
Breunig, Christoph; Mammen, Enno; Simoni, Anna

Working Paper

Nonparametric estimation in case of endogenous
selection

SFB 649 Discussion Paper, No. 2015-050

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Breunig, Christoph; Mammen, Enno; Simoni, Anna (2015) : Nonparametric
estimation in case of endogenous selection, SFB 649 Discussion Paper, No. 2015-050, Humboldt
University of Berlin, Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/146165

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/146165
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                   

S
 F

 B
  
  
  
X
X
X

  
  

  
  

  
  

  
 E

 C
 O

 N
 O

 M
 I

 C
  
  

 R
 I

 S
 K

  
  

  
  

  
  

  
  
  
B

 E
 R

 L
 I

 N
 

 

SFB 649 Discussion Paper 2015-050 

 
Nonparametric Estimation in case of 

Endogenous Selection 
 

Christoph Breunig* 

Enno Mammen*² 
Anna Simoni*³ 

* Humboldt-Universität zu Berlin, Germany 

*² Heidelberg University, Germany and 

Higher School of Economics Moscow, Russian Federation 

*³ CNRS and CREST, France 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
F
B

  
  
  
6

 4
 9

  
  

  
  

  
  

  
E

 C
 O

 N
 O

 M
 I

 C
  
  

 R
 I

 S
 K

  
  

  
  

  
  

  
  
 B

 E
 R

 L
 I

 N
 

 



Nonparametric Estimation in case of
Endogenous Selection ∗

Christoph Breunig ?

Humboldt-Universität zu Berlin

EnnoMammen 1

Heidelberg University and

Higher School of Economics, Moscow

Anna Simoni 2

CNRS and CREST

November 10, 2015

This paper addresses the problem of estimation of a nonparametric regression
function from selectively observed data when selection is endogenous. Our ap-
proach relies on independence between covariates and selection conditionally
on potential outcomes. Endogeneity of regressors is also allowed for. In both
cases, consistent two-step estimation procedures are proposed and their rates of
convergence are derived. Also pointwise asymptotic distribution of the estima-
tors is established. In addition, we propose a nonparametric specification test
to check the validity of our independence assumption. Finite sample properties
are illustrated in a Monte Carlo simulation study and an empirical illustration.
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1. Introduction

This paper addresses the problem of estimation of a regression function from selectively
observed data. To explain the problem at stake, consider a partially observed dependent
variable Y∗, a vector of covariates X and a binary indicator ∆. The econometrician observes
a realization of ∆ and X for each individual in the random sample but only observes a
realization of Y∗ when ∆ = 1. In many applications it is important to learn about E[Y∗|X]
which, by the law of total expectation, can be written as

E[Y∗|X] = E[Y∗|X,∆ = 1]P(∆ = 1|X) + E[Y∗|X,∆ = 0]P(∆ = 0|X).

The difficulty arises because the data available cannot identify E[Y∗|X,∆ = 0] nor E[Y∗|X].
In this paper, we address this lack of identification by assuming independence between
the regressors X and the selection mechanism ∆ conditionally on the selectively observed
outcome Y∗. Relying on this assumption we propose a new methodology to consistently
estimate the regression function ϕ(·) ≡ E[Y∗|X = ·].

We also consider endogeneity of covariates by extending the nonparametric instru-
mental variable models of Newey and Powell [2003] and Darolles et al. [2011] to allow for
selection. That is, we propose a method to estimate a structural function ψ which satisfies

Y∗ = ψ(Z) + U

for some unobservables U, where Z is endogenous in the sense that E[U|Z] , 0 and an
additional instrumental variable X is available such that E[U|X] = 0. If the instrument X is
independent of the selection given potential outcome Y∗, we show that ψ is identified and
can be consistently estimated under commonly imposed assumptions.

Previous literature has proposed different solutions to overcome the problem of lack
of identification of E[Y∗|X]. One solution consists in assuming missing-at-random (MAR),
namely, independence between the selection variable and the outcome conditional on the
observed covariates, see Rubin [1976]. MAR implies E[Y∗|X] = E[Y∗|X,∆ = 1] = E[Y∗|X,∆ =
0]. Unfortunately, the plausibility of this assumption may be questioned in many economic
examples where missing observations arise due to self-selection, nonresponse or because
counterfactual variables are unobservable (see the examples given in Heckman [1979]).

In his seminal work, Heckman [1974, 1979] relies on instruments that determine se-
lection but not the outcome and proposes a consistent parametric estimation method.
Point-identification comes from parametric restrictions. Ahn and Powell [1993] and Das
et al. [2003] extend Heckman’s approach to a semiparametric and nonparametric frame-
work, respectively.

An alternative strategy relies on “identification at infinity”, namely, on the fact that
the selection problem becomes negligible for large values of the covariates. This strategy
requires the existence of a covariate with a large support, see Chamberlain [1986]. Based on
this idea Lewbel [2007] and D’Haultfoeuille and Maurel [2013] propose alternative identi-
fication strategies.

A completely different approach was proposed by Manski [1989] who poses, as the only
restriction, a bound on the support of Y∗ conditional on X. This implies a bound on E[Y∗|X].
While such a weak restriction has the advantage of ensuring robust inference, only partial
identification of E[Y∗|X] can be achieved. Following Manski [1989], an extensive literature
on bounds and partial identification in econometrics has flourished (see e.g. Chernozhukov
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et al. [2013] and Tamer [2010] for a review).

In this paper, we solve the problem of endogenous selection by using a different type
of instrumental strategy. We assume independence between selection ∆ and instruments
X, conditional on the outcome Y∗ (and possibly additional covariates), namely

∆ y X |Y∗. (1.1)

This assumption is suitable when selection is driven by the outcome Y∗. For example, if Y∗

denotes income and X expenditure then, typically in survey data, whether people report
their income or not is primarily determined by the level of their income. Assumption (1.1)
has been used in the previous literature on missing data (see e.g. Chen [2001], Tang et al.
[2003] in the statistics literature and D’Haultfoeuille [2010], Davezies and D’Haultfoeuille
[2013], Ramalho and Smith [2013] in the econometrics literature). This type of assumption
is common in the finite mixtures literature (e.g. Henry et al. [2014]) as well as in the
nonclassical measurement error literature (see e.g. Hu and Schennach [2008b]). Moreover,
it is a particular case of Assumption (41) in Manski [1994]. Assumption (1.1) alone is
not sufficient for nonparametric identification of the regression function ϕ or the selection
probability P(∆ = 1|Y∗). In this paper, however, we show that the function ϕ is identified
if Y∗ is complete for X. Moreover, Assumption (1.1) can be tested, see Theorem 2.4 in
D’Haultfoeuille [2010].

Our paper builds on these results and goes beyond what has been proposed in the
literature so far. We focus on E[Y∗|X] which is point-identified despite the presence of
endogenous selection. Then, we contribute to the literature in many directions. First, we
propose a two-step estimator for E[Y∗|X] that does not require P(∆ = 1|Y∗) to belong to a
parametric family. Under our assumptions, P(∆ = 1|Y∗) is identified through a conditional
moment restriction. Because P(∆ = 1|Y∗) is nonparametric, its estimation requires solving
a linear inverse problem which is ill-posed in general. In the first step, we use a constraint
sieve-type estimator forP(∆ = 1|Y∗) which has to account for the ill-posedness of the inverse
problem (see e.g. Newey and Powell [2003], Ai and Chen [2003] for sieve estimators for
inverse problems in econometrics). In the second step, we use this estimator to construct a
plug-in series estimator for E[Y∗|X].

Second, we recover the rate of convergence of the estimator for the nonparametric
regression function E[Y∗|X] and show that it does not suffer from the ill-posedness of the
underlying inverse problem. In contrast to the classical nonparametric rate of convergence,
we get an additional bias due to estimation of the selection probability in the first step.
Also Das et al. [2003] obtain an additional bias term in their convergence rate but which
it due to estimation of a propensity score. Under additional smoothness conditions, this
bias is asymptotically negligible and the usual nonparametric regression rate is obtained.
The fact that the rate does not suffer from the ill-posedness of the estimation problem in
the first step is because the second step of our estimation procedure performs a smoothing
through integration with respect to the conditional distribution of Y∗ given X.

We also study the case where regressors are potentially endogenous. In contrast to
Das et al. [2003], who used a control function method to correct for endogeneity and
selection, we rely on a nonparametric instrumental regression model where the dependent
variable is selectively observed. In this model, we propose a two step estimator of the
structural function and obtain a convergence rate that deviates from the usual ill-posed

3



inverse problem rate by an extra bias term.
Third, we establish asymptotic normality for our estimator of the regression function

E[Y∗|X = ·] evaluated at some point in the support of X. We point out that, due to the
nature of our estimation problem, both the rate of convergence and asymptotic normality
are new and cannot be derived from the results in Newey [1997] and the related literature.
Indeed, we derive an asymptotic variance formula that involves an additional part due to
correction for sample selection in the first step.

Forth, we propose a testing procedure to test the identifying assumption (1.1). At the
best of our knowledge a testing procedure for this assumption in the continuous-(Y∗,X) case
has not been developed yet in the literature. Some ideas about how to construct a test for
assumption (1.1) are outlined in D’Haultfoeuille [2010] but without formal implementation.
Our testing procedure is based on a different intuition.

The remainder of this paper is organized as follows. In Section 2, we present the
setup and discuss identification. In Section 3, we present our two-step estimator for
E[Y∗|X], we give rates of convergence of the integrated squared error of our estimator and
establish pointwise asymptotic normality of our estimator. Section 4 deals with possible
endogenous covariates. Our testing procedure to test the instrumental variable restriction
(1.1) is presented in Section 5. Its finite sample properties are investigate through a Monte
Carlo experiments whose results are reported in Section 6. Section 7 presents an empirical
application of our method to estimate the propensity to work in the German speaking
population by using “German Internet Panel” data. All proofs are postponed to the
appendix.

2. Identification

In this section, we provide assumptions under which the selection probability function
P(∆ = 1|Y∗ = ·) and the regression function E[Y∗|X = ·] are identified. We further motivate
our estimation procedure.

2.1. Setup and Main Assumptions

Let (∆,Y∗,Xt) be a jointly distributed random vector where (Y∗,Xt) is a random vector which
takes values in R1+dx and ∆ is a random variable which takes values in {0, 1}. A realization
of (∆,Xt) is observed for each individual in the random sample while a realization of
the dependent variable Y∗ is observed when ∆ = 1 and missing when ∆ = 0. We write
Y = ∆Y∗.1 We assume that the marginal distribution of Y∗ (resp. X) admits a probability
density function pY (resp. pX) with respect to the Lebesgue measure. The following three
assumptions are sufficient to identify the joint distribution of (∆,Y∗,Xt).
Assumption 1. It holds that

∆ y X |Y∗.

1In our setting, Y∗ is assumed to be a scalar. Our results would still hold if we extended this framework to
allow for a p-dimensional vector Y∗ of selectively observed variables. In this case ∆ = (∆( j))16 j6p and the
j-th component of Y∗ would be observed when ∆( j) = 1 and missing when ∆( j) = 0. This extension would
require little modifications of our method but would burden the notation and the presentation. For this
reason we do not consider it.
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Assumption 1 states an exclusion restriction of the random vector X with respect to the
selection variable ∆ given potential outcomes Y∗. The vector X is referred to as the vector
of instruments. This assumption can be justified in many settings. An example is provided
by measurement error models where Y∗ is observed with error for some individuals. Then,
for some error ε, X = Y∗+ε can be interpreted as a proxy for Y∗ and satisfies Assumption 1 if
ε y ∆, see e.g. Chen et al. [2011]. Other examples are given by data with nonresponse. For
instance, consider the case where Y∗ is income and X is expenditure. It could be that people
with high income are less likely to report it. Examples of such type of incomplete data sets
are the French “Enquête Budget de famille” of INSEE or the British “Family expenditure
Survey”. For further illustrations of Assumption 1 we refer to Ramalho and Smith [2013].
Assumption 2. For every function φ that is bounded from below almost surely and satisfies
E |φ(Y∗)| < ∞ it holds that E[φ(Y∗)|X] = 0 implies φ(Y∗) = 0.2

Assumption 2 is weaker than L1–completeness but stronger than bounded–completeness.
Completeness conditions have been largely used in econometrics as identification assump-
tions, see e.g. Darolles et al. [2011], Newey and Powell [2003], Blundell et al. [2007], Hu
and Schennach [2008a], D’Haultfoeuille [2011] and Hoderlein et al. [2012].
Assumption 3. It holds P(∆ = 1|Y∗) > 0.

