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 Abstract 

This paper presents a fractionally cointegrated vector autoregression (FCVAR) model to examine 

various relations between stock returns and downside risk. Evidence from major advanced markets 

supports the notion that downside risk measured by value-at-risk (VaR) has significant information 

content that reflects lagged long-run variance and higher moments of risk for predicting stock returns. 

The evidence supports the positive tradeoff hypothesis and the leverage effect in the long run and for 

some markets in the short run. We find that US downside risk accounts for 54.36% of price discovery, 

whereas the own effect from the country itself contributes only 27.06%.  
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Downside risk and stock returns: An empirical analysis of the long-run and short-run 

dynamics from the G-7 Countries 

 

1.  Introduction  

 A review of recent studies of stock return series indicates that several issues have arisen concerning 

the empirical specifications of stock return behavior. The first issue is the extension of the traditional mean-

variance approach (Markowitz, 1952) by recognizing that asset returns often exhibit heavier tails than is 

implied by the normal distribution and that they occasionally display asymmetric patterns (see Peiro,1999; 

Harvey and Siddique, 1999). The thrust of this approach has been searching for valid rationales for 

including the higher moments of asset returns and judging whether the higher moment risk should be 

compensated. The outbreak of the 2008 worldwide financial crisis further motivates researchers to move 

toward using value-at-risk (VaR) as a proxy for risk and to raise the questions: What is the information 

content of VaR? Does VaR contain negative skewness and, if so, how does it affect stock returns?  

The second issue stems from the popularity of documenting the evidence that stock returns and 

volatility/VaR series feature a long memory; a long memory implies a series that displays high degrees of 

persistence. The concern with this issue is whether the existence of a long memory could produce a bias in 

the empirical analysis. Can this phenomenon affect traditional empirical estimations such as the validity of 

the risk-return relation? Moreover, if volatility and VaR are cointegrated, will this statistical property 

provide an additional mechanism for predicting future stock returns?   

The third issue involves the cross-market setting of investigating the risk-return relation. In the 

conventional study of the risk-return relation, it is customary to focus on the domestic market’s relation, 

since the research has mainly looked at the US market. The experience from the world financial crisis 

suggests that global market risk could produce a more profoundly damaging effect on domestic stock 

returns than home country risk. This raises the question of which source of risk is more significant. A 
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misleading empirical evidence could be produced for lack of careful examination of the issues outlined 

above. We shall detail the discussions as follows.  

1.1. Value-at-risk as a general “representative risk measure”  

The 2007-2008 financial market crisis highlights a special feature of stock return distribution: frequent 

occurrences of left-skewed and excess kurtosis, suggesting that extremes in return variations show up more 

often than the likelihood suggested by the conventional Gaussian distribution. Typically, investors in a 

stress environment are averse to negative skewness and excess kurtosis (Scott and Horvath, 1980). This 

behavior is way beyond the standard risk measure provided by variance or conditional variance (Markowitz 

1952; French, et al. 1987). As a result, the investor expects to be compensated for exposure to extreme 

losses due to downside risk (tail risk). To address this issue, recent research (Alexander and Baptista, 2002; 

Bassett et al, 2004; Härdle et al., 2015) has paid special attention to modeling asset behavior by 

incorporating higher-moment risk measures in forming asset allocation strategies. As noted by Harvey and 

Siddique (2000), Smith (2007), the inclusion of higher moments in the test equation of asset returns would 

provide richer information content in describing the risk behavior at different states of market conditions 

and, in turn, would lead to a better model specification in testing the risk-return relation. Thus, the validity 

of a model with higher-moment risk measures supports the assertion that investors demand higher expected 

returns not only for the variance risk they are bearing but also for the potential tail risk they are taking on. 

Tail risk, usually shown on the “left tail,” is indeed a downside risk, which typically can be measured 

by VaR, an 𝛼-quantile value of the return distribution. As noted by Favre and Galeano (2002), using a non-

normality VaR based merely on volatility is likely to underestimate the downside risk. However, researchers 

demonstrate that modifying VaR by applying the Cornish-Fisher expansion (CFE; Cornish and Fisher 1937) 

would achieve precision by adjusting the estimated quantiles for non-normality. The CFE approximates the 

quantile of an arbitrary random variable by incorporating higher moments and offers explicit polynomial 
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expansions for standardized percentiles of the distribution. The fourth-order CFE approximation is given 

in the following expression of standardized return variables at 𝛼-quantile 𝑞𝛼: 

𝑞𝛼 = 𝑧𝛼 + (𝑧𝛼
2 − 1)

𝑆

6
+ (𝑧𝛼

3 − 3𝑧𝛼)
𝐾

24
− (2𝑧𝛼

3 − 5𝑧𝛼)
𝑆2

36
  (1) 

where 𝑧𝛼 is the 𝛼-quantile value from the standard normal distribution, and S and K are skewness and 

excess kurtosis, respectively. Clearly, this expansion indicates that 𝑞𝛼 is a monotone increasing function 

of excess kurtosis and negative skewness at 𝛼 = 1%  level. Multiplying by 𝜎  (standard deviation) 

throughout equation (1), the VaR at the level (1 − 𝛼), 𝑉1−𝛼, is expressed as:  

𝑉1−𝛼 = −𝜎𝑞𝛼 = −𝜎 (𝑧𝛼 + (𝑧𝛼
2 − 1)

𝑆

6
+ (𝑧𝛼

3 − 3𝑧𝛼)
𝐾

24
− (2𝑧𝛼

3 − 5𝑧𝛼)
𝑆2

36
)   (2) 

Note that 𝑞𝛼  should be negative at the 1% level and it has been multiplied by -1 to simplify the 

interpretation for the degree of downside risk at this extreme quantile. That is, a higher value of 𝑉1−𝛼 

indicates increased downside risk. Equation (2) derived from the CFE is a non-Gaussian distribution with 

a formulation that allows for skewness and excess kurtosis. This model specification is consistent with the 

notion of maximizing investors’ expected utility of wealth by including the third and fourth moments 

derived from an approximation of the fourth-order Taylor polynomials in the expected utility function 

(Dittmar, 2002, Guidolin and Timmermann, 2008; Bali et al., 2009). The theory postulates that investors’ 

preference behavior is averse to the second and fourth moments (variance and kurtosis), but receptive to 

the positive skewness (negative preference toward negative skewness). Appealingly, the VaR using the CFE 

derived from the empirical distribution essentially captures higher moments of the return distribution, which 

turns out to be a more general expression of the risk measure than using variance risk alone and is better 

for estimating more complex risk in reality. From this perspective, the quadratic preferences of investor 

behavior do not seem to well describe the phenomenon under extreme market stress.1 To validate an 

                                                      
1 Investors with quadratic preferences only care about the mean and variance of returns. In other words, they do not consider 

extreme losses. 
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enhanced ICAPM specification, it is plausible to extend the model with variance risk as an argument to a 

set of higher-moment risk measures, generally summarized by the value of VaR. The follow-up questions 

become: Which higher-moment risk measures contribute more to VaR or better predict VaR? And how well 

do these higher-order moments predict expected return, subsequently, and which one has better 

predictability? The answers to these questions will be contained in our empirical estimations.  

1.2. Long memory and persistence in return and higher-order moments 

Analyzing the time series properties of stock return series suggests that returns and their higher 

moments are persistent. Empirically, Ding, Granger and Engle (1993) discovered a long-memory property 

in stock market return series. Using a similar approach, Jondeau and Rockinger (2003), Bandi and Perron 

(2006), and Bollerslev et al. (2013) find evidence that the second moment return series displays a persistent 

phenomenon. Moreover, Caporin (2008) and Kinateder and Wagner (2014) also document that the 

downside risk series exhibits a long memory. Consequently, it is logical to infer that the VaR based on the 

CFE inherently contains this property and reveals a long-memory process.   

In the empirical estimations, a series featuring a long dependency has been effectively described by a 

fractionally integrated process (Ding et al., 1993; Baillie, 1996; Bollerslev and Mikkelsen, 1996). The 

finance theory of the risk-return relation, along with the existing empirical regularities, suggests that both 

the stock return and the downside risk series are likely to form a fractionally cointegrated process. Thus, in 

empirical estimations, it will be more efficient to explore this time series property in modeling their long-

run and short-run relations. For this reason, the fractionally cointegrated vector autoregressive (FCVAR) 

model, along the lines of Johansen (2008a, 2008b, 2009) and Johansen and Nielsen (2012), will be used in 

our estimations of risk-return relations.  

1.3. Empirical model in a global market setting 

A substantial amount of empirical work has been devoted to examining the risk-return relation, and 

the majority of empirical studies mainly focus on the US market. Very few studies attempt to investigate 
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this issue in markets outside the US.2 Given the size of the US market and its global connections in financial 

news, a shock in the US market is soon expected to spread to global markets. This relative strength in 

financial markets implies that estimating the risk-return relation for global markets (non-US countries) 

without taking into account a shock from the US market is bound to be subject to specification error. Note 

that the shocks referred to here are not necessarily tied to events such as the dot-com bubble collapse in 

2000 or the global financial crisis in 2008, both of which originated in the US market. Rather, these shocks 

can be related to the day-to-day stochastic downside risk from the US market. Likewise, a reverse feedback 

from the global markets to the US can also occur. The impact may be less significant due to different sizes 

and financial connections. It would be a richer model specification if we could establish a linkage by 

incorporating a multi-market setting into the testing of the risk relation.   

In light of the above thought processes and the established empirical regularities, we present a 

fractionally cointegrated vector autoregression (FCVAR) model. This model, which builds on a multivariate 

time series process, allows us to examine various dynamic relations between aggregate stock market returns 

and downside risk. Since both the stock return and the downside risk series present a long-memory process, 

the estimated cointegrating vectors for downside risk help to examine the long-run risk-return hypothesis. 

The short-run tradeoff hypothesis is also contained in the dynamic VAR process. Since the model features 

a multivariate process, cross-market feedback between downside risk and returns can be detected.   

This study contributes to the current literature in the following ways. First, the long-memory process 

is present in both the return and the downside risk series, suggesting that treating the downside risk series 

as a short-memory process (Bali et al., 2009) tends to neglect the important information linking it to a long-

run relation. Second, long-run positive relations between downside risk and returns are confirmed in the 

most advanced markets, supporting the long-run tradeoff hypothesis; this holds true regardless of whether 

                                                      

2 Atilgan and Demirtas (2013) and Feunou et al. (2013) are among the exceptions.  
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the downside risk arises from the domestic market or the US market, suggesting that investors demand a 

risk premium not only from their own market but also from the cross (US) market. The evidence shows that 

US downside risk accounts for 54.36% of price discovery, whereas the downside risk stemming from the 

country itself contributes only 27.06%, supporting the notion of a “cross-market downside effect.” The 

leverage effect is more appealing in the long run, but less promising in the short run.  

Risk measure through a cointegrating relation of VaR and volatility or skewness tends to have 

information content to predict the future VaR in the long run. The evidence confirms a cointegrating relation 

between VaR and volatility; its adjustment helps to achieve a long-run prediction over future stock returns. 

The same holds true for the skewness, which contributes to the long-run prediction of returns in some 

countries.  

The remainder of the paper is organized as follows. Section 2 describes the data, estimates the VaR as 

the measures of downside risk, and tests the existence of a long memory. Section 3 presents a fractionally 

cointegrated dynamic system pertinent to analyzing dynamic risk-return relations, the leverage effect, the 

risk feedback effect, and cross-market risk effects. Section 4 presents the empirical evidence and contains 

robustness checks; Section 5 specifies the relation between downside risk and higher-moment risk in an 

ICAPM apparatus, and Section 6 compares the price discovery ability between US downside risk and non-

US downside risk and presents the impulse responses. Section 7 contains concluding remarks.  

2. Downside risk estimation and long-memory property  

Following the bulk of the empirical research on the risk-return relation, which uses volatility or a 

conditional second moment as a proxy for market risk (French et al., 1987; Baillie and DeGennaro, 1990; 

Ghysels et al., 2005), the literature recognizes the significance of the asymmetric impact on risk imposed 

by a negative return. Downside risk is then introduced into the model to see whether it can better describe 

the risk-return relations, especially in the volatile regime. Along these lines, Bali et al., (2009), Ang et al. 

(2006), and Feunou et al. (2013) all employ downside risk to model the risk-return relation. Their studies 
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document a statistically significant positive relation between downside risk and return, supporting the risk-

return tradeoff hypothesis. In the following sections, we describe the data and estimation of downside risk 

in detail by using different types of kernel density techniques.  

2.1. Data description and estimating downside risk 

To conduct empirical estimations of the risk-return relation, this paper uses the first trading day to the 

last trading day of the month to construct "monthly" observations. Following the conventional approach, 

we employ a dividend-adjusted stock index in Datastream labeled as TOTMK, which is value-weighted by 

market capitalization. In addition, we choose the price index being measured by local currencies to avoid 

the contamination of currency variations. The data cover seven major advanced markets: Canada (CA), 

France (FR), Germany (GM), the United Kingdom (UK), the United States (US), Italy (IT) and Japan (JP) 

for the sample period September 1990 through July 2013. The data consist of stock market indices of the 

markets mentioned above. we choose the local three-month Treasury bill rate as the risk-free rate for the 

US, the UK and Canada; for the Eurozone countries we use the three-month interbank rate; and for Japan, 

the three-month 'Gensaki' repo rate.3 The excess stock return is constructed by subtracting the risk-free rate 

at time t from the stock index return from time t to t+1; and stock return is measured by taking the natural 

log difference of the stock price index times 100. All of the data above are taken from Thomson Reuters’ 

Datastream. 

There are good reasons for choosing downside risk in examining the risk-return relation. First, there 

is a long literature on safety-first investors, who minimize the probability of big losses. Highly risk-averse 

behavior under extreme market conditions is more revealing in downside risk. Second, banks and financial 

institutions need a good measure to quantify, reveal, and monitor the amount of risk for their portfolios 

should losses occur. VaR provides a useful tool for measuring downside risk, since it measures the 

                                                      
3 Please refer to the web page of Thomson Reuters Datastream 

http://extranet.datastream.com/data/Exchange%20&%20Interest%20Rates/RiskFreeInterestRates.htm 
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maximum potential loss on a firm’s trading portfolio if the lowest 1% (or 5%) quantile return occurs. Capital 

adequacy thus can be judged on the basis of the amount of this expected loss over a specific time frame. 

Third, since VaR emphasizes negative and big breaks in stock returns, it provides insights into the 

interpretation of the economic sources of model instability (Pettenuzzo and Timmermann, 2011). Fourth, 

the CFE implies that using VaR as the downside risk measure captures higher moments of the return 

distribution (Harvey and Siddique, 1999); So VaR appears to be a more general risk measure than variance 

risk and is better for estimating more complex risk. Fifth, a substantial amount of research has been devoted 

to studying the mean-variance approach in the US market; however, less research has been done along the 

lines of the mean-VaR approach among different markets in a global setting.  

In the empirical literature, both parametric and nonparametric methods have been proposed to estimate 

VaR.4 The parametric method, however, may not be a good choice because the monthly VaR in this study 

is derived based on a non-overlapping period of one month in length (usually 22 trading days). Model-free 

nonparametric estimation of VaR has been proposed by Dowd (2001) based on the sample quantile, which 

is commonly called the historical VaR. The sample VaR estimator can simply be derived from the empirical 

distribution function of the return series  {𝑅𝑡,𝑖}𝑖=1
𝑛

. By using the indicator function, 𝐼 , the empirical 

distribution at time t is F𝑡(𝑥) = 𝑛
−1∑ 𝐼(𝑅𝑡,𝑖 ≤ 𝑥)

𝑛
𝑖=1 . The historical VaR estimator is just the (𝑛𝛼 + 1)th 

order statistic. However, the 99% VaR is an extreme quantile (𝛼 = 1%) situated in the tail region of the 

empirical distribution. In our case, each month t we derive the VaR estimator from n daily returns (here n 

on average is 22), and, therefore, the quantile at the  𝛼 = 1%  level cannot be calculated precisely. 

