = 0 under k = 1, which says that a type a = 0

is indifferent between college 1 and 2; the second equation follows from Equation (16) at a = ck

under k − 1 and k, which says that a type a = ck−2 is indifferent between colleges k − 2 and k.
Therefore, π1(c1), . . . , π

`(c`) can be obtained by solving Equation (17).

Step 2: Given π1(c1), . . . , π
`(c`), find cutoffs c1, . . . , c`−1. We first show the following claim that

shows how to obtain πk(ck−1) from π1(c1), . . . , π
`(c`).

Proof. For k = 2: Note that π1(c1) =
´ c1
0
γ1(x)dF (x). Thus π2(c1) :=

´ c1
0
(1 − γ1(x))dF (x) =

F (c1) − π1(c1). Suppose that the claim is true up to k − 1 where k ≥ 3. Then πk−1(ck−1) :=
πk−1(ck−2) +

´ ck−1

ck−2
γk−1(x)dF (x). Thus

´ ck−1

ck−2
γk−1(x)dF (x) = πk−1(ck−1) − πk−1(ck−2). Hence, by
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the induction hypothesis, we have

πk(ck−1) : =

ˆ ck−1

ck−2

(1− γk−1(x))dF (x)

= F (ck−1)− F (ck−2)−
ˆ ck−1

ck−2

γk−1(x)dF (x)

= F (ck−1)− F (ck−2)− πk−1(ck−1) + πk−1(ck−2)

= F (ck−1)− F (ck−2)− πk−1(ck−1) + (F (ck−2)−
k−2∑
j=1

πj(cj))

= F (ck−1)−
k−1∑
j=1

πj(cj).

Now Equation (16) at a = ck can be rewritten as, for each k ∈ {1, . . . , `− 1},

vk = vk+1

qk+1−1∑
m=0

pm,n−m−1(π
k+1(ck+1))

+vk+1

n−1∑
m=qk+1

pm,n−m−1(π
k+1(ck+1))

m∑
j=m−qk+1+1

pj,m−j

(F (ck)− (π1(c1) + . . .+ πk(ck))

πk+1(ck+1)

)
,(18)

where we use induction claim and

Hk+1
m−qk+1+1,m(ck) =

m∑
j=m−qk+1+1

pj,m−j

(
πk+1(ck)

πk+1(ck+1)

)
.

Hence, given π1(c1), . . . , π
`(c`), we can find ck by solving Equation (18).

Step 3: Given π1(c1), . . . , π
`(c`) and c1, . . . , c`−1, for each k ∈ {1, . . . , `−1} and each a ∈ [ck−1, ck],

there is a unique πk(a) that satisfies Equation (19). Moreover, we can get the mixed strategy
function γk(a) by differentiating Equation (19).

Equation (16) at a ∈ [ck−1, ck] can be rewritten as, for each k ∈ {1, . . . , `− 1},

vk

qk−1∑
m=0

pm,n−m−1(π
k(ck)) + vk

n−1∑
m=qk

pm,n−m−1(π
k(ck))

m∑
j=m−qk+1

pj,m−j

(
πk(a)

πk(ck)

)

= vk+1

qk+1−1∑
m=0

pm,n−m−1(π
k+1(ck+1))

+vk+1

n−1∑
m=qk+1

pm,n−m−1(π
k+1(ck+1))

m∑
j=m−qk+1+1

pj,m−j

(
F (a)− F (ck−1)− πk(a) + πk(ck−1)

πk+1(ck+1)

)
,(19)

where we used the following equation: for each a ∈ [ck−1, ck], since πk(a) := πk(ck−1)+
´ a
ck−1

γk(x)dF (x),
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πk+1(a) :=

ˆ a

ck−1

(1− γk(x))dF (x)

= F (a)− F (ck−1)− πk(a) + πk(ck−1).