This assumption can rule out a selection when it is a deterministic function of Y∗ such as
P(∆ = 1|Y∗ = ·) = 1{· > c} for some constant c belonging to the interval (min(Supp(Y∗)),∞)
where Supp(Y∗) denotes the support of Y∗. Here 1 denotes the indicator function. To
understand Assumption 3, consider the example where ∆ = ξ(Y∗, η) for some function ξ(·)
and a random variable η. Then, Assumption 3 is verified if the distribution of η is such
that the set {η; ξ(y∗, η) = 1} has positive probability for every y∗ in the support of Y∗ except,
possibly, for a set of y∗ with probability 0.

2.2. Identification and idea of the estimator

Our object of interest is E[Y∗|X] while the selection probability P(∆ = 1|Y∗) is a nuisance
(functional) parameter. However, knowledge of the latter allows us to identify and estimate
E[Y∗|X] in a way that we now explain. Let us introduce the function g(·) ≡ 1/P(∆ = 1|Y∗ = ·)
for the inverse selection probability. Under Assumptions 1–3, the function g is identified
through the conditional moment restriction

E
[
∆g(Y∗)

∣∣∣ X]
= 1, (2.1)

see Theorem 2.3 in D’Haultfoeuille [2010]. In the first step of our two-step procedure, we
make use of (2.1) to estimate the inverse selection probability function g.

Since the function g is identified by equation (2.1), identification of the conditional
expectation E[Y∗|X] follows from

E[Y∗|X] = E[Y∗P(∆ = 1|Y∗)g(Y∗)|X] = E
[

E[Y∗∆g(Y∗)|Y∗]
∣∣∣X]

= E[Y∗∆g(Y∗)|X] = E[Yg(Y)|X]
(2.2)

where the first equality follows from Assumption 3 and second to last equality follows
from Assumption 1 and the fact that g(Y∗) = g(Y) whenever Y ≡ Y∗∆ differs from zero. This

2Since conditional expectations are defined only up to equality a.s., all (in)equalities with conditional expec-
tations and/or random variables are understood as (in)equalities a.s., even if we do not say so explicitly.
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result shows that E[Y∗|X] can be written as a weighted average of the observed Y where
the weight is equal to the inverse selection probability function. We use equation (2.2) to
construct an estimator for E[Y∗|X] in the second step of our estimation procedure.

Remark 2.1 (Including additional covariates). In empirical applications, only a subset of the
covariates might be independent of selection given potential outcome. We can cover this
case by slightly extending Assumption 1. More precisely, suppose that X = (X1,X2) and that
Assumption 1 is modified as ∆ y X1|(Y∗,X2) and hence, X2 can be correlated to ∆. Under this
assumption, E[Y∗|X] = E[Yg(Y,X2)|X] where g(y, x) = 1/P(∆ = 1|Y∗ = y,X2 = x). Moreover,
if Assumptions 2 and 3 are modified with φ(Y∗) replaced by φ(Y∗,X2) and P(∆ = 1|Y∗)
replaced by P(∆ = 1|Y∗,X2) > 0, respectively, then g is identified by E[∆g(Y∗,X2)|X] = 1. �

2.3. Notation

For a random vector V we use the corresponding calligraphic capital letter V to denote
its support. Let L2

V = {φ : ‖φ‖2V ≡ E |φ(V)|2 < ∞} denote the space of square integrable
functions of V with respect to the distribution of V. We denote by 〈·, ·〉V the inner product
in L2

V that induces ‖ · ‖2V. Moreover, ‖φ‖∞ := supv∈V |φ(v)| denotes the sup norm and ‖ · ‖ is
the usual Euclidean norm.

The regression function of interest is denoted by:

ϕ(·) = E[Y∗|X = ·]

but we may use both notations depending on the context. Let { f j} j>1 (resp. {e j} j>1) be
a sequence of approximating functions in L2

X (resp. L2
Y). Then, we denote by fmn(X) =

( f1(X), . . . , fmn(X))t (resp. ekn(Y) = (e1(Y), . . . , ekn(Y))t) a vector of functions which are used
to approximate the conditional expectation E[Y∗|X] (resp. the inverse selection probability

g(Y)) and by Xmn =
(

fmn(X1), . . . , fmn(Xn)
)t

(resp. Ykn = (∆1ekn(Y1), . . . ,∆nekn(Yn))t) the n×mn

(resp. n × kn) matrix obtained by putting together the n vectors fmn(Xi), i = 1, . . . ,n (resp.
∆iekn(Yi), i = 1, . . . ,n, where ∆iekn(Yi) denotes the product of ∆i and the vector ekn(Yi)).

We denote by Fmn =
{
φ(·) =

∑mn
j=1 β j f j(·) : β ∈ Rmn

}
the linear sieve space of dimension

mn < ∞ that becomes dense in L2
X as n tends to infinity. For a matrix A we denote by

A− its generalized inverse. For a function φ defined on Y, we denote by Mφ : L2
Y → L2

Y
the multiplication operator Mφψ = φψ which is bounded if φ is bounded on Y. Then
(Midψ)(y) = yψ(y) for all y ∈ Y where id denotes the identity function.

3. Nonparametric Regression with Sample Selection

In this section, we consider estimation of the regression functionϕ. The first step estimation
procedure for the inverse selection probability g is based on constrained sieve minimum
distance. In the second step, we use a plug-in series estimator of the conditional expecta-
tion ϕ(·) = E[Yg(Y)|X = ·]. We derive the rate of convergence in mean square error and the
asymptotic distribution of our estimator of ϕ.
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3.1. The Estimator and its Rate of Convergence

Let G denote a separable Banach space which is endowed with a norm ‖ · ‖G and let g ∈ G.
Equation (2.1) can be written in a more compact form by using the following notation.
Let T : G → L2

X be the linear operator Tφ ≡ E[∆φ(Y)|X]. Thereby, equation (2.1) can be
equivalently written as the operator equation

Tg = 1 (3.1)

where the function g is identified under Assumptions 1–3. Note that since E[g(Y)] =
E[g(Y∗∆)] = 1 + g(0)P(∆ = 0) the function g belongs to L1

Y if g(0) < ∞. In the following we
assume without loss of generality that g(0) < ∞ and hence G = L1

Y.
For every φ ∈ L1

Y, denote χ(·, φ) = E[∆φ(Y) − 1|X = ·]. The least squares estimator of
χ(·, φ) is given by

χ̂n(·, φ) = fmn(·)t(Xt
mn

Xmn)−
n∑

i=1

(
∆iφ(Yi) − 1

)
fmn(Xi) (3.2)

for some integer mn which increases with the sample size n. Under conditions given below,
Xt

mn
Xmn will be nonsingular with probability approaching one and hence its generalized

inverse will be the standard inverse. We now introduce some assumptions.
Assumption 4. (i) We observe a sample ((∆1,X1,Y1), . . . , (∆n,Xn,Yn)) of independent and iden-
tical distributed (iid.) copies of (∆,X,Y) where Y = ∆Y∗. (ii) There exists a constant C > 0 and a
sequence of positive integers (mn)n>1 satisfying supx∈X ‖ fmn(x)‖2 6 Cmn such that m2

n/n = o(1).
(iii) The smallest eigenvalue of E[ fm(X) fm(X)t] is bounded away from zero uniformly in m. (iv) Let
ϕ ∈ L2

X and there is Fmnϕ ∈ Fmn such that ‖Fmnϕ − ϕ‖X = O(m−α/dx
n ) for some constant α > 0.

Assumption 4 (ii) − (iii) restricts the magnitude of the approximating functions { f j} j>1
and impose nonsingularity of their second moment matrix. It is a standard assumption
for series estimators (cf. e.g. Assumption 2 in Newey [1997]). Assumption 4 (ii) holds for
instance for polynomial splines, Fourier series and wavelet bases but rules out orthogonal
polynomials and power series sieves. Assumption 4 (iv) determines the sieve approxima-
tion error which in turn characterizes the bias of the estimated regression function ϕ. In
the following, we consider the linear sieve space Gn =

{
φ(·) =

∑kn
j=1 β je j(·) : β ∈ Rkn

}
of

dimension kn < ∞ that becomes dense in the function space L1
Y as n tends to infinity. We

propose the following sieve minimum distance estimator

ĝn ≡ arg min
{φ∈Gn:φ(·)>1}

n∑
i=1

χ̂2
n(Xi, φ). (3.3)

The constraintφ(·) > 1 imposed on the sieve spaceGn ensures that the estimated conditional
probability of observing Y∗ belongs to the unit interval. This estimator of g corresponds to
the penalized sieve minimum distance estimator suggested by Chen and Pouzo [2012].

If no constraint is imposed then the sieve estimator ĝn has an explicit solution given by

ĝn(·) ≡ ekn(·)t β̂kn and β̂k =
(
Yt

kXm(Xt
mXm)− Xt

mYk

)−
Yt

kXm(Xt
mXm)− Xt

m1n (3.4)

where 1n is a n-dimensional vector of ones and for some integer kn 6 mn which increases
with the sample size n.
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The second step of our estimation procedure consists in using the estimator ĝn in (3.3)
to construct an estimator for ϕ. Let Gn =

(
Y1 ĝn(Y1), . . . ,Yn ĝn(Yn)

)
. Then, our estimator of

the nonparametric regression function ϕ(·) is given by

ϕ̂n(·) ≡ fmn(·)t β̂mn where β̂mn = (Xt
mn

Xmn)− Xt
mn

Gn. (3.5)

In the following, the sequence (Rn)n>1 denotes the rate of convergence of the estimator ĝn
w.r.t. to the norm ‖ · ‖2

G
. The next assumption is used to recover the rate of convergence of

ϕ̂n.
Assumption 5. (i) For all φ ∈ Gn there exists FmnTφ ∈ Fmn such that ‖FmnTφ − Tφ‖∞ =

O(m−α/dx
n ). (ii) There exists a sequence of positive integers (ξn)n>1 satisfying supy∈Y ‖ekn(y)‖2 6 ξ2

n

such that knξ2
n/n = o(1). (iii) It holds k2

nRn = O(1). (iv) ‖TMidφ‖X/‖Tφ‖X is bounded uniformly
over all φ ∈ G with ‖Tφ‖X , 0.

Assumption 5 (i) holds true, for example, for splines or power series if the family of
functions

{
Tφ : φ ∈ Gn

}
contains only functions which are at least α–times continuously

differentiable (see also Assumption 3 of Blundell et al. [2007]). Assumption 5 (ii) is satisfied
with ξn =

√
kn when the approximating functions are for instance B-splines, Fourier series

and wavelet bases. For Legendre polynomials this assumption is satisfied with ξn = kn.
Assumption 5 (iii) is a mild restriction on the rate of convergence of ĝn which we illustrate
below. Instead of a bound on Y, Assumption 5 (iv) restricts the size of the multiplication
operator Mid in the norm induced by T. Otherwise stated, it requires that the norms of the
operators TMid and T are equivalent. Assumption 5 (iv) is satisfied for instance under an
additional link condition, like Assumption 6 (iii) below, if the basis functions coincide with
Legendre polynomials or cardinal B-splines (see Example 3.1 below).

Estimation of g requires to ”solve” a conditional moment restriction that is different
from (2.2), namely E[∆g(Y∗)|X] = 1. From Blundell et al. [2007] and Chen and Pouzo
[2012] we obtain the rate of convergence of ‖T(ĝn − g)‖X. Their result, however, is not
enough to obtain the rate of convergence of ϕ̂n as our case requires to determine the rate
of ‖T̂Mid ĝn − TMidg‖X where T̂ is a series least square estimator of T. Thereby, additional
arguments are needed to obtain the rate of ‖ϕ̂n − ϕ‖X given in the following theorem. In
the following, for any φ in G let Eknφ ∈ Gn be such that ‖Eknφ − φ‖G = o(1).
Theorem 3.1. Let Assumptions 1 – 5 hold true. Then we have

‖ϕ̂n − ϕ‖
2
X = Op

(
max

(
m−2α/dx

n ,
mn

n
, ‖T(Ekn g − g)‖2X

))
.

As we see from Theorem 3.1, the rate of convergence of our estimator ϕ̂n depends
on both parameters kn and mn which correspond to the first and second estimation step,
respectively. In addition to the usual nonparametric rate we obtain an additional bias term
‖T(Ekn g − g)‖2X which is due to the sieve approximation of the inverse selection probability
function g. An additional bias occurs also in the convergence rate for estimating regression
functions in Theorem 4.1 of Das et al. [2003]. In their case, however, the additional bias arises
from nonparametric estimation of a propensity score. From Theorem 3.1 we see that ϕ̂n

attains the optimal nonparametric rate of convergence if ‖T(Ekn g − g)‖X = O(m−α/dx
n ). If the

inverse selection probability g is sufficiently smooth in the sense that ‖Ekn g−g‖G = O(m−α/dx
n )

then, by Jensen’s inequality, the optimal nonparametric rate is obtained. In the following,
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we provide a more general treatment by incorporating mapping properties of the operator
T in the Hilbert space case where G = L2

Y.