Accordingly, we pursue an approach that is based on non-parametric density estimation by kernel 

                                                      
4 The parametric method is based on econometric models that have been widely discussed in academic research and applied to 

industry. However, it has been argued that parametric methods often entail unavoidable misspecification risk and estimation risk 

(Kerkhof et al., 2010). The model risk stems from the inconsistency between the assumptions underlying the probability model 

of asset returns and the realized asset returns (Tsay, 2010), while estimation risk comes from the uncertainty of parameter 

estimation (Talay and Zheng, 2002). Brooks and Persand (2002) show that the parametric method tends to produce less accurate 

VaR estimates than the simple non-parametric approach. 
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smoothing the empirical distribution F𝑡, leading to a VaR estimator that is a weighted average of the order 

statistics around the (𝑛𝛼 + 1)th order statistic, rather than relying on a single-order statistic (Chen and 

Tang, 2005). For each month t, we estimate an integrated kernel density estimator (KDE) F̂𝑡,ℎ  with 

corresponding bandwidth ℎ, then do bootstrap calculations from F̂𝑡,ℎ. The desired quantile/VaR estimator 

can be inferred for each month.  

The proposed procedure is presented in detail as follows. Given the daily returns {𝑅𝑡,𝑖}𝑖=1
𝑛

 in month t, 

one defines the KDE-based smoothed distribution function as  

F̂𝑡,ℎ(𝑥) = 𝑛
−1∑ ∫ 𝐾ℎ(𝑢 − 𝑅𝑡,𝑖)𝑑𝑢

𝑥

−∞
𝑛
𝑖=1    (3) 

where 𝐾ℎ(𝑠) = ℎ
−1𝐾(𝑠/ℎ) is the rescaled kernel with bandwidth ℎ. The bandwidth needs to be chosen 

so that it balances the squared bias and the variance. The tradeoff exists because increasing ℎ will lower 

variance, but raise bias at the same time. The bandwidth ℎ, therefore, should be optimized to reach this 

tradeoff. In addition to the choice of bandwidth, the kernel function also governs the degree of smoothness. 

Clearly, 𝐾ℎ , the smoother, is used to replace the indicator function in the formulation of F𝑡(𝑥). Once we 

choose the Gaussian kernel 𝐾ℎ = 𝑒𝑥𝑝(−𝑢
2/2)/√2𝜋 as the kernel for estimating VaR, Silverman’s (1984) 

rule of thumb can be applied to obtain an optimal bandwidth, ℎ̂𝑟𝑜𝑡,𝑡, expressed as: 

ℎ̂𝑟𝑜𝑡,𝑡 = 1.06 𝑚𝑖𝑛 {�̂�𝑡,
𝑄𝑡

1.34
} 𝑛−

1

5       (4) 

where �̂�𝑡 is the sample standard deviation estimated from {𝑅𝑡,𝑖}𝑖=1
𝑛

 and 𝑄𝑡 = 𝑅𝑡,[0.75𝑛] − 𝑅𝑡,[0.25𝑛]. Eq. (4) 

indeed takes into account the sensitivity of outliers, since a single outlier may cause a too large estimate of 

�̂�𝑡 and hence may create a too large bandwidth. The interquartile range 𝑄𝑡 is invoked here to compensate 

for this effect. The constants 1.34 and 1.06 are scaling factors that are related to the choice of kernel (see 

Härdle, et al., 2004).  

How to bootstrap from the KDE, F̂𝑡,ℎ(𝑥)? It turns out that one doesn’t have to simulate via an 

inversion or rejection technique from Eq. (3), since the smoothed distribution function can be interpreted 
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as a convolution of the empirical distribution function with the kernel 𝐾ℎ. Since the convolution operator 

is the one used to calculate the convolution of a sum of two random variables, one may just view Eq. (3) as 

the integrated probability density function of the sum of 𝑅𝑡,𝑖 and a random variable 𝑍 having probability 

density function 𝐾ℎ. To be more explicit, given month t, we bootstrap 1000 times from {𝑅𝑡,𝑖}𝑖=1
𝑛

. For each 

bootstrapped sample from {𝑅𝑡,𝑖}𝑖=1
𝑛

, one just adds the product of ℎ̂𝑟𝑜𝑡,𝑡  in Eq. (4) and 1000 generated 

random variables 𝑍 from i.i.d N(0,1). This idea can be expressed as 

𝑅𝑡,𝑖
∗ = 𝑅𝑡,𝑖 + ℎ̂𝑟𝑜𝑡,𝑡𝑍   (5) 

The 𝑉𝑎𝑅𝑡,𝑖
99% estimate of country i at month t can be obtained now by calculating the 1%-quantile, 𝑞1%, of 

the simulated distribution 𝑅𝑡,𝑖
∗ , that is 

𝑉𝑎𝑅𝑡,𝑖
99% = −𝑞1%(𝑅𝑡,𝑖

∗ )   (6) 

The corresponding expected shortfall, the mean loss exceeding the VaR value, shall be given by 

𝐸𝑆𝑡,𝑖
99% = 𝐸[𝑅𝑡,𝑖

∗ |𝑅𝑡,𝑖
∗ ≤ 𝑞1%(𝑅𝑡,𝑖

∗ )]   (7) 

The kernel density technique here achieves our goal of a 1% quantile value from limited observations, 

which builds on Bali et al. (2009), who regard the minimum daily return within the given month as the VaR. 

Actually, this minimum daily return is around a 4% to 5% quantile value over 22 daily returns, and it seems 

to not be extreme enough. In fact, it is rather unrealistic to produce a 99% expected shortfall estimator under 

this condition.  

It appears that different chosen kernel densities will create different tail behaviors of the KDE and, 

therefore, result in (slightly) different VaR estimates. Accordingly, the rule of thumb of Eq. (4) has to be 

changed. To incorporate a more realistic fat tail, we consider a double exponential (Laplace) kernel. A 

modification of bandwidth can be achieved by using the canonical kernel transformation, resulting in an 
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adjusted bandwidth, by multiplying with an adjustment factor.5 Later, in our empirical results for VaR 

estimates, we will show that the choice of the kernel function is not so relevant for the efficiency of the 

estimates, which is consistent with the discussion in Härdle, et al. (2004, page 57).  

The above procedure enables us to obtain 275 monthly and non-overlapping estimates of 𝑉𝑎𝑅𝑡,𝑖
99%, 

which avoids the statistical problem due to overlapping data. Such a treatment not only alleviates the 

correlation problem with overlapping data (Lettau and Ludvigson, 2010, p. 638), but also helps to avoid 

the criticism that the overlapping design creates a long memory in downside risk. Note that the long-

memory property of downside risk should be an intrinsic part of the VaR, rather than a way to manipulate 

the data.6 

Table 1 reports summary statistics of stock returns and downside risk for the G7 countries. The 

monthly excess returns are in the range of -0.24% (Japan) to 0.60% (US), and VaRs from the Gaussian 

kernel lie between 3.91% (Japan) to 2.81% (US). Likewise, the VaR from a double exponential kernel and 

expected shortfall show their variations across the G7 countries. The data suggest that the VaRs, regardless 

of the types of kernels for all of the markets, present an AR(1) process; Germany has the highest standard 

deviations on both stock returns and VaRs. The results of an augmented Dickey-Fuller (ADF) test indicate 

that the null hypothesis of a unit root is rejected uniformly and is significant at the 1% level for all markets. 

Rejecting the null indicates that the returns and VaRs do not have a unit root. As shown in Figure 1, the 

time series of the VaRs across the G7 countries share a very similar pattern. It appears that downside risks 

in the G7 countries comove tightly, implying that they have a potential long-run relation and share a 

                                                      
5 0.582 exactly is an adjustment factor between the bandwidth of a Gaussian kernel and a double exponential kernel. 
6 Bali et al. (2009), Boudoukh et al. (2008) and Lettau and Ludvigson (2010) found that long-horizon returns become more 

predictable as the horizon is extended. They pointed out that, even under the null of no return predictability, long-horizon R2 

statistics and coefficients from direct long-horizon regressions will rise monotonically with the horizon, as long as the predictor 

variable has some degree of persistence. These findings imply that long-horizon returns could, in principle, lead to more 

predictability than short-horizon returns even if they have no significant predictive power. Boudoukh et al. (2008) argue that this 

phenomenon is not attributable to small sample bias; rather it results from the use of overlapping return data interacting with the 

persistence of regressors. They contend that the problem with overlapping return data can be avoided by using a VAR method to 

impute long-horizon statistics, instead of using data on overlapping returns directly. 
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common stochastic trend. In this regard, although the downside risks themselves may be characterized as 

I(1) or I(d), the linear combination between the two risk series can be fractionally integrated of a lower 

order. The FCVAR model permits the potential presence of fractional cointegration in the long-run relation 

between the downside risk series.  

<Table 1> 

<Figure 1> 

2.2. Long-memory estimation for VaR  

As stated earlier, current studies of the downside risk-return relation have not paid sufficient attention 

to the impact of the long memory inherent in downside risk. The rationale for why we model downside risk 

as a long-memory process stems from the tight connection between downside risk and volatility, yet 

capturing the feature of skewness. In recognizing the significance of long memory for downside risk 

predictions and risk management, it is important to detect the impact of long memory on parameter 

estimation, since ignorance of the long-lasting effects of downside shocks on required excess returns can 

lead to biased parametric estimators of the risk-return relation.  

To quantify the degree of long memory, we estimate the fractional integration parameter d using both 

the log-periodogram estimator developed by Geweke and Porter-Hudak (1983, hereafter GPH) and the local 

Whittle likelihood procedure of Künsch (1986). Table 2 reports the semi-parametric point estimates of the 

fractional integration parameter d in both methods. The long-memory parameters from both methods are 

comparable, and their estimated values from GPH across the G7 countries range widely from 0.259 (FR) 

to 0.508 (UK). Except for the UK, the long-memory estimates are inside the stationary region, indicating 

that downside risks in advanced countries entail a stationary long-memory property.7 In the case of the US, 

                                                      
7 A suitable value of d usually lies in |d| < 0.5. A fractional (non-integer) number with values less than 0 would indicate a weak 

or memory-less process; if d lies in the interval of (0, 0.5), the series is characterized by a stationary process with long memory; 

if d lies in (0.5,∞), the series is a long-memory non-stationary process. 
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the value of d estimated from the GPH is 0.441, which is close to the corresponding long-memory value 

estimated from the volatility series. The long memory of the US volatility series has a d value of 0.4 (see 

Bollerslev et al., 2013; Andersen et al., 2003). Again, we confirm that a long-memory property of downside 

risk is associated with that of volatility.8  

< Table 2 > 

3. Fractionally integrated dynamic system 

3.1. Model setting 

Given the established data characteristics in Table 2, it is natural to ask whether the risk-return tradeoff 

hypothesis is applicable to the short-run or the long-run horizon. That is, will higher downside risk be 

compensated by expected returns in the short run or in the long-run? From investors’ perspective, the 

evidence emerging from this study will provide some insights into forming their investment strategies with 

different time horizons. In examining the risk-return hypothesis, global market integration suggests that it 

is impossible to be independent of the cross-market influence. More precisely, if downside risk occurs in 

the global market, would investors expect to be compensated by a cross-market risk premium? Thus, given 

the interdependency in the global markets, incorporating cross-market forces into the analysis appears to 

be necessary.  

In a related issue, the literature finds evidence of leverage effects — bad news about stock prices will 

create greater market volatility than good news — and the resulting volatility could further give rise to 

downside risk and subsequently a feedback effect on stock returns (Bekaert and Wu, 2000). To incorporate 

                                                      
8 Long memory may be an artifact of the aggregation of a short-memory process, structural breaks, a level shift or a regime 

switch (Franke, Härdle and Hafner, 2015). Several recent studies, including Diebold and Inoue (2001), Granger and Hyung 

(2004), and Perron and Qu (2010), show that a regime switch or structural break can generate spurious long-memory behavior. 

A short-memory process is sometimes contaminated by occasional level shifts, and, therefore, its auto-covariance function 

exhibits a slow rate of decay, akin to a long-memory process. Appendix 1 provides details.  
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the multi-dimensional market behavior of stock returns and downside risk in the short-run and long-run 

relations with a multiple market system into a unified framework, we employ the FCVAR model along the 

lines suggested by Johansen (2008ab, 2009), Johansen and Nielsen (2012), and Bollerslev et al. (2013) .   

To be specific, let 𝑧𝑡 ≡ (𝑉𝑖,𝑡, 𝑉𝑗,𝑡, 𝑟𝑖,𝑡, 𝑟𝑗,𝑡)′ denote a 4 × 1 vector process comprising two downside 

risk variables, 𝑉𝑖,𝑡  and 𝑉𝑗,𝑡, and two stock return variables, 𝑟𝑖,𝑡   and 𝑟𝑗,𝑡. If i is an index for any non-US 

markets and j is a notation for the US market, this setting allows us to study multiple relations in terms of 

the long-run and short-run horizons. First, the model is capable of addressing the fractional cointegrating 

relation between 𝑉𝑖,𝑡 and 𝑉𝑗,𝑡, where both belong to a fractional process. Typically, it is expected that these 

two series will follow a common stochastic trend and a linear combination of the two is a stationary 

approximate I(0) process. Second, the intertemporal relation between risk and returns in the domestic 

market can be established in both the short-run dynamics and the long-run equilibrium simultaneously. 

Third, the effect of cross-market downside risk from the US on the expected returns of non-US markets can 

be estimated. Thus, we are able to detect and estimate whether investment in the domestic market requires 

compensation for downside risk from the cross market, say, the US. Likewise, we can test whether higher 

expected stock returns in the US result from higher cross-market downside risk outside the US market. In 

short, the FCVAR provides us with an analytical structure that can tackle behavioral complexity, yet also 

provide a rich empirical setting in which to test the cointegrating time series between downside risks and 

stock returns.  

Given the long memory in the elements of vector 𝑧𝑡  and the possible cointegrating relation, the 

fractionally cointegrated VAR model for 𝑧𝑡, denoted by FCVARb,d(p), takes the form:  

△𝑑 𝑧𝑡 =△
𝑑−𝑏 𝐿𝑏𝛼𝛽

′𝑧𝑡 + ∑ Γ𝑠𝐿𝑏
𝑠𝑝

𝑠=1 △𝑑 𝑧𝑡 + 𝜀𝑡   𝑡 = 1,… , T   (8) 

where 𝜀𝑡  is n-dimensional i.i.d. (0, Σε) , 𝑑 ≥ 𝑏 ≥ 0 . The observed process 𝑧𝑡  is a time series with 

integration of order d, and b is the strength of the cointegrating relations in the sense that higher b implies 
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less persistence in the cointegrating relations. 𝐿𝑏 = (1 −△
𝑏) is the fractional lag operator, and △𝑑  is the 

fractional difference operator, which is used to remove the long-memory component and, thus, transforms 

the 𝑧𝑡, the left-hand side of Eq. (8), from an I(d) series to an I(0) process. Eq. (8) implies that 𝑧𝑡 is a 

fractional process of order d; therefore, △𝑑 𝑧𝑡 and 𝛽′𝑧𝑡 are stationary with fractional integration of order 

zero. This dynamic FCVAR representation directly parallels the classical error-correction-type 

representation with cointegrated I(1) variables. The coefficient matrix Π =  𝛼𝛽′ is an n×𝑚 matrix, and 

𝑚 < 𝑛. The columns of 𝛽 are the m cointegrating (cofractional) vectors that are the long-run equilibrium 

relations, and the coefficients in 𝛼 are the adjustment parameters that determine the speed of adjustment 

to the equilibrium for each variable.  