Differentiate Equation (19) with respect to a by using Lemma 1:

vk

n−1∑
m=qk

pm,n−m−1(π
k(ck))

γk(a)f(a)

πk(ck)
mpm−qk,qk−1

( πk(a)
πk(ck)

)
= vk+1

n−1∑
m=qk+1

pm,n−m−1(π
k+1(ck+1))

f(a)− γk(a)f(a)
πk+1(ck+1)

mpm−qk+1,qk+1−1

( πk+1(a)

πk+1(ck+1)

)
. (20)

Let us define the following functions:

Ak(a) = vk

n−1∑
m=qk

pm,n−m−1(π
k(ck))mpm−qk,qk−1

( πk(a)
πk(ck)

)
> 0

Bk(a) = vk+1

n−1∑
m=qk+1

pm,n−m−1(π
k+1(ck+1))mpm−qk+1,qk+1−1

( πk+1(a)

πk+1(ck+1)

)
> 0.

Then we can write (20) as

γk(a)f(a)

πk(ck)
Ak(a) =

f(a)(1− γk(a))
πk+1(ck+1)

Bk(a). (21)

Solving for γk(a) in (21), we obtain

γk(a) =
πk(ck)B

k(a)

πk+1(ck+1)Ak(a) + πk(ck)Bk(a)
.

Step 4: We find the effort function βD. Consider a student with type a ∈ [ck−1, ck]. A necessary
condition is that she does not want to mimic any other type a′ in [ck−1, ck]. Her utility maximization
problem is

max
a′∈[ck−1,ck]

vk

( qk−1∑
m=0

pm,n−m−1(π
k(ck)) +

n−1∑
m=qk

pm,n−m−1(π
k(ck))H

k
m−qk+1,m(a

′)
)
− βD(a′)

a
.

The first-order necessary condition requires the derivative of the objective function to be 0 at
a′ = a. Hence
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vk

n−1∑
m=qk

pm,n−m−1(π
k(ck))hm−qk+1,m(a)−

(βD(a))′

a
= 0.

Solving the differential equation with the boundary condition at βD(ck−1), we obtain

βD(a) = βD(ck−1) + vk

ˆ a

ck−1

x
n−1∑
m=qk

pm,n−m−1(π
k(ck))h

k
m−qk+1,m(x)dx

for all a ∈ [ck−1, ck].

E Instructions of the experiment (for online publication)

Welcome! This is an experiment about decision making. You and the other participants in the
experiment will participate in a situation where you have to make a number of choices. In this
situation, you can earn money that will be paid out to you in cash at the end of the experiment.
How much you will earn depends on the decisions that you and the other participants in the
experiment make.

During the experiment you are not allowed to use any electronic devices or to communicate
with other participants. Please use exclusively the programs and functions that are intended to
be used in the experiment.

These instructions describe the situation in which you have to make a decision. The instructions
are identical for all participants in the experiment. It is important that you read the instructions
carefully so that you understand the decision-making problem well. If something is unclear to you
while reading, or if you have other questions, please let us know by raising your hand. We will
then answer your questions individually.

Please do not, under any circumstances, ask your question(s) aloud. You are not permitted
to give information of any kind to the other participants. You are also not permitted to speak to
other participants at any time throughout the experiment. Whenever you have a question, please
raise your hand and we will come to you and answer it. If you break these rules, we may have to
terminate the experiment.

Once everyone has read the instructions and there are no further questions, we will conduct a
short quiz where each of you will complete some tasks on your own. We will walk around, look over
your answers, and solve any remaining comprehension problems. The only purpose of the quiz is
to ensure that you thoroughly understand the crucial details of the decision-making problem.

Your anonymity and the anonymity of the other participants will be guaranteed throughout
the entire experiment. You will neither learn about the identity of the other participants, nor will
they learn about your identity.
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General description

This experiment is about students who try to enter the university. The 24 participants in the
room are grouped into two groups of 12 persons each. These 12 participants represent students
competing for university seats. The experiment consists of 15 independent decisions (15 rounds),
which represent different student admission processes. At the end of each round every student will
receive at most one seat in one of the universities or will remain unassigned.

There are two universities that differ in quality. We refer to the best university as University
1. Admission to the best university (University 1) yields a payoff of 2,000 points for the students.
Admission to University 2 yields a smaller payoff for the students, which can vary across the rounds.
Each university has a certain number of seats to be filled, a factor which can also be different for
each of the rounds.