Assumption 6. (i) E[Y2] < ∞ and E[g2(Y)] < ∞. (ii) Assume ‖Ekn g − g‖Y = O(k−βn ) for some
constant β > 0. (iii) There exists a sequence of non-increasing positive real numbers (τ j) j>1 such
that ‖Tφ‖2X > c

∑
∞

j=1 τ j〈φ, e j〉
2
Y and ‖Tφ‖2X 6 C

∑
∞

j=1 τ j〈φ, e j〉
2
Y for some constant C > 0 and all

φ ∈ L2
Y. (iv) The largest eigenvalue of

(
τ1/2

j τ−1/2
l 〈Mide j, el〉Y

)
j,l>1

is bounded away from infinity.

Assumption 6 (i) ensures that g belongs to the Hilbert space L2
Y and Y has finite second

moment while (ii) determines the sieve approximation error for estimating the function g.
Assumption 6 (iii) is also known as a link condition and commonly used in the analysis of
inverse problems (see, e.g. Chen and Reiß [2011]).
Corollary 3.2. Let Assumptions 1– 4, 5 (i)–(iii), and 6 hold true. Then we have

‖ϕ̂n − ϕ‖
2
X = Op

(
max

(
m−2α/dx

n ,
mn

n
, τknk−2β

n

))
. (3.6)

Remark 3.1. In the mildly ill-posed case where τ j ∼ j−2t, t > 0, let kn ∼ n1/(2t+2β+1) and
mn ∼ ndx/(2α+dx). Hence,

‖ϕ̂n − ϕ‖
2
X = Op

(
max

(
n−(2t+2β)/(2t+2β+1),n−2α/(2α+dx)

))
which is Op(n−2α/(2α+dx)) ifα 6 dx(t+β). In case of trigonometric basis functions, the operator
T acts like integrating (t)–times which then automatically implies α = dx(t + β) (cf. page
12 in Breunig and Johannes [2011]). Also it holds ‖ĝn − g‖2Y = Op(n−2β/(2t+2β+1)) and in
particular we have k2

nRn = O(n(2−2β)/(2t+2β+1)) = o(1) if β > 1. In the severely ill-posed case
where τ j ∼ exp(− j2t), t > 0, we let kn ∼ (log n)1/2t and obtain

‖ϕ̂n − ϕ‖
2
X = Op

(
n−2α/(2α+dx)

)
.

In this case, ‖ĝn − g‖2Y = Op(log(n)−2β/t) and in particular, k2
nRn = O(log(n)(2−2β)/t) = o(1)

again if β > 1. We conclude that under mild conditions on the smoothness of ϕ the optimal
nonparametric rate of regression in mean squared error is obtained. �

The following example illustrates that Assumption 6 (iv) is automatically satisfied when
{e j} j>1 coincides with Legendre polynomials. Similarly to this example, Assumption 6 (iv)
can be verified for cardinal B-splines (cf. De Boor [1978]).

Example 3.1. Assume that Y is contained in [−1, 1] and consider the Hilbert space L2
Y =

L2
[−1,1] enowed with the usual norm. Let {e j} j>1 be the Legendre polynomials. That is, for

y ∈ [−1, 1] we define e1 ≡ 1, e2(y) = y, and

j e j+1(y) = (2 j − 1)y e j(y) − ( j − 1)e j−1(y)

for j > 3. This recursion formula is equivalent to

y e j(y) =
j e j+1(y) + ( j − 1)e j−1(y)

2 j − 1
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which implies


〈Mide1, e1〉Y τ1/2

1 τ−1/2
2 〈Mide1, e2〉Y . . .

τ1/2
2 τ−1/2

1 〈Mide2, e1〉Y 〈Mide2, e2〉Y . . .
...

...
. . .

 =



0
2τ1/2

1

3τ1/2
2

0 0 . . .

2τ1/2
2

3τ1/2
1

0
4τ1/2

3

15τ1/2
4

0 . . .

0
4τ1/2

3

15τ1/2
2

0
. . . . . .

...
...

...
...

. . .


.

The norm of the right hand side matrix is bounded by its Frobenius norm which is∑
j>1

j2

(2 j+1)2
4

(2( j−1)+1)2 within a constant. This series is bounded and thereby Assumption
6 (iv) holds true for either the mildly ill-posed case or the severely ill-posed case. �

3.2. Pointwise Asymptotic Distribution of the Estimator

This subsection is about inference on the regression function ϕ evaluated at some point of
the support of X. To establish the asymptotic distribution of our estimator we require the
following additional assumptions. Let us introduce the matrices Qn = E[ fmn(X) fmn(X)t],
Tn = E[∆ fmn(X)ekn(Y)t], and TY

n = E[Y fmn(X)ekn(Y)t].

Assumption 7. (i) Let E[|Yg(Y) − ϕ(X)|4|X] 6 C and Var(Yg(Y)|X) > c for some constants
c,C > 0. (ii) The matrix Tt

nTn has full rank. (iii) The function g is uniformly bounded away
from 1. (iv) There exist some constants c,C > 0 such that c 6 ln/τkn 6 C, where ln is the
minimum eigenvalue of Tt

nQ−1
n Tn. (iv) It holds ‖Ekn g − g‖∞ = O(k−β+1/2

n ) for β > 1/2 and
‖Fmnϕ − ϕ‖∞ = O(m−α/dx+1/2

n ) for α > dx/2.
A bounded fourth moment of the error was also assumed by Newey [1997] to establish
asymptotic normality of series estimators in the regression context. The consistency result
established in Theorem 3.1 together with Assumption 7 (iv) imply that the constraint is
not binding asymptotically and hence the estimator ĝn given in (3.4) conicides with the
one in (3.3). To prove consistency of the asymptotic variance formula we require uniform
convergence of the approximation biases at a certain rate. Examples of approximating
functions that satisfy this condition are Fourier series, splines series and wavelet series (see
also Belloni et al. [2015]).

For the asymptotic distribution result we introduce the asymptotic variance

Vn(x) = Var
(

fmn(x)tQ−1
n

(
fmn(X)(Yg(Y) − ϕ(X))

)
+Var

(
fmn(x)tQ−1

n TY
n

(
Tt

nQ−1
n Tn

)−1
Tt

nQ−1
n

(
fmn(X) − E[ fmn(X)]

))
.

In contrast to Newey [1997], the asymptotic variance is driven by an additional summand
that arises from the first step estimation of the inverse selection probability g. An additional
part in the asymptotic variance formula, due to sample selection correction, is obtained
also in Das et al. [2003] but which is due to the estimation of a propensity score. In the next
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result we replace the varianceVn(x) by the estimator

V̂n(x) = n−1
n∑

i=1

∣∣∣∣ fmn(x)t(Xt
mn

Xmn/n)− fmn(Xi)
(
Yi ĝn(Yi) − ϕ̂n(Xi)

)∣∣∣∣2+

n−1
n∑

i=1

∣∣∣∣ fmn(x)t(Xt
mn

Xmn)−Xt
mn

diag(Y)Ykn

(
Yt

kn
Xmn(Xt

mn
Xmn)−Xt

mn
Ykn

)−
×

Yt
kn

Xmn(Xt
mn

Xmn/n)−
(

fmn(Xi) −
n∑

i′=1

fmn(Xi′)
)∣∣∣∣2.

where diag(Y) is the diagonal matrix with entries on the diagonal given by (Y1, . . . ,Yn). The
next result establishes the asymptotic distribution of the estimator ϕ̂n evaluated at some
point x in the support of X.
Theorem 3.3. Let Assumptions 1 – 5 and 7 be satisfied. If

n‖Fmnϕ − ϕ‖
2
X = o(1) and n‖T(Ekn g − g)‖2X = o(1) (3.7)

then we have√
n/Vn(x)

(
ϕ̂n(x) − ϕ(x)

) d
→N(0, 1).

Moreover, ifY is bounded, and mnkn = o(τ4
kn

n) then√
n
/
V̂n(x)

(
ϕ̂n(x) − ϕ(x)

) d
→N(0, 1).

In the setting of Corollary 3.2, condition (3.7) is satisfied if max
(
nm−2α/dx

n ,nτknk−2β
n

)
=

o(1). Thereby, in both estimation steps, undersmoothed estimators have to be consid-
ered. This ensures that also the sieve approximation bias for estimating the function g
becomes asymptotically negligible. Moreover, the second result of the theorem requires
the additional rate mnkn = o(τ4

kn
n). In the setting of Corollary 3.2, this is equivalent to

mn = o
(
k−(8t+1)

n n
)

in the mildly ill-posed case and to mn = o
(
n exp(−4k2t

n )
)

in the severely
ill-posed case.

4. Sample Selection with Endogenous Covariates

In many economic applications, it is necessary to correct for both sample selection of the
dependent variable and endogeneity of (some) covariates. In this section, we show that
under the assumptions of Section 2 identification of the corresponding reduced form equa-
tion can be achieved. Under further conditions, which are common in the nonparametric
instrumental variable literature, identification of the structural function is also obtained.
An estimator of the nonparametric structural function is proposed and we establish its rate
of convergence as well as its asymptotic distribution.

4.1. Model and Identification

In this section, we consider the instrumental variable model under selectively observed
outcomes given by

Y∗ = ψ(Z) + U where E[U|X] = 0 and Y = ∆Y∗ (4.1)

11



where Z is a dz-vector of possibly endogenous regressors in the sense that E[U|Z] , 0 and
hence ψ(Z) need not to coincide with E[Y∗|Z]. Here, X is a vector of instruments used to
identify the structural function ψ. The instrument X is also assumed to satisfy Assumption
1; that is, ∆ y X|Y∗. An example is the estimation of Engel curves, where Y∗ denotes budget
share allocated to alcohol which is often not reported (see for instance the British FES) and
Z is total expenditure. Expenditure is commonly thought of as endogenous and typically
instrumented for with labor income X. In this case, the instrument certainly influences
Y∗ through Z but is unlikely to directly influence survey nonresponse. The reduced form
equation of the structural model (4.1) is given by

E[Y∗|X] = E[ψ(Z)|X]

where the left hand side is not identified. By making use of equation (2.2), we obtain the
reduced form

E[Yg(Y)|X] = E[ψ(Z)|X] (4.2)

where the left hand side is identified under Assumptions 1–3. Thereby, completes of Z with
respect to X ensures identification of the structural function ψ. In the following example,
we see that Assumptions 1 and 2 are satisfied in a triangular model.

Example 4.1. Let us rewrite model (4.1) in reduced form and additionally specify a selection
equation. Then the assumption ∆ y X |Y∗ is satisfied in the triangular model

Y∗ = E[ψ(Z)|X] + ε where E[ε|X] = 0
∆ = ξ(Y∗, η)

and η y (X, ε). As in D’Haultfoeuille [2011] it can be argued that, under some assumptions
on the distribution of (X, ε), Y∗ is complete for X. �

4.2. The Estimator and its Rate of Convergence

In this section, we propose an estimator for the structural function ψ and derive its rate of
convergence. For any φ ∈ L2

Z we introduce the function %(·, g, φ) = E[Yg(Y) − φ(Z)|X = ·].
The least squares estimator of %(·, g, φ) is given by

%̂n(·, g, φ) = fmn(·)t (Xt
mn

Xmn)−
n∑

i=1

(
Yi g(Yi) − φ(Zi)

)
fmn(Xi).

Let us now propose a plug-in minimum distance estimator of ψ which involves the esti-
mator ĝn given in (3.3) of the inverse selection probability g. That is, we estimate ψ by

ψ̂n ≡ arg min
φ∈Ψn

n∑
i=1

%̂ 2
n (Xi, ĝn, φ). (4.3)

Here, we consider the linear sieve space Ψn =
{
φ(·) =

∑kn
j=1 β jp j(·) : β ∈ Rkn

}
of dimension

kn < ∞ for some basis functions {p j} j>1 in L2
Z. In particular, we have the least squares

solution

ψ̂n(·) ≡ pkn(·)t ϑ̂kn and ϑ̂k =
(
Zt

kXm(Xt
mXm)− Xt

mZk

)−
Zt

kXm(Xt
mXm)− Xt

mGn (4.4)

where Gn =
(
Y1 ĝn(Y1), . . . ,Yn ĝn(Yn)

)t
and Zk = (pk(Z1), . . . , pk(Zn))t.
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Assumption 8. (i) We observe a sample ((∆1,Y1,Z1,X1), . . . , (∆n,Yn,Zn,Xn)) of iid. copies of
(∆,Y,Z,X) where Y = ∆Y∗. (ii) There exists a constant C > 1 and a sequence of positive integers
(kn)n>1 satisfying supz∈Z ‖pkn(z)‖2 6 Ckn such that k2

n/n = o(1). (iii) The smallest eigenvalue
of E[pk(Z)pk(Z)t] is bounded away from zero uniformly in k. (iv) For every ψ ∈ L2

Z there exists

Πknψ ∈ Ψn such that ‖Πknψ − ψ‖Z = O(k−γ/dz
n ) for some constant γ > 0.