The second term on the right-hand side of Eq. (8) specifying the fractional distributed lag matrix Γ𝑠 

and powers of 𝐿𝑑
𝑠  applied to △𝑑 𝑧𝑡 directly mirrors the distributed lag matrix in standard error-correction 

models. The parameters in Γ𝑠 govern the short-run dynamics of the variables. Note that for 𝑏 = 1, the 

FCVAR model reduces to the VECM model, which is nested in the FCVAR as a special case. 

 Imposing a restriction of 𝑑 = 𝑏 allows us to include a constant term, namely, FCVARd(p), given by 

Eq. (9) 

△𝑑 𝑧𝑡 = 𝛼(𝜇
′ + 𝛽′𝐿𝑑𝑧𝑡) + ∑ Γ𝑠𝐿𝑑

𝑠𝑝
𝑠=1 △𝑑 𝑧𝑡 + 𝜀𝑡   𝑡 = 1, … , T    (9) 

where 𝜇 is interpreted as the mean level of the long-run equilibrium. To keep parsimony, we apply Eq. (9) 

in the empirical estimations throughout this study.9  

3.2. The economic interpretation of the model and estimating approach 

The empirical evidence in Table 2 suggests that each downside risk series entails a long-memory 

property; however, any combination from two arbitrary series may fractionally cointegrate to an I(0) 

                                                      
9 The model represented by Eq. (9) is comparable to models in the literature such as Bollerslev et al. (2013) and Dolatabadi et 

al. (2015). 
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process if they are cointegrated. Specifically, the return process, 𝑟𝑡, is stationary; hence the column rank of 

𝛼𝛽′ equals three (𝑚=3) with natural normalization. In Eq. (9), the matrix 𝜶 of adjustment coefficients 

is: 

𝜶 = (

𝛼11 𝛼12 𝛼13
𝛼21 𝛼22 𝛼23
𝛼31 𝛼32 𝛼33
𝛼41 𝛼42 𝛼43

) and, correspondingly,  (10) 

𝛽′ = (
𝛽 1 0 0
0 0 1 0
0 0 0 1

).   (11) 

As the model stands, 𝛽  governs the long-run cointegrating relation between 𝑉𝑖,𝑡  and 𝑉𝑗,𝑡 , so that it 

establishes the downside risk error-correction term as a linear combination of 𝑉𝑖,𝑡  and 𝑉𝑗,𝑡  such that 

𝑉𝑗,𝑡 + 𝛽𝑉𝑖,𝑡 = 𝑒𝑡 results in a stationary error vector, 𝑒𝑡 ∼ I(0). Normally, the estimated 𝛽 is negative, 

which means that the difference between two downside risk series is stationary. Using Eqs. (10) and (11) 

and assuming the lag length, p=1, in the fractional distributed lag matrix Γ𝑠, we expand Eq. (9) as: 

(

 
 

△𝑑 𝑉𝑖,𝑡

△𝑑 𝑉𝑗,𝑡

△𝑑 𝑟𝑖,𝑡

△𝑑 𝑟j,𝑡)

 
 
= 𝛼𝜇′ +

(

 
 

𝛽𝛼11 𝛼11 𝛼12 𝛼13
𝛽𝛼21 𝛼21 𝛼22 𝛼23
𝛽𝛼31 𝛼31 𝛼32 𝛼33
𝛽𝛼41 𝛼41 𝛼42 𝛼43)

 
 

(

 

𝐿𝑑𝑉𝑖,𝑡
𝐿𝑑𝑉𝑗,𝑡
𝐿𝑑𝑟𝑖,𝑡
𝐿𝑑𝑟𝑗,𝑡)

 +

(

 

Γ1,11 Γ1,12 Γ1,13 Γ1,14
Γ1,21 Γ1,22 Γ1,23 Γ1,24
Γ1,31 Γ1,32 Γ1,33 Γ1,34
Γ1,41 Γ1,42 Γ1,43 Γ1,44)

 

(

 
 

𝐿𝑑 △
𝑑 𝑉𝑖,𝑡

𝐿𝑑 △
𝑑 𝑉𝑗,𝑡

𝐿𝑑 △
𝑑 𝑟𝑖,𝑡

𝐿𝑑 △
𝑑 𝑟j,𝑡)

 
 
+ (

𝜀1,𝑡
𝜀2,𝑡
𝜀3,𝑡
𝜀4,𝑡

)  (12) 

The long-run relations become apparent by inspecting the elements of 𝛼(𝛽′𝐿𝑑𝑧𝑡) in Eq. (9); the short-run 

relations are contained in the elements of Γ1.    

3.2.1. Long-run tradeoff hypothesis 

The long-run tradeoff is denoted by the parameters of 𝛼31 and 𝛼41.  The 𝛼31 links the downside 

risk error-correction term and the returns, or the long-run dynamic volatility feedback effect implied by the 

model (Bekaert and Wu, 2000). It’s worthwhile to know how the previous disequilibrium between two 

downside risks feeds into today’s fractional change in stock returns. Particularly, 𝛼31 captures the cross-
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market long-run dynamic tradeoff relation between the fractional lag 𝑉𝑗,𝑡  (𝐿𝑑𝑉𝑗,𝑡) and the fractional 

difference of 𝑟𝑖,𝑡  (△𝑑 𝑟𝑖,𝑡) ; the long-run dynamic tradeoff relation between the fractional lag 𝑉𝑖,𝑡 

(𝐿𝑑𝑉𝑖,𝑡) and the fractional difference of 𝑟𝑖,𝑡 (△𝑑 𝑟𝑖,𝑡) can be implicitly inferred through the cointegrating 

vector 𝛽 given the estimated 𝛼31.  

Likewise, 𝛼41  captures the long-run dynamic tradeoff relation between the fractional lag 𝑉𝑗,𝑡 

(𝐿𝑑𝑉𝑗,𝑡) and the fractional difference of 𝑟𝑗,𝑡 (△𝑑 𝑟𝑗,𝑡), while the cross-market long-run dynamic tradeoff 

relation between 𝐿𝑑𝑉𝑖,𝑡 and △𝑑 𝑟𝑗,𝑡 can be implicitly derived through the cointegrating vector 𝛽 given 

𝛼41. 

3.2.2. Short-run dynamics  

The short-run parametric relations are determined by the Γ𝑠,31, Γ𝑠,32, Γ𝑠,41 and Γ𝑠,42 in the fractional 

distributed lag matrix Γ𝑠. Setting s=1 leads to:  

𝚪1 =

(

 

Γ1,11 Γ1,12 Γ1,13 Γ1,14
Γ1,21 Γ1,22 Γ1,23 Γ1,24
Γ1,31 Γ1,32 Γ1,33 Γ1,34
Γ1,41 Γ1,42 Γ1,43 Γ11,44)

    (13) 

The short-run tradeoff is captured by certain elements in the Γ1 matrix. Specifically, Γ1,31 represents the 

short-run tradeoff between 𝐿𝑑 △
𝑑 𝑉𝑖,𝑡  and △𝑑 𝑟𝑖,𝑡 , and Γ1,32  captures the short-run tradeoff between 

𝐿𝑑 △
𝑑 𝑉𝑗,𝑡 and △𝑑 𝑟𝑖,𝑡. Similarly, Γ1,41 represents the short-run tradeoff between 𝐿𝑑 △

𝑑 𝑉𝑖,𝑡 and △𝑑 𝑟𝑗,𝑡, 

and Γ1,42  captures the short-run tradeoff between 𝐿𝑑 △
𝑑 𝑉𝑗,𝑡  and △𝑑 𝑟𝑗,𝑡 . From the above parametric 

relations, it is obvious that the model can help us to distinguish the long-run tradeoff from the short-run 

tradeoff, and to separate the domestic market tradeoff from the cross-market tradeoff.  

3.2.3. The leverage effects  
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The leverage effect posits that the observed market volatility is inversely correlated with the shocks of 

stock returns.10 This effect is contained in the FCVAR model through the parameters 𝛼12, 𝛼23, 𝛼22 and 

𝛼13 for the downside effects in the long-run equilibrium, while the parameters  Γ1,13, Γ1,23, Γ1,14, Γ1,24 are 

the leverage effects in the short-run dynamics. Specifically, the 𝛼12 captures the leverage effect from 𝐿𝑑𝑟𝑖,𝑡 

to △𝑑 𝑉𝑖,𝑡 , while 𝛼13 represents the cross-leverage effect from 𝐿𝑑𝑟𝑗,𝑡  to △𝑑 𝑉𝑖,𝑡 . The 𝛼22 captures the 

cross-leverage effect from 𝐿𝑑𝑟𝑖,𝑡  to △𝑑 𝑉𝑗,𝑡 , while 𝛼23  represents the leverage effect from 𝐿𝑑𝑟𝑗,𝑡  to 

△𝑑 𝑉𝑗,𝑡. Correspondingly, the short-run leverage effect from 𝐿𝑑 △
𝑑 𝑟𝑖,𝑡 to △𝑑 𝑉𝑖,𝑡 can be captured by Γ1,13, 

while the short-run cross-leverage effect from 𝐿𝑑 △
𝑑 𝑟𝑗,𝑡 to △𝑑 𝑉𝑖,𝑡 can be captured by Γ1,14. Likewise, 

Γ1,23 captures the short-run cross-leverage effect from 𝐿𝑑 △
𝑑 𝑟𝑖,𝑡  to △𝑑 𝑉𝑗,𝑡 , while Γ1,24 represents the 

short-run effect from 𝐿𝑑 △
𝑑 𝑟𝑗,𝑡 to △𝑑 𝑉𝑗,𝑡.  

3.3. Estimations and inferences from the fractionally cointegrated VAR model 

Since the existence of a cointegrating relation is a necessary condition to implement the FCVAR model, 

a legitimate procedure is to examine the number of cointegration ranks. To address this issue, we conduct 

likelihood ratio tests. The cointegration rank test developed by Johansen and Nielsen (2012) involves two 

hypotheses, 𝐻0: rank = 𝑚  against𝐻0: rank = 𝑛 , and maximizes the likelihood function under both 

hypotheses. The likelihood ratio (LR) test statistic is then  

LR𝑇(𝑛 − 𝑚) = 2log (𝐿(�̂�𝑛, 𝑛)/𝐿(�̂�𝑚, 𝑚))  (14) 

where 𝐿(�̂�𝑛, 𝑛) represents the profile likelihood function given rank n and other parameters have been 

concentrated out (see Johansen and Nielsen (2012), p. 2698). The asymptotic distribution of test statistics 

in Eq. (14) is highly dependent on the parameter of 𝑑. In the case with 0 < 𝑑 < 0.5, it has a standard 

                                                      
10 Black (1976) argues that when a stock price declines, a firm becomes more leveraged, since the relative value of its debt rises 

relative to that of its equity. As a result, the stock is expected to become riskier and, hence, more volatile. Asymmetric effects 

have also been documented by an asymmetric phenomenon that a decline in the stock market is accompanied by a greater increase 

in volatility than the decline in volatility that accompanies a rise in stock markets (Nelson, 1991, Bekaert and Wu, 2000). 
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asymptotic distribution to 𝜒2 with degree of freedom(𝑛 − 𝑚)2. For 𝑑 ≥ 0.5, asymptotic theory is non-

standard and involves fractional Brownian motion of type II.   

The estimation of the FCVAR model can be conducted by the maximum likelihood (MLE) method 

conditional on initial values. An asymptotic analysis shows that the maximum likelihood estimators are 

asymptotically normal conditional on the initial values. The log-likelihood function corresponding to Eq. 

(9) is derived as 

log 𝐿T(Θ) = −
T

2
log det(T−1∑ 𝜀𝑡(Θ)𝜀𝑡(Θ)

′𝑇
𝑡=1 ) (15) 

where 𝜀𝑡(Θ) =△
𝑑 𝑧𝑡 − 𝛼(𝛽

′𝐿𝑑𝑧𝑡 + 𝜇
′) − ∑ Γ𝑠𝐿𝑑

𝑠𝑝
𝑠=1 △𝑑 𝑧𝑡,         Θ = (𝑑, 𝛼, 𝛽, 𝜇

′, Γ) 

under i.i.d errors with suitable moment conditions, the conditional maximum likelihood estimates are 

asymptotically Gaussian for 𝑑, 𝛼, and Γ and locally mixed normal for 𝛽, 𝜇′. 

The selection of lag length, p, in the fractional distributed lag matrix Γ𝑠 is a critical issue for model 

selection. When the lag length is misspecified, the estimates in Θ will sometimes be far from what would 

be expected. To properly select the lag length, we take into account the information from the Bayesian-

Schwarz information criterion (BIC), the univariate Ljung-Box Q test for each residual series, and the 

likelihood ratio test for the significance of the Γ𝑠.   

4. Empirical evidence 

The cointegration rank test in Table 3 indicates that there are three ranks. In this four-variable system, 

we observe three linearly independent cointegrating vectors and one cointegrating vector. The existence of 

one cointegrating vector for the countries being investigated shows that the downside risk for each non-US 

market is cointegrated with that of the US market. Owing to this cointegrating relation, we set the rank as 

three and estimate the parameters that are summarized in Table 4. The downside risk measured by VaR is 
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derived from a Gaussian kernel.11  To investigate the parametric relations between stock returns and 

downside risks in the framework of the FCVAR model, we investigate the pairwise dynamic relations 

between the US market (j) and each of the other G7 countries (i), that is, an investigation of the “cross-

market downside effect” from the US downside risk on the expected returns of non-US markets. As 

mentioned in Section 3.3, the selection of the lag length will determine the success of the FCVAR model. 

Following the suggestion by Dolatabadi et al. (2015), for each country paired with the US, we first use the 

BIC as a starting point for the lag length, and then find the nearest lag length that satisfies the following 

criteria: (i) the univariate Ljung-Box Q test for each residual series without showing serial correlation, and 

(ii) the likelihood ratio test for the significance of the Γ𝑠. Two testing results lead to the choice of lag two 

in the fractional distributed lag matrices Γ1 and Γ2, which govern the short-run dynamics. 

<Table 3> 

As shown in Table 4, the estimated long-memory parameter �̂� for the FCVAR dynamic system ranges 

from 0.201 (CA) to 0.499 (UK). The estimated �̂�  values relative to respective standard errors (in 

parentheses) are relatively high, suggesting that neither the simple VAR models nor the VECM is adequate 

to describe the dynamic system between the downside risk series and the return series. To elucidate, let us 

look into the case of the UK, where we find that 𝑧𝑡 is a fractional process of order d=0.499; therefore, 

△𝑑 𝑧𝑡  and 𝛽′𝑧𝑡  are fractionally integrated of order zero by using  △0499 𝑧𝑡.   Similarly, fractional 

integration of order zero can be achieved by applying  △0.497 𝑧𝑡,  △
0.483 𝑧𝑡, … ,△

0.471 𝑧𝑡 for Germany, 

France,…, and Japan. 

<Table 4> 

Consistent with our anticipation, the estimates of 𝛽 present a negative sign. The estimated  𝛽 can 

be used to infer the long-run equilibrium between the downside risk of each non-US market, say, the UK, 

                                                      

11  At a later point, we will present VaR estimates specified by different kernels for robustness checks. 
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and the downside risk of the US markets. That is, 𝑉𝑗,𝑡 − 0.883𝑉𝑖,𝑡 = 𝑒𝑡 for the UK, 𝑉𝑗,𝑡 − 1.266𝑉𝑖,𝑡 = 𝑒𝑡 for 

Germany, and so on, where 𝑒𝑡 is white noise. In estimating the FCVAR model, we find some interesting 

results from the 𝛼(4×3) , Γ𝑠=1(4×4) and Γ𝑠=2(4×4)  matrices, which describe the long-run and short-run 

relations, respectively. In the following subsections, we will discuss the economic findings and 

interpretations that stem from Table 4. 