Instructions for CCA

The allocation procedure is implemented in the following way:
At the beginning of the each round, every student learns her ability. The ability of each student

is drawn uniformly from the interval from 0 to 100. Thus every student has an equal chance of being
assigned every level of ability from the interval. You will learn your own ability but not the ability
of the other 11 students competing with you for the seats. The ability is drawn independently for
all participants in every round.

Admission to universities is centralized and is based on the amount of effort that each student
puts into a final exam. In the experiment you can choose a level of effort. This effort is costly.
The price of effort depends on your ability. The higher the ability the easier (cheaper) the effort.
The higher the ability the easier (cheaper) the effort. The price of one unit of effort is determined
as: 100 divided by the ability, 100/ability. On your screen you will see your ability for the round
and the corresponding price of one unit of effort. You will have to decide on the amount of the
effort that you choose.

In each of the rounds you can use the calculator which will be on your screen. You can use it to
find out what possible payoffs a particular effort in points can yield. To gain a better understanding
of the experiment you can insert different values. This will help you with your decision.

In the beginning of each round, every participant receives 2,200 points that can either be used
to exert effort or kept.

After each student has decided how much effort to buy, these effort levels are sent to the
centralized clearing house which then determines the assignments to universities. The students
who have chosen the highest effort levels are assigned to University 1 up to the capacity of this
university. They receive 2,000 points. The students with the next higher levels of effort are
assigned to University 2 up to its capacity and receive the corresponding amount of points. All
other students who have applied remain unassigned and will receive no points. Participants that
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have chosen the same amount of effort will be ranked according to a random draw.
Each participant receives a payoff that is determined as the sum of the non-invested endowment

and the payoff f rom university admission. Thus:
Payoff = Endowment − price of effort∗units of effort + payoff from assignment
Note that your ability, the ability of the other participants, and the number of seats at Uni-

versity 1 and University 2 vary in every round.
Every point corresponds to 0.5 cents. Only one of the rounds will be relevant for you actual

payoff. This round will be selected randomly by the computer at the end of the experiment.

Example

Let us consider an example with three hypothetical persons: Julia, Peter, and Simon.
Imagine the following round: University 1 has four seats, and University 2 has five seats. The

admission to University 1 yields 2,000 points and the admission to University 2 yields 1,000 points.
Julia has an ability of 25. Thus the cost of one unit of effort is 100/25 = 4 points for her. Her

endowment is 2,200 points, which means that she can buy a maximum of 2,200/4 = 550 units of
effort. Let us imagine that Julia decided to buy 400 units of effort. Thus she has to pay 400*4 =
1,600 points and keeps 600 points of her endowment.

Peter has an ability of 50. Thus the cost of effort for him is 100/50 = 2 points for one unit
of effort. His endowment is 2,200 points. Thus he can buy a maximum of 2,200/2 = 1100 units
of effort. Let us assume that Peter chose 600 units of effort. Thus he has to pay 600*2 = 1,200
points.

Simon has an ability of 80. Thus the cost of one unit of effort is 100/80 = 1.25 points for one
unit of effort. His endowment is 2,200 points. Thus he can buy a maximum of 2,200/1.25 = 1760
units of effort. Let us imagine that Simon decides to buy 500 units of effort. Thus he has to pay
500*1.25 = 625 points.

Imagine that the following effort levels were chosen by the other 9 participants: 10, 70, 200,
250, 420, 450, 550, 700, 1,200.

Thus, the four students with the highest effort levels are assigned to University 1 and receive
a payoff of 2,000 points. These are the students with effort levels 1,200, 700, 600 (Peter), and
550. Of the remaining eight students, five students with the highest levels of efforts are assigned
to University 2 and receive a payoff of 1,000 points. These are the students with the efforts levels
500 (Simon), 450, 420, 400 (Julia) and 250.

The students with effort levels 10, 70, and 200 remain unassigned.
Thus, the payoff for Julia is 2, 200− 1, 600+ 1, 000 = 1, 600, for Peter 2, 200− 1, 200+ 2, 000 =

3, 000 and for Simon 2, 200− 625 + 1, 000 = 2, 575.
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Instructions for DCA

The allocation procedure is implemented as follows:
At the beginning of the each round, every student learns her ability. The ability of each student

is drawn uniformly from the interval from 0 to 100. Thus every student has an equal chance of being
assigned every level of ability from the interval. You will learn your own ability but not the ability
of the other 11 students competing with you for the seats. The ability is drawn independently for
all participants in every round.