Let us introduce the linear conditional expectation operator K : L2
Z → L2

X with Kφ =

E[φ(Z)|X] for all φ ∈ L2
Z. We introduce the following assumption which ensures identifica-

tion of the ψ in the model (4.1).
Assumption 9. (i) For some α > 0 and for every φ ∈ Φkn there exists FmnKφ ∈ Fmn such that
‖FmnKφ−Kφ‖∞ = O(m−α/dx

n ). (ii) For every functionφ ∈ L2
Z, E[φ(Z)|X] = 0 impliesφ(Z) = 0. (iii)

There exists a sequence (κ j) j>1 such that ‖Kφ‖2X 6 C
∑
∞

j=1 κ j〈φ, p j〉
2
Z and ‖Kφ‖2X > c

∑
∞

j=1 κ j〈φ, p j〉
2
Z

for all φ ∈ L2
Z and some constants c, C > 0.

The next result establishes the rate of convergence of the estimator ψ̂n.
Theorem 4.1. Let Assumptions 1–5, 8 and 9 hold true. Then we have

‖ψ̂n − ψ‖
2
Z = Op

(
max

(
k−2γ/dz

n ,
kn

nκkn

, κ−1
kn
‖T(Ekn g − g)‖2X

))
. (4.5)

In contrast to Theorem 3.1, the additional bias due to sample selection is also effected
by the potential ill-posed coming from endogeneity of covarites Z. Under the conditions
of Corollary 3.2, the bias κ−1

kn
‖T(Ekn g − g)‖2X can be bounded by κ−1

kn
τknk−2β

n . Thereby, the
usual rate in nonparametric instrumental regression (see Chen and Reiß [2011]) can be only
obtained if τknk2γ/dz

n 6 const. κknk2β
n for all n sufficiently large.

Remark 4.1. To conclude this section it is worth to mention that with our estimation method
we can deal with another type of endogeneity, different from the one just considered.
Suppose that the random vector X that satisfies Assumption 1 is endogenous, in the sense
that the relationship of interest is the structural function ψ satisfying

Y∗ = ψ(X) + U where E[U|X] , 0 and Y = ∆Y∗. (4.6)

This situation can be easily dealt with by assuming that there exists another vector W of
instruments such that E[U|W] = 0 and ∆ y X | (Y∗,W). The latter assumption replaces
Assumption 1 and corresponds to the one in Remark 2.1. For simplicity, we assume that W
is observed for all the individuals so that the conditional distribution of X|W is identified
from the data. Moreover, we have to assume that P(∆ = 1|Y∗,W) > 0 a.s. and that
Assumption 2 holds with φ(Y∗) replaced by φ(Y∗,W). Then ψ is identified through (4.6)
and

E[Y∗|W] = E[Y∗P(∆ = 1|Y∗,W)g(Y∗,W)|W] = E[Y∗∆g(Y∗,W)|W] = E[Yg(Y,W)|W].

Consequently, we obtain the identified reduced form equation

E[Yg(Y,W)|W] = E[ψ(X)|W]

and identification follows as above.
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4.3. Pointwise Asymptotic Distribution of the Estimator

This subsection is about inference on the structural function ψ evaluated at some point of
the support of Z. To establish the asymptotic distribution of our estimator we require the
following additional assumptions. Let us introduce the matrix Kn = E[ fmn(X)pkn(Z)t] and
recall Qn = E[ fmn(X) fmn(X)t], Tn = E[∆ fmn(X)ekn(Y)t], and TY

n = E[Y fmn(X)ekn(Y)t].

Assumption 10. (i) Let E[|Yg(Y) − ψ(Z)|4|X] 6 C and Var(Yg(Y) − ψ(Z)|X) > c for some
constants c,C > 0. (ii) The matrix Tt

nTn has full rank. (iii) There exist some constants c,C > 0
such that c 6 λn/κkn 6 C where λn is the minimum eigenvalue of Kt

nQ−1
n Kn. (iv) It holds

‖Ekn g − g‖∞ = O(k−β+1/2
n ) for β > 1/2 and ‖Πknψ − ψ‖∞ = O(k−γ/dz+1/2

n ) for γ > dz/2.
Since E[|Y∗|2|X] = E[|Y|2g(Y)|X] 6 E[|Yg(Y)|2|X] it holds

Var(Yg(Y) − ψ(Z)|X) > E[|Yg(Y)|2|X] − 2
√

E[|Yg(Y)|2|X]
√

E[ψ2(Z)|X] + E[ψ2(Z)|X]

=
(√

E[|Yg(Y)|2|X] −
√

E[ψ2(Z)|X]
)2

> E[|Y∗|2|X]/2 − E[ψ2(Z)|X]

> Var(U|X)/4 − 3 E[ψ2(Z)|X]/2

where we used twice the basic inequality (a − b)2 > a2/2 − b2. Thus, Var(Yg(Y) − ψ(Z)|X)
is bounded from below if Var(U|X) is sufficiently large, more precisely, if Var(U|X) >
2(c + 3 E[ψ2(Z)|X]). On the other hand, assuming a bounded conditional fourth moment
of the structural disturbance U (E[U4

|X] 6 const.) implies E[|Yg(Y) − ψ(Z)|4|X] 6 const. due
to the finite support of Y. This condition can be similarly motivated as in Example 3.1.
Assumption 10 (ii) further ensures that the asymptotic distribution is not degenerate. Let
us introduce

Wn(z) = Var
(
pkn(z)t

(
Kt

nQ−1
n Kn

)−1
Kt

nQ−1
n

(
fmn(X)(Yg(Y) − ψ(Z))

)
+Var

(
pkn(z)t

(
Kt

nQ−1
n Kn

)−1
Kt

nTY
n

(
Tt

nQ−1
n Tn

)−1
Tt

nQ−1
n

(
fmn(X) − E[ fmn(X)]

))
.

If there is no endogenous selection (that is, g ≡ 1) then the first part of the asymptotic
variance formula coincides to the one obtained by Chen and Pouzo [2013] in nonparametric
instrumental regression. Under endogenous selection, however, an additional term in the
asymptotic variance arises due to the first step estimation of the inverse selection probability
g.
Let Ân =

(
Zt

kn
Xmn(Xt

mn
Xmn)− Xt

mn
Zkn/n

)
. In the next result we replace the varianceWn(z) by

the estimator

Ŵn(z) = n−1
n∑

i=1

∣∣∣∣pkn(z)t
Â
−

n (Zt
kn

Xmn)(Xt
mn

Xmn)− fmn(Xi)
(
Yi ĝn(Yi) − ψ̂n(Zi)

)∣∣∣∣2+

n−1
n∑

i=1

∣∣∣∣pkn(z)t
Â
−

n (Zt
kn

Xmn/n)Xt
mn

diag(Y)Ykn

(
Yt

kn
Xmn(Xt

mn
Xmn)−Xt

mn
Ykn

)−
×

Yt
kn

Xmn(Xt
mn

Xmn)−
(

fmn(Xi) −
n∑

i′=1

fmn(Xi′)
)∣∣∣∣2
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where diag(Y) is the diagonal matrix with entries on the diagonal given by (Y1, . . . ,Yn). The
next result establishes the asymptotic distribution of the estimator ψ̂n evaluated at some
point z in the supportZ of Z.
Theorem 4.2. Let Assumptions 1 – 5, and 8 – 10 be satisfied. If

n‖Πknψ − ψ‖
2
Z = o(1) and n‖T(Ekn g − g)‖2X = o(1) (4.7)

then we have√
n/Wn(z)

(
ψ̂n(z) − ψ(z)

) d
→N(0, 1).

Moreover, ifY is bounded and mn = o(
√

n min(
√
τknκ

2
kn
,
√
κknτ

2
kn

)) then√
n
/
Ŵn(z)

(
ψ̂n(z) − ψ(z)

) d
→N(0, 1).

5. A Model Specification Test

Our estimation procedure crucially relies on the conditional independence between se-
lection and covariates given potential outcomes (see Assumption 1). Hence, it would be
desirable to test the validity of this assumption before conducting the estimation proce-
dure. An attractive feature of Assumption 1 is that it is indeed testable (cf. Theorem
2.4 in D’Haultfoeuille [2010]). In this section we construct a test for this assumption.
As seen in Section 2, given Assumptions 2 and 3, Assumption 1 is equivalent to the op-
erator equation Tg = 1. Let us consider a reasonable class of functions for g namely
F =

{
φ ∈ L2

Y : φ(·) > 1 and ‖φ − Eknφ‖Y 6 Ck−βn for any n > 1
}

for some β > 0. The null
hypothesis under consideration is

H0 : there exists a function g ∈ F such that Tg = 1.

The test statistic. Our testing procedure is based on the criterion in (3.3). We verify
whether

∑n
i=1 χ̂

2
n(Xi, ĝn) does not become too large, which is the case if the true inverse

conditional probability function g does not satisfy the minimal smoothness conditions
imposed by H0. By reformulating the quantity

∑n
i=1 χ̂

2
n(Xi, ĝn) we obtain our test statistic

Sn =
( n∑

i=1

(ĝn(Yi)∆i − 1) fmn(Xi)
)t

(Xt
mn

Xmn)−
( n∑

i=1

(ĝn(Yi)∆i − 1) fmn(Xi)
)

(5.1)

where the dimension mn coincides with the first step dimension used for the estimator ϕ̂n.
Our testing procedure builds on Breunig [2015]. But as we consider a constraint estimation
procedure we cannot apply the method of Breunig [2015] directly. A constraint sieve
testing procedure was proposed by Breunig [2013] but for the specific situation of quantile
versions of instrumental variable models. In addition, note that in these two papers the
basis functions used to construct the test statistics are assumed to be orthonormal, which
is not required in the following.
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Asymptotic distribution of the statistic. Our test statistic Sn is asymptotically normally
distributed if it is standardized by appropriate mean and variance, which are introduced
in the next definition.
Definition 5.1. Let us introduce the matrix

Σmn = E
[(

g(Y)∆ − 1
)2

Q−1/2
n fmn(X) fmn(X)tQ−1/2

n

]
Then the trace and the Frobenius norm of Σmn are respectively denoted by µmn and ςmn .
Assumption 11. There exist constants c,C > 0 such that Var(g(Y)∆|X) > c and E[(g(Y)∆ −
1)4
|X] 6 C.
Due to Assumption 11 (iii) it holds ςmn > C

√
mn for some constant C > 0. The next

result establishes asymptotic normality of Sn after standardization.
Theorem 5.1. Let Assumptions 1–6, and 11 be satisfied. If

m3
n = o(n), knm2

n = O(nτkn), and max
(
kn,nτknk−2β

n

)
= o(
√

mn) (5.2)

then it holds under H0

(
√

2ςmn)−1
(
nSn − µmn

) d
→N(0, 1).

Estimation of Critical Values. For the estimation of critical values of Theorem 5.1,
let us define Un =

(
∆1 ĝn(Y1) − 1, . . . ,∆n ĝn(Yn) − 1

)t
. We estimate the matrix Σmn by

Σ̂mn ≡ (Xt
mn

Xmn)−1/2Xt
mn

diag(Un)2 Xmn(Xt
mn

Xmn)−1/2. The asymptotic result of Theorem 5.1
continues to hold if we replace ςmn by the Frobenius norm of Σ̂mn , denoted by ς̂mn , and µmn

by the trace of Σ̂mn , denoted by µ̂mn .
Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied. Then it holds under H0

(
√

2ς̂mn)−1
(
nSn − µ̂mn

) d
→N(0, 1).