4.1. The long-run tradeoff  

The long-run tradeoff of risk-return (𝐿𝑑𝑉𝑗,𝑡 and △𝑑 𝑟𝑖,𝑡) is captured by the parameter 𝛼31.  As shown 

in Table 4, the estimated coefficients, 3.033 (UK), 1.117 (GM), 0.559 (FR), and 0.414 (IT), are all positive 

and statistically significant, indicating a long-run risk-return tradeoff between US downside risk 

(𝐿𝑑𝑉𝑗,𝑡) and excess returns (△𝑑 𝑟𝑖,𝑡) of the non-US countries under investigation. The long-run dynamic 

tradeoff relation between downside risk (𝑉𝑖,𝑡) and its own excess return (𝑟𝑖,𝑡) for each market can be inferred 

through the cointegrating relation measured by 𝛽. As we mentioned above, in the case of the UK, given 

that the cointegrating vector of downside risk being expressed as 𝑉𝑗,𝑡 − 0.883𝑉𝑖,𝑡 = 𝑒𝑡  and given 𝛼31= 

3.033, where j denotes the US and i represents the UK, we can infer the coefficient between 𝐿𝑑𝑉𝑖,𝑡 and 

△𝑑 𝑟𝑖,𝑡 by plugging these estimated values into the parameters. Obviously, the effect of 𝐿𝑑𝑉𝑖,𝑡  on △
𝑑 𝑟𝑖,𝑡 

can run through the 𝐿𝑑𝑉𝑗,𝑡 term due to the existence of the cointegrated relationship between 𝑉𝑗,𝑡and 𝑉𝑖,𝑡 in 

the long run. Comparable evidence can be inferred from other non-US markets, except Canada and Japan, 

where the estimated 𝛼31  is insignificant. It is apparent that the data confirm the long-run risk-return 

relations, supporting the tradeoff hypothesis, regardless of whether the downside risk arises in the domestic 

market or in the US market. These findings suggest that investors require a risk premium not only in their 

own market but also from the cross (US) market, that is, the “cross-market downside effect.” 

Note that the long-run risk-return tradeoff relation in the US market can be examined by 𝛼41 to 

address the causal relation between 𝐿𝑑𝑉𝑗,𝑡 and △𝑑 𝑟𝑗,𝑡. The estimated coefficients of 𝛼41 are positive and 
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significant at the 5% level in the markets of the UK, Germany, and Italy, which aligns with previous research 

and supports the long-run risk-return tradeoff relation in the US market. It’s also interesting to examine 

whether US investors require a risk premium for downside risk coming from outside the US. The coefficient, 

𝛼41, provides an additional clue to the above question. Investors do require a risk premium when downside 

risks spill over from the UK, Germany and Italy, in terms of the significance of 𝛼41 and the cointegrating 

relation between the US and these countries.  The joint significance of 𝛼31 and 𝛼41 implies that the US 

relative to three European markets, the UK (3.033 and 2.535), Germany (1.117 and 1.288) and Italy (0.414 

and 0.405), presents two different links between downside risk and return in the long run.  The effects 

come from either the direct impact or the cointegrating relationship between 𝑉𝑗,𝑡and 𝑉𝑖,𝑡 in the long run.   

4.2. The short-run tradeoff 

The short-run tradeoff hypothesis between downside risk and return for each market can be examined 

by checking the estimated coefficient of Γ1,31 and Γ2,31. The evidence shows that the estimated values of 

Γ1,31 for the UK (3.812), Germany (1.061), and France (1.436) are positive and significant and support the 

short-run tradeoff hypothesis, and the coefficient of the UK in Γ2,31 (3.549) is also positive, which shows 

a persistent tradeoff effect up to lag 2.  

The downside dynamic risk from a non-US country to the US returns in the short run is contained in 

the estimated coefficients of Γ1,41 or Γ2,41 in Table 4. The evidence shows this effect to be prominent for 

the downside risks originating from the UK, Germany and Canada. The Japanese market appears to be a 

special case for which we are unable to find significant evidence to support the tradeoff hypothesis, either 

in the long run or in the short run. This should not be surprising, since Japan’s stock market has been in a 

depressed state since 1994; therefore, the incentive to take risk in order to gain a higher return could have 

been suppressed by pessimism.12 The stock markets in the other industrial countries have substantially 

                                                      
12 Hoshi and Kashyap (2004) note that in addition to collapsed growth and price pressures, the inefficiency of the banking system 

and government regulations are responsible for Japan’s long-run financial problems and economic stagnation. Japanese banks 
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advanced, stimulated by the high-tech boom, productivity gains, and effective monetary policy over the 

same period of time. 

It is of interest to note that the estimated results for Γ1,32 and Γ2,32 reflect the short-run effect of US 

downside risk on non-US market returns. Negative coefficients are found in most of the countries; however, 

only the UK and France are statistically significant. Similarly, the short-run downside risk from the US on 

its own market, measured by Γ1,42 and Γ2,42, also shows a negative sign and is significant for all of the 

markets except Japan, indicating that as downside risk occurs, it produces a widespread negative effect on 

the world markets. This suggests that risk-averse investors with a fear of uncertainty tend to sell off their 

stocks, causing a decline in stock returns. This market phenomenon has been captured by the negative sign 

of Γ1,32, Γ2,32, Γ1,42 and Γ2,42. It appears that the short-run pessimistic behavior caused by high downside 

risk from the US produces a negative short-run effect. This is the very reason we fail to see a tradeoff in the 

short run. However, the evidence suggests that stock returns will bounce back and present a long-run 

tradeoff between US downside risk and excess returns as evidenced by the fact that the coefficient of 𝛼31 

displays a positive sign, except for Canada and Japan. Viewed from this perspective, the tradeoff hypothesis 

is more likely to be established in the long run. This finding is consistent with the result reported by 

Lundblad (2007) for the US case. It is evident that the FCVAR system provides a complex, yet rich model 

specification in helping us gain more insight into the multi-dimensional cointegrating relations between 

downside risk and return. In sum, the tradeoff hypothesis is supported by evidence from four major 

European markets in the long run;13 however, in the short run, the tradeoff hypothesis is valid for both the 

                                                      

have long been suffering from low profitability and poor lending operations owing to a banking industry that is too large. It has 

been argued that the poor health of the banking system is impeding economic recovery and the depressed state of the economy 

is hurting the banking system. It is these two-way links that brought about a long-run depression in the Japanese market. The 

Japanese Nikkei index (weekly data) hit a bottom of 7173 points on March 6, 2009, and did not consistently rebound until 

November 9, 2012.  
13Atilgan and Demirtas (2013) provide a good study on the issue of downside risk and return using worldwide data based on 

panel data approach. They show that there is a significant tradeoff effect for the data derived from emerging markets. However, 

the relationship between expected returns and downside risk is weaker for developed markets. Obviously, the difference in 

findings for the advanced markets between the current study and that of Atilgan and Demirtas (2013) is due to the fact that the 

cointegration relation on the VaRs between an individual market and the US market is not included in their model and hence no 

distinction is made between the long-run and short-run tradeoff. 
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UK and German markets. In addition, US downside risk plays a significant role in world stock returns in 

the long run through its cointegrating relation of downside risk with that of the other countries.     

4.3. The leverage effects 

Table 4 shows the long-run and short-run leverage effects through the estimated parameters of 𝛼12, 

𝛼13, 𝛼22, 𝛼23 in the long run and the parameters of  Γs,13, Γs,14, Γs,23, Γs,24 in the short run. Inspecting 

the estimated statistics of 𝛼13, we find that the estimated values (-0.222 for France, -0.657 for Canada, and 

-0.469 for Japan) are all negative and statistically significant, suggesting that negative stock return news 

from the US market will have a profound impact on each downside of the non-US markets, causing a 

significant long-run asymmetric effect. Similarly, for the estimated coefficient of 𝛼12, the leverage effect 

from their own markets, France (-0.439), Italy (-0.049) and Japan (-1.167) exhibit a significantly negative 

value, showing that the long-run leverage effect for France and Japan comes from both their own markets 

and the US market. While checking the coefficient of 𝛼23, we find no evidence that this coefficient is 

statistically significant. Thus, it is appropriate to conclude that for Canada, France, and Japan, the US plays 

a dominant role in the long-run leverage effect; there is no reverse causation running from other countries 

to the US.  

The corresponding short-run leverage effect from 𝐿𝑑 △
𝑑 𝑟𝑖,𝑡 to △𝑑 𝑉𝑖,𝑡 is captured by Γ1,13 and Γ2,13, 

while the cross-leverage effect from 𝐿𝑑 △
𝑑 𝑟𝑗,𝑡 to △𝑑 𝑉𝑖,𝑡 is measured by Γ1,14 and  Γ2,14. In the case of 

Italy and Canada, we observe a short-run leverage effect in the US itself through the significant Γ1,14 and 

Γ2,14. Only Canada presents a domestic leverage effect in the short run. We cannot find a short-run leverage 

effect from US markets on the non-US market captured by Γ1,14 and vice versa. The leverage effect does 

not demonstrate very impressive significance in the short run as it does in the long run. 

4.4. Robustness checks 

4.4.1. Evidence from an alternative kernel density estimator  
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As we discussed in Section 2, the tail behavior of the KDE is closely tied to the choice of kernel 

densities, which, in turn, generate (slightly) different estimates of the VaR. The question we are concerned 

with is whether the risk-return relation presented in the previous section is invariant to different types of 

kernel densities used to obtain the VaR estimates. In particular, to capture the fat tail in the stock return 

distribution, we first consider a double exponential (Laplace) kernel. Table 1 summarizes the descriptive 

statistics of the VaR estimates from a double exponential kernel. The statistics for four moments and an 

AR(1) term do not differ significantly from those obtained when we use the Gaussian kernel. The risk-return 

relation specified by an FCVAR system has been examined again by using the double exponential kernel to 

generate the VaR estimate, and the estimated results are reported in Panel A of Table 5. By comparing the 

case of the UK with the one in Table 4,14 one can observe that the estimated long-memory parameters are 

comparable (e.g.  𝛼31 = 2.906) and the cointegrating vector 𝛽  (-0.888) is also similar. The evidence 

supports the hypothesis that there is a tradeoff between downside risk and returns in the long-run. For the 

short run, we find that the UK’s own effect as measured by the Γ1,31 (3.617) is positive and statistically 

significant, supporting the tradeoff hypothesis. However, we cannot find the same level of support from US 

downside risk, where the measured coefficient goes in the opposite direction between the sources of 

downside risk. The data show that the estimated coefficient for Γ1,32 is negative (-2.893) and statistically 

significant. Putting these findings together leads us to conclude that there is a short-run tradeoff within UK’s 

own market; however, it is not true for the cross market. That is, the impact from the US market tends to 

produce a negative effect and will not be compensated in the short run. However, since the evidence shows 

a positive relationship in the long run as shown in 𝛼31(2.906), the losses caused by the US market downside 

risk in the short run will be compensated in the long run. In sum, we conclude that the empirical results are 

totally consistent with the result derived from Table 4 regardless of the selection of kernel densities. Our 

results conform with the argument in Härdle et al. (2004) that the choice of the kernel function is not so 

                                                      

14 To save space, we report only the case of the UK. The statistics for other countries are available upon request.  
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crucial for the efficiency of the estimates, and as a consequence, it has no significant impact on the final 

estimated results.  

<Table 5> 

4.4.2 Expected shortfall and expected VaR 

As noted by Artzner et al. (1999), the VaR measure may not be coherent, that is, it fails to satisfy the 

so-called sub-additivity property and violates the principle that "a merger does not create extra risk." It is 

possible for a portfolio’s VaR to exceed the weighted average VaR of the assets that it comprises. Another 

shortcoming of VaR is that it provides no information on the extent of the losses that might be suffered 

beyond the threshold amount indicated by this measure. In this regard, expected shortfall (ES), the mean 

losses larger than VaR, can ideally substitute for VaR and this is measure can be used to examine the degree 

of robustness.  

The statistics reported in Panel B of Table 5 show that using the expected shortfall as the downside 

risk measure does not bring any incremental findings beyond what we found earlier. Risk measures 

constructed either by quantile or by averaging those below the quantile show their predictability for future 

returns, and this predictability is also robust in the long run and the short run.  

The rationale for using the lagged realized VaR as a proxy for the expected VaR in testing the risk-

return relation is that VaR behaves quite persistently. As shown in Table 2, like volatility, VaR is 

characterized as a long-memory process (Caporin, 2008). Owing to this predictability, we follow Bali et al. 

(2009) and consider an AR(p) specification as a proxy for expected VaR. Using the BIC, one can select the 

optimal lag and then use the current and lagged VaR to project the expected future VaR. As expected, the 

findings in Panel C of Table 5 show that the lagged realized VaR appears to be a good proxy for the expected 

VaR, and the corresponding estimates do not differ significantly from those we derived earlier.  

4.4.3. Control variables incorporated  
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Control variables may affect the estimation of the stock return equation and, therefore, blur the risk-

return relation. For this reason, we include control variables such as dividend yield, term spread (the 

difference between the one-year Treasury rate and the one-month Treasury rate), the detrended riskless 

rate(the three-month Treasury rate minus its one-year backward-moving average), and the default spread 

(the yield difference between US BAA- and AAA-rated corporate bonds. All of the data above are taken 

from Thomson Reuters’ Datastream. These control variables are quite standard in estimating the stock 

return equation (see Bali et al., 2009). Firstly, we regress the raw return series on these control variables to 

estimate the residuals. The residuals, after controlling for the critical economic and financial variables, are 

then incorporated into an FCVAR system to ideally replace the raw return series of the G7 countries. 

Estimates from Panel D suggest that the tradeoff effect still holds in the long run, but there is a lack of 

support for the short-run results. Most important, the long-run feedback effect from residual returns to 

future downside risk turns out to be significant after incorporating the control variables. 

In sum, the robustness checks encompass the VaR estimates derived by the alternative kernel density 

estimators, the expected shortfall, the expected VaR in addition to realized VaR, and specification of the 

control variables. Additionally, a small sample bias may appear once one tests the coefficients in a dynamic 

system with highly persistent regressors, such as downside risk values. In Appendix 2, we illustrate the 

small sample bias issue via a simulation, and then demonstrate that the fractional differentiation framework 

employed here is robust relative to this bias issue.  

   

5. Downside risk, high-moment risk and ICAPM theory 

5.1. The model  

Given the information content of VaR, it is worth extending the current research to ask the following 

questions: (1) Which higher-moment risk measures may contribute more to VaR or better predict VaR? (2) 

How well do these higher-order-moment risks predict expected return and subsequently how do they 
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produce better predictability? (3) Does VaR better represent higher-moment risk measures, leading to the 

conclusion that the ICAPM theory can be more parsimonious when using this aggregative and informative 

risk measure? To address the predictability of higher moments by using VaR, one can perceive that the VaR 

series with the persistent property that is inherent in the higher moments of the stock return distribution 

may behave like an AR(1) process, 𝑉1−𝛼,𝑡 = 𝑢 + 𝜌𝑉1−𝛼,𝑡−1 + 𝑣𝑡. By plugging the right-hand side of Eq. 

(2) into the lagged VaR, the lagged higher moments introduced in the CFE potentially predict future VaR. 