The admission to universities is decentralized. Students first decide which university they want
to apply to. Thus, you have to choose one university you want to apply to. After the decision is
made, you will compete only with students who have decided to apply to the same university. The
assignment of seats at each university is based on the amount of the effort that each student puts
into a final test. In the experiment you can choose a level of effort. This effort is costly. The price
of effort depends on your ability. The higher the ability the easier (cheaper) is the effort. The
price of one unit of effort is determined as: 100 divided by the ability, 100/ability. On your screen
you will see your ability for the round and the corresponding price of one unit of effort. You will
have to decide on the amount of the effort that you choose.

In each of the rounds you can use the calculator which will be on your screen. You can use it to
find out what possible payoffs a particular effort in points can yield. To gain a better understanding
for the experiment you can insert different values. This will help you with your decision.

In the beginning of each round, every participant receives 2,200 points that can be used to
exert effort or kept.

After each student decides how much effort to buy, these efforts are used to determine the
assignments to universities. Among the students who apply to University 1, the students with the
highest effort levels are assigned to this university up to its capacity and receive 2,000 points. All
other students who applied to University 1 remain unassigned. Among those students who apply
to University 2, the students with the highest effort levels are assigned a seat up to the capacity
of University 2. They receive the corresponding amount of points. All other students who have
applied to University 2 remain unassigned. Participants that have chosen the same amount of
effort will be ranked according to a random draw.

Each participant receives a payoff that is determined as the sum of the non-invested endowment
and the payoff from university admission. Thus:

Payoff = Endowment − price of effort∗units of effort + payoff from assignment
Note that your ability, the ability of the other participants, and the number of seats at Uni-

versity 1 and University 2 vary in every round.
Every point corresponds to 0.5 cents. Only one of the rounds will be relevant for you actual

payoff. This round will be selected randomly by the computer at the end of the experiment.
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Example

Let us consider an example with three hypothetical persons: Julia, Peter, and Simon.
Imagine the following round: University 1 has four seats, and University 2 has five seats.
Julia has an ability of 25 and decides to apply to University 2. Thus the cost of one unit of

effort is 100/25 = 4 points for her. Her endowment is 2,200 points, which means that she can buy
a maximum of 2,200/4 = 550 units of effort. Let us imagine that Julia decided to buy 400 units
of effort. Thus she has to pay 400*4 = 1,600 points and keeps 600 points of her endowment.

Peter has an ability of 50. He applies to University 1. Thus the cost of effort for him is 100/50
= 2 points for one unit of effort. His endowment is 2,200 points. Thus he can buy a maximum of
2,200/2 = 1100 units of effort. Let us assume that Peter chose 600 units of effort. Thus he has to
pay 600*2 = 1,200 points.

Simon has an ability of 80. He applies to University 2. Thus the cost of one unit of effort is
100/80 = 1.25 points for one unit of effort. His endowment is 2,200 points. Thus he can buy a
maximum of 2, 200/1.25 = 1, 760 units of effort. Let us imagine that Simon decides to buy 500
units of effort. Thus he has to pay 500 ∗ 1.25 = 625 points.

Imagine that there are an additional four students who decide to apply to University 2 (com-
peting with Julia and Simon), and five students who decide to apply to University 1 (competing
with Peter). The following efforts were bought by the four participants who apply to University
2, together with Julia: 10, 70, 450, 550.

Thus, there are 6 contenders for 5 seats. All students, but one with the effort of 10, receive a
seat at University 2 and thus a payoff of 1,000 points.

The following efforts were bought by the five other participants who apply to University 1,
together with Peter: 200, 250, 420, 700, 1,200.

Thus, there are 6 contenders for 4 seats. The four students with the highest efforts are assigned
to University 1, including Peter, and all receive 2,000 points.

The students with effort levels 200 and 250 remain unassigned.
Thus, the payoff for Julia is , 2200−1, 600+1, 000 = 1, 600, for Simon 2, 200−625+1, 000 = 2575

and for Peter 2, 200− 1, 200 + 2, 000 = 3000.
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