Limiting behavior under local alternatives. In the following, we study the power of
the test, that is, the probability to reject a false hypothesis against a sequence of linear local
alternatives that tends to zero as the sample size tends to infinity. We consider alternative
models defined through a sequence of functions gn that satisfies

‖Tgn − 1 −m1/4
n n−1/2δ‖X = o(m1/4

n n−1/2) (5.3)

for some function δ ∈ L4
X. Due to (5.3), for any n > 1 the function gn does not satisfy

Tgn = 1. The next result is a direct consequence of Proposition 2.4 of Breunig [2013] and
thus, its proof is omitted.
Proposition 5.3. Given the conditions of Theorem 5.1 it holds under (5.3)

(
√

2ςmn)−1
(
n Sn − µmn

) d
→N

(
2−1/2

∞∑
j=1

(
E[δ(X) f j(X)]

)2
, 1

)
.
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6. Monte Carlo simulation

In this section, we study the finite-sample performance of our test by presenting the results
of a Monte Carlo simulation. There are 1000 Monte Carlo replications in each experiment.
Let X = Φ(χ) where χ ∼ N(0, 1). Further, generate Y∗ from the model Y∗ = ϕ(X) + cVV
where ϕ(x) = Φ

(
8(x − 0.5)

)
with standard normal distribution function Φ, cV = 0.4, and

V ∼ N(0, 1).

Estimation of conditional expectation. We consider estimation of the conditional ex-
pectation of Y∗ given X. We generate realizations of the selection variable ∆ from ∆ ∼

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

ϕ

ϕ

estimator in (3.7)

MAR estimator

Figure 1: The regression function ϕ, the median of ϕ̂n with 90% confidence intervals and
an estimator under MAR assumption

Binomial(1, h(Y∗)) where h(y) = 0.4 ∗ 1{y 6 0.4} + 1{y > 0.4}. We estimate the function ϕ by
using the constraint estimator ϕ̂n given in (3.5). As basis functions we use B-splines of order
3 with 2 knots (hence kn = 6) and for the criterion function we use orthogonal B-splines
of order 3 with 6 knots (hence mn = 10). Figure 1 depicts the median of the estimator ϕ̂n
together with its 90% pointwise confidence bands and an estimator under the missing at
random (MAR) assumption. The MAR estimator becomes more biased for small values of
x and lies even outside of the pointwise confidence bands of ϕ̂n.

Nonparametric Specification Test. Results are presented for the nominal level 0.05.
Let us now study the finite sample behavior of our nonparametric specification test.

We construct the observations of ∆ via the function h(y) = 1/(10y + 2) + 0.5 for y ∈ [0, 1]. If
H0 holds true we generate ∆ ∼ Binomial(1, h(Y∗)).

In the experiments where H0 fails, X is not a valid instrument in the sense that it
influences the endogenous selection. In this case, we generate realizations of ∆ from

∆ ∼ Binomial(1, (1 − ν)h(Y∗) + νρ(X))
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for some constant ν > 0 and where ρ(x) = 1 − (2x − 1)2. Clearly, if ν = 0 then the null
hypothesis H0 is true. We estimate the regression function ϕ as in the previous paragraph.

Model Empirical Rejection probability
ρ ν (

√
2ς̂mn)−1(nSn − µ̂mn)

H0 true 0.046
ρ1 0.2 0.221

0.3 0.389
0.5 0.562

ρ2 0.2 0.374
0.3 0.677
0.5 0.814

ρ3 0.2 0.659
0.3 0.909
0.5 0.942

Table 1: Empirical Rejection probabilities for Nonparametric Specification Test

In Table 1, we depict the empirical rejection probabilities of our test statistic with critical
value 0.05. The critical values of these statistics are estimated as described in Theorem 5.2.

7. Empirical Illustration

In this section, we apply our estimation procedure to study the way in which the level of
expenditure of an individual affects his/her expected “propensity to work”.

We use data from the German Internet Panel (GIP)3. This data set contains data
about individual attitudes and preferences which are relevant for political and economic
decision-making processes. The survey represents the German speaking population aged
16 to 75 in Germany.

In our application we measure the “propensity to work” by the “number of desired
hours” which is present in our data set. The latter variable is the number of weekly hours a
person would like to work by taking into account that the income would change according
to the hours of work. Let Y∗ denote this variable and X denote the variable “expenditure”.
The latter measures the total average expenditure in one month of a person.

The object of interest in our study is the regression function of Y∗ given X, that is, the
expected number of desired hours given a level of monthly total expenditure.

In our data set we have 1118 observations, a small number of missing in the variable
“expenditure” (56 observations) and a large number of missing in the variable “number
of desired hours” (392 observations). As the number of missing values in “expenditure”
is small we eliminate these observations from our data set (since the bias is going to be
negligible) so that the sample size we work with becomes n = 1056 and the missing values
in the variable “number of desired hours” are now 365. This shows that only less than half

3The GIP is a survey part of the Collaborative Research Centre “Political Economy of Reforms” (SFB 884)
based at the University of Mannheim which studies the determinants and perceptions of political reforms
and their consequences for the economy.
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Figure 2: Estimator of P(∆ = 1|Y∗ = y) with 90% percent confidence intervals.

of the missing in “expenditure” corresponds to missing in “number of desired hours”.
The fact that Y∗ is not observed is likely to be endogenous since one could think that
in “extreme” situations, where Y∗ is either excessively low or excessively high, a person
would be more likely to not provide this information. While the variable “expenditure” is
statistically related to Y∗, it is reasonable to assume that it is independent of the selection
mechanism once Y∗ is accounted for. In particular, we have implemented our specification
test proposed in Section 5. We have computed the test statistics for a grid of values for
mn and the maximum absolute value of the (standardized) test statistics is obtained for
mn = 42 and is 0.1757. Therefore, our test fails to reject H0 at the level 5%.

Figure 2 depicts our estimator for the conditional probability P(∆ = 1|Y∗) and we
observe that this estimated probability of reporting increases with potential desired hours
of working. The pointwise confidence intervals, however, are too wide to make significant
statements. A reason for this is that the conditional probability function is a solution to an
inverse problem and hence estimators can be imprecise in finite samples.

Mean Median Min Max Std. n missing

Y = ∆Y∗ 22.05 30 0 60 18.2392 1056 373
X 1439 1225 0 6000 899.2948 1056 0

Table 2: Descriptive Statistics for Y = ∆Y∗ and X.

Figure 3 shows the estimated regression function of “number of desired hours” on
“expenditure” together with the 90% percent confidence intervals. The estimator is based
on the nonparametric methodology described in Section 3 where we use B-Splines where
the first step was penalized by a smoothness matrix as described in Blundell et al. [2007]
page 1638. The additional penalization avoids to stablize the estimates even if the number
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Figure 3: Regression curve of “number of desired hours” on “expenditure” with 90% per-
cent confidence intervals.

of B-spline basis functions might be chosen too large. The B-splines used here are order 4
with 3 knots, hence kn = 8. We also report the estimated regression function of “number of
desired hours” on “expenditure” estimated under the MAR-assumption in Figure 4. As we
see from the figures the MAR estimator is only significantly different from our estimator
when expenditure is small.
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Figure 4: Regression under MAR of “number of desired hours” on “expenditure” with 90%
percent confidence intervals.

A. Appendix

Throughout the proofs, we will use C > 0 to denote a generic finite constant that may be
different in different uses. Imn denotes the mn × mn identity matrix. Further, for ease of
notation we write

∑
i for

∑n
i=1 and

∑
i′<i for

∑
i
∑i−1

i′=1. For a matrix A, we denote by ‖A‖ its
operator norm.

In the following, we denote Q̂n = n−1 ∑
i fmn(Xi) fmn(Xi)t. By Assumption 4, the eigen-

values of E[ fmn(X) fmn(X)t] are bounded away from zero and hence, it may be assumed that
E[ fmn(X) fmn(X)t] = Imn (cf. Newey [1997], p. 161).

A.1. Proofs of Section 3.

Proof of Theorem 3.1. The proof is based on the following decomposition

‖ϕ̂n − ϕ‖
2
X 6 2

∥∥∥Q̂−1
n (Imn − Q̂n)

(
Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]

)∥∥∥2

+ 4
∥∥∥Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]

∥∥∥2
+ 4‖Fmnϕ − ϕ‖

2
X

= 2In + 4IIn + 4IIIn (say). (A.1)

First observe that

In 6 ‖Q̂−1
n ‖

2
‖Q̂n − Imn‖

2
‖Xt

mn
Gn/n − Q̂n E[ϕ(X) fmn(X)]‖2.
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We have ‖Q̂n − Imn‖
2 = m2

n/n and ‖Q̂−1
n ‖

2 = 1 + op(1) as Newey [1997] page 162. Further, we
observe

IIn 6 4
mn∑
j=1

∣∣∣n−1
∑

i

Yi

(
ĝn(Yi) − (Ekn g)(Yi)

)
f j(Xi) − 〈TMid(ĝn − Ekn g), f j〉X

∣∣∣2
+ 8

mn∑
j=1

∣∣∣n−1
∑

i

Yi (Ekn g)(Yi) f j(Xi) − E[Y(Ekn g)(Y) f j(X)]
∣∣∣2

+ 4
mn∑
j=1

∣∣∣n−1
∑

i

mn∑
l=1

(
f j(Xi) fl(Xi) − E[ f j(X) fl(X)]

)
E[Y fl(X)]

∣∣∣2
+ 2

mn∑
j=1

〈TMid(ĝn − Ekn g), f j〉
2
X + 8

mn∑
j=1

〈TMid(Ekn g − g), f j〉
2
X

= 4Bn1 + 8Bn2 + 4Bn3 + 2Bn4 + 8Bn5 (say).

Consider Bn1. The Cauchy Schwarz inequality implies

Bn1 6 ‖β̂n − βkn‖
2

mn∑
j=1

∥∥∥n−1
∑

i

Yiekn(Yi) f j(Xi) − E[Yekn(Y) f j(X)]
∥∥∥2

= ‖β̂n − βkn‖
2 Op(knmn/n)

= Op(mn/n)

where we used that kn‖β̂n − βkn‖
2 = Op(1). Consider Bn2. Since Var(YEkn g(Y)) is bounded

we have

E Bn2 6 n−1
mn∑
j=1

E
∣∣∣Y Ekn g(Y) f j(X)

∣∣∣2
6 n−1 sup

x∈X
‖ fmn(x)‖2 E

∣∣∣Y Ekn g(Y)
∣∣∣2

6 2n−1 sup
x∈X
‖ fmn(x)‖2

(
Var(Y Ekn g(Y)) + ‖TMidEkn g‖2

G

)
= O(mn/n).

Consider Bn3. It holds

E Bn3 = n−1
mn∑
j=1

E | f j(X)(Fmnϕ)(X)|2 6 2n−1 sup
x∈X
‖ fmn(x)‖2

(
‖Fmnϕ−ϕ‖

2
X + ‖ϕ‖2X

)
= O(mn/n).

Consider Bn4. We observe

Bn4 = ‖FmnTMid(ĝn − Ekn g)‖2X 6 ‖TMid(ĝn − Ekn g)‖2X

6 sup
{φ∈Gkn :φ(·)>1}

‖TMid(φ − Ekn g)‖2X
‖T(φ − Ekn g)‖2X

 ‖T(ĝn − Ekn g)‖2X
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Due to Assumption 5 (iv) we have

sup
{φ∈Gkn :φ(·)>1}

‖TMid(φ − Ekn g)‖2X
‖T(φ − Ekn g)‖2X

 < ∞.
From Blundell et al. [2007] page 1659 we deduce

‖T(ĝn − Ekn g)‖2X = Op
(
m−2α/dx

n + mn/n + ‖T(Ekn g − g)‖2X
)
.

Consequently, we have

Bn4 = Op
(
m−2α/dx

n + mn/n + ‖T(Ekn g − g)‖2X
)
.

Further,

Bn5 6 ‖FmnT(Ekn g − g)‖2X = O
(
‖T(Ekn g − g)‖2X

)
,

which proves the result. �

Proof of Corollary 3.2. It is sufficient to check that

sup
φ∈Gkn

‖TMidφ‖X
‖Tφ‖X

< ∞. (A.2)

Let T∗ denote the adjoint operator of T which is given by T∗φ = E[∆φ(W)|Y]. Since the
multiplication operator Mid is a selfadjoint operator we obtain

‖TMidφ‖
2
X = 〈TMidφ,TMidφ〉X = 〈Tφ, (T∗)−1MidT∗TMidφ〉X 6 ‖Tφ‖X ‖(T∗)−1MidT∗TMidφ‖X

From the link condition ‖Tφ‖2X > c
∑
∞

j=1 τ j〈φ, e j〉
2
Y we infer by a duality argument ‖(T∗)−1φ‖2X 6

c−1 ∑
∞

j=1 τ
−1
j 〈φ, e j〉

2
Y. Let L be a selfadjoint operator acting on L2

Y with eigenvalue decompo-

sition {τ1/2
j , e j} j>1. Then we conclude

‖TMidφ‖
2
X 6 c−1

‖Tφ‖X ‖L−1MidT∗TMidφ‖X 6 c−1
‖Tφ‖X ‖TMidL−1

‖X ‖TMidφ‖X

which gives

‖TMidφ‖X
‖Tφ‖X

6 c−1
‖TMidL−1

‖X.