Jointly considering this issue with the second question of predicting expected returns with respect to these 

risk measures, we need a dynamic system to incorporate the variables of interest and to specify their 

dynamics as well as interactions over time. More concisely, our dynamic system constitutes a vector of 

elements with higher-moment risks, VaR, and stock returns, and the system is structured into an FCVAR 

model by taking advantage of its capacity for long memory and its cointegrating features. The resulting 

system thus enables us to examine the source of VaR’s predictive power (VaR is a function of higher 

moments) and its predictability for stock returns (by using VaR and higher moments) simultaneously. An 

FCVAR specification can be expressed as  

(

 
 
 

△𝑑 𝑉𝑖,𝑡
△𝑑 𝜎𝑖,𝑡
△𝑑 𝑆𝑖,𝑡
△𝑑 𝐾i,𝑡
△𝑑 𝑟i,𝑡)

 
 
 
= 𝛼𝜇′ +

(

 
 

𝛼11 𝛼12 𝛼13 𝛼14
𝛼21 𝛼22 𝛼23 𝛼24
𝛼31 𝛼32 𝛼33 𝛼34
𝛼41 𝛼42 𝛼43 𝛼44
𝛼51 𝛼52 𝛼53 𝛼54)

 
 
(

𝛽 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

(

  
 

𝐿𝑑𝑉𝑖,𝑡
𝐿𝑑𝜎𝑖,𝑡
𝐿𝑑𝑆𝑖,𝑡
𝐿𝑑𝐾i,𝑡
𝐿𝑑𝑟i,𝑡)

  
 
+

(

  
 

Γ1,11 Γ1,12 Γ1,13 Γ1,14 Γ1,15
Γ1,21 Γ1,22 Γ1,23 Γ1,24 Γ1,25
Γ1,31 Γ1,32 Γ1,33 Γ1,34 Γ1,35
Γ1,41 Γ1,42 Γ1,43 Γ1,44 Γ1,45
Γ1,51 Γ1,52 Γ1,53 Γ1,54 Γ1,55)

  
 

(

 
 
 

𝐿𝑑 △
𝑑 𝑉𝑖,𝑡

𝐿𝑑 △
𝑑 𝜎𝑖,𝑡

𝐿𝑑 △
𝑑 𝑆𝑖,𝑡

𝐿𝑑 △
𝑑 𝐾i,𝑡

𝐿𝑑 △
𝑑 𝑟i,𝑡)

 
 
 
+

(

 
 

𝜀1,𝑡
𝜀2,𝑡
𝜀3,𝑡
𝜀4,𝑡
𝜀5,𝑡)

 
 

                   (16) 

The likelihood ratio tests for cointegrating rank indicate that the system contains four cointegrating 

ranks, implying one cointegrating relation between 𝑉𝑖,𝑡 and 𝜎𝑖,𝑡, which is captured by �̃�. The column 

rank of 𝛼𝛽′ equals four (𝑚=4) with natural normalization. This cointegrated relation points out that a 

long-run relationship exists between VaR and volatility; furthermore, this long-run equilibrium provides a 

mechanism for conducting VaR prediction in the future. Most interestingly, the VaR can serve as an 
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information variable for volatility given the cointegrating relation. The first row of the matrix 𝜶 of the 

adjustment coefficients indicates a long-run (more permanent) predictability of higher-moment risk 

measures for future VaR, while the first row of the fractional distributed lag matrix Γ1 shows a short-run 

(more transitory) predictability. The aforementioned coefficients address the first research question; the 

second research question is addressed in the last row of 𝜶 for a long-run prediction of future returns, and 

the last row of Γ1 for a short-run prediction. According to the criterion (mentioned in the last paragraph of 

Section 3) of selecting the lag in the fractional distributed lag matrix Γ, we find that a lag of 1 is appropriate.  

5.2. The estimated results 

As shown in Table 6, the estimated long-memory parameter �̂� for the FCVAR dynamic system ranges 

from 0.137(JP) to 0.418 (US). The estimated �̂�  values relative to the respective standard errors (in 

parentheses) are significant to support the validation of this model. The estimated �̃� is in the range of -

0.187 (GM) to -1.047 (JP). These numbers are comparable to the literature (Bollerslev, et al., 2003). In our 

context, it is sufficient to focus on two variables: △𝑑 𝑉𝑖,𝑡 and △𝑑 𝑟i,𝑡  in terms of equation (16).  The 

former concerns the information content of VaR; the latter involves the predictability of stock returns based 

on the second- and higher- moment risks. The validity of the former can be attested to by examining the 

restrictions of 𝛼11 = 0 (𝑉𝑎𝑅 and 𝜎𝑖,𝑡),  𝛼12 = 0 (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠), and 𝛼13 = 0 (𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠), while the latter 

can be attested to by testing 𝛼51 = 0 (VaR and  𝜎𝑖,𝑡 ),   𝛼52 = 0 (𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠), and 𝛼53 = 0 (𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠) 

using a standard t-statistic on each individual coefficient.  

The evidence in Table 6 indicates that 𝑡he estimated 𝛼11 is significant, and this holds true for all of 

the countries under investigation. This testing result suggests that both lagged VaR and lagged volatility 

have information content to predict △𝑑 𝑉𝑖,𝑡. Since the 𝛽𝛼11 is positive, the long-run effect of the lagged 

VaR on predicting △𝑑 𝑉𝑖,𝑡 is direct and positive for all of the markets, except the UK. The data reveal that 

the long-run effect for the UK, however, is running through an error-correcting process owing to the 

adjustment made on the disequilibrium state between the lagged VaR and lagged volatility, which is 
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embedded in the negative term of 𝛽𝛼11 . The estimated values of 𝛼12 are negative and statistically 

significant for the UK, Germany, Japan, and the US, confirming that the skewness in these markets also 

contributes a long-run factor to predicting VaR. Note that the estimated coefficient exhibits a negative sign. 

One can infer that the further left-skewed the series is, the higher the VaR expected to be present in the 

future. With respect to the predictability of kurtosis, however, we find no concrete evidence to conclude 

that the estimated 𝛼13 is significant, suggesting that the kurtosis carries no incremental information in 

predicting VaR.  

<Table 6> 

To provide evidence to answer the second question — how well do these higher-order moments predict 

expected returns? — we examine the restrictions: 𝛼51 = 0,  𝛼52 = 0,  and 𝛼53 = 0.  The statistics in 

Table 6 show that the estimated values of 𝛼51 and 𝛼51𝛽  are significant for all of the countries (except 

Canada and Japan), which suggests that the individual lagged VaR and lagged variance possess certain 

information content in predicting future changes in stock returns. This is evidenced by the positive sign on 

the product term of 𝛼51𝛽.   

The estimated coefficient of 𝛼52 shows a negative sign and is statistically significant for three major 

countries the UK, Germany, and the US. This finding is consistent with the theoretical a priori that skewness 

could contribute to a long-run prediction of stock returns. The findings for these three markets agree with 

the results by Harvey and Siddique (1999) in their studies of the US market. With regard to the estimated 

value of 𝛼53, the statistics confirm that the sign is positive and the coefficient is significant for the UK, 

France, and the US, supporting the positive contribution of kurtosis to predicting stock returns.  

Turning to the short-run predictability of second- and higher-moment risks, the statistics do not lend 

much support because the short-run data appear to be more erratic in terms of variability and vulnerability. 

By focusing on the first row of the Γ1 matrix, which tests the information content of VaR in relation to 

various risk factors, we find that only the UK market shows that the coefficients of Γ1,11 ,Γ1,12 , and 
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Γ1,14 are statistically significant, supporting the notion that the lagged values of the △𝑑 𝑉𝑖,𝑡, 

△𝑑 𝜎𝑖,𝑡 and △
𝑑 𝑘i,𝑡 can be used to predict future movements of △𝑑 𝑉𝑖,𝑡.  No comparable evidence is 

present in the other markets under investigation. Likewise, as we test the performance of stock returns 

explained by the lagged values of the second and higher moments associated with the elements in the last 

row of the Γ1  matrix, we find that the following restrictions Γ1,51 = 0, Γ1,52 = 0, and Γ1,53 = 0 are 

rejected only for the UK data; leading to conclude that there are no significant coefficients for the other 

markets. Obviously, the UK market performs well when we use the short-run component data, but the other 

markets in this study do not.  

6. Dynamic effects of permanent and transitory shocks  

6.1. Decomposition of shocks 

Time series variables moving together at low frequencies form a key feature of a cointegrated system. 

The impulse response analysis arising from the shocks created in a cointegrated system goes beyond that 

in the conventional VAR system. Given that variables comove in the long run, the impulse response analysis 

in a VAR system is essentially limited.15 Identification of the shocks is suggested to derive the long-run 

responses of the variables to relevant shocks. Accordingly, the shocks are distinguished by their degree of 

persistence, rather than their origin. The conventional approach suggests that the invisible shocks can be 

decomposed into "permanent" and "transitory" components. By definition, the effect of a permanent shock 

decays hyperbolically and lasts for a relatively longer time, while the effect of a transitory shock decays at 

a fast exponential rate.  

Given the findings that both US downside risk and the downside risk stemming from the country itself 

lead to higher expected returns in the future, it is of interest to analyze the price discovery of downside risks 

                                                      

15 In conventional VAR analysis, the identified shocks are usually viewed as innovations to the variables in a dynamic system. 
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between the US and non-US countries, that is, which source is more informative for predicting expected 

returns. To carry out this analysis on basis of the FCVAR model, we conduct the permanent-transitory (PT) 

decomposition proposed by Gonzalo and Granger (1995) and Gonzalo and Ng (2001). The innovations 

from a cointegrated dynamic system are decomposed in order to extract the unobservable structural shocks. 

Notice that the innovations used to extract the unobservable shocks in Gonzalo and Granger (1995) and 

Gonzalo and Ng (2001) are essentially based on a VECM model. Our approach, instead, employs the 

innovations from an FCVAR (d) model derived in the previous section and expressed as equations (8) and 

(9).16  

The cointegrated system shown in Eq. (8) has an ideal form for transforming to a multivariate moving-

average (MA) representation (see Beveridge and Nelson (1981)). The MA representation permits an 

analysis of the dynamic response of the system to shocks and details the transmission mechanism under 

empirical investigation. In doing so, in the first step, Gonzalo and Ng (2001) apply the transformation using 

the G matrix proposed by Gonzalo and Granger (1995) and construct the "unorthogonalized" permanent 

and transitory shocks. The G matrix that transforms the innovations in Eq. (8), 𝜀𝑡, to unobservable structural 

shocks is composed of a cointegrating vector, 𝛽′, and orthonormal adjustment coefficients, 𝛼⊥
′ , and stated 

as G = [𝛼⊥
′ 𝛽′]′ . The transitory shock, 𝑢𝑡

𝑇 = 𝛽′𝜀𝑡  is an 𝑚 × 1 vector, while the permanent shock, 

𝑢𝑡
𝑃 = 𝛼⊥

′ 𝜀𝑡, is an (𝑛 − 𝑚) × 1 vector. 𝑚 is a rank of 𝛽 and n is the number of vectors in 𝑧𝑡. The shocks 

𝑢𝑡 = [𝑢𝑡
𝑃, 𝑢𝑡

𝑇]' are defined by their degree of persistence, but they are not orthogonal, and therefore, any 

causal statement is somewhat weak. In the second step, to obtain the orthogonalized shocks, we apply 

Choleski decomposition to the variance-covariance matrix 𝛴𝑢𝑡 = 𝐸(𝑢𝑡𝑢𝑡
′) and derive a set of permanent 

and transitory shocks that are mutually orthogonal. Using the vector MA representation, we implement the 

impulse response analysis based on orthogonalized shocks.  

                                                      
16 The VECM is obviously nested in the FCVAR (d). 
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The transitory shock is related to the cointegrating relation, while the permanent one is linked to the 

single common stochastic trend shared by any two downside risk series. On the basis of the estimates of 

the cointegrating vector, 𝛽′, and the adjustment coefficient matrix, 𝛼, in Table 4, we find one permanent 

shock (n-m=1 where n= 4 and m=3) and three transitory shocks (m=3, the rank of the cointegrating vector). 

The common permanent component is determined by the orthonormal adjustment coefficients, 𝛼⊥
′ ,17 while 

its counterparty, the adjustment coefficient matrix, 𝛼, measures how the previous period’s disequilibrium 

error feeds into today's fractional changes in 𝑧𝑡. The orthonormal adjustment coefficients, 𝛼⊥
′ , a direct 

measure of the permanent component, govern the long-run cointegrating risk relation and the long-run risk-

return relation. In this study we apply the orthonormal adjustment coefficients to analyze the long-run 

“downside risk discovery.”  

6.2. Price discovery and impulse responses 

Table 7 reports the estimates of 𝛼⊥
′  across the non-US G7 countries paired with the US. The estimated 

orthonormal adjustment coefficients are normalized such that their sum is equal to one. These coefficients 

can be interpreted as proportions contributing to the risk and price discovery process. The second 

element,𝛼⊥
𝑉𝑗

, in normalized 𝛼⊥
′ , on average, accounts for 54.36% of price discovery, indicating that US 

downside risk is a leading factor in the dynamic process of 𝑧𝑡. The downside risk stemming from the 

country itself, however, contributes only 27.06% to price discovery. The evidence shows that downside risk 

in the US market is more informative about the long-run dynamic process that constitutes a main driving 

force for the G7 risk-return dynamic relation. 

<Table 7> 

The long-run responses of downside risk to a permanent shock are depicted in Figure 2, where the first 

column collects four impulse responses from a first permanent shock to each element in 𝑧𝑡. In the case of 

                                                      

17 𝛼⊥
′ 𝛼 = 𝛼′𝛼⊥= 0 
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the UK, a permanent shock is effectively a shock to downside risks (V𝑖 , V𝑗) and lasts for up to 12 months.18 

This permanent shock has initial effects on V𝑖 and V𝑗 , while it exhibits a negative impact on both 𝑟𝑖, and 

𝑟𝑗 . This reverse reaction between downside risk and return to a permanent shock confirms a negative 

contemporaneous correlation between risk and return in the long run. As shown in the responses of the two 

return series, the initial responses are negative but turn positive the next month, indicating a positive 

intertemporal risk-return relation or so-called volatility feedback effect. 

<Figure 2> 

The first transitory shock creates a very profoundly negative impact in the beginning, but reverts to 

zero at a fast exponential rate. However, the second transitory shock has a positive impact and the effect 

decays over an 8-month horizon. Interestingly, it creates a reverse impact on downside risk and on expected 

return, which can be seen by the fact that the slope between the first and second month is positive for 

downside risk, whereas it is negative for the return series. At the beginning of a shock, the impulse response 

analysis indicates a negative contemporaneous association between the impulse responses of downside risk 

and those of returns in both the US and the UK. After two months, the response curves between downside 

risk and returns both present a positive slope, supporting a positive intertemporal risk-return relation in the 

transitory aspect. The third shock, however, seems to have a very limited impact owing to the values of the 

impulse responses.  

For downside risks, the transitory shocks are relatively less influential and less substantial owing to 

the values of the impulse responses, suggesting that the permanent shock drives the comovement of 

downside risk in the long run. The first transitory shock potentially reflects a shock to returns, since it 

creates a persistently negative impact on downside risks akin to a multi-period dynamic leverage effect 

(Bollerslev, Litvinova, and Tauchen, 2006). In general, the permanent shock affects downside risk longer 

                                                      

18 The other developed markets exhibit impulse responses similar to those in Figure 2. Because of space concerns, they are 

available upon request.  
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and causes a cointegrating relation between downside risks. Downside risks entail a long-run equilibrium 

relation owing to this permanent shock, so that they behave parallel in the long run. The transitory shocks 

state a negative contemporaneous correlation between risk and return. Later, these shocks result in a rise in 

future returns akin to a volatility feedback effect. The dynamic analysis is consistent with the finding in 

section 5 that the VaR movement is essentially driven by the long-run component of second- and third-

moment risks, while stock return variations are mainly attributed to the long-run components of the VaR, 

skewness, and kurtosis, rather than the short-run effects from these risk factors.    

7. Conclusions 

This study presents a multivariate time series model to examine various dynamic relations between 

aggregate stock market returns and downside risk. Recognizing that downside risk can be described by a 

long-memory process, we estimate G7 market data using a fractionally cointegrated vector autoregression 

(FCVAR) model. This model provides an apparatus to examine the risk-return tradeoff hypothesis and the 

leverage effect in both the long run and the short run. In addition, the model, which features a multivariate 

setting, allows for cross-market influences on the risk-return relation. This paper derives several important 

pieces of empirical evidence. 

First, in addition to the fractionally cointegrated feature, the downside risks for global markets and the 

US market form a cointegrated vector. Particularly, long-run positive relations between downside risk and 

return are confirmed by the data, except for Japan, supporting the tradeoff hypothesis, regardless of whether 

downside risk comes from the domestic market or from the US market. These results suggest that investors 

in the UK, Germany, France, Italy and Canada require a risk premium not only from their own markets but 

also from the US market. A long-run risk-return relation is also present in US stocks; however, a positive 

and significant cross-market risk effect for the US is found only in a few European markets (the UK, France 

and Italy). Again, the impact is mainly due to the establishment of the long-run risk cointegration.  



 

37 

 

Second, this study finds supportive evidence for the short-run tradeoff hypothesis for the non-US 

markets, including the UK, Germany, Italy and Canada. Testing for the short-run effect of US downside 

risk on non-US market returns, we find support for the short-run tradeoff hypothesis in the US market. 

Testing for a reverse relation — downside risk running from the non-US markets to excess returns in the 

US — we find that only two European markets, the UK and Germany, show a significant effect, suggesting 

that these two markets present a bilateral influence with respect to the US, while the other markets are 

dominated by the US market.  

Third, this study demonstrates that the impact of negative stock return news on downside risk can arise 

either from its own market or from the US market. We find strong evidence of long-run leverage effects 

and moderate short-run effects (four out of six markets) that spill over from the US market to other global 

markets. This means that a decline in US stock returns will cause a big increase in downside risk in non-

US markets. However, we cannot find a comparable effect from other markets to the US market.  

Fourth, based on the FCVAR model, we conduct a permanent-transitory (PT) decomposition to 

analyze the price discovery of downside risks between the US and non-US countries to future expected 

returns. Downside risk in the US market is more informative about the long-run dynamic process, which 

constitutes a main driving force for the G7 dynamic risk-return relation. A permanent shock confirms a 

cointegrating relation in downside risks and a positive tradeoff relation in the long run, while transitory 

shocks support a positive intertemporal risk-return relation in the short run. 

Fifth, for all of the markets (except Canada and Japan), the evidence confirms that the long-run effects 

are significant at the lagged levels of VaR and variance, and that the information in these variables is useful 

in predicting future changes in stock returns. For the skewness, this study finds that the long-run effect is 

present in the markets of the UK, Germany, and the US, implying that the skewness possesses significant 

information content in predicting future stock returns for these markets. However, for the kurtosis, we find 

that the UK, French, and US markets show supportive evidence. Thus, the long-run effect of the second- 
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and higher-moment risks in predicting stock returns is mainly tied to the four major markets, the UK, 

Germany, France, and the US.  Turning to the short-run components, only the UK market shows 

significant effects from the lagged VaR, lag variance, and skewness for predicting future stock returns, but 

no comparable evidence is found in other markets.     

Sixth, given the fact that the higher-moment risk variables can be used to predict stock returns, we 

further investigate whether downside risk, such as VaR, can contain some information about higher-moment 

risks. Our evidence shows that in addition to the second moment, such as the lagged VaR and lagged 

variance, VaR constitutes the long-run components of skewness for the UK, German, Japanese, and US markets, 

suggesting that VaR appears to be a good variable to syndicate the information from the lagged second 

moment and skewness. However, there is no concrete evidence to support the notion that VaR carries 

information about kurtosis.  

In sum, this study finds that the downside risk series for various markets are fractionally cointegrated 

and move in the same direction in the long run. The evidence for this risk covariance relation provides links 

that establish risk-return relations that are applicable not only in the context of a long-run time frame but 

also in cross-market situations. In addition, the volatility feedback effect is also present in the markets under 

investigation. Focusing only on a single market to test for the risk-return relation, that is, simply focusing 

on a particular time dimension without considering cross-market spillovers and risk feedback, is likely to 

produce a misleading estimator. One of the significant conclusions derived from this study is the discovery 

of the influential role of US market risk. Through the cointegrating relations, global market risk is 

essentially driven by the US market, both in the short run and in the long run. All in all, in this study, we 

present a fractionally cointegrated VAR model for analyzing risk and return dynamics that is capable of 

accommodating multi-dimensional market interactions within a coherent joint modeling framework. 
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Appendix 1. Tests for spurious long memory 

By admitting the joint occurrence of long memory and structural breaks, this appendix applies the 

local Whittle test developed by Qu (2011) to test for true versus spurious long memory for the estimates of 

downside risk. The null hypothesis in Qu’s (2011) testing method is stationary or true long memory, while 

the alternative hypothesis is that spurious long memory means that the time series process has a short 

memory, but it is contaminated by level shifts or a smooth trend.  

As one of the semiparametric methods, Qu’s (2011) testing method is based on the information from 

the periodogram. The periodogram of data series, 𝑥𝑡  (𝑡 = 1,… , 𝑛), evaluated at frequency 𝜆𝑗 = 2𝜋𝑗/𝑛, 

where 𝑗 = 1,2, … , [𝑛/2], is given by 𝐼𝑥(𝜆𝑗) = (2𝜋𝑛)
−1|∑ 𝑥𝑡 × exp(𝑖𝜆𝑗𝑡)

𝑛
𝑡=1 |

2
. The uniform behavior of 

𝐼𝑥(𝜆𝑗) is the very property that enables the detection of spurious long memory. The spectral density 

frequency and the local Whittle likelihood function is therefore: 

𝑄(𝐺, 𝑑) =
1

𝑚
∑ {log𝐺𝜆𝑗

−2𝑑 +
𝐼𝑥(𝜆𝑗)

𝐺𝜆𝑗
−2𝑑}

𝑚
𝑗=1                                         (A.1.1) 

�̂� is estimated by maximizing the above likelihood function. The test statistic is then defined as  

𝑊 = sup(∑ 𝑣𝑗
2𝑚

𝑗=1 )
−1 2⁄

|∑ 𝑣𝑗 (
𝐼𝑥(𝜆𝑗)

𝐺(�̂�)𝜆𝑗
−2�̂�
− 1)𝑚

𝑗=1 |                                  (A.1.2) 

where 𝑣𝑗=log𝜆𝑗 −𝑚
−1∑ log𝜆𝑗

𝑚
𝑗=1 , and 𝐺(�̂�)=𝑚−1∑ 𝜆𝑗

𝑚
𝑗=1

2�̂�
𝐼𝑥(𝜆𝑗) . As suggested by Qu (2011), we set 

the bandwidth to 𝑚 = 𝑛0.7 and set the trimming proportion to 0.02 and 0.05, respectively. The third and 

fourth columns of Table 2 summarize the spurious long-memory test results based on Eq. (A.1.2). The local 

Whittle estimates for the long-memory parameter �̂� range from 0.300 (US) to 0.510 (Canada). The test 

statistics all fail to reject the null, suggesting that a stationary long memory is inherent in the downside risk 

of the G7 countries.  
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Appendix 2. Examining small sample bias  

A small sample bias may be tangent to the conclusions that one draws from testing coefficients in a 

dynamic system. This issue needs to be analyzed carefully, especially with highly persistent regressors for 

a time series of downside risk values. In this appendix, we illustrate first the small sample bias issue via a 

simulation, and then demonstrate that the fractional differentiation framework is robust relative to this bias 

issue. As pointed out by Stambaugh (1999), the bias in the system is proportional to the bias in the degree 

of persistence of the regressor, which can be expressed approximately as 

E(Θ̂ − Θ) =
Σ𝜀𝑣

Σ𝑣
E(�̂� − 𝜌)               (A.2.1) 

where Θ and 𝜀 are the set of parameters and residuals, respectively, in the FCVARd(p) system shown in 

Eq. (4). 𝜌 is the autoregressive coefficient of regressor, and 𝑣 is the corresponding error term in the 

autoregressive process with the covariance matrix Σ𝑣  . Σ𝜀𝑣 is the covariance of 𝜀 and 𝑣. Obviously, 

both 𝜌 and the ratio of Σ𝜀𝑣 to Σ𝜀 determine the size of the bias.  

 First, we assume that the regressor, 𝑥𝑡, follows an AR(1) process. 𝑥𝑡 = 𝛼 + 𝜌𝑥𝑥𝑡−1 + 𝑣𝑡. Suppose 

that 𝑥𝑡 is very highly persistent with a higher value of 𝜌𝑥, say, larger than 0.8. Then we simply take the 

first difference and create a new time series 𝑧𝑡 = 𝜄 + 𝜌𝑧𝑍𝑡−1 + 𝜖𝑡 where  𝑧𝑡 = 𝑥𝑡 − 𝑥𝑡−1. By plugging 

𝑥𝑡 into 𝑧𝑡, we obtain an autoregressive coefficient for 𝑧𝑡 , 𝜌𝑧 =
(1−𝜌𝑥)𝜌𝑥

2
.  Note that 𝜌𝑧 is smaller than 

𝜌𝑥 for any 𝜌𝑥 ∈ [0 1] and has a maximal value of 1/8 in the center of the parabola. This simple case 

demonstrates that differentiating even an extremely persistent (long memory) time series mitigates the 

persistence of the regressors. In our application, the fractional difference replaces the first difference. The 

differencing step will effectively lower the bias as shown in a corollary in Stambaugh (1999) 

E(Θ̂ − Θ) = −
Σ𝜀𝑣

Σ𝑣
(
1+3�̂�

T
) + Ο(1/T2)                                         (A.2.2) 

Eq. (A.2.2) is an approximation for the bias in (A.2.1) under a normality framework showing that a lower 

�̂� creates a smaller bias.  
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Second, we perform a simulation of the aforementioned situation. We presume that 𝜌𝑥 = 0.8, Θ=0.9, 

and 𝑣𝑡 is i.i.d. N(0,1). In order to create a realistic scenario for the small sample bias, we let d = 0.5 and n 

= 40. Having been fractionally differentiated, the degree of persistence has shrunk dramatically from the 

left-hand-side plot to the right-hand-side plot (Fig. A). In addition, the ratio of 
Σ𝜀𝑣

Σ𝑣
 has been reduced from 

0.1108 (without de-fractional) to -0.0026. In sum, the bias shrinks from -0.0045 to 0.0002. The simulation 

shows that Θ is downward biased by 0.2062 with a persistent regressor, whereas it reverts to 0.8515 (indeed 

closer to 0.9) after fractionally differentiating. We may therefore conclude that the bias does not play a 

significant role in the current study. 

 

To sharpen this argument, we use the analytical approximation in (A.2) and report the case of the UK: 

E(Θ̂ − Θ) = [

0.934 × 10−5 2.830 × 10−5 9.221 × 10−5 10.162 × 10−5

2.107 × 10−5 5.585 × 10−5 8.826 × 10−5 8.704 × 10−5

−0.629 × 10−5 −0.601 × 10−5 1.649 × 10−5 0.642 × 10−5

−0.226 × 10−5 0.542 × 10−5 0.631 × 10−5 −0.454 × 10−5

] 

Obviously, the bias is too small to alter the results.  
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Table 1  

Descriptive statistics of downside risk and stock returns 

Country Series Mean Std Skewness Kurtosis AR(1) ADF 
test 

US 

Return 0.60% 4.29% -0.82 4.72 0.07 -11.36* 

VaR(GaussianKDE) 2.81% 1.84% 2.63 13.48 0.71 -5.53* 

VaR(exponentialKDE) 2.60% 1.70% 2.56 12.73 0.69 -5.60* 

ES(GaussianKDE) 3.15% 2.03% 2.58 13.08 0.72 -5.41* 

UK 

Return 0.40% 4.17% -0.62 3.59 0.04 -12.02* 

VaR(GaussianKDE) 2.83% 1.62% 2.35 12.47 0.65 -6.28* 

VaR(exponentialKDE) 2.62% 1.51% 2.29 11.83 0.66 -6.24* 

ES(GaussianKDE) 3.18% 1.81% 2.42 13.18 0.66 -6.31* 

GM 

Return 0.60% 6.35% -0.94 5.70 0.03 -11.22* 

VaR(GaussianKDE) 3.65% 2.10% 1.74 6.75 0.60 -6.42* 

VaR(exponentialKDE) 3.38% 1.95% 1.72 6.68 0.59 -6.46* 

ES(GaussianKDE) 4.09% 2.33% 1.75 6.79 0.61 -6.37* 

FR 

Return 0.32% 5.60% -0.49 3.26 0.07 -11.65* 

VaR(GaussianKDE) 3.62% 1.82% 2.11 10.92 0.61 -6.99* 

VaR(exponentialKDE) 3.36% 1.71% 2.09 10.68 0.60 -6.99* 

ES(GaussianKDE) 4.05% 2.03% 2.15 11.10 0.61 -6.99* 

IT 

Return 0.12% 6.32% 0.15 3.47 0.02 -11.25* 

VaR(GaussianKDE) 3.51% 1.84% 1.72 8.05 0.53 -7.29* 

VaR(exponentialKDE) 3.25% 1.70% 1.66 7.71 0.52 -7.24* 

ES(GaussianKDE) 3.93% 2.05% 1.74 8.15 0.54 -7.27* 

CA 

Return 0.58% 5.89% -0.60 4.28 0.12 -10.06* 

VaR(GaussianKDE) 3.42% 1.99% 3.06 17.79 0.66 -6.10* 

VaR(exponentialKDE) 3.17% 1.88% 3.08 17.77 0.65 -6.10* 

ES(GaussianKDE) 3.83% 2.22% 3.03 17.45 0.67 -6.03* 

JP 

Return -0.24% 6.34% -0.44 4.01 0.01 -10.98* 

VaR(GaussianKDE) 3.91% 2.01% 2.95 20.82 0.46 -8.07* 

VaR(exponentialKDE) 3.62% 1.87% 2.78 18.40 0.46 -8.09* 

ES(GaussianKDE) 4.38% 2.22% 2.95 20.92 0.47 -8.07* 

The data cover seven major advanced markets: the United States (US), the United Kingdom (UK), Germany (GM), France (FR), 

Italy (IT), Canada (CA), and Japan (JP) for the sample period Sep. 1990 through Jul. 2013. Both excess return and the VaR in 

Eq. (6) are calculated on a monthly basis, and each has 275 monthly estimates. Two kernel densities, a Gaussian and a double 

exponential kernel, are applied to generate the VaR estimates. ADF is the augmented Dickey-Fuller test. * indicates that the 

coefficient is significant at the 1% level.  
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Table 2 

Semiparametric analysis for risk measures and spurious check 

 GPH estimate 
of d 

Local Whittle 
estimate of d 

Test statistic 
(trim=0.02) 

Test statistic 
(trim=0.05) 

US 0.441 0.300 0.600 0.601 

UK 0.508 0.432 0.774 0.774 

GM 0.403 0.443 0.320 0.320 

FR 0.259 0.413 0.458 0.381 

IT 0.317 0.469 0.916 0.916 

CA 0.387 0.510 0.617 0.618 

JP 0.309 0.318 0.505 0.312 

 

The GPH estimate is the log-periodogram estimator by Geweke and Porter-Hudak (1983), and the local Whittle likelihood 

procedure is from Künsch (1986). A suitable value of d usually lies in |d| < 0.5. A fractional (non-integer) number with values 

less than 0 would indicate a weak or memory-less process; if d is in the interval of(0, 0.5), the series is characterized by a 

stationary process with a long memory; if d lies in (0.5,∞), the series features a long memory with a non-stationary process. 