Consequently, (A.2) follows since ‖TMidL−1
‖X is bounded. �

Proof of Theorem 3.3. To bound the asymptotic variance Vn(x) from below we observe
that assumptionVar(Yg(Y)|X) > C yields

Vn(x) > fmn(x)t E
[

fmn(X)Var(Yg(Y)|X) fmn(X)t
]

fmn(x)/2 > C ‖ fmn(x)‖2.

In the following, we also make use of

Var(Yg(Y) − ϕ(X)|X) = E(|Yg(Y) − ϕ(X)|2|X)

= E(|Yg(Y)|2|X) − ϕ2(X)
= Var(Yg(Y)|X).
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The proof is based on the decomposition

ϕ̂n(x) − ϕ(x) = fmn(x)t(nQ̂n)−1
∑

i

fmn(Xi)
(
Yig(Yi) − ϕ(Xi)

)
+ fmn(x)t(nQ̂n)−1

∑
i

fmn(Xi)Yi

(
ĝn(Yi) − Ekn g(Yi)

)
+ fmn(x)t(nQ̂n)−1

∑
i

fmn(Xi)Yi

(
Ekn g(Yi) − g(Yi)

)
+ fmn(x)t(nQ̂n)−1

∑
i

fmn(Xi)ϕ(Xi) − ϕ(x)

= In + IIn + IIIn + IVn (say).

Let us denote βkn =
(
Tt

nTn
)−1

Tt
n E[ fmn(X)]. As in the proof of Theorem 3.1 and since

E[ fmn(X)] = E[∆g(Y) fmn(X)] it is easily seen

IIn =
√

n fmn(x)t TY
n (β̂kn−βkn)+

√
n fmn(x)t TY

n

(
Tt

nTn
)−1

Tt
n E

[
fmn(X)∆

(
g(Y)−Ekn g(Y)

)]
+op(1).

From Assumption 5 (iv) we infer

‖TY
n

(
Tt

nTn
)−1

Tt
n‖ 6 sup

φ∈G

{
‖TMidφ‖X
‖FmnTφ‖X

}
‖Tn

(
Tt

nTn
)−1

Tt
n‖ 6 C‖Tn

(
Tt

nTn
)−1

Tt
n‖ = C

where we used the fact that projection matrices are bounded in the operator norm. The
Cauchy Schwarz inequality together with n‖T(g − Ekn g)‖2X = o(1) implies

IIn =
√

n fmn(x)tTY
n (β̂kn − βkn) + op(1).

Consequently, we obtain√
n/Vn(x)

(
In + IIn

)
=

∑
i

(
nVn(x)

)−1/2
fmn(x)t

(
fmn(Xi)(Yig(Yi) − ϕ(Xi))

− TY
n

(
Tt

nTn
)−1

Tt
n

(
fmn(Xi) − E[ fmn(X)]

))
+ op(1)

=
∑

i

sin + op(1)

Moreover, sin, 1 6 i 6 n satisfy the Lindeberg condition which can be seen as follows. It
holds E[sin] = 0 and n E[s2

in] = 1. Following Newey [1997] (p. 164), for all ε > 0 due to
E |Yg(Y) − ϕ(X)|4 6 C we observe∑

i

E[s2
in 1{|sin|>ε}] 6 nε2 E |sin/ε|

4 6 Cn−1ε−2m2
n = o(1).

Again from Assumption 5 (iv) together with n‖T(g − Ekn g)‖2X = o(1) yields nIIIn = op(1).
Finally, nIVn = op(1) follows from n‖Fmnϕ − ϕ‖

2
X = o(1), which completes the proof of the

first statement in the theorem.

By Lemma A.1 we have√
n
/
V̂n(x)

(
ϕ̂n(x) − ϕ(x)

)
=

√
n
/
Vn(x)

(
ϕ̂n(x) − ϕ(x)

)
(Vn(x)/V̂n(x))1/2 d

→N(0, 1)

which proves the second result of the theorem. �
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LemmaA.1. Let Assumptions 1 – 5 and 7 be satisfied. Moreover, assume thatY is bounded. Then,

Vn(x)−1
V̂n(x) = 1 + op(1)

whereVn(x) and V̂n(x) are as defined in Theorem 3.3

Proof. Let us introduce some notation. We denote Σn = E
[

fmn(X)Var(Yg(Y)|X) fmn(X)t
]
,

Σn, f = Imn − E[ fmn(X)] E[ fmn(X)t], Σ̂n =
∑n

i=1 fmn(Xi) fmn(Xi)t
(
Yi ĝn(Yi) − ϕ̂n(Xi)

)2
/n, Σ̂n, f =

Q̂n − (Xt
m1n/n)(1t

nXm/n) and Σ̃n =
∑

i fmn(Xi) fmn(Xi)t
(
Yi g(Yi) − ϕ(Xi)

)2
/n. Moreover, let

ĥt
1 = (Vn(x))−1/2 fmn(x)tQ̂−1

n , ht
1 = (Vn(x))−1/2 fmn(x)t, T̂n = Xt

mn
Ykn/n

ĥt
2 = (Vn(x))−1/2 fmn(x)tQ̂−1

n

(
Xt

mn
diag(Y)Ykn/n

) (
T̂t

nQ̂−1
n T̂n

)−
T̂t

nQ̂−1
n

and ht
2 = (Vn(x))−1/2 fmn(x)tTY

n

(
Tt

nTn
)−1

Tt
n. Hence,

Vn(x)
(̂
ht

1Σ̂n̂h1 + ĥt
2Σ̂n, f ĥ2

)
= V̂n(x)

and by noticing that ht
1Σnh1 + ht

2Σn, f h2 = 1, the triangle inequality gives∣∣∣∣(Vn(x))−1/2
V̂n(x)(Vn(x))−1/2

− 1
∣∣∣∣ 6 ∣∣∣∣̂ht

1(Σ̂n − Σ̃n)̂h1

∣∣∣∣ +
∣∣∣∣̂ht

1(Σ̃n − Σn)̂h1

∣∣∣∣ +
∣∣∣∣̂ht

1Σn̂h1 − ht
1Σnh1

∣∣∣∣
+

∣∣∣∣̂ht
2(Σ̂n, f − Σn, f )̂h2

∣∣∣∣ +
∣∣∣∣̂ht

2Σn, f ĥ2 − ht
2Σn, f h2

∣∣∣∣ . (A.3)

Remark that ‖̂h1 − h1‖ = op(1) and ‖̂h1‖ = Op(1). Consider ĥ2. We have

‖(T̂t
nQ̂−1

n T̂n)−1
−(Tt

nTn)−1
‖ 6 ‖(T̂t

nQ̂−1
n T̂n)−1

‖ ‖(Tt
nTn) − (T̂t

nQ̂−1
n T̂n)‖ ‖(Tt

nTn)−1
‖

= Op(τ−2
kn

n−1/2
√

mnkn), (A.4)

as we see in the following. It holds

‖T̂t
nQ̂nT̂n − Tt

nTn‖ 6 ‖T̂t
n(Q̂n − Imn)T̂n‖ + ‖T̂t

n(T̂n − Tn) + Tt
n(T̂n − Tn)‖

= ‖T̂t
n(Q̂n − Imn)T̂n‖ + ‖(T̂n − Tn)t(T̂n − Tn) + 2Tt

n(T̂n − Tn)‖

6 ‖Tt
n(Q̂n − Imn)Tn‖

2 + ‖T̂n − Tn‖
2
(
1 + ‖Q̂n − Imn‖

)
+ 2||̂Tn − Tn‖

(
||Tn|| + ‖Q̂n − Imn‖

)
= ‖Tt

n(Q̂n − Imn)Tn‖
2 + op(1).

Moreover,

‖Tt
n(Q̂n − Imn)Tn‖

2 6 n−1
kn∑

j,l=1

E
∣∣∣ E[∆el(Y) fmn(X)]t fmn(X) fmn(X)t E[∆e j(Y) fmn(X)]

∣∣∣2
= n−1 E

 kn∑
j,l=1

∣∣∣(FmnTel)(X)(FmnTe j)(X)
∣∣∣2

6 n−1
(
sup
x∈X
‖(Tekn)(x)‖2

)2

6 n−1

sup
y∈Y
‖ekn(y)‖2


2

= O(n−1k2
n)
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since ‖(T̂t
nQ̂−1

n T̂n)−1
‖ 6 ‖(Tt

nTn)−1
‖ + op(1) and ‖(Tt

nTn)−1
‖ 6 Cτ−1

kn
by assumption 7 (iv),

‖Q̂−1
n − I‖2 = Op(m2

n/n), ‖Xt
mn

diag(Y)Ykn/n − TY
n ‖

2 = Op(mnkn/n), ‖T̂n − Tn‖
2 = Op(mnkn/n).

Then, ‖̂h2 − h2‖
2 = op(1) by Assumptions 4 (ii) and 5 (ii), (iv), and so ‖̂h2‖ = Op(1).

Under Assumptions 4 (ii)-(iii) and 7 (i), we can show similarly as in Newey [1997] page 165
– 166 that:∣∣∣∣̂ht

1Σn̂h1 − ht
1Σnh1

∣∣∣∣ = op(1) and
∣∣∣∣̂ht

1(Σ̃n − Σn)̂h1

∣∣∣∣ = op(1). (A.5)

Moreover, denote Ŝn = n−1 ∑
i fmn(Xi) fmn(Xi)t

|Yi g(Yi)−ϕ(Xi)|,Sn = E[ fmn(X) fmn(X)t
|Y g(Y)−

ϕ(X)|], Dĝn
(·) = ĝn(·) − g(·) and Dϕ̂n

(·) = ϕ̂n(·) − ϕ(·) and remark that E ‖Ŝn −Sn‖
2 6 Cm2

n/n
under Assumption 7 (i). Hence,

∣∣∣∣̂ht
1(Σ̂n − Σ̃n)̂h1

∣∣∣∣ =

∣∣∣∣∣∣∣n−1
∑

i

(̂
ht

1 fmn(Xi)
)2 {(

Yi ĝn(Yi) − ϕ̂n(Xi)
)2
−

(
Yi g(Yi) − ϕ(Xi)

)2}∣∣∣∣∣∣∣
6

∣∣∣∣∣∣∣n−1
∑

i

(̂
ht

1 fmn(Xi)
)2

(YiDĝn
(Yi) −Dϕ̂n

(Xi))2

∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣n−1
∑

i

(̂
ht

1 fmn(Xi)
)2 (

Yi g(Yi) − ϕ(Xi)
)
(YiDĝn

(Yi) −Dϕ̂n
(Xi))

∣∣∣∣∣∣∣
6 op(1)̂ht

1[Q̂n − Imn ]̂h1 + 2op(1)̂ht
1[Ŝn −Sn]̂h1 + op(1)‖̂h1‖

2 + op(1)̂ht
1Sn̂h1

(A.6)

since supy∈Y |y|
2(supy∈Y |Dĝn

(y)|)2 = Op
(
max

(
k2

n/(nτkn), k−2β+1
n

))
and

(
sup
x∈X
|Dϕ̂n

(x)|
)2

= Op

(
max

(
m−2α/dx+1

n ,
m2

n

n
,mn‖T(Ekn g − g)‖2X

))
by the Cauchy Schwartz inequality and both converge to zero under the assumptions of
the theorem.
Next, by the Cauchy-Schwarz inequality,

|̂ht
2Σn, f ĥ2 − ht

2Σn, f h2| 6 |(̂h2 − h2)tΣn, f (̂h2 − h2) + 2ht
2Σn, f ĥ2 − 2ht

2Σn, f h2|

6 |(̂h2 − h2)tΣn, f (̂h2 − h2)| + 2|(̂h2 − h2)tΣn, f h2|

= op(1). (A.7)

Furthermore, by E ‖Σ̂n, f − Σn, f ‖
2 6 Cm2

n/n,

|̂ht
2(Σ̂n, f − Σn, f )̂h2| 6

∥∥∥∥Σ̂n, f − Σn, f

∥∥∥∥ ‖̂h2‖
2 = op(1). (A.8)

Then, by (A.3), the triangle inequality and (A.5)–(A.8), the result of the lemma follows. �

A.2. Proofs of Section 4.