 

Table 3  

Cointegration rank tests 

 

Rank        UK     GM     FR     IT     CA     JP 

0 62.495* 36.114* 49.219* 30.010* 40.492* 62.615* 

1 25.489* 17.778* 15.392* 7.580* 16.783* 25.908* 

2 7.234* 8.908* 8.850* 2.335* 3.541* 9.935* 

3 0.541*  2.967* 2.540* 0.369* 0.924* 2.219* 

This table shows the results of the likelihood ratio test statistics shown in Eq. (14). * denotes the significance at the 5% level. 
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Table 4 

The estimated results from the fractionally cointegrated VAR model using a Gaussian kernel 
 

 d 𝛽 𝜇′3×1 𝛼(4×3) 𝛤𝑠=1,(4×4) 𝛤𝑠=2,(4×4) BIC 

UK 

0.499 

(0.06) 

-0.883 

 (
−3.364
−3.636
   0.223

) 
0.467 

(0.29)    

0.180 

(0.22) 

-0.080 

(0.21) 

-0.070 

(0.31)    

0.359 

(0.27) 

-0.024 

(0.20) 

0.048 

(0.16)    

-0.006 

(0.42)    

-0.129 

(0.39) 

-0.111 

(0.20) 

0.128 

(0.18)    

4516 

  -0.209 

(0.32) 

-0.331 

(0.26) 

-0.022 

(0.23) 

-0.059 

(0.33) 

0.198 

(0.34) 

0.037 

(0.21) 

-0.213 

(0.17) 

0.098 

(0.43) 

0.172 

(0.44) 

0.005 

(0.21) 

-0.102 

(0.18) 

 

  3.033 

(1.19) 

2.339 

(0.94) 

-2.799 

(0.87) 

3.812 

(1.29) 

-2.982 

(1.10) 

1.616 

(0.82) 

-1.452 

(0.60) 

3.549 

(1.46) 

-2.961 

(1.53) 

0.999 

(0.73) 

-1.129 

(0.62) 

 

  2.535 

(1.19) 

2.069 

(0.93) 

-0.619 

(0.85) 

2.728 

(1.25) 

-3.073 

(1.13) 

0.640 

(0.80) 

-0.948 

(0.61) 

4.640 

(1.67) 

-3.338 

(1.60) 

0.689 

(0.78) 

-1.113 

(0.67) 

 

GM 

0.497 

(0.06) 

-1.266 

 (
−4.295
−2.808
   0.078

) 
0.376 

(0.13)    

0.146 

(0.12) 

-0.036 

(0.13) 

-0.177 

(0.21)    

0.422 

(0.24) 

-0.084 

(0.14) 

0.072 

(0.20)    

0.182 

(0.35)    

-0.098 

(0.42) 

-0.058 

(0.14) 

0.072 

(0.20)    

5041 

  -0.164 

(0.10) 

-0.040 

(0.09) 

-0.040 

(0.11) 

0.157 

(0.15) 

0.000 

(0.34) 

-0.040 

(0.11) 

-0.105 

(0.16) 

0.167 

(0.25) 

0.104 

(0.34) 

0.040 

(0.11) 

-0.105 

(0.16) 

 

  1.117 

(0.53) 

0.425 

(0.46) 

-1.439 

(0.55) 

1.061 

(0.53) 

-0.893 

(0.90) 

0.307 

(0.54) 

-0.746 

(0.79) 

0.722 

(1.22) 

-1.832 

(1.63) 

0.086 

(0.56) 

-0.746 

(0.79) 

 

  1.288 

(0.56) 

0.431 

(0.31) 

-0.311 

(0.36) 

1.117 

(0.53) 

-1.894 

(0.63) 

0.356 

(0.36) 

-1.007 

(0.53) 

2.326 

(0.87) 

-2.100 

(1.10) 

0.046 

(0.38) 

-1.007 

(0.53) 

 

FR 

0.483 

(0.06) 

-0.786 

 (
−2.821
−2.619
   0.144

) 
0.814 

(0.19)    

-0.439 

(0.13) 

-0.222 

(0.11) 

0.171 

(0.22)    

0.176 

(0.19) 

0.089 

(0.10) 

-0.055 

(0.14)    

0.235 

(0.27)    

-0.455 

(0.29) 

0.086 

(0.10) 

-0.093 

(0.13)    

4858 

  -0.393 

(0.18) 

0.173 

(0.12) 

-0.035 

(0.10) 

0.475 

(0.19) 

-0.410 

(0.18) 

0.038 

(0.10) 

-0.157 

(0.14) 

0.486 

(0.24) 

-0.307 

(0.24) 

0.124 

(0.10) 

-0.182 

(0.13) 

 

  0.559 

(0.24) 

0.919 

(0.51) 

-1.216 

(0.45) 

1.436 

(0.80) 

-1.315 

(0.67) 

0.129 

(0.43) 

-0.770 

(0.58) 

1.407 

(0.99) 

-1.989 

(1.07) 

-0.397 

(0.42) 

-1.193 

(0.54) 

 

  0.138 

(0.59) 

0.201 

(0.41) 

-0.323 

(0.37) 

0.626 

(0.64) 

-1.253 

(0.64) 

0.387 

(0.35) 

-0.794 

(0.48) 

1.421 

(0.82) 

1.386 

(0.84) 

0.086 

(0.32) 

-0.685 

(0.45) 

 

 d 𝛽 𝜇′3×1 𝛼(4×3) 𝛤𝑠=1,(4×4) 𝛤𝑠=2,(4×4)  

IT 

0.439 

(0.05) 

-0.659 
(
−3.800
−5.467
   0.097

) 
0.279 

(0.08)    

-0.049 

 (0.02) 

-0.005 

(0.06) 

-0.209 

(0.15) 

0.409 

(0.16) 

0.055 

(0.06) 

0.040 

(0.09)    

-0.097 

(0.21)    

-0.181 

(0.23) 

0.081 

(0.06) 

0.004 

(0.09)    

5110 

  0.241 

(0.07) 

0.007 

(0.02) 

-0.061 

(0.05) 

0.226 

(0.12) 

-0.233 

(0.13) 

0.076 

(0.05) 

-0.178 

(0.08) 

0.248 

(0.18) 

-0.104 

(0.19) 

0.106 

(0.09) 

-0.157 

(0.08) 

 

  0.414 

(0.17) 

0.049 

(0.11) 

-0.928 

(0.27) 

0.383 

(0.62) 

-0.586 

(0.64) 

-0.190 

(0.26) 

-0.383 

(0.41) 

0.748 

(0.90) 

-0.491 

(0.95) 

-0.196 

(0.25) 

-0.297 

(0.38) 
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  0.405 

(0.20) 

-0.230 

(0.07) 

-0.044 

(0.18) 

0.324 

(0.41) 

-0.842 

(0.44) 

0.158 

(0.17) 

-0.413 

(0.28) 

1.130 

(0.56) 

1.172 

(0.64) 

0.060 

(0.17) 

-0.495 

(0.27) 

 

CA 

0.201 

(0.03) 

-1.006 
(
−2.833
−2.371
−1.558

) 
0.475 

(0.63)    

-0.573 

(0.58) 

-0.657 

(0.36) 

0.756 

(0.86)    

2.256 

(0.90) 

-0.647 

(0.33) 

-0.002 

(0.31)    

0.182 

(0.35)    

-0.118 

(0.42) 

-0.058 

(0.14) 

0.024 

(0.20)    

4852 

  0.000 

(0.55) 

-0.594 

(0.54) 

0.186 

(0.23) 

-0.242 

(0.75) 

2.247 

(0.93) 

-0.168 

(0.25) 

-0.599 

(0.25) 

0.136 

(0.25) 

0.104 

(0.34) 

0.040 

(0.11) 

-0.105 

(0.16) 

 

  1.050 

(2.53) 

1.837 

(2.28) 

-0.330 

(0.82) 

2.659 

(3.42) 

-3.319 

(3.48) 

-0.900 

(0.92) 

2.243 

(1.21) 

0.572 

(1.22) 

1.832 

(1.63) 

0.086 

(0.56) 

-0.746 

(0.79) 

 

  2.912 

(1.94) 

3.031 

(1.76) 

-0.951 

(0.63) 

3.940 

(1.59) 

-4.897 

(2.67) 

0.856 

(0.70) 

-0.721 

(0.85) 

2.326 

(0.87) 

1.108 

(1.10) 

0.182 

(0.34) 

-1.022 

(0.53) 

 

JP 

0.471 -1.455 
(
−3.391
−2.694
 −0.226

) 
2.144 

(0.42)    

-1.167 

(0.26) 

-0.469 

(0.27) 

1.493 

(0.41)    

-0.024 

(0.34) 

0.417 

(0.27) 

-0.169 

(0.25)    

1.438 

(0.45)    

-1.049 

(0.54) 

0.388 

(0.27) 

-0.156 

(0.27)    

5458 

  0.748 

(0.32) 

-0.481 

(0.20) 

-0.329 

(0.20) 

0.600 

(0.30) 

-0.390 

(0.25) 

0.303 

(0.20) 

-0.393 

(0.19) 

0.370 

(0.34) 

-0.159 

(0.39) 

0.289 

(0.20) 

-0.290 

(0.21) 

 

  1.172 

(1.58) 

-1.450 

(0.97) 

-2.764 

(1.22) 

-1.074 

(1.51) 

0.240 

(1.25) 

1.640 

(1.20) 

0.856 

(0.92) 

-1.721 

(1.71) 

1.363 

(1.98) 

1.721 

(1.19) 

0.560 

(1.02) 

 

  0.428 

(1.09) 

0.390 

(0.70) 

-0.189 

(0.72) 

0.926 

(1.04) 

-0.775 

(0.87) 

0.280 

(0.70) 

0.142 

(0.68) 

0.802 

(1.17) 

-0.158 

(1.38) 

0.272 

(0.69) 

-0.225 

(0.73) 

 

The estimated equation is △𝑑 𝑧𝑡 = 𝛼(𝛽
′𝐿𝑑𝑧𝑡 + 𝜇

′) + ∑ Γ𝑠𝐿𝑑
𝑠𝑝

𝑠=1 △𝑑 𝑧𝑡 + 𝜀𝑡   𝑡 = 1,… , T    Eq. (12)  
𝑝 = 2 is chosen under the satisfied criteria (i) the univariate Ljung-Box Q test for each residual series without showing serial correlation, and (ii) the likelihood ratio test for the 

significance of Γ𝑠. The numbers in parentheses are standard errors.  
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Table 5  

Robustness check using different risk measures 
Panel A. Risk measure is represented by the VaR estimated from a double exponential kernel 

 d 𝛽 𝜇′
3×1

 𝛼(4×3) 𝛤𝑠=1,(4×4) 𝛤𝑠=2,(4×4) BIC 

UK 

0.486 
(0.06) 

-0.888 
 (

−3.407
−3.390
   0.210

) 

0.451 
(0.27)    

0.173 
(0.20) 

-0.078 
(0.18) 

-0.076 
(0.29)    

0.322 
(0.25) 

0.003 
(0.17) 

0.030 
(0.14)    

-0.097 
(0.38)    

-0.129 
(0.39) 

-0.093 
(0.17) 

0.099 
(0.15)    

4442 

  -0.133 
(0.30) 

-0.266 
(0.23) 

-0.039 
(0.20) 

0.034 
(0.31) 

0.054 
(0.31) 

0.059 
(0.18) 

-0.199 
(0.15) 

0.149 
(0.40) 

0.172 
(0.44) 

0.026 
(0.18) 

-0.122 
(0.16) 

 

  2.906 
(1.13) 

2.242 
(0.88) 

-2.610 
(0.78) 

3.617 
(1.23) 

-2.893 
(1.06) 

1.424 
(0.73) 

-1.336 
(0.55) 

3.755 
(1.44) 

-2.986 
(1.49) 

0.869 
(0.65) 

-1.024 
(0.56) 

 

  2.469 
(1.14) 

2.007 
(0.88) 

-0.505 
(0.76) 

2.475 
(1.20) 

-2.970 
(1.09) 

0.502 
(0.72) 

-0.853 
(0.56) 

4.930 
(1.66) 

-3.438 
(1.56) 

0.577 
(0.69) 

-0.996 
(0.60) 

 

Panel B. Risk measure is represented by the expected shortfall estimated from a Gaussian kernel 

UK 

0.474 
(0.06) 

-0.895 
 (

−4.093
−4.050
   0.226

) 

0.432 
(0.27)    

0.150 
(0.21) 

0.150 
(0.21) 

-0.143 
(0.30)    

0.433 
(0.26) 

-0.003 
(0.22) 

0.027 
(0.18)    

-0.105 
(0.40)    

-0.041 
(0.39) 

-0.113 
(0.22) 

0.136 
(0.19)    

4626 

  -0.152 
(0.30) 

-0.280 
(0.23) 

-0.025 
(0.24) 

0.048 
(0.31) 

0.188 
(0.32) 

0.042 
(0.22) 

-0.228 
(0.18) 

0.093 
(0.40) 

0.164 
(0.44) 

0.018 
(0.22) 

-0.092 
(0.19) 

 

  2.626 
(0.99) 

2.033 
(0.78) 

-2.684 
(0.83) 

3.458 
(1.10) 

-2.712 
(0.95) 

1.507 
(0.78) 

-1.356 
(0.58) 

3.397 
(1.26) 

-2.865 
(1.33) 

0.949 
(0.70) 

-1.065 
(0.60) 

 

  2.210 
(0.99) 

1.806 
(0.77) 

-0.546 
(0.81) 

2.567 
(1.07) 

-2.844 
(0.98) 

0.573 
(0.77) 

-0.858 
(0.59) 

4.248 
(1.43) 

-3.137 
(1.38) 

0.650 
(0.75) 

-1.042 
(0.64) 

 

Panel C. Risk measure is represented by the expected VaR 

UK 

0.463 
(0.05) 

-0.851 

(
−3.089
−3.096
   0.148

) 
0.980 
(0.50)    

0.364 
(0.40) 

-0.097 
(0.25) 

0.230 
(0.50)    

0.347 
(0.44) 

-0.035 
(0.24) 

0.032 
(0.19)    

0.665 
(0.60)    

-0.187 
(0.59) 

-0.195 
(0.25) 

0.234 
(0.22)    

2983 

  0.066 
(0.06) 

-0.290 
(0.48) 

-0.116 
(0.29) 

0.160 
(0.59) 

0.335 
(0.55) 

0.170 
(0.28) 

-0.251 
(0.22) 

0.694 
(0.70) 

-0.051 
(0.69) 

0.071 
(0.28) 

-0.067 
(0.24) 

 

  5.389 
(2.81) 

4.819 
(2.27) 

-2.958 
(1.32) 

6.663 
(2.88) 

-6.054 
(2.45) 

1.479 
(1.26) 

-1.520 
(0.96) 

4.962 
(3.06) 

-4.877 
(3.15) 

1.316 
(1.22) 

-1.840 
(1.05) 

 

  5.146 
(2.67) 

4.872 
(2.60) 

-1.041 
(1.44) 

6.651 
(3.28) 

-6.979 
(2.85) 

1.038 
(1.39) 

-1.331 
(1.05) 

8.621 
(3.71) 

-7.545 
(3.77) 

1.414 
(1.38) 

-2.050 
(1.18) 

 

Panel D. Using residuals of return to take into account control variables  

UK 

0.418 
(0.04) 

-0.847 

(
−3.380
−3.319
 −0.157

) 
1.146 
(0.34)    

-0.915 
(0.30) 

-0.316 
(0.18) 

1.961 
(1.67)    

1.547 
(1.49) 

-0.781 
(0.52) 

0.607 
(0.66)    

0.235 
(0.27)    

-1.049 
(0.54) 

0.388 
(0.27) 

0.024 
(0.20)    

2995 

  0.143 
(0.35) 

0.031 
(0.33) 

-0.278 
(0.20) 

0.054 
(2.26) 

2.418 
(2.08) 

0.978 
(0.76) 

-1.368 
(0.99) 

0.486 
(0.24) 

-0.159 
(0.39) 

0.289 
(0.20) 

-0.105 
(0.16) 

 

  3.097 
(1.50) 

3.079 
(1.36) 

-1.861 
(0.82) 

3.555 
(5.18) 

2.810 
(4.64) 

-1.678 
(1.63) 

1.639 
(2.05) 

1.407 
(0.99) 

1.363 
(1.98) 

1.721 
(1.19) 

-0.746 
(0.79) 

 

  2.676 
(1.37) 

2.790 
(1.35) 

-0.935 
(0.85) 

7.259 
(5.49) 

6.573 
(4.92) 

-0.020 
(1.69) 

1.546 
(2.13) 

1.421 
(0.82) 

-0.158 
(1.38) 

0.272 
(0.69) 

-1.022 
(0.53) 

 

 
This table reports the estimates of equation (12). The numbers in parentheses are standard errors. 
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Table 6 Downside risk, higher-moment risk and ICAPM theory  
 d 𝛽 𝜇′4×1 𝛼(5×4) 𝛤𝑠=1,(5×5) 

UK 

0.183 
(0.03) 

-0.744 
 

(

−1.443
−0.498
   0.001
−3.153

) 

14.222 
(7.49)    

-42.178 
(21.71) 

3.417 
(3.46) 

-0.331 
(0.33) 

-16.401 
(7.86)    

52.129 
(23.25) 

-3.197 
(3.65) 

0.515 
(0.24)    

-1.644 
(0.62) 

  
5.258 
(2.53) 

-15.654 
(7.37) 

1.531 
(1.12) 

-0.131 
(0.16) 

-5.596 
(2.65) 

17.967 
(7.89) 

-1.505 
(1.17) 

0.200 
(0.07) 

-0.515 
(0.19) 

  
0.778 
(3.00) 

-2.491 
(8.52) 

-0.339 
(1.71) 

0.268 
(0.16) 

-0.810 
(3.12) 

2.629 
(8.87) 

-1.082 
(1.82) 

0.113 
(0.11) 

0.016 
(0.22) 

  -1.974 
(5.51) 

3.858 
(15.64) 

3.919 
(3.21) 

-2.290 
(0.36) 

1.671 
(5.72) 

-2.031 
(16.32) 

-3.619 
(3.37) 

1.019 
(0.26) 

0.541 
(0.46) 

  -6.492 
(2.47) 

-17.918 
(6.94) 

2.848 
(1.35) 

-1.433 
(1.16) 

5.548 
(2.45) 

15.161 
(6.97) 

2.265 
(1.36) 

0.024 
(0.84) 

4.230 
(1.99) 

GM 

0.264 
(0.02) -0.187 

(

−1.616
−0.593
 −0.025
−3.178

) 

-5.728 
(2.79)    

-14.990 
(7.77) 

-2.733 
(2.07) 

-1.295 
(0.42) 

1.743 
(3.43)    

-1.174 
(2.40) 

1.903 
(2.53) 

1.282 
(0.38)    

-0.494 
(0.25) 

  -1.215 
(0.80) 

3.036 
(2.60) 

-0.800 
(0.60) 

-0.358 
(0.12) 

0.124 
(0.97) 

1.391 
(2.71) 

0.539 
(0.74) 

0.373 
(0.11) 

-0.135 
(0.06) 

  0.477 
(1.14) 

-1.189 
(3.21) 

-0.891 
(0.74) 

0.153 
(0.16) 

-0.559 
(1.24) 

2.025 
(3.51) 

-0.317 
(0.89) 

-0.062 
(0.15) 

0.129 
(0.08) 

  -1.884 
(2.71) 

3.737 
(7.68) 

0.863 
(1.96) 

-2.370 
(0.35) 

-0.535 
(2.38) 

0.140 
(8.26) 

-1.318 
(2.09) 

1.764 
(0.31) 

-0.013 
(0.16) 

  
-10.222 

(5.50) 
-29.522 
(15.45) 

-1.726 
(7.78) 

0.793 
(1.68) 

-9.889 
(11.20) 

38.488 
(39.19) 

-0.531 
(0.97) 

-1.022 
(1.49) 

-0.166 
(0.81) 

FR 

0.165 
(0.02) -0.215 

(

−2.195
−0.784
 −0.066
−2.491

) 

-4.821 
(2.04)    

10.121 
(16.17) 

1.216 
(3.37) 

-1.296 
(0.84) 

1.054 
(6.84)    

4.564 
(9.40) 

-0.946 
(3.66) 

0.875 
(0.80)    

-11.116 
(5.12) 

  
-0.897 
(1.88) 

1.370 
(5.17) 

0.290 
(1.07) 

-0.324 
(0.27) 

0.171 
(2.16) 

2.214 
(6.04) 

-0.132 
(1.15) 

0.183 
(0.26) 

-3.580 
(1.62) 

  3.494 
(2.57) 

-9.918 
(7.12) 

-1.535 
(1.39) 

0.419 
(0.32) 

-3.202 
(2.68) 

9.126 
(7.50) 

0.083 
(1.43) 

-0.328 
(0.27) 

1.408 
(1.84) 

  -18.561 
(7.03) 

51.157 
(19.25) 

-8.514 
(3.62) 

-4.208 
(0.69) 

17.314 
(7.19) 

-48.065 
(19.86) 

8.720 
(3.72) 

3.698 
(060) 

10.409 
(4.70) 

  -5.772 
(2.84) 

-15.595 
(7.84) 

2.960 
(1.50) 

-0.045 
(0.33) 

5.057 
(2.93) 

-13.370 
(8.15) 

2.108 
(1.52) 

-0.012 
(0.28) 

2.967 
(1.98) 

IT 

0.417 
(0.07) 

-0.230 

(

−0.701
−0.216
 0.053
−0.099

) 

-1.823 
(0.77)    

5.950 
(5.17) 

0.311 
(1.19) 

0.113 
(0.09) 

0.813 
(1.69)    

-2.263 
(5.60) 

0.195 
(1.27) 

0.041 
(0.22) 

-0.020 
(0.10) 

  
-0.400 
(0.43) 

1.291 
(1.42) 

0.048 
(0.33) 

0.040 
(0.02) 

0.244 
(0.46) 

-0.584 
(1.54) 

-0.018 
(0.35) 

-0.018 
(0.06) 

-0.001 
(0.28) 

  
-0.584 
(0.53) 

1.941 
(1.74) 

-1.020 
(0.38) 

-0.034 
(0.03) 

0.202 
(0.56) 

-0.535 
(1.85) 

-0.191 
(0.41) 

-0.042 
(0.07) 

0.025 
(0.03) 

  
-1.979 
(1.16) 

6.473 
(3.84) 

-0.412 
(0.89) 

0.142 
(0.09) 

0.666 
(1.23) 

-2.172 
(4.11) 

-0.429 
(0.98) 

-0.643 
(0.16) 

0.089 
(0.07) 

  -2.199 
(1.20) 

-6.371 
(18.81) 

0.880 
(4.52) 

0.351 
(0.31) 

 2.153 
(1.19) 

-3.709 
(20.57) 

-1.555 
(4.90) 

-1.245 
 (0.85) 

-0.133 
(0.38) 

CA 

0.158 
(0.05) 

-1.007 

(

−1.386
−0.427
 0.213
−2.220

) 

-9.261 
(5.22)    

21.193 
(17.71) 

-5.794 
(6.60) 

1.231 
(1.10) 

8.480 
(7.62)    

-11.808 
(17.69) 

6.794 
(7.16) 

-1.219 
(1.42) 

-0.712 
(0.65) 

  -2.227 
(1.89) 

4.853 
(4.63) 

-1.832 
(2.00) 

0.285 
(0.28) 

2.382 
(2.02) 

-2.887 
(4.70) 

2.202 
(2.19) 

-0.247 
(0.38) 

-0.208 
(0.21) 

  
-2.935 
(2.82) 

8.459 
(8.05) 

-3.677 
(2.87) 

-0.153 
(0.27) 

3.150 
(2.99) 

-9.063 
(8.57) 

3.117 
(3.09) 

0.145 
(0.40) 

0.176 
(0.17) 

  
0.594 
(4.40) 

-4.883 
(13.44) 

4.709 
(4.15) 

1.831 
(1.10) 

-0.719 
(4.73) 

7.384 
(14.71) 

-2.688 
(4.19) 

-1.527 
(0.97) 

0.221 
(0.30) 

  
 3.391 
(3.45) 

-9.755 
(9.85) 

11.309 
(22.98) 

0.541 
(2.85) 

-3.443 
(3.60) 

9.835 
(10.28) 

-17.385 
(25.44) 

-0.272 
(0.43) 

0.874 
(1.60) 

JP 

0.137 
(0.01) -1.047 

(

−2.090
−4.123
 2.166
1.023

) 

-16.242 
(8.28)    

-40.510 
(21.02) 

-6.678 
(5.33) 

-3.374 
(1.66) 

11.995 
(9.02)    

-23.876 
(24.82) 

4.303 
(5.85) 

2.529 
(1.46) 

-0.397 
(0.63) 

  -3.416 
(2.44) 

7.509 
(6.99) 

-2.140 
(1.64) 

-1.348 
(0.49) 

2.459 
(2.66) 

-3.222 
(7.29) 

1.507 
(1.80) 

1.095 
(0.43) 

-1.212 
(0.19) 

  1.090 
(2.65) 

-4.405 
(7.42) 

-1.265 
(1.61) 

-0.595 
(0.53) 

-0.757 
(2.78) 

3.466 
(7.76) 

0.510 
(1.78) 

0.695 
(0.47) 

0.372 
(0.21) 

  6.709 
(5.36) 

-22.139 
(14.95) 

7.795 
(3.22) 

-8.244 
(1.18) 

-8.277 
(5.65) 

26.660 
(15.72) 

-10.310 
(3.56) 

7.720 
(1.03) 

-0.167 
(0.49) 

   4.974 
(3.13) 

-14.018 
(8.57) 

1.463 
(1.80) 

-0.332 
(0.60) 

-5.202 
(3.21) 

14.952 
(8.96) 

-1.187 
(1.99) 

0.139 
(0.53) 

-3.034 
(2.31) 

US 

0.418 
(0.06) 

-0.632 

(

−3.773
−1.324
 0.107
−3.165

) 

-1.217 
(0.13)    

-3.403 
(0.38) 

0.274 
(0.57) 

0.075 
(0.06) 

0.905 
(0.59)    

-0.978 
(1.69) 

0.323 
(0.68) 

-0.081 
(0.18) 

-0.270 
(0.12) 

  0.248 
(0.01) 

-0.730 
(1.20) 

0.151 
(0.16) 

0.025 
(0.02) 

0.090 
(0.17) 

0.235 
(0.48) 

0.044 
(0.20) 

0.011 
(0.05) 

-0.099 
(0.03) 

  0.425 
(0.19) 

-1.251 
(0.54) 

-0.808 
(0.29) 

-0.006 
(0.03) 

-0.264 
(0.32) 

0.830 
(0.94) 

-0.195 
(0.33) 

0.049 
(0.09) 

0.010 
(0.04) 

  -1.024 
(1.26) 

2.713 
(3.57) 

0.587 
(0.75) 

-0.222 
(0.11) 

0.455 
(1.22) 

-0.478 
(3.41) 

0.126 
(0.80) 

-0.757 
(0.20) 

0.021 
(0.10) 

   -8.290 
(4.29) 

-23.104 
(12.16) 

5.824 
(2.17) 

0.264 
(0.22) 

3.470 
(3.97) 

-9.519 
(11.03) 

3.377 
(2.75) 

0.410 
(0.68) 

0.137 
(0.33) 

The estimation in this table is based on Eq. (16). The numbers in parentheses are standard errors.  
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Table 7. The proportions of relative price discovery ability 

 UK GM FR IT CA JP Average 

𝛼⊥
𝑉𝑖 36.46% 33.52% 31.85% 36.80% 5.95% 17.78% 27.06% 

𝛼⊥
𝑉𝑗

 47.78% 47.62% 60.32% 51.05% 44.29% 75.11% 54.36% 

𝛼⊥
𝑟𝑖 2.32% 1.57% 2.77% 3.55% 16.01% 2.86% 4.85% 

𝛼⊥
𝑟𝑗

 13.44% 17.28% 5.06% 8.60% 33.74% 4.16% 13.71% 

𝛼⊥
′ = (𝛼⊥

𝑉𝑖 , 𝛼⊥
𝑉𝑗
, 𝛼⊥
𝑟𝑖 , 𝛼⊥

𝑟𝑗
 ), where 𝛼⊥

′ is a vector of the orthonormal adjustment coefficients, which is a direct measure of the 

permanent component, and governs the long-run cointegrating risk relation and long-run risk-return relation. 𝛼⊥
𝑉𝑗

 is the 

orthonormal adjustment coefficient of US downside risk. The element in 𝛼⊥
′  provides information for illustrating the long-run 

“downside risk discovery.”  

 

Figure 1. Time variations of G7 downside risk 

Downside risk is measured by the 99% VaR, which is obtained by using kernel smoothing for the empirical distribution and then 

bootstrapping from the kernel density estimator. The Gaussian kernel density has been applied in this figure. 

    

 

Figure 2. Impulse response analysis for the permanent and transitory shocks 

The 16-grid matrix of plots depicts how each variable (𝑉𝑖 , 𝑉𝑗, 𝑟𝑖 , 𝑟𝑗) in the FCVAR model reacts to the permanent shock (4 plots 

in the first column), the first transitory shock (those in the second column), the second transitory shock (those in the third column), 

and the third transitory shock (those in the fourth column). 

0

5

10

15

20

25

1
9
9

0
/0

9

1
9
9

1
/0

6

1
9
9

2
/0

3

1
9
9

2
/1

2

1
9
9

3
/0

9

1
9
9

4
/0

6

1
9
9

5
/0

3

1
9
9

5
/1

2

1
9
9

6
/0

9

1
9
9

7
/0

6

1
9
9

8
/0

3

1
9
9

8
/1

2

1
9
9

9
/0

9

2
0
0

0
/0

6

2
0
0

1
/0

3

2
0
0

1
/1

2

2
0
0

2
/0

9

2
0
0

3
/0

6

2
0
0

4
/0

3

2
0
0

4
/1

2

2
0
0

5
/0

9

2
0
0

6
/0

6

2
0
0

7
/0

3

2
0
0

7
/1

2

2
0
0

8
/0

9

2
0
0

9
/0

6

2
0
1

0
/0

3

2
0
1

0
/1

2

2
0
1

1
/0

9

2
0
1

2
/0

6

2
0
1

3
/0

3

JP CA IT FR GM UK US

1 4 8 12

-6

-4

-2

0

1
st

 Permanent Shock 

V
i  

   
   

   
   

   
   

 

1 4 8 12

-6

-4

-2

0

1
st

 Transitory Shock

 

1 4 8 12

-6

-4

-2

0

2
nd

 Transitory Shock

 

1 4 8 12

-6

-4

-2

0

3
rd

 Transitory Shock

 

1 4 8 12

-3

-2

-1

0

1

 

V
j  

   
   

   
   

   
   

 

1 4 8 12

-3

-2

-1

0

1

 

 

1 4 8 12

-3

-2

-1

0

1

 

 

1 4 8 12

-3

-2

-1

0

1

 

 

1 4 8 12

-6

-4

-2

0

 

R
i  

   
   

   
   

   
   

 

1 4 8 12

-6

-4

-2

0

 

 

1 4 8 12

-6

-4

-2

0

 

 

1 4 8 12

-6

-4

-2

0

 

 

1 4 8 12

-6

-4

-2

0

 

R
j  

   
   

   
   

   
   

 

1 4 8 12

-6

-4

-2

0

 

 

1 4 8 12

-6

-4

-2

0

 

 

1 4 8 12

-6

-4

-2

0

 

 



 
 
 
 

SFB 649 Discussion Paper Series 2016 
 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 
 
 
001 "Downside risk and stock returns: An empirical analysis of the long-run 

and short-run dynamics from the G-7 Countries" by Cathy Yi-Hsuan 
Chen, Thomas C. Chiang and Wolfgang Karl Härdle, January 2016. 

 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 


	AA_Frontpage
	F2__Manuscript_Co-Fractional VAR_Downside risk_Chen_Chiang_WKH
	ZZ_Endpage