Proof of Theorem 4.1. The proof is based on the inequality

‖ψ̂n − ψ‖Z 6 ‖Πknψ − ψ‖Z + ‖ψ̂n −Πknψ‖Z.
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By assumption, we have ‖Πknψ − ψ‖Z = O(k−γ/dz
n ) and thus, it is sufficient to bound ‖ψ̂n −

Πknψ‖Z. By Lemma B.2 of Chen and Pouzo [2012] it holds ‖ψ̂n − Πknψ‖
2
Z 6 Cκ−1

kn
‖K(ψ̂n −

Πknψ)‖2X. From the proof of Theorem 3.1 we have

mn∑
j=1

∣∣∣n−1
∑

i

Yi ĝn(Yi) f j(Xi) − E[Yg(Y) f j(X)]
∣∣∣2 = Op(rn) (A.9)

where we denote rn = max
(
m−2α/dx

n ,n−1mn, ‖T(g − Ekn g)‖2X
)
. Consequently, we observe

∥∥∥n−1
∑

i

(
Yi ĝn(Yi) − (Πknψ)(Zi)

)
pmn(Xi)

∥∥∥2

6 2
∥∥∥ E

[(
Y g(Y) − (Πknψ)(Z)

)
pmn(X)

]∥∥∥2
+ Op(rn)

6 2‖K(Πknψ − ψ)‖2X + Op
(
rn + ‖F⊥mn

K(Πknψ − ψ)‖2X
)
.

Further, using the elementary inequality (a − b)2 > a2/2 − b2 and again applying relation
(A.9) gives uniformly in φ∥∥∥n−1

∑
i

(
Yi ĝn(Yi) − φ(Zi)

)
fmn(Xi)

∥∥∥2
>

∥∥∥ E
[(

Y∗ − φ(Z)
)

fmn(X)
]∥∥∥2
/2

−

kn∑
j=1

max
φ∈Bkn

∣∣∣∣n−1
∑

i

(
Yi ĝn(Yi) − φ(Zi)

)
f j(Xi) − E

[(
Y∗ − φ(Z)

)
f j(X)

]∣∣∣∣2
> C‖K(Πknψ − ψ)‖2X − Op

(
rn + ‖F⊥mn

K(Πknψ − ψ)‖2X
)
.

For some ε > 0 let us denote Ψ̃n = {φ ∈ Ψn : ‖K(φ−ψ)‖2X > ε r̃n}where r̃n = rn+‖F⊥mn
K(Πknψ−

ψ)‖2X. Therefore, following the proof of Lemma B.1 of Chen and Pouzo [2012] we obtain

P
(
‖K(ψ̂n − ψ)‖2X > ετn

)
6 P

(
min
φ∈Ψ̃n

∥∥∥∑
i

(
Yi ĝn(Yi) − φ(Zi)

)
fmn(Xi)

∥∥∥2
6

∥∥∥∑
i

(
Yi ĝn(Yi) − (Πknψ)(Zi)

)
fmn(Xi)

∥∥∥2)
6 P

(
min
φ∈Ψ̃n

‖K(φ − ψ)‖2X 6 ‖K(Πknψ − ψ)‖2X + Op(̃rn)
)

which goes to zero for all n > 1 as ε → ∞. This shows ‖K(ψ̂n −Πknψ)‖X = Op(̃rn) and thus
proves the result. �

Proof of Theorem 4.2. Observe that the asymptotic varianceWn(z) is bounded from be-
low. Indeed, from conditionVar(Yg(Y) − ψ(Z)|X) > C we infer

Wn(z) > pkn(z)t
(
Kt

nKn
)−1

Kt
n E

[
fmn(X)Var(Yg(Y) − ψ(Z)|X) fmn(X)t

]
Kn

(
Kt

nKn
)−1

pkn(z)

> C pkn(z)t
(
Kt

nKn
)−1

pkn(z)
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which we use in the following. Let Â−1
n =

(
Zt

kn
Xmn(Xt

mn
Xmn)−1 Xt

mn
Zkn/n

)−1
Zt

kn
Xmn(Xt

mn
Xmn)−1

and A−1
n = (Kt

nKn)−1Kt
n. Then, we make use of the decomposition

ψ̂n(z) − ψ(z) = pkn(z)tn−1Â−1
n

∑
i

fmn(Xi)
(
Yig(Yi) − ψ(Zi)

)
+ pkn(z)tn−1Â−1

n

∑
i

fmn(Xi)Yi

(
ĝn(Yi) − Ekn g(Yi)

)
+ pkn(z)tn−1Â−1

n

∑
i

fmn(Xi)Yi

(
Ekn g(Yi) − g(Yi)

)
+ pkn(z)tn−1Â−1

n

∑
i

fmn(Xi)ψ(Zi) − ψ(z)

= In + IIn + IIIn + IVn (say).

Let us denote ϑkn =
(
Kt

nKn
)−1

Kt
n E[Yg(Y) fmn(X)]. As in the proof of Theorem 3.1 and since

E[ fmn(X)] = E[∆g(Y) fmn(X)] it is easily seen

IIn =
√

n pkn(z)t
(
Kt

nKn
)−1

Kt
nTY

n (ϑ̂kn − ϑkn)

+
√

n pmn(z)t
(
Kt

nKn
)−1

Kt
nTY

n

(
Tt

nTn
)−1

Tt
n E

[
fmn(X)∆

(
g(Y) − Ekn g(Y)

)]
+ op(1).

Since the largest eigenvalue of TY
n

(
Tt

nTn
)−1

Tt
n is bounded and Assumption 5 (iv) together

with n‖T(g − Ekn g)‖2X = o(1) the Cauchy Schwarz inequality implies

IIn =
√

n pkn(z)t
(
Kt

nKn
)−1

Kt
nTY

n (ϑ̂kn − ϑkn) + op(1).

Consequently, we obtain

√
n/Wn(z)

(
In + IIn

)
=

∑
i

(
nWn(z)

)−1/2
pkn(z)tA−1

n

(
fmn(Xi)(Yig(Yi) − ψ(Zi))

−

(
Kt

nKn
)−1

Kt
nTY

n

(
Tt

nTn
)−1

Tt
n

(
fmn(Xi) − E[ fmn(X)]

))
+ op(1)

=
∑

i

sin + op(1)

Moreover, sin, 1 6 i 6 n satisfy the Lindeberg condition which can be seen as follows.

It holds E[sin] = 0 and n E[s2
in] = 1. From Assumption 5 (iv) we infer ‖TY

n

(
Tt

nTn
)−1

Tt
n‖ 6

C‖Tn
(
Tt

nTn
)−1

Tt
n‖ = C and due to E |Yg(Y) − ψ(X)|4 6 C we observe∑

i

E[s2
in 1{|sin|>ε}] 6 nε2 E |sin/ε|

4 6 Cn−1ε−2m2
n = o(1).

Again from Assumption 5 (iv) together with n‖T(g − Ekn g)‖2X = o(1) yields nIIIn = op(1).
Finally, nIVn = op(1) follows from n‖Πknψ − ψ‖

2
Z = o(1), which completes the proof of the

first statement in the theorem.
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To prove the second statement of the theorem, remark that by Lemma A.2,Wn(z)−1
Ŵn(z) =

1 + op(1). Therefore, we obtain√
n
/
Ŵn(z)

(
ψ̂n(z) − ψ(z)

)
=

√
n
/
Wn(z)

(
ψ̂n(z) − ψ(z)

)
(Wn(z)/Ŵn(z))1/2 d

→N(0, 1)

which proves the second result of the theorem. �

Lemma A.2. Let Assumptions 1 – 5, and 8 – 10 be satisfied. Moreover, assume that Y is bounded
and mn = o(

√
n min(

√
τknκ

2
kn
,
√
κknτ

2
kn

)). Then,

Wn(z)−1
Ŵn(z) = 1 + op(1)

whereWn(z) and Ŵn(z) are as defined in Theorem 3.3.

Proof. Let Σn, f and Σ̂n, f as defined in the proof of Lemma A.1. We denote Σ
ψ
n = E

[
fmn(X)Var(Yg(Y)−

ψ(Z)|X) fmn(X)t
]
, Σ̂ψn = n−1 ∑

i fmn(Xi) fmn(Xi)t
(
Yi ĝn(Yi)−ψ̂n(Zi)

)2
and Σ̃

ψ
n = n−1 ∑

i fmn(Xi) fmn(Xi)t
(
Yi g(Yi)−

ψ(Xi)
)2

. Moreover, let Ân = (Zt
kn

Xmn/nQ̂−1
n Xt

mn
Zkn/n),An = Kt

nKn,

ĥt
3 = (Wn(z))−1/2pkn(z)t

Â
−1
n (Zt

kn
Xmn/n)Q̂−1

n , ht
3 = (Wn(z))−1/2pkn(z)t

A
−1
n Kt

n,

ĥt
4 = (Wn(z))−1/2pkn(z)t

Â
−1
n (Zt

kn
Xmn/n)Xt

mn
diag(Y)Ykn

(
T̂t

nQ̂−1
n T̂n

)−
T̂t

nQ̂−1
n

and ht
4 = (Wn(z))−1/2pkn(z)t

A
−1
n Kt

nTY
n

(
Tt

nTn
)−1

Tt
n. Hence, Wn(z)

(̂
ht

3Σ̂
ψ
n ĥ3 + ĥt

4Σ̂n, f ĥ4

)
=

Ŵn(x) and by noticing that ht
3Σ

ψ
n h3 + ht

4Σn, f h4 = 1 and by the triangle inequality∣∣∣∣(Wn(z))−1/2
Ŵn(z)(Wn(z))−1/2

− 1
∣∣∣∣ 6 ∣∣∣∣̂ht

3(Σ̂ψn − Σ̃
ψ
n )̂h3

∣∣∣∣ +
∣∣∣∣̂ht

3(Σ̃ψn − Σ
ψ
n )̂h3

∣∣∣∣
+

∣∣∣∣̂ht
3Σ

ψ
n ĥ3 − ht

3Σ
ψ
n h3

∣∣∣∣ +
∣∣∣∣̂ht

4(Σ̂n, f − Σn, f )̂h4

∣∣∣∣ +
∣∣∣∣̂ht

4Σn, f ĥ4 − ht
4Σn, f h4

∣∣∣∣ .
(A.10)

Remark that

‖Â
−1
n −A

−1
n ‖ 6 ‖Â

−1
n ‖ ‖Ân −An‖ ‖A

−1
n ‖ = Op(max(

√
knmn
√

n
,

mn
√

n
)κ−2

kn
)

since ‖Â−1
n ‖

2 6 2‖A−1
n ‖

2 + op(1), ‖A−1
n ‖

2 = λ−1
n 6 Cκ−2

kn
, ‖Xt

mn
Zkn/n −Kn‖

2 = Op(knmn/n) and

‖Q̂−1
n − I‖2 = Op(mn

2/n). Then, ‖̂h3 − h3‖ = op(1) and ‖̂h3‖ = Op(1). By these results, (A.4),
‖Xt

mn
diag(Y)Ykn/n − TY

n ‖
2 = Op(mnkn/n), ‖T̂n − Tn‖

2 = Op(mnkn/n), Assumptions 4 (ii) and
5 (ii), (iv) and the assumptions of the lemma we conclude that ‖̂h4 − h4‖

2 = op(1) and so
‖̂h4‖ = Op(1).
Under Assumptions 4 (ii) – (iii) and 10 (i), we can show similarly as in Newey [1997] page
165 – 166 that:∣∣∣∣̂ht

3Σ
ψ
n ĥ3 − ht

3Σ
ψ
n h3

∣∣∣∣ = op(1) and
∣∣∣∣̂ht

3(Σ̃ψn − Σ
ψ
n )̂h3

∣∣∣∣ = op(1). (A.11)
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Moreover, denote ξ̂ψi =
(
Yi ĝn(Yi)−ψ̂n(Xi)

)
, ξψi =

(
Yi g(Yi)−ψ(Xi)

)
, Ŝn = n−1 ∑

i fmn(Xi) fmn(Xi)t
|ξ
ψ
i |,

Sψn = E[ fmn(X) fmn(X)t
|ξψ|], Dĝn

(Yi) = ĝn(Yi)− g(Yi) and D
ψ̂n

(Xi) = ψ̂n(Xi)−ψ(Xi) and remark

that E ‖Ŝψn − Sψn ‖2 6 Cm2
n/n under Assumption 10 (i). Hence,

∣∣∣∣̂ht
3(Σ̂ψn − Σ̃

ψ
n )̂h3

∣∣∣∣ =

∣∣∣∣∣∣∣n−1
n∑

i=1

(̂
ht

3 fmn(Xi)
)2

((ξ̂ψi )2
− (ξψi )2)

∣∣∣∣∣∣∣
6

∣∣∣∣∣∣∣n−1
n∑

i=1

(̂
ht

3 fmn(Xi)
)2

(YiDĝn
(Yi) −D

ψ̂n
(Xi))2

∣∣∣∣∣∣∣ + 2

∣∣∣∣∣∣∣n−1
n∑

i=1

(̂
ht

3 fmn(Xi)
)2
ξi(YiDĝn

(Yi) −D
ψ̂n

(Xi))

∣∣∣∣∣∣∣
6 op(1)̂ht

3[Q̂n − Imn ]̂h3 + 2op(1)̂ht
3[Ŝψn − Sψn ]̂h3 + op(1)‖̂h3‖

2 + op(1)̂ht
3Sψn ĥ1

(A.12)

since supy∈Y |y|
2(supy∈Y |Dĝn

(y)|)2 = Op
(
max

(
k2

n/(nτkn), k−2β+1
n

))
andsup

z∈Z
|D
ψ̂n

(x)|

2

= Op

(
max

(
k−2γ/dz+1

n ,
k2

n

nκkn

, knκ
−1
kn
‖T(Ekn g − g)‖2X

))
and both converge to zero under the assumptions of the lemma. Next, by the Cauchy-
Schwarz inequality and similarly as in the proof of Lemma A.1 we get

|̂ht
4Σn, f ĥ4 − ht

4Σn, f h4| 6 ‖̂h4 − h4‖
2 + 2

[
(̂h4 − h4)tΣn, f (̂h4 − h4)

]1/2 [
ht

4Σn, f h4

]1/2

6 C‖̂h4 − h4‖
2

= op(1). (A.13)

Furthermore, by E ‖Σ̂n, f − Σn, f ‖
2 6 Cm2

n/n,

|̂ht
4(Σ̂n, f − Σn, f )̂h4| 6

∥∥∥∥Σ̂n, f − Σn, f

∥∥∥∥ ‖̂h4‖
2 = op(1). (A.14)

Then, by (A.10) and (A.11)-(A.14), the result of the lemma follows. �

A.3. Proofs of Section 5.

Proof of Theorem 5.1. Since we have ‖Q̂n − Imn‖
2 = op(m2

n/n) it is sufficient to prove that

(
√

2ςmn)−1
(∑mn

j=1 |n
−1/2 ∑

i(∆i ĝn(Yi)− 1) f j(Xi)|2 − µmn

) d
→N(0, 1). The proof of this statement

is based on the decomposition

mn∑
j=1

|n−1
∑

i

(∆i ĝn(Yi) − 1) f j(Xi)|2 =

mn∑
j=1

∣∣∣n−1
∑

i

(
∆ig(Yi) − 1

)
f j(Xi)

∣∣∣2
−

2
n2

mn∑
j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)(∑
i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

)
+

mn∑
j=1

∣∣∣n−1
∑

i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

∣∣∣2 = In − 2IIn + IIIn. (A.15)
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Consider In. We calculate

ς−1
mn

(
nIn − µmn

)
=

1
ςmnn

∑
i

mn∑
j=1

(∣∣∣(∆ig(Yi) − 1
)

f j(Xi)
∣∣∣2 − E

[(
∆g(Y) − 1

)2
f 2
j (X)

])
+

1
ςmnn

∑
i,i′

mn∑
j=1

(
∆ig(Yi) − 1

)(
∆i′g(Yi′) − 1

)
f j(Xi) f j(Xi′)

where the first summand tends in probability to zero as n→∞. Indeed,we have

E
∣∣∣∣ 1
ςmnn

∑
i

mn∑
j=1

(∣∣∣(∆ig(Yi) − 1
)

f j(Xi)
∣∣∣2 − E

[(
∆g(Y) − 1

)2
f 2
j (X)

])∣∣∣∣2
6

1
ς2

mn
n

E
∣∣∣∣ mn∑

j=1

∣∣∣(∆g(Y) − 1
)

f j(X)
∣∣∣2 − E

[(
∆g(Y) − 1

)2
f 2
j (X)

]∣∣∣∣2
6

1
ς2

mn
n

sup
x∈X
‖ fmn(x)‖4 E

∣∣∣∆g(Y) − 1
∣∣∣4

6
Cm2

n

ς2
mn

n
= o(1).

Therefore, to establish (
√

2ςmn)−1(nIn − µmn) d
→N(0, 1) it is sufficient to show

√
2

ςmnn

∑
i,i′

mn∑
j=1

(
∆ig(Yi) − 1

)(
∆i′g(Yi′) − 1

)
f j(Xi) f j(Xi′)

d
→N(0, 1).

This follows from Lemma A.2 of Breunig [2015].
Consider IIn. We observe

nIIn =

mn∑
j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑
i

∆i

(
ĝn(Yi) − g(Yi)

)
f j(Xi)

)
=

mn∑
j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑
i

∆i

(
ĝn(Yi) − Ekn g(Yi)

)
f j(Xi)

)
+

mn∑
j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)(
n−1

∑
i

∆i

(
Ekn gn(Yi) − g(Yi)

)
f j(Xi)

)
= Cn1 + Cn2.

Consider Cn1. We have

Cn1 =‖Diag(τ1, . . . , τkn)1/2(β̂kn − βkn)‖

×

mn∑
j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)
‖Diag(τ1, . . . , τkn)−1/2 E[∆ekn(Y) f j(X)]‖ + op(1).
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Using

E
∣∣∣∣ mn∑

j=1

(∑
i

(
∆ig(Yi) − 1

)
f j(Xi)

)
‖Diag(τ1, . . . , τkn)−1/2 E[∆ekn(Y) f j(X)]‖

∣∣∣∣2
6 n

mn∑
j=1

E
[(

(∆g(Y) − 1) f j(X)
)2]
‖Diag(τ1, . . . , τkn)−1/2 E[∆ekn(Y) f j(X)]‖2

6 Cn‖Diag(τ1, . . . , τkn)−1/2 E[∆ekn(Y) fmn(X)t]‖2.

Since ‖Diag(τ1, . . . , τkn)−1/2 E[∆ekn(Y) fmn(X)t]‖2 = O(kn) it holds

Cn1 = ‖Diag(τ1, . . . , τkn)1/2(β̂kn − βkn)‖Op(
√

knn) = Op(kn) = op(
√

mn).

Further, we have

E |Cn2| 6
mn∑
j=1

√
E |(Ekn g − g)(Y) f j(X)|2

√
E
∣∣∣(∆ig(Y) − 1) f j(X)

∣∣∣2
+ Cn1/2 E

∣∣∣ mn∑
j=1

〈T(Ekn g − g), f j〉X f j(X)
∣∣∣

6 C
(
mn‖Ekn g − g‖∞ +

√
n‖T(Ekn g − g)‖X

)
= O(mnk1/2−β

n +
√

nτkn k−βn ) = o(
√

mn)

where we used that mnk1−2β
n = o(1). Consider IIIn. It holds true that

IIIn 6 Cn‖(β̂kn − βkn)t E[∆ekn(Y) fmn(X)t]‖2

+ Cn‖T(Ekn g − g)‖2X
)

= Op
(
kn + nτknk−2β

n

)
= op(

√
mn)

which completes the proof of the first result in the theorem. �

Proof of Theorem 5.2. Remark that (
√

2ς̂mn)−1
(
nSn − µ̂mn

)
= (
√

2ςmn)−1
(
nSn − µmn

)
ςmn
ς̂mn

+

(
√

2ςmn)−1 (
µmn − µ̂mn

) ςmn
ς̂mn

. The statement of the theorem follows from the results of Theo-
rem 5.1, Lemma A.3 and Lemma A.4. �

Lemma A.3. Let Assumptions 1 – 6 be satisfied. Then,

ς−1
mn
ς̂mn = 1 + op(1)

where ςmn and ς̂mn are as defined in Theorem 5.1.
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Proof. Let ‖·‖F denote the Frobenius norm of a matrix. Then ςmn = ‖Σmn‖F and ς̂mn = ‖Σ̂mn‖F.
Let us denote Σ̃mn = n−1 ∑

i fmn(Xi) fmn(Xi)t(Ekn g(Yi)∆i − 1)2. Observe that Observe

‖Σ̂mn − Σ̃mn‖
2
F

=
∥∥∥∥n−1

∑
i

fmn(Xi) fmn(Xi)t
[
|(ĝn − Ekn g)(Yi)|2∆i + 2(Ekn g(Yi)∆i − 1)∆i(ĝn − Ekn g)(Yi)

]∥∥∥∥2

F

6 2
∥∥∥∥n−1

∑
i

fmn(Xi) fmn(Xi)t
|(ĝn − Ekn g)(Yi)|2∆i

∥∥∥∥2

F

+ 2
∥∥∥∥n−1

∑
i

fmn(Xi) fmn(Xi)t(Ekn g(Yi)∆i − 1)∆i(ĝn − Ekn g)(Yi)
∥∥∥∥2

F

= 2In + 2IIn.

We further calculate

In 6
∥∥∥∥1

n

∑
i

∆i(β̂kn − βkn)tekn(Yi) fmn(Xi) fmn(Xi)tekn(Yi)t
|(β̂kn − βkn)

∥∥∥∥2

F

6
∥∥∥∥(β̂kn − βkn)t E[∆ekn(Y) fmn(X) fmn(X)tekn(Y)t](β̂kn − βkn)

∥∥∥∥2

F
+ op(1)

6 ‖β̂kn − βkn‖
4

mn∑
j,l=1

E[‖∆ekn(Y)‖2| f j(X) fl(X)|]2 + op(1)

6 Cm2
n‖β̂kn − βkn‖

4 E
(
‖∆ekn(Y)‖2

)2
+ op(1)

= Op
(
m2

nk4
n/(τknn)2

)
= op(1)

by using kn = o(
√

mn). Similarly, we conclude

IIn 6
∥∥∥∥1

n

∑
i

(Ekn g(Yi)∆i − 1) fmn(Xi) fmn(Xi)tekn(Yi)t
|(β̂kn − βkn)

∥∥∥∥2

F

6
∥∥∥∥ E[(Ekn g(Y)∆ − 1)∆ fmn(X) fmn(X)tekn(Y)t](β̂kn − βkn)

∥∥∥∥2

F
+ op(1)

6 ‖β̂kn − βkn‖
2

mn∑
j,l=1

kn∑
l′=1

(
E[(Ekn g(Y)∆ − 1)∆el′(Y) f j(X) fl(X)]

)2
+ op(1)

= ‖β̂kn − βkn‖
2

mn∑
j=1

kn∑
l′=1

‖FmnT((Ekn g − 1) · el′) · f j‖
2
X + op(1)

= Op
(
mnk2

n/(τknn)
)

= op(1)
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by using kn = o(
√

mn). Next,

E ‖Σ̃mn − Σmn‖
2
F =

mn∑
j,l=1

E

1
n

∑
i

(
f j(Xi) fl(Xi)(Ekn g(Yi)∆i − 1)2

− E
[

f j(X) fl(X)(g(Y)∆ − 1)2
])

2

6
1
n

mn∑
j,l=1

E
[

f 2
j (X) f 2

l (X)(Ekn g(Y)∆ − 1)4
]

+

mn∑
j,l=1

(
E
[

f j(X) fl(X)∆(Ekn g(Y) − g(Y))2
] )2

6 C
m2

n

n
+

mn∑
j=1

‖FmnT(Ekn g − g) · f j‖
2
X = O(m2

nn−1 + mnk1−2β
n ) = o(1)

Finally, by these results and the reverse triangle inequality we conclude that∣∣∣ς−1
mn
ς̂mn − 1

∣∣∣ = ς−1
mn

∣∣∣∣‖Σ̂mn‖F − ‖Σmn‖F

∣∣∣∣ 6 ς−1
mn
‖Σ̂mn − Σ̃mn‖F + ς−1

mn
‖Σ̃mn − Σmn‖F = op(1)

which proves the result. �

Lemma A.4. Let Assumptions 1–6 be satisfied. Then,

µ̂mn = µmn + op(ςmn)

where µmn and µ̂mn are as defined in Theorem 5.1.

Proof. The proof of Lemma A.3 establishes ‖Σ̂mn −Σmn‖F = op(1). In particular, convergence
of the trace of Σ̂mn to the trace of Σmn follows by using |̂µmn − µmn | 6

√
mn ‖Σ̂mn − Σmn‖F =

op(ςmn). �
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